Counterintuitive approximations

Christian Bär (j.w. Bernhard Hanke)

Institut für Mathematik Universität Potsdam Germany

Geometry of Scalar Curvature Cortona 8 July 2019

The approximation theorem

low regularity flexibility ↔ high regularity rigidity

Usually: Approximate mathematical objects by ones with better regularity (mollifiers, finite-dimensional approximations, ...)

Here:

Approximate maps by ones with less regularity plus additional (unexpected) properties

Theorem (Nash 1954, Kuiper 1955)

Let M^n be a compact Riemannian manifold and $f: M \hookrightarrow \mathbb{R}^{n+1}$ a short C^{∞} -embedding.

Then for any $\varepsilon > 0 \exists$ embedding $g : M \hookrightarrow \mathbb{R}^{n+1}$ s.t.

- $\triangleright |\boldsymbol{f} \boldsymbol{g}| < \varepsilon;$
- ▷ g is C^1 ;
- g is isometric!

In particular: M^n embedds isometrically into small ball. Trivial for n = 1:

False for $n \ge 2$?f C^1 is replaced by C^2 :

True for C^1 :

V. Borrell, S. Jabrane, F. Lazarus, D. Rohmer et B. Thibert Licence Creative Commons (CC 8FSA)

Nash-Kuiper embedding

Theorem (Nash 1954, Kuiper 1955)

Let M^n be a compact Riemannian manifold and $f : M \hookrightarrow \mathbb{R}^{n+1}$ a short C^{∞} -embedding. Then for any $\varepsilon > 0 \exists$ embedding $g : M \hookrightarrow \mathbb{R}^{n+1}$ s.t. $\triangleright |f - g| < \varepsilon;$ $\triangleright g \text{ is } C^1;$ $\triangleright g \text{ is isometric!}$

- \triangleright False if C^1 replaced by C^2 .
- ▷ Cao, Székelyhidi (2019): True if C^1 replaced by $C^{1,\alpha}$ with $\alpha < \frac{1}{n^2+n+1}$ (and $\alpha < \frac{1}{5}$ for n = 2).
- ▷ Borisov (1959): False if n = 2 and C^1 replaced by $C^{1,\alpha}$ with $\alpha > 2/3$.

Our setting

- V a smooth manifold;
- $\triangleright \pi : X \to V$ a smooth vector bundle;
- ▷ $k \in \mathbb{N}$ a positive integer;
- ▷ f a C^k -section on V;
- \triangleright Γ a subsheaf of the sheaf of C^k -sections of X;
- $\triangleright \pi_k : J^k X \to V k$ -jet bundle of X;
- \triangleright $j^k f(p)$ k-jet of f at $p \in V$;

Commutative diagram:

Define

 $J^{k}\Gamma := \{j^{k}\gamma(p) \mid \gamma \text{ local section of } \Gamma, \text{ defined near } p, p \in V\}$ $\subset J^{k}X \qquad \qquad \bigstar$

Theorem 1 (B.-Hanke 2019)

Assume $\forall p \in V \exists$ open neighborhood W of $j^{k-1}f(p)$ in $J^{k-1}X$ and a continuous map $\sigma_W : W \to J^k X$ s.t.

$$\triangleright \ \pi_{k,k-1} \circ \sigma_W = \mathsf{id}_W;$$

 $\triangleright \sigma_{W}(\omega) \in J^{k}\Gamma$ for each $\omega \in W$.

```
Then \exists section \hat{f} of X \rightarrow V s.t.:
```

$$\triangleright \hat{f}$$
 is C^{k-1} -close to f ;

$$\triangleright \ \hat{f} \in C^{k-1,1}_{\text{loc}}(V,X);$$

▷ $\hat{f}|_{\mathscr{U}} \in \Gamma(\mathscr{U})$ for some open and dense $\mathscr{U} \subset V$.

False if
$$C_{loc}^{k-1,1}$$
 is replaced by C^k .
• Theorem 2

Examples

Example 1: Lipschitz functions

 $\triangleright \ V = \mathbb{R};$

- $\triangleright \pi : X \to V$ trivial line bundle;
- $\triangleright k = 1;$
- ▷ Γ sheaf of locally constant C^{∞} -functions on \mathbb{R} ;
- ▷ $f C^1$ -function on \mathbb{R} ;

Put $W := J^0 X = X = \mathbb{R} \times \mathbb{R}$ and $\sigma_W(p,\xi) = j^1(t \mapsto \xi)(p)$.

Corollary 1

Let $f : \mathbb{R} \to \mathbb{R}$ be C^1 and $\varepsilon > 0$. Then $\exists \hat{f} : \mathbb{R} \to \mathbb{R}$ s.t.

- $\triangleright ||f-\hat{f}|<\varepsilon;$
- $\triangleright \hat{f}$ is locally Lipschitz on \mathbb{R} ;
- ▷ \hat{f} is smooth and $\hat{f}' = 0$ on an open dense subset of \mathbb{R} .

Example 1: Lipschitz functions

Apply to f(t) = t and restrict to [0, 1]. Get Lipschitz function

 $\hat{f}: [0,1] \rightarrow \mathbb{R}$ s.t. $\hat{f}(0) = 0, \hat{f}(1) = 1, \hat{f}' = 0$ on open dense subset

Comparison with Cantor function:

	our Î	Cantor function
regularity	<i>C</i> ^{0,1}	\mathcal{C}^{lpha} with $lpha=\ln(2)/\ln(3)$
fund. thm. applies	yes	no
<i>f</i> ′ = 0 on	open dense	open dense of full measure

Example

Enumerate $\mathbb{Q} = \{q_1, q_2, q_3, ...\}$. Put

$$\mathcal{U} := \bigcup_{j=1}^{\infty} (q_j - \varepsilon_j, q_j + \varepsilon_j)$$

Then $\mathcal{U} \subset \mathbb{R}$ is open and dense and

$$|\mathcal{U}| \leq 2\sum_{j} \varepsilon_{j}$$

Example 2: Riemannian metrics

- ▷ **V** any manifold of dimension ≥ 2 ;
- $\triangleright \pi : X \rightarrow V$ bundle of symmetric (0,2)-tensors;
- ⊳ *k* = 2;
- $\triangleright f a C^2 metric on V;$
- ▷ Γ sheaf of smooth metrics with sectional curvature $\equiv K$ for given $K \in \mathbb{R}$;

Pick local chart (U, x^1, \ldots, x^n) on V. Put

 $W := \{ \omega \in \pi_1^{-1}(U) \mid \pi_{1,0}(\omega) \text{ is positive definite} \}.$

Express 1-jet $\omega \in \pi_1^{-1}(U)$ as $\omega = \omega_0 + \sum_j \omega_j x^j$. Associate the metric h_{ω} given by $h_{\omega} = \omega_0 + \sum_j \omega_j x^j$. Put

$$\sigma_{W}(\omega) := j^{2} \Big(\big((\exp_{\rho}^{h_{\omega}})^{-1} \big)^{*} g_{\mathcal{T}_{\rho}V}^{[K]} \Big) (\rho) \in J^{2} \Gamma.$$

Corollary 2

Let V be a smooth manifold with a C^2 -Riemannian metric g. Then there exists a Riemannian metric \hat{g} on V with the following properties:

- $\triangleright \hat{g}$ is C^1 -close to g;
- $\triangleright \hat{g}$ has local $C^{1,1}$ -Lipschitz regularity;
- ▷ the curvature tensor of \hat{g} exists as an L^{∞}_{loc} -tensor field and $\sec_{\hat{g}} \equiv K$ on an open dense subset of V.

Corollary 3

Each differentiable manifold of dimension ≥ 2 has a complete $C^{1,1}$ -Riemannian metric with curvature $\equiv 1$ (and others with curvature $\equiv 0$ and $\equiv -1$, resp.) on an open dense subset.

If V is a compact surface then the Gauss-Bonnet theorem

$$\int_V K \, d\mathsf{A} = 2\pi\chi(V)$$

holds for these metrics!

Example 3: Embeddings of surfaces

- V analytic 2-dimensional manifold;
- $\triangleright \pi : X \to V$ trivial \mathbb{R}^3 -bundle;
- ▷ *k* = 2;
- ▷ *f* a C^2 -embedding $V \hookrightarrow \mathbb{R}^3$;
- ▷ Γ sheaf of analytic embeddings with Gauss curvature $\equiv K$ for given $K \in \mathbb{R}$;

Corollary 4

There exists a $C^{1,1}$ -embedding $\hat{f} : V \hookrightarrow \mathbb{R}^3 C^1$ -close to f which is analytic on an open dense subset $\mathscr{U} \subset V$ and has constant Gauss curvature K on \mathscr{U} (w.r.t. the induced metric).

The proof

Gromov's exercise

Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge - Band 9 A Series of Modern Surveys in Mathematics

Mikhael Gromov

Partial Differential Relations

pringer-Verlag Berlin Heidelberg GmbH

2.2 Continuous Sheaves

Exercises. (a) Let $\mathscr{R} \subset X^{(r)} \to X \to V$ be an open differential relation, let $V_0 \subset V$ be an arbitrary submanifold and let $f_0: V \to X$ be a C'-solution of \mathscr{R} [i.e. $J'_{f_0}(V) \subset \mathscr{R}$]. Let F denote the space of C'-solutions $f: V \to X$ of \mathscr{R} , such that $J_{f}^{-1}|V_0 = J_{f_0}^{-1}|V_0$, and let F_0 be the space of jets $\varphi: V_0 \to \mathscr{R}$ of such solutions near V_0 . That is $\varphi \in F_0$ if and only if there exists a solution $f': \mathcal{O}_{\mathscr{R}}V_0 \to X$ of \mathscr{R} such that $J_{f'}^{-1}|V_0 = J_{f_0}^{-1}|V_0$ and for which $J'_{f'}|V_0 = \varphi$. Prove the following

Weak Flexibility Lemma. The map $f \mapsto J'_f V_0$ is a Serre fibration $F \to F_0$.

Hint. Use the induction in dim V and codim V_0 , starting with dim V = 1, dim $V_0 = 0$.

(b) Apply (a) to the differential relations K(g) > 0, K(g) < 0, S(g) > 0, and to a closed geodesic $V_0 \subset (V, g_0)$. Thus deform a given Riemannian metric g_0 which satisfies one of the above inequalities to a metric g whose sectional curvature is constant near V_0 , while satisfying the same curvature inequality as g_0 everywhere on V.

111

Partial differential relations (PDRs)

- \triangleright **X** \rightarrow **V** a vector bundle;
- ▷ $k \in \mathbb{N}_0;$
- \triangleright *J***^{***k***}** *X* **\rightarrow** *V* **the** *k***th jet bundle;**
- $\triangleright \ \mathscr{R} \subset J^k X \text{ a subset.}$

Definition

 \mathscr{R} is called a partial differential relation of order *k*. A section $u : V \to X$ solves \mathscr{R} if $j^k u(v) \in \mathscr{R}$ for all $v \in V$.

Local flexibility - Setup

- \triangleright \mathscr{R} an **open** PDR of order k;
- \triangleright $V_0 \subset V$ a **closed** subset;

- \triangleright *U* an open neighborhood of *V*₀ in *V*;
- ▷ f_0 a C^k -section on V solving \mathscr{R} ;
- ▷ $F \in C^0([0,1], C^k(U, X))$ s.t. each F(t) solves \mathscr{R} over U.

Moreover, assume

▷
$$f_0|_U = F(0);$$

▷ $j^{k-1}F(t)|_{V_0} = j^{k-1}f_0|_{V_0}$ for all $t \in [0, 1]$

Theorem 2 (B.-Hanke 2019)

∃ open subset U_0 with $V_0 ⊂ U_0 ⊂ U ⊂ V$ and a continuous $f : [0, 1] → C^k(V, X)$ s.t.

- $\triangleright f(0) = f_0;$
- ▷ $f(t)|_{U_0} = F(t)|_{U_0};$
- $\triangleright f(t)|_{V\setminus U} = f_0|_{V\setminus U};$
- ▷ each f(t) solves \mathscr{R} .

Pick dense countable subset $\{p_1, p_2, p_3, ...\} \subset V$. Inductively construct f_j and U_j s.t.

$$\begin{array}{l} \triangleright \ f_0 = f \text{ and } U_0 = \emptyset; \\ \triangleright \ U_j \supset U_{j-1}; \\ \triangleright \ p_j \in U_j; \\ \triangleright \ f_j = f_{j-1} \text{ on } U_{j-1}; \\ \triangleright \ \|f_j - f_{j-1}\|_{C^{k-1}(V)} < 2^{-j} \cdot \varepsilon; \\ \triangleright \ \|f_j - f_{j-1}\|_{C^k(V)} < C + 2^{-j}; \\ \triangleright \ f_j|_{\overline{U}_j} \in \Gamma(\overline{U}_j). \end{array}$$

Then $\hat{f} = \lim_{j \to \infty} f_j$ does the job with $\mathscr{U} = \bigcup_j U_j$.

Thanks for your attention!

arXiv:1809.05703v3