


The approximation theorem



Approximation

low regularity o high regularity
flexibility rigidity
Usually:
Approximate mathematical objects by ones with better
regularity

(mollifiers, finite-dimensional approximations, ...)

Here:
Approximate maps by ones with less regularity
plus additional (unexpected) properties

.
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Prototypical example: Nash-Kuiper embedding

Theorem (Nash 1954, Kuiper 1955)

Let M" be a compact Riemannian manifold and 7 : M < R a
short C*°-embedding.
Then for any £ > 0 3 embedding g : M — R s.t.

> |f—g| <e;
> gis C';
> g is isometric!

In particular: M" embedds isometrically into small ball.

Trivial for n = 1: /*\ %
\ |—E,
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False for n > 2% C' is replaced by C?:
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True for C':
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Nash-Kuiper embedding

Theorem (Nash 1954, Kuiper 1955)

Let M" be a compact Riemannian manifold and 7 : M — R™ a
short C*°-embedding.
Then for any £ > 0 3 embedding g : M — R s.t.

> |f—g| <e;
> gis CT;
> g is isometric!

False if C' replaced by C?.

Cao, Székelyhidi (2019): True if C' replaced by C'-* with
o< and o < £ for n=2).
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Borisov (1959): False if n =2 and C' replaced by C':* with

a>2/3. R
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Our setting

> V a smooth manifold;
> m: X — V a smooth vector bundle;
> k € N a positive integer;
> f a Ck-section on V;
> I a subsheaf of the sheaf of CX-sections of X;
> mx : JKX — V k-jet bundle of X;
> jf(p) k-jetof fatp € V;

Jhx T gk=1x
Commutative Tk Th—t
diagram: \

%4

Define

JXT := {j*4(p) | ~ local section of T, defined near p,p € V}
c J*X R



The approximation theorem

Theorem 1 (B.-Hanke 2019)

Assume VV p € V 3 open neighborhood W of jK=1f(p) in JK-1X
and a continuous map o : W — JXX sit.

> Tkk—1 00w = idpw;

> ow(w) € JAT for each w € W.
Then 3 section f of X — V s.t.:
> fis Ck—1-close to f;

> fe CloV (v, X);

> |4 € [(%) for some open and dense % C V.

False if C. """ is replaced by CX.
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Examples



Example 1: Lipschitz functions

> V=R;

> 7 : X — V trivial line bundle;

> K=1;

> I sheaf of locally constant C*°-functions on R;
> f C'-function on R;

Put W:=J°X = X =R xRand ow(p, &) = j'(t — £)(p).

Corollary 1

letf:R —+RbeC'ande >0.Then37:R - Rs.t.

> |f—F <e;

> fis locally Lipschitz on R;

> f is smooth and ¥ = 0 on an open dense subset of . %
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Example 1: Lipschitz functions

Apply to f(t) = t and restrict to [0, 1]. Get Lipschitz function

f:[0,1] = Rs.t. #(0) =0, f(1) = 1, ¥ = 0 on open dense subset

Comparison with Cantor function:

our f Cantor function ‘
regularity co1 C* with o = In(2)/ In(3)
fund. thm. applies yes no
f'=0o0n open dense | open dense of full measure

.
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Open dense subsets need not have full measure

Enumerate Q = {g1, 92, q3,...}. Put

J

U = (qj'—Ej,qj-|-€j)

Il
R

J

Then U4 C R is open and dense and

U <2y ¢
J

.
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Example 2: Riemannian metrics

> V any manifold of dimension > 2;

> 7 : X — V bundle of symmetric (0,2)-tensors;

> K=2;

> fa C?-metricon V;

> [ sheaf of smooth metrics with sectional curvature = K for
given K € R;

Pick local chart (U, x",...,x") on V. Put
W = {w € 7, '(U) | 71 0(w) is positive definite}.

Express 1-jetw € m; '(U) as w = wo + > wix.
Associate the metric h,, given by h,, = woy + > w;x. Put

ow(w) == 2 (((exel) ™) o% ) (p) € T
mé'ﬁﬁﬁé’%? e‘u



Example 2: Riemannian metrics

Corollary 2

Let V be a smooth manifold with a C?-Riemannian metric g.
Then there exists a Riemannian metric g on V with the
following properties:

> gis C'-close to g;

> g has local C'-'-Lipschitz regularity;

> the curvature tensor of g exists as an L% -tensor field and
secg = K on an open dense subset of V.
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How about Gauss-Bonnet?

Corollary 3

Each differentiable manifold of dimension > 2 has a complete
C'"'-Riemannian metric with curvature = 1 (and others with
curvature = 0 and = —1, resp.) on an open dense subset.

If V is a compact surface then the Gauss-Bonnet theorem

/KM:%MW
4

holds for these metrics!
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Example 3: Embeddings of surfaces

V analytic 2-dimensional manifold;
7 X — V trivial R3-bundle;

k =2;

f a C?>-embedding V — R3;

I" sheaf of analytic embeddings with Gauss curvature = K for
given K € R;

v Vv Vv VvV V

Corollary 4

|

There exists a C'-'-embedding f : V — R3 C'-close to f which
is analytic on an open dense subset %7 C V and has constant
Gauss curvature K on % (w.r.t. the induced metric).

.
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The proof



Gromov’s exercise




Gromov’s exercise

2.2 Continuous Sheaves 111

Exercises. (a) Let Z = X — X — V be an open differential relation, let V, < V be
an arbitrary submanifold and let f: ¥ — X be a C™-solution of £ [i.e. JL(V) = 2]
Let F denote the space of C"-solutions f: V — X of %, such that J; ™!V, = J7. |V,
and let F; be the space of jets ¢: ¥, - # of such solutions near V,. That is ¢ € F, if
and only if there exists a solution f": U4V, — X of & such that J;- |V, = J1 1V,
and for which J}.|V, = ¢. Prove the following

Weak Flexibility Lemma. The map f— J;V, is a Serre fibration F — F,.

Hint. Use the induction in dim ¥ and codim ¥, starting with dim V = 1,dim ¥, = 0.

(b) Apply (a) to the differential relations K(g) > 0, K(g) < 0, S(g) > 0,and to a
closed geodesic V, = (V,g,). Thus deform a given Riemannian metric g, which
satisfies one of the above inequalities to a metric g whose sectional curvature is

constant near V;, while satisfying the same curvature inequality as g, everywhere
on V.
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Partial differential relations (PDRs)

> X — V avector bundle;

> k € Np;

> JKX — V the k™ jet bundle;
> % C JKX a subset.

Definition

Z is called a partial differential relation of order k.
A section u: V — X solves Z if jku(v) € Z forall v € V.

.
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Local flexibility - Setup

X — V avector bundle;

% an open PDR of order k;

Vo C V a closed subset; 1% Vo U

U an open neighborhood of V; in V;

fy a CK-section on V solving %;

F € C°([0,1], CX(U, X)) s.t. each F(t) solves % over U.

fo

v VvV VvV VvV Vv V

Moreover, assume
> folu = F(0);
> TRty = /o]y, forall t < [0, 1]

.
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Solution of GromovVv’s exercise

Theorem 2 (B.-Hanke 2019)

3 open subset Uy with Vy € Uy € U C V and a continuous
f:10,1] = CK(V, X) s.t.

f(0) = fo;
f(Oup = F()|uys

(Ol = hlwnus
> each f(t) solves Z.

H(t) \éy
fo h f

Vo U SPP 2026 -
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Proof of Theorem 1

Pick dense countable subset {py, p2, p3,...} C V.
Inductively construct f; and U; s.t.

> fy = fand Uy = 0;

> U2 Up-y;

> pje U

> fj = fiyon Uj_s;

> (1 = fioallgk-1vy <277 - &

> 1 = fictlleryy < C+27;

> filg, € r(U)).

Then 7 = lim;_, f; does the job with % = ; U;.

.
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Thanks for your attention!
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