The topology of positive scalar curvature ICM Section Topology Seoul, August 2014

Thomas Schick

Georg-August-Universität Göttingen

ICM Seoul, August 2014

All pictures from wikimedia.

My question: Given a smooth compact manifold M, how does the space Riem⁺(M) of Riemannian metrics of positive scalar curvature look like? Is it empty? What are its homotopy groups?

Positive scalar curvature and Gauß-Bonnet

Theorem (Gauß-Bonnet)

If F is a 2-dimensional compact Riemannian manifold without boundary,

$$\int_{F} \operatorname{scal}(x) \, d \operatorname{vol}(x) = 4\pi \chi(F).$$

Corollary

scal > 0 on F implies $\chi(F) > 0$, i.e. $F = S^2$, RP^2 .

Thomas Schick (Göttingen)

Topology of Positive Scalar Curvature

ICM Seoul, August 2014

Scalar curvature in dimension *m*

scal(x) is the integral of the scalar curvatures of all 2-dim surfaces through the point x. It satisfies

$$\frac{\operatorname{vol}(B_r(x) \subset M)}{\operatorname{vol}(B_r(0) \subset \mathbb{R}^m)} = 1 - \frac{\operatorname{scal}(x)}{c_m}r^2 + O(r^4) \qquad \text{small } r.$$

It features in Einstein's general relativity.

Topology of Positive Scalar Curvature

Basic Dirac operators

Dirac: Differential operator D as square root of matrix Laplacian (using Pauli matrices).

Schrödinger: generalization to curved space-time (local calculation) satisfies

$$D^2 = \underbrace{\nabla^* \nabla}_{>0} + \frac{1}{4} \operatorname{scal}.$$

Given an *spin structure* (a strengthened version of orientation) and a Riemannian metric, one gets:

- the spinor bundle S over M. Sections of this bundle are spinors
- e the Dirac operator D acting on spinors: a first order differential operator which is *elliptic*.

In the following, for easy of exposition we concentrate on even dimensional manifolds and only use complex C^* -algebras.

Definition

A C^* -algebra A is a norm-closed *-subalgebra of the algebra of bounded operators on a Hilbert space.

We have for a (stable) C^* -algebra A:

- $K_1(A)$ are homotopy classes of invertible elements of A.
- $K_0(A)$ are homotopy classes of projections in A.
- 6-term long exact K-theory sequence for ideal $I \subset A$:

$$ightarrow {\mathcal K}_0(A/I) \stackrel{\delta}{
ightarrow} {\mathcal K}_1(I)
ightarrow {\mathcal K}_1(A)
ightarrow {\mathcal K}_1(A/I) \stackrel{\delta}{
ightarrow} {\mathcal K}_0(I)
ightarrow \
ightarrow {\mathcal K}_0(A)
ightarrow {\mathcal K}_0(A/I)
ightarrow$$

 Using functional calculus, the Dirac operator gives the bounded operator χ(D), contained in the C*-algebra A of bounded operators on L²(S).

Here $\chi \colon \mathbb{R} \to [-1, 1]$ is any odd functions with $\chi(x) \xrightarrow{x \to \infty} 1$ (contractible choice).

- dim *M* even: $S = S^+ \oplus S^-$, $\chi(D) = \begin{pmatrix} 0 & \chi(D)^- \\ \chi(D)^+ & 0 \end{pmatrix}$.
- If *M* is *compact*, ellipticity implies that

 $\chi^2(D) - 1 \in I$, the ideal of compact operators on $L^2(S)$,

so also $U\chi(D)^+$ is invertible in A/I (with any unitary $U: L^2(S^-) \to L^2(S^+)$: contractible choice).

• It therefore defines a "fundamental class" $[D] \in K_1(A/I)$.

Apply the boundary map $\delta \colon K_1(A/I) \to K_0(I)$ of the long exact K-theory sequence $0 \to I \to A \to A/I \to 0$ to obtain

$$\operatorname{ind}(D) := \delta([D]) \in K_0(I) = \mathbb{Z}.$$

We have the celebrated

Theorem (Atiyah-Singer index theorem) $ind(D) = \hat{A}(M)$

Here $\hat{A}(M)$ is a differential -topological invariant, given in terms of the Pontryagin classes of TM, which can be efficiently computed. It does not depend on the metric (the Dirac operator does).

Definition

Schrödinger's local calculation relates the Dirac operator to scalar curvature: $D^2 = \nabla^* \nabla + \text{scal } /4 \ge \text{scal } /4$. It implies: if scal > c > 0 everywhere, spec $(D) \cap (-\sqrt{c}/2, \sqrt{c}/2) = \emptyset$. Choose then $\chi = \pm 1$ on spec(D), therefore $\text{ch}^2(D) = 1$ and $U\chi(D)^+$ is invertible in A, representing a structure class

 $\rho(D_g) \in K_1(A),$

mapping to $[D] \in K_1(A/I)$.

Potentially, $\rho(D_g)$ contains information about the positive scalar curvature metric g.

Theorem

- If M has positive scalar curvature, then $ind(D) = 0 \implies \hat{A}(M) = 0$:
- $\hat{A}(M) \neq 0$ is an obstruction to positive scalar curvature!

Example: Kummer surface. **Non-examples**: $\mathbb{C}P^{2n}$, T^n .

Proof.

$$K_1(A) \longrightarrow K_1(A/I) \xrightarrow{\delta} K_0(I)$$

$$\rho(D_g) \quad \mapsto \quad [D] \quad \mapsto \quad \operatorname{ind}(D) = 0$$

using exactness of the K-theory sequence.

General goal: find sophisticated algebras $I \subset A$ to arrive at similar index situations. Criteria:

- index construction must be possible (operator in *A*, invertible modulo an ideal *I*)
- calculation tools for $K_*(A)$, $K_*(I)$ and the index
- positive scalar curvature must imply vanishing of index (and give structure class ρ ∈ K_{*}(A))

Useful/crucial is the context of C^* -algebras, where positivity implies invertibility.

Non-compact manifolds

What can we do if M is not compact?

Why care in the first place?

This is of relevance even when studying compact manifolds:

- extra information can be obtained by studying the covering spaces with their group of deck transformation symmetries (e.g. $\mathbb{R}^n \to T^n$ with deck transformation action by \mathbb{Z}^n).
- attaching an infinite half-cylinder to the boundary of a compact manifold with boundary assigns a manifold without boundary, but which is non-compact.

Many important cases where M is non-compact (general relativity).

Definition (Roe)

M Riemannian spin manifold (not necessarily compact). The coarse algebra/Roe algebra $C^*(M)$ is the closure of the algebra of bounded operators T on $L^2(S)$ satisfying

- T has finite propagation: there is R_T such that the support of T(s) is contained in the R_T-neighborhood of the support of s for each s.
- local compactness: if $\phi \in C_0(M)$ has compact support, the composition of T with multiplication by ϕ (on either side) is a compact operator.

Schwarz (distributional) integral kernel:

• $D^*(M)$ is defined similar to $C^*(M)$, but replacing local compactness by the weaker condition of *pseudolocality*:

 $\phi T \psi$ compact whenever $\operatorname{supp}(\phi) \cap \operatorname{supp}(\psi) = \emptyset$.

Schwarz kernel:

- $C^*(M) \subset D^*(M)$ is an ideal
- functoriality for Lipschitz maps

Theorem (Roe)

$$\chi(D)\in D^*(M),\qquad \chi(D)^2-1\in C^*(M).$$

• By Fourier inversion

$$\chi(D) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{\chi}(\xi) \exp(i\xi D) \ d\xi.$$

Here, $\exp(i\xi D)$ is the *wave operator*, it has propagation $|\xi|$.

- Consequence: if $\hat{\chi}$ has compact support, $\chi(D)$ has finite propagation.
- By (local) elliptic regularity, $\chi(D)$ is pseudolocal (compact only outside the diagonal as $\hat{\chi}$ is singular at 0)
- and $\chi(D)^2 1$ locally compact.

Exactly as above, the Dirac operator on a spin manifold M defines

fundamental class $[D] \in D^*(M)/C^*(M)$,

coarse index $\operatorname{ind}_{c}(D) \in K_{*}(C^{*}(M))$

Theorem

If scal > c > 0, the Dirac operator defines a

structure class $\rho(D_g) \in D^*(M)$,

so $\operatorname{ind}_c(D) = 0 \in K_*(C^*(M))$ in this case.

There are good tools to compute $K_*(C^*(M))$, $K_*(D^*(M))$, e.g.

- coarse *Mayer-Vietoris sequence* to put the information together by breaking up *M* in simpler pieces
- vanishing for suitable kinds of coarse contractibility, in particular if $M = Y \times [0, \infty)$.

Example consequence:

Theorem

$$\mathcal{K}_0(\mathcal{C}^*(\mathbb{R}^{2n})) = \mathbb{Z}; \qquad \mathcal{K}_1(\mathcal{C}^*(\mathbb{R}^{2n+1})) = \mathbb{Z}.$$

Large scale/Coarse index application

- Let P be a connected compact spin manifold without boundary with Â(P) ≠ 0. Let P → M → Tⁿ be a fiber bundle. Does M admit a metric of positive scalar curvature? Example: M = Tⁿ if P = {*}.
- We can pass to the covering $P \to \tilde{M} \xrightarrow{p} \mathbb{R}^n$. Using functoriality, we can map the coarse index of \tilde{M} to $p_*(\operatorname{ind}_c(D)) \in K_n(C^*(\mathbb{R}^n)) = \mathbb{Z}$.

Theorem (Partitioned manifold index theorem (Roe, Higson, Siegel, S.-Zadeh))

$$p_*(\operatorname{ind}_c(D)) = \hat{A}(P).$$

Corollary

 $ilde{M}$ and therefore M does not admit a metric of positive scalar curvature.

Codimension 2 obstruction (Gromov-Lawson)

Theorem (Hanke-S.)

M compact spin, $N \subset M$ codimension 2 submanifold with tubular neighborhood $N \times D^2 \subset M$. $\pi_1(N) \to \pi_1(M)$ is injective, $\pi_2(M) = 0$. $\operatorname{ind}(D_N) \neq 0 \in K_*(C^*\pi_1(N)) \Longrightarrow M$ does not have positive scalar curvature.

Example (Gromov-Lawson, new proof)

No 3-manifolds with $\pi_2 = 0$ and with infinite π_1 admits scal > 0: pick for N a circle which is non-trivial in $\pi_1(M)$.

- **(**) pass to a suitable covering \bar{M} , take out $N imes D^2$ and double along $N imes S^1$
- ② apply improved vanishing (where we glue: no psc) and partitioned manifold index for C*-coefficients instead of C.

Change of scalars

- Throughout, we can replace the complex numbers by any C^* -algebra A; get algebras $C^*(M; A), D^*(M; A)$ (Mishchenko, Fomenko, Higson, Pedersen, Roe,...).
- In particular: $C^*\pi_1(M)$, a C^* -closure of the group ring $\mathbb{C}\pi_1(M)$.
- The whole story then relates to the *Baum-Connes conjecture*.
- Throughout, we can use the Dirac operator twisted with a flat bundle of Hilbert *A*-modules, e.g. the Mishchenko bundle. All constructions and results carry over (in our setup without too much extra work).
- For compact *M*, we get Rosenberg index

$$\operatorname{ind}(D) \in K_{\dim M}(C^*\pi_1M)$$

refining $ind(D) \in \mathbb{Z}$ we started with.

- Former conjecture (Gromov-Lawson-Rosenberg): if M compact spin, dim M ≥ 5:
 M positive scalar curvature ⇔ 0 = ind(D) ∈ K_{dim M}(C^{*}_ℝπ₁M).
- 5-dimensional Counterexample (S.) with $\pi_1(M) = \mathbb{Z}^3 \times (\mathbb{Z}/3\mathbb{Z})^2$
- Question: how much exactly does ind(D) ∈ K_{*}(C^{*}π₁M) see about positive scalar curvature?

Theorem (Roe, Hanke-Pape-S.)

If M contains a geodesic ray $R \subset M$ and scal > c > 0 outside an r-neighborhood of R for some r > 0, then already

 $\operatorname{ind}_{c}(D) = 0 \in K_{*}(C^{*}(M)).$

For the proof, consider the ideal $C^*(R \subset M)$ in $D^*(M)$ of operators in $C^*(M)$ supported near R.

- apply naturality.

Relative index of metrics

- Goal: we want to compare two families of Riemannian metrics $(g_0^p)_{p \in S^k}, (g_1^p)_{p \in S^k}$ with scal > 0 on M, representing two elements in $\pi_k(\operatorname{Riem}(M))$.
- We choose an interpolating family of metrics (g^p_t)_{p∈S^d} on M × [0, 1] —leading to a metric g on M × [0, 1].
- Adding the half cylinders left and right provides a non-compact Riemannian manifold M_{∞} without boundary with positive scalar curvature near the two ends.
- Partial vanishing gives an Atiyah-Patodi-Singer index in $K_*(C^*(M \subset M_\infty; C^0(S^k, C^*\pi_1M))) \cong K_{*-k}(C^*\pi_1M) \oplus K_*(C^*\pi_1M).$

Theorem (Hanke-S.-Steimle)

Given $k \in \mathbb{N}$, as long as dim(M) is big enough and dim $(M) + k \equiv 1 \pmod{4}$, if $g_0 \in \operatorname{Riem}^+(M) \neq \emptyset$ then there are elements of infinite order in $\pi_k(\operatorname{Riem}^+(M), g_0)$ detected by this method. If M is a sphere, these classes remain of infinite order in π_d of the (observer) moduli space of metrics of positive scalar curvature.

- Construction is based on Gromov-Lawson surgery construction of psc metrics in families (Walsh)
- and the construction (via surgery theory and smoothing theory) of interesting bundles over S^k whose total space has non-vanishing Â-genus (Hanke-S.-Steimle).

Questions.

- What of this remains true for manifolds without spin structure (where even the universal cover is non-spin)?
- Does the Rosenberg index ind(D) ∈ K_{*}(C^{*}π₁M) capture all information about positive scalar curvature obtainable via index theory (weak Gromov-Lawson-Rosenberg conjecture)? In particular, how does it relate to the codimension 2 obstruction?
- What about the "modified *n*-torus with fundamental group (Z/3Z)ⁿ obtained by doing surgery on Tⁿ to adjust π₁?
- Fully compute the homotopy type of $\operatorname{Riem}^+(M)$ when non-empty.

In any case: THANK YOU for your attention.