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1 Definitions via representations

1.1 Definition. Relative Property T via representations for a locally
compact group G with closed subgroup H:

If every (strongly continuous) unitary representation with almost G-invariant
vectors (i.e. a sequence xn of unit vectors such that |π(g)xn − xn|

n→∞−−−−→ 0 for
all g ∈ G uniformly on compact subset of G) has a non-zero strictly H-invariant
vector.

1.2 Lemma. In this case, the H-invariant vector x can be chosen close to xn

for some large n.
On the other hand, it suffices to find a finite dimensional H-invariant sub-

space.

1.3 Definition. G is amenable if and only if the left regular representation has
almost invariant vectors.

1.4 Definition. G has the Haagerup property (is a-T-menable) if and only if
there is some strongly continous unitary representaion with almost invariant
vectors, and with matrix coefficients < π(g)v, w >

g→∞−−−→ 0.

1.5 Example. The left regular representation λG has G-invariant vectors if
and only if G is compact, and has almost invariant vectors if and only if G is
amenable.

1.6 Lemma. (G, H) relative property T with H non-compact implies G has not
the Haagerup property, which implies that G is not amenable.

1.7 Example. • Abelian, solvable groups are amenable.

• Sln(K) for n ≥ 3, Sp2n(K) for n ≥ 2 and K a local field have property T,
more generally the K-points of connected algebraic almost simply groups
over K with rkK(G) ≥ 2. (Kazhdan, Vaserstein,. . . ).
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• SO(n, 1) and SU(n, 1) do not have property T, but Sp(n, 1) and F4(−20)

has (Kazhdan).

• (Z2 o Sl2(Z), Z2) and ((S2)∗ o Sl2(K), (S2)∗(K)) have relative property
T.

• Free groups neither have property T nor are amenable, but are a-T-
menable. Same for SO(n, 1), SU(n, 1).

For von Neumann algebras: replace unitary representations by bimodules
(Connes’ correspondences).

1.8 Definition. (L, τ) a von Neumann algebra with faithful normal tracial
state, Q ⊂ L a von Neumann subalgebra have relative property (T) if and
only if every L-L bimodule with almost central almost tracial vectors admits a
sequence of almost tracial Q-central unit vectors.

Here a bimodule is a Hilbert space H with left-right normal unital actions.
(xn ∈ H) is almost central, if |axn − xna| 0−→ ∀a ∈ L. (xn) is almost tracial, if
‖〈xn, ·xn〉 − τ‖ 0−→ and ‖〈xn, xn·〉 − τ‖ 0−→. x ∈ H is central, if ax = xa for all
a ∈ L.

1.9 Definition. (L, τ) is amenable if and only if the Hilbert bimodule L2(L, τ)⊗
L2(L, τ) with action axb := (a⊗1)x(1⊗b) contains almost central almost tracial
vectors.

1.10 Theorem. Any von Neumann algebra L generated by the representation
of a (discrete?) amenable group is amenable.

Moreover, if Γ is discrete then L(Γ) amenable implies Γ amenable.

Proof. Use perhaps xn ⊗ xn, and reasoning similar to the one of the next theo-
rem?

1.11 Theorem. Let H ≤ G be countable groups. Then: (G, H) has relative
property T if and only if (L(G), L(H)) has relative property T.

Proof. “ =⇒ ”: Let V be a bimodule with almost central almost tracial vectors
(xn). Define G-action on V by gx := ugxu∗g. Because of relative property T
(strong version) exists to ε > 0 an n ∈ N and an H-invariant vector x with
|x− xn| < ε, ‖〈xn, ·xn〉 − τ‖ < ε, ‖〈xn, xn·〉 − τ‖ < ε. These x produce an
L(H)-central almost tracial sequence.

“leftarrow”: If τ : G → U(V ) has normed almost invariant vectors (xn), we
need to find a finite dimensional H-invariant subspace. Set K := l2(G)⊗V with
L(G)-bimodule structure given by ug(δh ⊗ x)uv = δghv ⊗ π(g)x. Then δe ⊗ xn

are almost central and almost tracial. Therefore we have µ 6= 0 L(H)-invariant.
Now K ∼= l2(G, V ), and µ(hgh−1) = π(h)µ(g) for all h ∈ H, g ∈ G. If µ(g) 6= 0,
L2 implies that |{|hgh−1 | h ∈ H} < ∞. The corresponding linear span of
µ(hgh−1)h∈H is a finite dimensional H-invariant subspace of V .

1.12 Theorem. (Popa): If L∞(X, µ)oG ⊃ P are von Neumann algebras with
relative property T, then one can essentially conjugate P to L(G) with a unitary.

1.13 Theorem. (Popa) The functor from discrete countable ICC groups with
property T (and inclusions as homomorphisms) to von Neumann algebras: G 7→
L(⊕g∈GZ o G) is injective upon passage to isomorhpism classes.
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1.14 Remark. This is a partial result towards the conjecture of Connes, which
states the same for the functor G 7→ L(G).

1.15 Proposition. If L is a II1-factor (really, only a faithful trace is needed)
and Q ⊂ L has relative property T, and 0 6= p ∈ Q is a projection, then
pQp ⊂ pLp also has relative property T.

Proof. Because L is a factor there are partial isometries v1, . . . , vk with v1 = p,
v∗i vi ≤ p and

∑
viv

∗
i = 1.

Assume that K1 is a pLp bimodules with almost tracial almost invariant
vectors xn. Set K := LpK1pL with 〈xξy∗, aηb∗〉 := 〈ξ, (x∗a)η(b∗y)〉. Upon
normalization,

∑
i vixnv∗i gives almost central almost traical vectors for the

L-L bimodule. Therefore, we get a sequence (µn) of almost tracial Q-central
vectors. Upon normalization, pµn = µnp is pQp-central almost tracial.

2 Definitions via cohomology

2.1 Definition. Let π : G → U(Hπ) be a strongly continuous representation of
a locally compact group. Set

(1) Z1(G, π) := {b : G
C−→ Hπ | g(gh) = π(g)b(h) + b(g)}

(2) B1(G, π) = {b ∈ Z1 | ∃x ∈ Hπ : b(g) = π(g)x− x}

(3) H1(G, π) = Z1/B1

(4) H1(G, π) = Z1/B
1
, where we use the topology of uniform convergence on

compact sets.

2.2 Remark. There is an interpretation in terms of affine actions: b : G → Hπ

defines α(g) : Hπ → Hπ with α(g)v = π(g)v + b(g). This is an affine action with
linear part π if and only if b ∈ Z1(G, π). Moreover, b ∈ B1(G, π) if and only if
α has a fixed point (if and only if α is conjugate to π by a translation). The
center lemma implies that this is the case if and only if b is bounded.

We observe: H1(G, π) = 0 if and only if every affine action (with linear part
π) has a fixed point, and H1(G, π) = 0 if and only if every such action has
almost fixed points.

2.3 Lemma. If G is locally compact σ-compact, and π has almost invariant
vectors (but no invariant vectors), then H1(G,

⊕∞
k=1 π) 6= 0.

Proof. Write G =
⋃

Ln for compact subsets Ln. We find normed xn with
maxg∈Ln |gxn − xn| ≤ 2−n. Set b(g) :=

⊕
n(gxn − xn); then b converges uni-

formly on all compact subsets. But b is unbounded by the following reasoning:
Otherwise: if C is the closed convex hull of π(G)xn (for n large fixed), then
C is G-invariant, |gxn − xn| < 1 implies Re(〈gxn, xn〉) ≥ 1/2 for all g ∈ G, so
0 /∈ C. The vector of minimal length in C is then G-invariant, contradicting
our assumption on π.

2.4 Theorem. (Delorme-Guichardet): If G is locally compact and σ-compact
then we have the equivalence: G has property T ⇐⇒ H1(G, π) = 0 for every
unitary representation π ⇐⇒ every affine isometric action on a Hilbert space
has a fixed point.
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2.5 Corollary. Every action of a σ-compact group G with property T on a tree
fixed an edge or a vertex

Proof. Otherwise, construct an affine isometric action which is metrically proper,
i.e. doesn’t have almost fixed points.

2.6 Theorem. (Shalom) If G is locally compact 2nd countable and compactly
generated, we have the further equivalence: G has property T ⇐⇒ H1(G, π) =
0∀π ⇐⇒ H1(G, π) = 0 for all irreducible π ⇐⇒ H1(G, π) = 0 for all
irreducible π.

2.7 Proposition. Equivalent to: G has the Haagerup property is: every con-
tinuous isometric action of G on an affine Hilbert space H is metrically proper
(i.e. if B ⊂ H is bounded, then {g ∈ G | gB ∩B 6= ∅} ⊂ G is precompact).

3 Some properties

3.1 Theorem. f : G1 → G2 continuous with dense image.

• If G1 has property T, so has G2

• If G1 has property T and G2 is a-T-menable, then im(f) is precompact.

• G/[G, G] is compact, G is unimodular

Proof. For the first statement, use the restrictions G1 → G2
π−→ U(Hπ) and

denseness. The other two follow from the first.

3.2 Theorem. If G locally compact has property T, it is compactly generated.

Proof. Write G =
⋃

H over the set C all compactly generated open subgroups.
If H ∈ C, then G/H is discrete.

The representation π =
⊕

H∈C λG/H has almost invariant vectors (since
every compact subset L is contained in some HL ∈ C, then δHL

is L-fixed).
Property T yields 0 6= x = ⊕xH . In particular, for some H, xH ∈ l2(G/H)
is G-fixed. Because of the l2-condition, G/H is finite, since H was compactly
generated, therefore so is G.

3.3 Proposition. Let 1 → N → G → G/N → 1 be an exact sequence of locally
compact groups, N closed in G.

If N,G/N have property T, so has G. If G has property T, so have G/N
and N .

Same hold for amenability.

Proof. Use induction and restriction of representations, not trivial.

3.4 Proposition. If C ≤ G is closed and central, G/C has property T and
G/[G, G] is compact, then G has property T .

3.5 Proposition. G is amenable if and only if the canonical map C∗maxG →
C∗redG is an isomorphism.
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4 Amenability and means

4.1 Theorem. G locally compact is amenable if and only if there is a finitely
additive G-invariant mean (non-negative, µ(1) = 1) on L∞(G).

4.2 Example. The Haar measure produces this if G is compact; otherwise one
needs axiom of choice, even for G = Z.

4.3 Theorem. G is amenable if and only if any continuous affine action of G
on a non-empty compact convex subset X of a locally convex topological vector
space has a fixed point.

Proof. Part: the set of means in the dual of L∞ is such a set, an invariant mean
is a fixed point for this action.

5 Amenability and von Neumann algebras

5.1 Theorem. L ⊂ B(H) is amenable if and only if there is a linear projection
P : B(H) → L of norm 1. (Such a P is automatically an L-bimodule map).
(This property is called “injective”, and is injectivity in an appropriate abelian
category of von Neumann algebras).

This is equivalent to: L is hyperfinite (i.e. generated by an increasing se-
quence of finite dimensional subalgebras).

This is furthermore equivalent to: all finite derivations of L with coefficients
in a normal dual Banach bimodule over L are inner (a condition on H1!).

5.2 Theorem. If an action on a measure space is amenable (or more generally
a groupoid is amenable) then the induced (crossed product) von Neumann algebra
is amenable.

5.1 Actions

We consider action of countable G “freely” and ergodically on the standard
probability space ([0, 1], dµ).

5.3 Definition. (1) Such actions are conjugate if they are transported by
group isomorphisms and measure space isomorphism.

(2) They are orbit equivalence, if we have a measure space isomorphism map-
ping (almost all) orbits bijectively to orbits.

(3) We can also just consider the von Neumann algebra L∞(X, µ) o G.

5.4 Theorem. (Connes-Feldmann-Weiss, Ornstein-Weiss): if the equivalence
relation is amenable, then it is orbit equivalent to the standard action of Z on∏

g∈Z(X, µ).
Here, the equivalence relation Q ⊂ X × X is amenable if for every Ba-

nach space E and cocycle m : Q → Iso(E) (m(x, y)m(y, z) = m(x, z)) and m-
invariant Borel field Ax of compact convex subsets of E∗ (m-invariant menas
that (m(x, y)∗)−1Ay = Ax almost everywhere), there is an m-invariant section
φ : X → E∗ with φ(x) ∈ Ax, where m-invariant means (m(x, y)∗)−1φ(y) = φ(x)
almost e.
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5.5 Remark. Amenable actions produce amenable equivalence relations.

5.6 Definition. An action (of a discrete group) on X is amenable if there are
bn : X → prob(G) such that ∀g ∈ G limn→∞ supx∈X

∣∣gbn
x − bn

gx

∣∣
l1

= 0.
If X is compact Hausdorff, we want w∗-continuity of bn and talk of topological

amenability, if X is a measure space: need suitable measurability (?).

5.7 Remark. G is amenable if and only if it acts amenably on a point, then
every action of G is amenable.

G acts amenably on some compact space, if it acts amenably on its Stone-
Cech compactification.

6 Spectral approaches to property T and amenabil-
ity

6.1 Definition. Assume µ is a probability measure on G and π a unitary action.
We define a Laplacian π(µ) ∈ B(Hπ) by

〈π(µ)x, y〉 =
∫

G

〈π(g)x, y〉 dµ(g).

Then ‖π(µ)‖ ≤ 1.

6.2 Proposition. If G is locally compact, µ is Haar absolutely continuous and
the support of µ topologically generates G, then π has almost invariant vectors
if and only if 1 ∈ spec(π(µ)).

If the support of µ∗∗µ topologically generates G, this is equivalent to ‖π(µ)‖ =
1.

6.3 Proposition. If G is discrete, it is amenable if and only if it admits a
Folner exhaustion.

6.4 Theorem. If G = π1(X) (discrete) then H1(G, π) = H1
dR(X, X̃×G Hπ) by

Hodge theory. This gives property T if X is Riemannian symmetric irreducible
of non-compact type (different from Hn(R),Hn(C)), using Bochner formulas.

In a different direction (without Hodge theory):

6.5 Theorem. (Zuk): If X is a locally finite simplicial complex (simply con-
nected) and for every vertex v ∈ X, the first (non-zero) eigenvalue of the Lapla-
cian of the link of v is > 1/2 ((∆f)(x) = f(x) − 1/deg(x)

∑
y∼x f(y)), and if

G acts properly and cocompactly on X, then G has property T.
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