
A parametrized version of the Borsuk Ulam

theorem

Thomas Schick∗

Uni Göttingen
Germany

Bob Simon Stanislav Spiez
Warzawa
Poland

Henryk Torunzyk
Warzawa
Poland

Last compiled February 26, 2007; last edited Feb 6, 2004 or later

Abstract

In this note, we establish special homological properties of the set of
solutions of the Borsuk-Ulam theorem. This solves a special case of a
conjecture of Simon. This conjecture would be relevant in connection
with new existence results for equilibria in certain games.

1 A parametrized Borsuk-Ulam theorem

1.1 Cech homology

Throughout this note, all spaces encountered will be subspaces of (smooth)
manifolds. The homology groups we are using will exclusively be Cech homology
groups. Their properties can be found in [2, Chapters IX, X] and in [1, VIII,
13]. We list the most important properties:

(1) Cech homology is defined for subsets of finite dimensional manifolds.

(2) A homeomorphism f : A→ B induces an isomorphism of Cech homology
groups, i.e. the groups are independent of the particular embedding. (This
is a property which is not particularly relevant to us.)

(3) Cech homology satisfies excision in a very strong form: if f : (X, A) →
(Y, B) is a map of compact pairs such that f | : X \ A → Y \ B is a
homeomorphism, then f∗ : H∗(X, A)→ H∗(Y, B) is a isomorphism of Cech
homology groups.

∗e-mail: schick@uni-math.gwdg.de
www: http://www.uni-math.gwdg.de/schick
Fax: ++49 -551/39 2985

1

mailto:schick@uni-math.gwdg.de
http://www.uni-math.gwdg.de/schick


2 Thomas Schick and Robert Simon

(4) More generally, the Vietoris theorem about maps with acyclic fibers holds:
if f : (X, A) → (Y, B) is a map of compact pairs such that the Cech ho-
mology groups H∗(f−1(y)) are trivial for all y ∈ Y , then f∗ : H∗(X, A)→
H∗(Y, B) is an isomorphism of Cech homology groups. (Kommentar:
Check, give reference, probably one needs this only for y ∈ Y \B.)

(5) For ENRs, e.g. for topological manifolds, Cech homology and singular
homology are canonically isomorphic.

(6) For compact subsets of manifolds, and with coefficients in a field (e.g. Z/2),
Cech homology is a homology theory, in particular with a long exact se-
quence of a pair. This does not hold in general for Z-coefficients, this
is one of the reasons why we work with Z/2-coeffients. The second rea-
son is that with coefficients Z/2, every compact manifold has a unique
orientation class.

(7) For Cech homology, there is a natural intersection pairing: If (X, A) and
(Y, B) are two compact subsets of an m-dimensional manifold W (possibly
with non-empty boundary), then there is an intersection pairing

Hp(X, A)⊗Hq(Y, B)→ Hp+q−m(X ∩ Y, (A ∩ Y ) ∪ (X ∩B))

which is natural for inclusions of pairs.

1.2 Transport of the spanning property

Let W be a submanifold of Rm+1 of codimension zero (of course with boundary
∂W ). Assume that W is either a smooth or a PL submanifold. Note that, even
if the embedding is only PL, as a codimension zero submanifold we can find a
homeomorphism to a smooth codimension zero submanifold, so that we can use
a smooth structure in any case. (Kommentar: Check this and elaborate
on it!)

Let X ⊂ ∂W ×Dm be a compact correspondence with values in the interior
IDm)◦ of Dm (by definition, a correspondence is nothing but such a subset).
Note that, upto a radial dilation, every compact correspondence on ∂W with
values in Rm will have values in the interior of Dm. Let pW : X → W be the
projection. Assume that there is a Cech homology class

[X] ∈ Hm(X; Z/2),

such that (p∂W )∗[X] = [∂W ] ∈ Hm−1(∂W ; Z2), the “fundamental class” [X]
maps to the fundamental class of the manifold ∂W (since we are working with
coefficients Z/2, this class is unambiguously defined).

1.1 Example. A particular example of such a correspondence is the graph
of a continuous function f : ∂W → (Dm)◦. If X = {(p, f(p)) | p ∈ ∂W}
then the projection p∂W is a homeomorphism, and correspondingly the required
homology class [X] exists.

1.2 Definition. The spherical correspondence Y associated to X is defined as
follows: it is the subset Y ∈W × Sm ×Dm with

(p, v, w) ∈ Y ⇐⇒ (∃λ > 0 : p + λv ∈ ∂W and (p + λv,w) ∈ X) or
(p ∈ ∂M, v not inward pointing , (p, w) ∈ X).
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Here, inward pointing means strictly inward pointing, not tangent to ∂W or to
any face of ∂W (in the case of a PL embedding). We define ∂Y := p−1

W (∂W ),
where pW is the obvious map Y → W , induced by the projection W × Sm ×
Dm →W .

Note that, with this definition, Y is a compact subset of W × Sm × (Dm)◦.

1.3 Theorem. The spherical correspondence Y associated to X as above has
itself a “fundamental class” [Y, ∂Y ] in its relative Cech homology

[Y ] ∈ H2m+1(Y, ∂Y ; Z/2),

such that (pW×Sm)∗([Y, ∂Y ]) = [(W,∂W )×Sm] ∈ Hm+1(W×Sm, ∂W×Sm; Z/2).

Proof. We have to construct a number of intermediate correspondences. First,
by the Künneth formula, there is a fundamental class

[X × (W,∂W )] ∈ H2m+1(X ×W,X × ∂W ; Z/2)

which maps under the projection map to

[∂W × (W,∂W )] ∈ H2m+1(∂W ×W,∂W × ∂W ; Z/2).

Define
Y2 ⊂W × Sm ×X ⊂W × Sm × ∂W ×Dm

by

(q, v, (p, w)) ∈ Y2 ⇐⇒ (p = q and v not inward pointing)

or p 6= q, v =
q − p

|q − p|
,

and set ∂Y2 := p−1
W (∂W ). The evident map (Y2, ∂Y2) → (W × X, ∂W × X)

restricts to a homeomorphism Y2 \ ∂Y2 → (W \ ∂W )×X and therefore induces
in Cech homology an isomorphism

H∗(Y2, ∂Y2; Z/2)→ H∗(W ×X, ∂W ×X; Z/2).

In particular, there is a fundamental class [Y2, ∂Y2] ∈ H2m+1(Y2, ∂Y2; Z/2)
which maps under the projection map to [W × X, ∂W × X] ∈ H2m+1(W ×
X, ∂W ×X; Z/2).

Define V ⊂W × Sm × ∂W by the corresponding recipe:

(q, v, p) ∈ V ⇐⇒ (q = p and v not inward pointing at p)

or (q 6= p, v =
q − p

|q − p|
),

and set ∂V := p−1
W (∂W ). The map (V, ∂V )→ (W × ∂W, ∂W × ∂W ) induces as

above a Cech homology isomorphism

H∗(V, ∂V ; Z/2)→ H∗((W,∂W )× ∂W ; Z/2).

In particular, we have the fundamental class

[V, ∂V ] ∈ H2m+1(V, ∂V ; Z/2).
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1.4 Lemma. Consider the projection

α : (V, ∂V )→ (W × Sm, ∂W × Sm).

This map is of degree 1, i.e.

α∗([V, ∂V ]) = [(W,∂W )× Sm].

Proof. To see this, fix q in the interior of W and let Dq ⊂ W ◦ be a small disc
centered at q contained in the interior of W , and with boundary the sphere Sq.
Consider the commutative diagram

(W,∂W )× ∂W −−−−→ (W,W \D◦
q )× ∂W ←−−−− (Dq, Sq)× ∂Wx x x

(V, ∂V ) −−−−→ (V, V \ α−1(D◦
q × Sm)) ←−−−− Φ((Dq, ∂Sq)× ∂W )y y y

(W,∂W )× Sm −−−−→ (W,W \D◦
q )× Sm ←−−−− (Dq, Sq)× Sm

Here, Φ: W ◦ × ∂W → W × Sm × ∂W is the homeomorphism sending (q, p)
to (q, q−p

|q−p| , p). Observe that the second horizontal maps induces isomorphisms
in (Cech) homology (with Z/2-coefficients) by excision. The same is true (as
above) for the first row of vertical maps, and for the first horizontal map in the
first and in the third row by the usual properties of manifolds.

Therefore, to compute the degree of the map (V, ∂V ) → (W,∂W ) × Sm it
suffices to compute the degree of the map

β : (Dq, Sq)× ∂W → (Dq, Sq)× Sm; (x, p) 7→ (x,
x− p

|x− p|
).

Let D′
q ⊂W ◦ be a second disc with center q, with boundary S′q, and containing

Dq in its interior. β extends in the evident way to (Dq, Sq) × (W \ (D′
p)
◦) →

(Dq, Sp) × Sm−1. Therefore the two maps on the boundary are cohomologous
and in particular have identical degree. Consequently, the degree of β equals
the degree of

β′ : (Dq, Sq)× S′p → (Dq, Sq)× Sm−1.

This is a homeomorphism and therefore has degree 1, hence the same follows
for the map (V, ∂V )→ (W,∂W )× Sm, as claimed.

We now continue the proof of Theorem 1.3. Consider the diagram

(W,∂W )×X −−−−→ (W,∂W )× ∂Wx x
(Y2, ∂Y2) −−−−→ (V, ∂V )y y
(Y, ∂Y ) −−−−→ (W,∂W )× Sm.

where the second row of vertical maps is induced from the projection away the
∂W -coordinate. We already know that the first row of horizontal maps induces
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Cech homology isomorphisms, and the second column of horizontal maps con-
sists of maps of degree 1. Consequently, by chasing the diagram, [Y2, ∂Y2] is
mapped to a class [Y, ∂Y ] ∈ H2m+1(Y, ∂Y ; Z/2) with image [(W,∂W )× Sm] ∈
H2m+1(W × Sm, ∂W × Sm; Z/2).

1.3 The parametrized Borsuk-Ulam theorem

Let now W be a smooth compact manifold with boundary ∂W (possibly ∂W =
∅) and

Y ⊂W × Sm × Rm

a correspondence. As usual, we denote ∂Y := p−1
W (∂W ).

1.5 Definition. We associate to Y its Borsuk-Ulam correspondence Z ⊂W ×
Rm by

(q, w) ∈ Z ⇐⇒ ∃v ∈ Sm : (q, v, w) ∈ Y and (q,−v, w) ∈ Y.

We set ∂Z := p−1
W (∂W ) ∩ Z ⊂ Z.

Note that, if W = {pt} and Y is the graph of a continuous function Sm →
Rm, then the Borsuk-Ulam theorem states that Z is non-empty, whence the
chosen name.

1.6 Theorem. Let Y ⊂ W × Sm × Rm be a spherical correspondence with a
Cech homology class [Y, ∂Y ] ∈ H2m+1(Y, ∂Y ; Z/2) such that

(pW×Sm)∗([Y, ∂Y ]) = [(W,∂W )× Sm] ∈ H2m+1(W × Sm, ∂W × Sm; Z/2);

pW×Sm being induced from the projection W × Sm × Rm →W × Sm.
Then the associated Borsuk-Ulam correspondence Z has a “fundamental

class”
[Z, ∂Z] ∈ Hm+1(Z, ∂Z; Z/2)

with
(pW )∗([Z, ∂Z]) = [W,∂W ] ∈ Hm+1(W,∂W ; Z/2).

We want to describe the construction of this fundamental class more precisely
(which will of course also be necessary to establish its properties). To do this,
we need to establish a relative squaring construction in Cech homology.

Invariant homology squaring

1.7 Lemma. Let (X, A) ⊂ W be a subset of an m-dimensional manifold W .
On X×X, we have the involution τ with τ(x, y) = (y, x). Consider the quotient
pair (̂X, A) with space (X ×X)/τ and with subspace X ×A∪A×X ∪D, where
D := {(x, x) | x ∈ X} is the diagonal.

Then there is a natural map in Cech homology with coefficients in Z/2

Hk(X, A; Z/2)→ H2k((̂X, A); Z/2);x 7→ x̂

with the following properties:
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(1) Let (M,∂M) ⊂ (W,∂W ) be an embedded submanifold, such that ∂M =
M∩∂W with transversal intersection. Let x = [M,∂M ] ∈ Hdim M (M,∂M ; Z/2)
be the fundamental class.

Then, if U is a neighborhood of the diagonal in W ×W which is a codi-
mension zero manifold with boundary ∂U and with interior U◦, and such
that ∂U meets M × M transversally, then ̂(M,∂M) \ p(U◦) is a man-
ifold with boundary and therefore has a fundamental class. Since the
neighborhoods U with the above properties are cofinal among all neigh-
borhoods of U , and since the fundamental classes are mapped to each
other under the corresponding inclusions, we get a well defined funda-
mental class ̂[M,∂M ] ∈ H2 dim M ( ̂(M,∂M); Z/2). Our construction gives
x̂ = ̂[M,∂M ].

(2) Let (Y, B) ⊂W be a second subset and y ∈ Hl(Y, B; Z/2). Then

x̂ ∩ y = x̂ ∩ ŷ ∈ H2(k+l−m)( ̂(X ∩ Y, X ∩B ∪A ∩ Y ); Z/2)),

where we note that ̂(X ∩ Y, X ∩B ∪A ∩ Y ) = (̂X, A) ∩ (̂Y, B).

Proof. Since Cech homology is the inverse limit over the homology of open
neighborhoods, we have in reality to construct homology classes relative to an
open neighborhood U of (the image of) the diagonal. By excision, we therefore
have to construct homology classes in X ×X \D relative U \D (and its image
under the quotient map).

Let now
∑n

i=1 σi be a representative by singular chains of x. Upto subdi-
vision, we can assume that for all i, j either the image of σi × σj is contained
entirely in U or does not meet the diagonal D at all.

Then we define x̂ :=
∑

i<j p∗(σi × σj). Technically speaking, we have to
subdivide σi × σj into simplices. This can be done in an arbitrary fashion,
since we are dealing with Z/2-coefficients, not even the orientations play a role.
Note that p∗(σi×σj) = p∗(σj ×σi) (when we subdivide appropriately, since we
quotient out by τ). Locally and away from the diagonal, therefore

∑
i<j p∗(σi×

σj) =
∑

i 6=j p∗(σi×σj), and therefore away from the diagonal the chain is closed.
Since we compute homology relative to U , we therefore have constructed a cycle.

One checks immediately that its cohomology class (actually, even the cycle
itself) does not depend on the ordering of the simplices of σ chosen above.

Similarly, if
∑

j muj is a second representative, which after subdivision sat-
isfies the same “smallness” condition as

∑
i σi, take a (k + 1)-chain

∑
τk such

that ∂(
∑

τk) =
∑

i σi +
∑

j µj , and assume again that the simplices τk are small
as above. We have to show that σ̂ and µ̂ are cohomologous.

Clearly it suffices to treat the case where τ consists of just one simplex, and
to argue by induction.

Then
∑

i p∗(σi × τ) is a (2k + 1)-chain in the quotient such that

∂(
∑

i

p∗(σi × τ)) =
∑

i

p∗(σi × (σ − µ)) = σ̂ − τ̂ ,

using that σ and τ differ only in the simplices o the boundary of the simplex τ
(and that we can use compatible orderings, with those boundary of τ simplices
maximal), and using that we compute homology relative U and that additional
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summands or products of parts of the boundary of τ , which by our smallness
assumption lie in U .

The fact that the homology class is well defined for a fixed neighborhood
of (̂X, A) implies at the same time that we get a well defined Cech homology
class, when passing to the limit. Moreover, it is immediately clear that the
construction is natural.

In case X is a manifold (possibly with boundary) and x is the fundamental
class, x̂ is by construction the fundamental class of X̂.

The second property follows from the description of the intersection product
by a suitable intersection of chains. (Kommentar: This should be more
elaborated, it is only needed in Section 1.4.)

Using the construction of Lemma 1.7, we can describe explicitly how the
fundamental class [Z, ∂Z] is obtained:

1.8 Theorem. Consider the class

̂[Y, ∂Y ] ∈ H4m+2( ̂(Y, ∂Y ); Z/2),

with ̂(Y, ∂Y ) ⊂ ̂W × Sm × Rm = (W × Sm ×Rm)× (W × Sm ×Rm)/τ . Inside
the space, we also find the “antidiagonal” ∆ := {[q, v, w, q,−v, w]}, with ∆ ∼=
W × RPm × Rm. Observe that ∆ is disjoint from the singular set p(D), the
image of the diagonal under the projection.

∆ has a fundamental class [∆, ∂∆] ∈ H3m+1(∆, ∂∆; Z/2), where ∂W ∼=
∂W × Sm × Rm, and where we use locally finite homology (because of the non-
compactness of Rm).

Define (Y2, ∂Y2) := ̂(Y, ∂Y ) ∩ (∆, ∂∆). Observe that this is the correspon-
dence inside (∆, ∂∆) ∼= (W,∂W )×RPm×Rm given by {(q,±v, w) | (q, v, w), (q,−v, w) ∈
Y }.

From this we see that, projecting away the RPm-component, we get

(Y2, ∂Y2)
π−→ (Z, ∂Z)→ (W,∂W ),

where the second map is the projection onto W , and the composition is induced
by the projection W × RPm × Rm →W .

We define now

[Z, ∂Z] := π∗

(
̂[Y, ∂Y ] ∩ [∆, ∂∆]

)
.

We now prove the two theorems. In the second theorem, we explicitly con-
struct the class [Z, ∂Z]. It only remains to prove that it is mapped to [W,∂W ]
under the projection map.

Now, we use naturality of the intersection product: instead of first taking
the intersection (inside ̂(Y, ∂Y )) of ̂[Y, ∂Y ] with [∆, ∂∆] and then project to W ,
we can first send ̂(Y, ∂Y ) under the inclusion i to ̂W × Sm × Rm, then intersect
with [∆, ∂∆] and then project to W .

Now observe that the construction of x̂ also is natural, therefore

i∗( ̂[Y, ∂Y ]) = ̂i∗([Y, ∂Y ]) = ̂[W,∂W ]× [Sm × {0}].
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The latter follows from the fact that i∗[Y, ∂Y ] is mapped to [W,∂W ]×[Sm] under
the projection W × Sm × Rm → W × Sm, and the latter map is a homotopy
equivalence.

Finally, by the main property of the hat-construction, ̂[(W,∂W )× Sm × {0}]
is the fundamental class of the embedded manifold ̂(W,∂W )× Sm × {0} (which
is a manifold away from the intersection with the diagonal, but the class is a
class relative to the diagonal). A homotopy equivalent embedding is given by
the set

E := {[q, v, v0, q
′, v′, v′0] | q, q′ ∈W ; v, v′ ∈ Sm; v = (v0, vm), v′ = (v′0, v

′
m) with v0, v

′
0 ∈ Rm}

where we have to take classes of points under the involution τ . An elemen-
tary calculation shows that E and ∆ intersect transversally, and therefore
the class ̂[(W,∂W )× Sm] ∩ [∆, ∂∆] (or rather its image in H∗(∆, ∂∆; Z/2) or
H∗( ̂(W,∂W )× Sm × Rm; Z/2)) is represented by the fundamental class of the
intersection manifold. Now one immediately computes

E ∩∆ = {[q, em+1, 0, q,−em+1, 0] | q ∈W ; em = (0, · · · , 0, 1) ∈ Sm ⊂ Rm},

i.e. the intersection is represented by an embedded copy of W which is mapped
identically to W under the projection map to W . In particular, the image of
[Z, ∂Z] in Hm+1(W,∂W ; Z/2) is exactly [W,∂W ], as claimed.

1.9 Remark. Above, at some point locally finite homology and the fundamental
class of Rm in this theory was used. Instead, one could have used the fundamen-
tal class of (Dm, Sm−1) since all our correspondences are compact and therefore
lie in the interior of a sufficiently large sphere.

1.4 Functoriality of the Borsuk-Ulam class

In this part, we explain that our construction in Section 1.3 satisfies an addi-
tional naturality property. To explain what is meant by this, assume that inside
∂W , we have a bounded region (N, ∂N), i.e. a submanifold of codimension zero
with boundary (which is locally embedded like a half space in Euclidian space).

Let Y ⊂W ×Sm×Rm be a correspondence. We can restrict this correspon-
dence to U ∈ N × Sm × Rm, with further restriction ∂U ∈ ∂N × Sm × Rm, by
simply intersecting with the corresponding subsets. Note that N×Sm×Rm car-
ries a fundamental class [N, ∂N ]× [Sm×Rm] ∈ H3m((N×∂N)×Sm×Rm; Z/2)
(again, we have to use locally finite homology).

Define now the fundamental class [U, ∂U ] := [Y, ∂Y ]∩[(N×∂N)×Sm×Rm] ∈
H2m(U, ∂Y ; Z/2). By the naturality of the intersection product, the image of
[U, ∂U ] in H∗((N × ∂N)× Sm × Rm; Z/2) is the intersection

[W,∂W ]× [Sm × {0}] ∩ [N × ∂N ]× [Sm × Rm] = [N × ∂N ]× [Sm],

which is mapped to the fundamental class of [N, ∂N ]×[Sm] under the projection.
Therefore, [U, ∂U ] really is a fundamental class of the correspondence U in our
sense.

We call [U, ∂U the restriction of [Y, ∂Y ] to the subcorrespondence U .

1.10 Theorem. [V, ∂V ] is the restriction of [Z, ∂Z] to V .
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Proof. This is a direct consequence of the construction and Property (2) of
Lemma 1.7, which says that the hat-construction (and therefore the construc-
tion of the Borsuk-Ulam class) is compatible with intersection with the subsets
corresponding to N , i.e. with restriction to the corresponding subsets. (Kom-
mentar: This is rather sketchy and can be expanded, if the result
is useful at all. I would guess that it should be at the heart of any
glueing result.)

1.5 The particular case of a graph of a function

(Kommentar: This section is obsolete and will eventually be removed,
it shows the first attempts to get the hands on the this circle of
questions. The exposition is not complete.)

1.11 Theorem. Let W be an oriented manifold with boundary M = ∂W of
dimension m + 1, and f : W × Sn → Rn a continuous map.

Define

X̃S := {(p, v) ∈W × Sn | f(p, v) = f(p,−v)}
XW := {(p, w) ∈W × Rn | ∃v ∈ Sn with f(p, v) = w = f(p,−v)}
X̃t := {(p, v, w) ∈W × Sn × Rn | f(p, v) = w = f(p,−v)}.

Observe that the information contained in the Sn coordinate in XS and Xt is
redundant, since v and −v always by definition occur together. Therefore, we
also define the following less redundant spaces, using the antipodal action of Z/2
on Sn.

XS := X̃S/(Z/2) ⊂W × RPn

Xt := X̃t/(Z/2) ⊂W × RPn × Rn

We denote with ∂XW etc. the subsets which live over ∂W , e.g. ∂XW :=
{(p, w) ∈ XW | p ∈ ∂W}.

Then there is a (Cech) homology class [X] ∈ Hm+1(XW , ∂XW ; Z/2) which
projects to the fundamental class in Hm(W,∂W ; Z/2).

In particular, the boundary of [XW ] in the long exact sequence of the pair
(XW , ∂XW ) is a class [∂XW ] ∈ Hm(∂XW ; Z/2) which projects to the funda-
mental class in Hm(∂W ; Z/2). Because this is a long exact sequence, the image
of [∂XW ] in Hm(Xw; Z/2) vanishes.

1.12 Remark. We will prove the stronger result that the cohomology classes are
images of corresponding cohomology classes in Xt and ∂Xt, respectively.

The result is a strong form of the Borsuk-Ulam theorem because of the
following observation: If for some point p ∈W XS ∩{p}×RPn was empty (and
the assertion of the Borsuk-Ulam theorem is, that this will never happen) then
we had a factorization

∂XW
iW−−−−→ XW XWyp∂

y y
∂W

i−−−−→ W \ {p} −−−−→ W.
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Since p is an interior point in the manifold with boundary W , i∗[∂W ] 6=
0 ∈ Hm(W \ {p}; Z/2). On the other hand, [∂XW ] is mapped to zero in
Hm(XW ; Z/2), and therefore also in Hm(W \ {p}; Z/2). This is the desired
contradiction.

To see, that i∗[∂W ] 6= 0, consider the following diagram, where the rows are
the exact sequences of the pairs (W,∂W ) and (W,W \ {p}), respectively:

−−−−→ Hm+1(W ) −−−−→ Hm+1(W,∂W ) −−−−→ Hm(∂W ) −−−−→y=

y y
−−−−→ Hm+1(W ) −−−−→ Hm+1(W,W \ {p}) −−−−→ Hm(W \ {p}) −−−−→

By every manifold is a homology manifold, the fundamental class of (W,∂W ) is
mapped to the generator of Hm+1(W,W \ {p}). It can not be mapped further
to 0 ∈ Hm(W \{p}), because then it would have an inverse image in Hm+1(W ),
which is zero.

We now prove Theorem 1.11. To do this, observe that Xt is the graph of a
continuous function over Xs. As such, both are homeomorphic, and it therefore
suffices to construct corresponding homology classes for XS .

We start with a construction:
Define g : W × RPn = W × Sn/(Z/2)→ (Sn × Rn)/(Z/2) be given by

g(p, v) := (v, f(p, v)− f(p,−v)).

Note that this is well defined: if v is replaced by −v, (v, f(p, v) − f(p,−v)) is
replaced by −(v, f(p, v) − f(p,−v)). Here, the action of Z/2 on Sn × Rn) is
given by multiplication with −1. Since W × RPn is compact, we can assume
that the image of g is contained in the interior of (Sn ×Dn)/(Z/2). Note that
Z/2 acts freely on Sn×Dn, therefore the quotient is a manifold with boundary.

Example: if n = 1, this quotient is homeomorphic to the Möbius strip.
Since the radial contraction of Dn to the origin is equivariant under point

reflection at the origin, the projection (Sn ×Dn)/(Z/2)→ RPn is a homotopy
equivalence, with inverse the inclusion Sn/(Z/2)→ (Sn ×Dn)Z/2; [v] 7→ [v, 0].

2 Borsuk-Ulam with higher dimensional range

The classical Borsuk-Ulam theorem deals with maps from Sn to Rn. For the
applications to game theory we want to consider, the setting is slightly different;
we have families of maps from Sn to Rn+2, but with an additional fullness
property. How this comes about, we recall the following construction of [?].

2.1 Definition. Let K be a finite set and absK the simplex spanned by K.
Assume that a family L := {L} of subsets of K (i.e. of faces of |K|) is given
with the following properties:

(1)
⋃

L∈L L = K

(2) whenever L1, L2 ∈ L with L1 ⊂ L2 then L1 = L2

Note that the second condition means that the situation is interesting only if
K /∈ L.

Set J := [−1, 1]. For each L ∈ L, a correspondence FL ⊂ |L| × JL shall be
given such that the following properties are satisfied.
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(1) FL is saturated, i.e. if (x, v) ∈ FL with x ∈ |L′| ⊂ |L| for some face L′ ⊂ L,
then a point (x′, v′) ∈ |FL| × JL also belongs to FL, provided it satisfies
the following conditions:

(a) x′ = x

(b) every L′-coordinate of v′ coincides with the corresponding coordinate
of v

(c) each L \ L′-coordinate of v′ is bigger or equal to the corresponding
coordinate of v

(2) FL has the spanning property, i.e. there is a Cech homology class [FL, ∂FL] ∈
Hdim(|L|)(FL, ∂FL) which maps to the fundamental class [|L| , ∂ |L|] ∈
Hdim(|L|)(|L| , ∂ |L|), where ∂FL = FL ∩ (∂ |L| × JL), and where we use
Z/2-coefficients as above. We use the map in Cech homology induced by
the projection p : |L| × JL → |L|, or rather by its restriction to FL.

We define the Borsuk-Ulam correspondence ΓL ⊂ |K| × JK associated to
this data as follows:

(1) First, for each L ∈ L define F̃L ⊂ |L| × JK to be the product of FL with
JK\L. If FL had dimension dim(|L|), now F̃L has dimension dim(|K|).

(2) (p, v) ∈ |K| × JK belongs to Γ if and only if there is k ∈ N and pairwise
distinct L1, · · · , Lk ∈ L and (pj , v) ∈ F̃L such that p is contained in the
convex hull of p1, . . . , pk.

The condition that all the Lj are distinct implies that the inverse image
of a given value v ∈ JK of Γ in |K| might be a union of several sets home-
omorphic to a simplex, without itself being convex or even contractible.

Our goal is to prove that the correspondence Γ itself is saturated (Kom-
mentar: Check whether saturatedness can be expected) and has the
spanning property, i.e. a “fundamental class” [Γ, ∂Γ] ∈ Hdim(|K|)(Γ, ∂Γ) which
projects to [|K| , ∂ |K|].

For this, observe that the following simplifications are possible:

(1) We replace L by a maximal subset L′ ⊂ L which covers K. The resulting
Borsuk-Ulam correspondence ΓL′ will be a subset of ΓL, the one for all of
L. If the smaller one supports the required fundamental class, the bigger
one certainly also will (as image under the map induced by the inclusion).
To avoid clutter notation, we will from now on assume that L doesn’t
contain a subset which covers all of K.

(2) Write L = {L} ∪ L′ with L′ ( L. Set L′ :=
⋃

S∈L′ S ( K. The above
construction defines a correspondence FL′ := ΓL′ ⊂ |L′|×JL′

. If we prove
(by induction) that it is saturated and satisfies the spanning property, we
can use {L,L′} together with the correspondences (FL, FL′) to define a
corresponding Borsuk-Ulam correspondence Y2. Since convex hulls can be
defined inductively, Y2 is identical to YF . By induction, it therefore suffices
to prove that YF has the spanning property if F = {F1, F2} contains
exactly two elements.
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(3) Instead of the definition of Y as above, we can also define a Borsuk-Ulam
correspondence Y ′ as in Section 1 by first defining the associated spherical
correspondence of Definition 1.2 and then taking the associated Borsuk-
Ulam correspondence of Definition 1.5. Note that Y ⊂ Y ′ is a closed
subset, but possibly strictly smaller because Y ′ also contains points (p, v)
where p = tp1 + (1 − t)p2 with p1, p2 ∈ |F1| or p1, p2 ∈ |F2|, 0 ≤ t ≤ 1
and (p1, v), (p2, v) ∈ LF1 or ∈ LF2 , respectively. These additional points
Q form another closed subset of Y ′, whose image under p is contained in
the boundary of |K|.

Apply now the Mayer-Vietoris theorem to the decomposition Y ′ = Y ∪
Q to conclude that a fundamental class [Y ′, ∂Y ′] exists if and only if a
fundamental class [Y, ∂Y ] exists. We will therefore work with Y ′ instead
of Y .

(4) We enlarge the correspondence even further in the following way: for
every subset S ⊂ K, S 6= K choose a value xS > 1 = supJ such that
all these values are pairwise disjoint. Define over |S| the correspondence
LS ⊂ |S| × JK\S with values (p, v), where each K \ S-component of v is
set to xS . Take the product with RS , i.e. allow arbitrary values in the
remaining coordinates, to obtain a correspondence contained in |S| ×RK .

Perform now the construction of Y or Y ′ as above, with the bigger bound-
ary correspondence. Since all the xS are pairwise disjoint and lie outside
of J , the resulting Y will again be identical to the original one, apart from
an additional closed subset which is in the inverse image of ∂ |K| under
the projection |K| × RK → |K|, and which doesn’t effect the spanning
property (as explained in (3)). Then form Y ′ again by taking all the addi-
tional correspondences into account. By the arguments of (3), it suffices to
prove that this Y ′ has the spanning property to conclude that the original
Y has the spanning property (i.e. a “fundamental class”).
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3 Old stuff

More properties of Cech homology

(1) (Kommentar: This is not needed in the main text and there-
fore removed)If, in (7), a finite group G acts freely on W , preserving
both pairs (X, A) and (Y, B), then the intersection pairing is natural with
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respect to the quotient map, i.e. the following diagram commutes

Hp(X, A)⊗Hq(Y, B) −−−−→ Hp+q−m(X ∩ Y, (A ∩ Y ) ∪ (X ∩B))y y
Hp(X/G,A/G)⊗Hq(Y/G,B/G) −−−−→ Hp+q−m((X ∩ Y )/G, ((A ∩ Y ) ∪ (X ∩B))/G)

(2) The intersection pairing is natural with respect to the long exact sequence
of a pair, or more generally of a triple. I.e. if (X, A,A1) is a compact
triple in a manifold W , and (Y, B) is a compact pair, we get the following
commuting diagram of long exact sequences:y y

Hp(A,A1)⊗Hq(Y, B) −−−−→ Hp+q−m(A ∩ Y, (A1 ∩ Y ) ∪ (A ∩B))y y
Hp(X, A1)⊗Hq(Y, B) −−−−→ Hp+q−m(X ∩ Y, (A1 ∩ Y ) ∪ (X ∩B))y y
Hp(X, A)⊗Hq(Y, B) −−−−→ Hp+q−m(X ∩ Y, (A ∩ Y ) ∪ (X ∩B))y y

Hp−1(A,A1)⊗Hq(Y, B) −−−−→ Hp+q−1−m(A ∩ Y, (A1 ∩ Y ) ∪ (A ∩B))y y
Here, the horizontal maps are the intersection pairings, and the left vertical
exact sequence is the tensor product of the long exact sequence of the
triple (X, A,A1) with the identity on Hq(Y, B). Since we are dealing with
Z/2-coefficients, this is indeed an exact sequence.

The right vertical sequence is the exact sequence of the triple (X ∩ Y, A∩
Y ∪X∩B,A1∩Y ∪X∩B), using excision to compare A∩Y and A∩Y ∪X∩B.

(Kommentar: Check, whether (2) is in the literature. (1) probably
is not; should we give a proof?)

3.1 Theorem. (Y, ∂Y ) × (Y, ∂Y ) is a subset of the manifold with boundary
(W,∂W ) × Sm × Rm × (W,∂W ) × Sm × Rm (we straighten angles to obtain a
manifold here).

This manifold also contains the anti-diagonally embedded submanifold with
boundary (∆, ∂∆) ∼= (W,∂W )× Sm ×Rm (meeting the boundary of the product
transversally), with embedding

(q, v, w) 7→ (q, v, w, q,−v, w).

Then
(Z, ∂Z) = ((Y, ∂Y )× (Y, ∂Y )) ∩ (∆, ∂∆).

Moreover, ∆ has a fundamental class [∆, ∂∆] ∈ H3m+1(∆, ∂∆; Z/2) (because of
the non-compactness of Rm, we use locally finite homology here), and from the
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properties of Cech homology we can define the intersection

[Z, ∂Z] := ([Y, ∂Y ]× [Y, ∂Y ]) ∩ [∆, ∂∆] ∈ Hm+1(Z, ∂Z; Z/2)

(since Z is compact, we don’t end up in locally finite Cech homology, but in
ordinary Cech homology).

To prove this theorem, we will again have to introduce a number of auxiliary
correspondences. Note that the fundamental class [Z, ∂Z] is perfectly well de-
fined from the general properties of the intersection product on Cech homology.
We “only” have to check that is has the properties required of a fundamental
class. To do this, we need a number of auxiliary lemmas.

Our approach is to perform the intersections inside a manifold where the ho-
mology classes represented by the sets we intersect have a nontrivial intersection.
For this reason, we translate our obvious intersection with the anti-diagonal in
the product into an intersection living over some kind of a projective space.

Before we get there, we need a few preparatory lemmas.
Let D ⊂ (W × Sm × Rm) × (W × Sm × Rm) be the diagonal, i.e. W ∼=

W×Sm×Rm with embedding (q, v, w) 7→ (q, v, w, q, v, w). Let B be a sufficiently
small neighborhood of D which is a domain with smooth boundary. Note that
the involution τ which interchanges the factors acts freely on the complement
of the interior of B.

3.2 Lemma. Under the composition

H4m+2((Y, ∂Y )× (Y, ∂Y ); Z/2y
H4m+2(Y × Y, Y × ∂Y ∪ ∂Y × Y ∪ (Y × Y ) ∩B; Z/2)yf∗

H4m+2(Y × Y/τ, (Y × ∂Y ∪ ∂Y × Y ∪ (Y × Y ) ∩B)/τ ; Z/2)

the class [Y, ∂Y ]× [Y, ∂Y ] is mapped to 0.

Proof. This follows from the fact that, by choosing a sufficiently small subdivi-
sion and using the fact that we compute homology relative to B, we can find
singular chain representative for [Y, boundaryY ]× [Y, ∂Y ] which is fixed by the
involution τ .

Strictly speaking, one has to use the definition of Cech homology as inverse
limit of the homology of neighborhoods of Y × Y , and then one has to use
suitable decompositions of the product homology class. We also have to use
that the particular choice of decomposition doesn’t affect the homology class
which is represented, and with coefficients in Z/2, not even the orientation is
relevant. The details of this are left to the reader.

In any event, after having found such a fixed representative, we observe that
its image under f∗ will be a formal sum where each summand appears twice.
With coefficients in Z/2, it therefore represents 0.

3.3 Lemma. Let (K, ∂K) be a pair with a free involution τ . Define (K̂, ∂K̂)
to be the quotient of this free involution. Then there is a transgression map

Hk(K̂, ∂K̂; Z/2)→ Hk(K, ∂K; Z/2).
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A class x ∈ Hk(K, ∂K; Z/2) lies in the image of the transgression homomor-
phism if and only if x is mapped to zero under the projection map

Hk(K, ∂K; Z/2)→ Hk(K̂, ∂K̂; Z/2).

Proof. Note that the projection K → K̂ can be interpreted as bundle projection
of an S0-bundle S0 ↪→ K → K̂. With coefficients Z/q2, this bundle is orientable,
and we therefore get a Gysin sequence

Hk(K̂, ∂K̂)→ Hk(K, ∂K)→ Hk(K̂, ∂K̂)→

where the first map is the transgression map and the second map is induced
from the projection. The assertion follows.

Note that, by passing to the suitable inverse limit, this Gysin sequence also
holds for Cech homology with coefficients in Z/2, at least as long as the spaces
involved are compact.

(Kommentar: von hier wirds eher falsch)
More specifically, define Ŷ ⊂ (Y × Y )/τ by

Ŷ := {[x, y] | pSm(x) = −pSm(y)},

where τ is the involution with τ(x, y) = (y, x) (we will use this notation for
the square of any space with itself), and where pSm is the canonical map to
Sm induced from the projection W × Sm × Rm → Sm. Note that this is a
correspondence inside

̂W × Sm × Rm := {[q, v, w, q′,−v, w′] ∈ (W × Sm ×Rm)× (W × Sm ×Rm)/τ}.

Observe that we can also think of ̂W × Sm × Rm as the quotient of manifold W×
Rm×Sm×W ×Rm under the free involution (q, w, v, q′, w′) 7→ (q′, w′,−v, q, w),
therefore ̂W × Sm × Rm is itself a manifold.

Let Ŵ × Sm be the corresponding construction without the factor Rm.
Again this is a manifold, and the projection onto W × Sm ×W × Sm induces a
homotopy equivalence

p
Ŵ×Sm : ̂W × Sm × Rm → Ŵ × Sm.

Note that Ŵ × Sm is a (3m + 2)-dimensional compact manifold with boundary
∂Ŵ × Sm. As usual, let ∂X̂ be the inverse image of ∂Ŵ × Sm in X̂ under the
projection map p

Ŵ×Sm .
We now want to construct from [Y, ∂Y ] a “fundamental class”

[Ŷ , ∂Ŷ ] ∈ H3m+2(X̂, ∂X̂; Z/2)

which maps onto the fundamental class [Ŵ × Sm, ∂Ŵ × Sm] under (p
Ŵ×Sm)∗.

Here, we feel that such a construction should be quite natural and automatic,
and moreover well known. Consider, e.g. the case where Y is the graph of a
continuous function W × Sm → Rm, where Ŷ is then also a manifold with
boundary and p

Ŵ×Sm a homeomorphism, in particular a map of degree 1. Since
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we are not aware of a reference for the general case, we supply our own crude
proof of the existence of this fundamental class.

Recall, first, that H∗(X; Z/2) is the inverse limit of H∗(U ; Z/2), where U
runs through the system of open neighborhoods of X in W × Sm × Rm. Since
X is compact, we can and will choose a cofinal system of such neighborhoods
which is homotopy equivalent to a finite CW-complex, such that in particular
all the groups H∗(U ; Z/2) are finite.

If we construct Û as above, we will obtain a cofinal system of open neigh-
borhoods of X̂ in ̂W × Sm × Rm.

The open set U are open subsets of W ×Sm×Rm and as such are subman-
ifolds with boundary ∂U = U ∩ (∂W × Sm × Rm). Similarly, Û is a manifold
with boundary ∂Û .

Recall now from [3] that ΩO
k (U)→

The first one is

Y × τ(Y ) ⊂ (S × Sm × Rm)× (W × Sm × Rm),

defined by

(q, v, w, q2, v2, w2) ∈ Y × τ(Y ) ⇐⇒ (q, v, w), (q2,−v2, w2) ∈ Y.

Let τ : (W × Sm × Rm)× (W × Sm × Rm) be the involution given by

τ(q, v, w, q2, v2, w2) = (q2,−v2, w2, q,−v, w).

Note that this is a free involution, hence the quotient is still a manifold. We
denote this quotient by ̂W × Sm × Rm. The obvious projection to Ŵ × Sm =
(W × Sm ×W × Sm)/τ is a homotopy equivalence, using the radial (and τ -
equivariant) contraction of the Rm-factors.

Observe that Y×τY is τ -invariant, and therefore its quotient Ŷ ⊂ ̂W × Sm × Rm

defines a compact correspondence in this manifold.
We need the following lemma.

3.4 Lemma. Let X ⊂ W × Sm × Rm be a compact correspondence with a
fundamental class [X, ∂X] ∈ H2m+1(X, ∂X; Z/2), i.e. the image α∗([X, ∂X]) =
[(W,∂W )×Sm] ∈ H2m+1(W ×Sm, ∂W ×Sm; Z/2). Define X̂ ⊂ ̂W × Sm × Rm

as above. Then there is a fundamental class

[X̂, ∂X̂] ∈ H4m+2(X̂, ∂X̂; Z/2)

which maps to [Ŵ × Sm, ∂Ŵ × Sm] ∈ H4m+2(Ŵ × Sm, ∂Ŵ × Sm; Z/2) under
the map induced from the projection.

Here, as usual ∂X and ∂X̂ are the subsets sitting over the boundaries of the
manifolds W × Sm and Ŵ × Sm, respectively.

p

Proof. This should be another well known result in Cech homology. Since we
are not aware of a reference, we include a proof here.

More specifically, let [X, ∂X] be represented by homology classes

[XU , ∂XU ] ∈ H2m+1(U,U ∩ (∂W × Sm × Rm); Z/2),
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where U runs through the system of (relatively compact) open neighborhoods of
X ⊂W×Sm×Rm. By representation results of Thom [3], each of the homology
classes [XU , ∂XU ] are represented (i.e. the image of the fundamental class) of
a (by general position immersed) submanifold XU with boundary ∂XU , where
XU meets ∂U = U ∩ ∂W × Sm × Rm transversally at the boundary.

Then the sets U × τ(U) form a cofinal system of open neighborhoods of
X × τ(X) ∈ (W × Sm × Rm) × (W × Sm × Rm). Each of these are invariant
under the involution τ and therefore the quotients define a cofinal system of
open neighborhoods Û = (U × τU)/Z/2 of X̂.

Note, moreover, that the immersed submanifolds XU × τ(XU ) inherit (since
they are locally embedded) the free involution τ : let i : XU → U be the immer-
sion and τ ◦ i : XU → U the immersion of “τ(XU )′′. At each multiple point of
the immersion i × τ ◦ i, by transversality two leaves of XU intersect, and for
each leaf its image under τ is well defined, which defines the lift of τ from the
image i × τ(i) to XU × XU . Then X̂U := (XU × τ(XU ))/Z/2 is an immersed
submanifold of Û (with boundary meeting the boundary of Û transversally).
Consequently it represents a homology class [X̂U , ∂X̂U ] ∈ H2m+1(Û , ∂Û ; Z/2).

If i : V ↪→ U is an inclusion of two of the neighborhoods of X, then i∗[XV , ∂XV ] =
[XU , ∂XU ], and the homology is (again by the results of Thom) represented by a
bordism immersed into U . As above, this can be used to see that î∗[X̂V , ∂X̂V ] =
[X̂U , ∂X̂U ] ∈ H2m+1(Û , ∂Û ; Z/2). Consequently, the classes [X̂U , ∂X̂U ] define
a Cech homology class [X̂, ∂X̂] ∈ H2m+1(X̂, ∂X̂; Z/2). The image of this class
[X̂, ∂X̂] in H2m+1(W ×Sm, ∂W ×Sm; Z/2) is by definition the image of any of
the classes [X̂U , ∂X̂U ].

To compute the latter, let f : XU →W ×Sm be a regular (either smooth or
PL) approximation to map induced by the projection map, and let q ∈W ◦×Sm

be a regular value. Then
∣∣f−1(q)

∣∣ ≡ 1(2), since the degree of α is 1 (in Z/2-
homology).

Approximate by immersed submanifolds, then count regular points.

3.1 Restriction to boundary

Then we can consider the triple of spaces (Y, ∂Y, U2) inside (W,∂W, N2)×Sm×
Rm. Associated to it is the following commutative diagram of a piece of the long
exact sequences of triples (since we are using coefficients in Z/2, Cech homology
is exact):

H2m+1(Y, ∂Y ) −−−−→ H2m(∂Y, U2) −−−−→y y
H2m+1(W × Sm, ∂W × Sm) −−−−→ H2m(∂W × Sm, N2 × Sm) −−−−→

(3.5)
The horizontal maps are induced by the projection W × Sm ×Rm →W × Sm.

By excision, the groups on the right hand side are isomorphic to

H2m(U, ∂U ; Z/2)
∼=−→ H2m(∂Y, U2; Z/2)

H2m(N × Sm, ∂N × Sm; Z/2)
∼=−→ H2m(∂W × Sm, N2 × Sm; Z/2)

(3.6)

Moreover, we know that for W,N, · · · the fundamental class of W × Sm is



18 Thomas Schick and Robert Simon

mapped under the boundary map in the diagram (3.5) to the fundamental class
of N × Sm.

Therefore, if [Y, ∂Y ] ∈ H2m+1(Y, ∂Y ; Z/2) is a fundamental class (i.e. mapped
to [W ×Sm]), then its image under the boundary map in (3.5) is a fundamental
class [U, ∂U ] ∈ H2m(U, ∂U ; Z/2) (using the excision isomorphism (3.6)), i.e. is
mapped to the fundamental class of N × Sm.

This we will call the “restriction” of the class [Y, ∂Y ] to U , and this is the
fundamental class we will use throughout for U .

Let now (Z, ∂Z) ⊂W ×Rm be the associated Borsuk-Ulam correspondence
of (Y, ∂Y ) with associated fundamental class [Z, ∂Z] as in Theorem 1.6. On the
other hand, let (V, ∂V ) the Borsuk-Ulam correspondence of (U, ∂U). Then, to
the restricted fundamental class [U, ∂U ] is associated by Theorem 1.6 a funda-
mental class [V, ∂V ].


