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Abstract

We extend Pontrjagin duality from topological abelian groups to certain
locally compact group stacks. To this end we develop a sheaf theory on the big
site of topological spaces S in order to prove that the sheaves Eitéhm,s(gv T),
i = 1,2, vanish, where G is the sheaf represented by a locally compact group
and T is the circle. As an application of the theory we interpret topological
T-duality of principal T™-bundles in terms of Pontrjagin duality of abelian
group stacks.
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1 Introduction

1.1 A sheaf theoretic version of Pontrjagin duality

1.1.1 A character of an abelian topological group G is a continuous homomorphism
x:G—T

from G to the circle group T. The set of all characters of G will be denoted by G.
It is again a group under point-wise multiplication. The compact-open topology on
the space of continuous maps Map(G, T) induces a compactly generated topology on
this space of maps, and hence a topology on its subset G C Map(G, T). The group
G equipped with this topology is called the dual group of g

1.1.2  An element g € G gives rise to a character ev(g) € G defined by ev(g)(x) :=
x(g) for x € G. In this way we get a continuous homomorphism

ev:G— G .
The main assertion of Pontrjagin duality is

Theorem 1.1 (Pontrjagin duality) If G is a locally compact abelian group, then

ev:G — G is an isomorphism of topological groups.

Proofs of this theorem can be found e.g. in [Fol99] or [HMO9]].
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1.1.3 In the present paper we use the language of sheaves in order to encode the
topology of spaces and groups. Let X, B be topological spaces. The space X gives
rise to a sheaf of sets X on B which associates to an open subset U C B the set
X(U) = C(U, X) of continuous maps from U to X. If G is an abelian group, then
G is a sheaf of abelian groups on B.

The space X or the group G is not completely determined by the sheaf it generates
over B. As an extreme example take B = {x}. Then X and the underlying discrete
space X induce isomorphic sheaves on B.

For another example, assume that B is totally disconnected. Then the sheaves
generated by the spaces [0, 1] and {*} are isomorphic.

1.1.4 But one can do better and consider sheaves which are defined on all topo-
logical spaces or at least on a sufficiently big subcategory S C TOP. We turn S into
a Grothendieck site determined by the pre-topology of open coverings (for details
about the choice of S see Section B]). We will see that the topology in S is sub-
canonical so that every object X € S represents a sheaf X € ShS. By the Yoneda
Lemma the space X can be recovered from the sheaf X € ShS represented by X.
The evaluation of the sheaf X on A € S is defined by X (A) := Homg(A4, X). Our
site S will contain all locally compact spaces.

1.1.5  We can reformulate Pontrjagin duality in sheaf theoretic terms. The circle
group T belongs to S and gives rise to a sheaf T. Given a sheaf of abelian groups
I € Shy,S we define its dual by

D(F) = Hﬂsmbs(Fa I)

and observe that

D(@) =G

for a group G € S.
The image of the natural pairing

F®; D(F)—T
under the isomorphism
Homgn,,s (£ @z D(F'),T) = Homg,,s (£, Homg, (D (F), T)) = Homgy,,s(F, D(D(F)))

gives the evaluation map
evp: F'— D(D(F)) .

Definition 1.2 We call a sheaf of abelian groups F € ShyS dualizable, if the eval-
uation map evy : F'— D(D(F)) is an isomorphism of sheaves.

The sheaf theoretic reformulation of Pontrjagin duality is now:

Theorem 1.3 (Sheaf theoretic version of Pontrjagin duality) If G is a lo-
cally compact group, then G is dualizable.
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1.2 Picard stacks

1.2.1 A group gives rise to a category BG with one object so that the group appears
as the group of automorphisms of this object. A sheaf-theoretic analog is the notion
of a gerbe.

1.2.2 A set can be identified with a small category which has only identity mor-
phisms. In a similar way a sheaf of sets can be considered as a strict presheaf of
categories. In the present paper a presheaf of categories on S is a lax contravariant
functor S — Cat. Thus a presheaf F' of categories associates to each object A € S
a category F'(A), and to each morphism f : A — B a functor f*: F(B) — F(A).
The adjective lax means, that in addition for each pair of composable morphisms

f,g € S we have specified an isomorphism of functors g* o f* ¢ég (f o g)* which
satisfies higher associativity relations. The sheaf of categories is called strict if these
isomorphisms are identities.
1.2.3 A category is called a groupoid if all its morphisms are isomorphisms. A
prestack on S is a presheaf of categories on S which takes values in groupoids. A
prestack is a stack if it satisfies in addition descent conditions on the level of objects
and morphisms. For details about stacks we refer to [Vis0J).
1.2.4 A sheaf of groups F' € Shy,S gives rise to a prestack PBF which associates
to U € S the groupoid PBF(U) := BF(U). This prestack is not a stack in general.
But it can be stackified (this is similar to sheafification) to the stack BF'.
1.2.5 For an abelian group G the category BG is actually a group object in Cat.
The group operation is implemented by the functor BG x BG — BG which is
obvious on the level of objects and given by the group structure of G on the level
of morphism. In this case associativity and commutativity is strictly satisfied. In
a similar manner, for ' € Shy,S the prestack PBF on S becomes a group object in
prestacks on S.
1.2.6 A group G can of course also be viewed as a category G with only identity
morphisms. This category is again a strict group object Cat. The functor GXG — G
is given by the group operation on the level of objects, and in the obvious way on
the level of morphisms.
1.2.7 In general, in order to define group objects in two-categories like Cat or
the category of stacks on S, one would relax the strictness of associativity and
commutativity. For our purpose the appropriate relaxed notion is that of a Picard
category which we will explain in detail in . The corresponding sheafified notion is
that of a Picard stack. We let PICS denote the two-catgeory of Picard stacks on S.
1.2.8 A sheaf of groups F' € Sy, S gives rise to a Picard stack in two ways. First of
all it determines the Picard stack F' which associates to U € S the Picard category
F(U) in the sense of [.2.6.

The other possibility is the Picard stack BF' obtained as the stackification of the
Picard prestack PBF'.
1.2.9 Let A € PICS be a Picard stack. The presheaf of isomorphism classes of
objects generates a sheaf of abelian groups which will be denoted by H°(A) € Shy,S.
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The Picard stack A gives furthermore rise to the sheaf of abelian groups H1(A) €
Shy,S of automorphisms of the unit object.
The Picard stack A € PICS fits into an extension (see 2.5.13)

BH'(A) — A — H°(A) . (1)

1.3 Duality of Picard stacks

1.3.1 It is an essential observation by Deligne that the two-category of Picard stacks
PICS admits an interior HOMp;.g. Thus for Picard stacks A, B € PICS we have a
Picard stack

HOM;; (A, B) € PICS

of additive morphisms from A to B (see 7).

1.3.2  Since we can consider sheaves of groups as Picard stacks in two different ways
one can now ask how Pontrjagin duality is properly reflected in the language Picard
stacks. It turns out that the correct dualizing object is the stack BT € PICS, and
not T € PICS as one might guess first. For a Picard stack A we define its dual by

D(A) = H_OMPICS(Aa BI) .

One can ask how the duals of the Picard stacks stacks F' and BF look like. In
general we have (see p.9)
D(BF) 2 D(F) . (2)

One could expect that
D(F) = BD(F) , (3)

but this only holds under the condition that Extg, g(F,T) = 0 (see F.6). This
condition is not always satisfied, e.g.

Extg,,s(PnenZ/2Z,T) # 0
(see £.27)). But the main effort of the present paper is made to show that
Eitéhmbs (QaI) = 0
for a large class of locally compact abelian groups (this condition is part of admis-
sibility [.5).
1.3.3 Let A € PICS be a Picard stack. There is a natural evaluation
evy: A— D(D(A)) .
In analogy to [[.] we make the following definition.

Definition 1.4 We call a Picard stack dualizable if evy : A — D(D(A)) is an
equivalence of Picard stacks.
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1.3.4 If G is a locally compact abelian group and
EXtéhAbS (Q’I) = EXtéhAbS(Q’I) = 0 ) (4)
then the evaluation maps

evg: G — D(D(G)), evgg:BG — D(D(BG))

are isomorphisms by applying (B]) and (B) twice, and using the sheaf-theoretic version
of Pontrjagin duality [.3. In other words, under the condition (f]) above G and BG
are dualizable Picard stacks.

1.3.5 Given the structure

BH(A) — A — H°(A)

of A € PICS, we ask for a similar description of the dual D(A) € PICS.
We will see, under the crucial condition

EﬁéhAbS(HO(A)’E) = EﬁghAbS(H_l(A)aE) =0 )
that D(A) fits into
BD(H°(A)) — D(A) — D(H '(A)) .

Without the condition the description of H~*(D(A)) is more complicated, and we
refer to (f[9) for more details.
1.3.6 This discussion now leads to one of the main results of the present paper.

Definition 1.5 We call the sheaf F' € Shy,S admissible, iff
EﬂéhAbS(Fa I) = EitghAbS(F7 I) = O

Theorem 1.6 (Pontrjagin duality for Picard stacks) If A € PICS is a Picard
stack such that H'(A) and D(H'(A)) are dualizable and admissible for i = —1,0,
then A is dualizable.

1.4 Admissible groups

1.4.1 Pontrjagin duality for locally compact groups implies that the sheaf G associ-
ated to a locally compact abelian group G is dualizable. In order to apply Theorem
[ to Picard stacks A € PICS whose sheaves H'(A), i = —1,0 are represented by
locally compact abelian groups we must know for a locally compact group G whether
the sheaf G is admissible.

Definition 1.7 We call a locally compact group G admissible, if the sheaf G is
admissible.
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1.4.2  Admissibility of a locally compact group is a complicated property. Not every
locally compact group is admissible, e.g. a discrete group of the form @,,enZ/pZ for
some integer p is not admissible (see [[.27)).

1.4.3  Admissibility is a vanishing condition

Eitéhmbs (QaI) = EﬁghAbS(QaI) = 0 .

This condition depends on the site S. In the present paper we shall also consider
the sub-sites Sjc_qeye C Sic C S of locally compact locally acyclic spaces and locally
compact spaces.

For these sites the Ext-functor commutes with restriction (we verify this property
in B-4). Admissibility thus becomes a weaker condition on a smaller site. We will
refine our notion of admissibility by saying that a group G is admissible on the
site Sy (or similarly for S;._seyc), if the corresponding restrictions of the extension
sheaves vanish, e.g.

Eitéh,\bs (Q7 I) |Slc g Eitgh;\bs (Q7 I) ‘Slc g O

in the case S;..
1.4.4 Some locally compact abelian groups are admissible on the site S. This
applies e.g. to finitely generated groups like Z,Z/nZ, but also to T" and R™.

In the case of profinite groups G we need the technical assumption that it does
not have to much two-torsion and three-torsion.

Definition 1.8 (.6) We say thatthe topological abelian group G satisfies the two-
three condition, if

1. it does not admit |, . Z/2Z as a sub-quotient,

2. the multiplication by 3 on the compoent Gy of the identity has finite cokernel.

We can show that a profinite abelian group which satisfies the two-three condition
is also admissible. We conjecture that it is possible to remove the condition using
other techniques.

For a general connected compact group which satisfies the two-three condition
we can only show that it is admissible on S;.. Again, both conditions might be
of technical nature and removeable by better techniques. The condition of local
compactness enters the proof since at one place we want to calculate the cohomology
of the sheaf Z on the space A x GG using a Kiinneth formula. For this reason we
want that A is locally compact.

As our counterexample above shows, a general (infinitely generated) discrete group
is not admissible unless we restrict to the site Sj._gcye-

Using that the class of admissible groups is closed under finite products and ex-
tensions we get the following general theorem.

Theorem 1.9 (4.7) 1. If G is a locally compact abelian group which satisfies
the two-three condition, then it is admissible over Sic—_qcyc-
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2. If G satisfies the two-three condition and admits an open subgroup of the form
C x R™ with C' compact such that G/C x R™ is finitely generated, then it is
admissible over S;..

The whole Section ] is devoted to the proof of this theorem.

1.5 T-duality

1.5.1 The aim of topological T-duality is to model the underlying topology of
Mirror symmetry in algebraic geometry and 7T-duality in string theory. For a detailed
motivation we refer to [BRY]. The objects of topological T-duality over a space B
are pairs (F,G) of a T™-principal bundle £ — B and a gerbe G — FE with band
T. A gerbe with band T over a space F is a map of stacks G — E which is locally
isomorphic to BT\ — E. Topological T-duality associates to (E,G) dual pairs
(E,G). For precise definitions we refer to [BRY and []

1.5.2 The case n = 1 (n is the dimension of the fibre of £ — B) is quite easy
to understand (see [BS0J]). In this case every pair admits a unique 7T-dual (up to
isomorphism, of course). The higher dimensional case is more complicated since on
the one hand not every pair admits a 7T-dual, and on the other hand, in general a
T-dual is not unique, compare [BS0, BRY].

1.5.3 The general idea is that the construction of a T-dual pair of (F,G) needs
the choice of an additional structure. This structure might not exists, and in this
case there is no T-dual. On the other hand, if the additional structure exists, then
it might not be unique, so that the T-dual is not unique, too.

1.5.4 The additional structure in [BRS] was the extension of the pair to a T-duality
triple. We review this notion in p.1].

One can also interpret the approach to T-duality via non-commutative topology
[MROF], [MROG| in this way. The gerbe G — E determines an isomorphism class
of a bundle of compact operators (by equality of the Dixmier-Douady classes). The
additional structure which determines a T-dual is an R"-action on this bundle of
compact operators.

Actually, Ansgar Schneider shows that there is an equivalence between the

catgeories of these additional structures.
1.5.5 The initial motivation of the present paper was a third choice for the ad-
ditional structure of the pair which came to live in a discussion with T. Pantev
in spring 2006. It was motivated by analogy with some constructions in algebraic
geometry, see e.g.[DP].

The starting point is the observation that a T-dual exists if and only if the re-
striction of the gerbe G — FE to E|za), the restriction of E to a one-skeleton of B,
is trivial. In particular, the restriction of G to the fibres of E has to be trivial. Of
course, the T"-bundle £ — B is locally trivial on B, too. Therefore, locally on the
base B, the sequence of maps G — FE — B is equivalent to

(BT xT")p — Tjs — B



1 INTRODUCTION 9

where we identify spaces over B with the corresponding sheaves. The stack (BT x
T")p is a Picard stack.

Our proposal for the additional structure on G — E — B is that of a torsor over
the Picard stack (BT x T");3.
1.5.6 In order to avoid the definition of a torsor over a group object in the two-
categorial world of stacks we use the following trick (see for details). Note that
a torsor X over an abelian group G can equivalently be described as an extension
of abelian groups

0-G—-UL7Z—0

so that X = p=1(1). We use the same trick to describe a torsor over the Picard
stack (BT x T")|5 as an extension

of Picard stacks.
1.5.7 The sheaf of sections of E — B is a torsor over T". Let

0—>I|"B—>8—>ZIB—>O

be the corresponding extension of sheaves of abelian groups. The filtration ([) of
the Picard stack U has the form

BI‘B—>U—>5,

and locally on B
U= (BT xT" xZ)5 . (5)

1.5.8 The proposal was motivated by the hope that the Pontrjagin dual D(U)
of U determines the T-dual pair. In fact, this can not be true directly since the
structure of D(U) (this uses admissibility of T and Z") is given locally on B by

D(U) = (BT x BZ" x Z)|5 -

Here the factor Z in (B) gives rise to BT, the factor BT yields Z, and T" yields BZ"
according to the rules () and (). The problematic factor is BZ" in a place where
we expect a factor T". The way out is to interpret the gerbe BZ" as the gerbe of
R"-reductions of the trivial principal bundle T" x B — B.

1.5.9 We have canonical isomorphisms H°(D(U)) = D(H-'(U)) = D(T\p) = Z
and let D(U); € D(U) be the pre-image of {1}|5 C Zz under the natural map
D(U) — H°(D(U)). The quotient D(U),/(BT)p is a Z"-gerbe over B which we
interpret as the gerbe of R"-reductions of a T"-principal bundle E — B which is
well-defined up to unique isomorphism. The full structure of D(U) supplies the dual
gerbe G — E. The details of this constructions are explained in [6.4).
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1.5.10 In this way we use Pontrjagin duality of Picard stacks in order to construct
a T-dual pair to (F,G). Schematically the picture is

(E,G)~» U~ DU) % (E,G)
where the steps are as follows:
1. choice of the structure on G of a torsor over (BT x T")
2. Pontrjagin duality D(U) := Homp;cg(U, BT)
3. Extraction of the dual pair from D(U) as explained in [.5.9.
1.5.11 Consider a pair (E,G). In Subsection .4 we provide two constructions:

1. The construction ® starts with the choice of a T-duality triple extending (£, )
and constructs the structure of a torsor over (BT x T");z on G.

2. The construction W starts with the structure on G of a torsor over (BT x T") 5
and constructs an extension of (E, G) to a T-duality triple.

Our main result Theorem asserts that the constructions ¥ and ¢ are inverses
to each other. In other words, the theory of topological T-duality via Pontrjagin
duality of Picard stacks and via T-duality triples are equivalent.

2 Sheaves of Picard categories

2.1 Picard categories

2.1.1 In a cartesian closed category one can define the notion of a group object
in the standard way. It is given by an object, a multiplication, an identity, and an
inversion morphism. The group axioms can be written as a collection of commutative
diagrams involving these morphisms.

Stacks on a site S form a two-cartesian closed two-category. A group object in a
two-cartesian closed two-category is again given by an object and the multiplication,
identity and inversion morphisms. In addition each of the commutative diagrams
from the category case is now filled by a two-morphisms. These two-morphisms
must satisfy higher associativity relations.

Instead of writing out all these relations we will follow the exposition of Deligne
SGA4, exposé XVIII, which gives a rather effective way of working with group
objects in two-categories. We will not be interested in the most general case. For
our purpose it suffices to consider a notion which includes sheaves of abelian groups
and gerbes with band given by a sheaf of abelian groups We choose to work with
sheaves of strictly commutative Picard categories.
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2.1.2 Let C be a category,
F:CxC—-=C

be a bi-functor, and
o F(F(X,Y),Z) = F(X,F(Y.Z))
be a natural isomorphism of tri-functors.

Definition 2.1 The pair (F, o) is called an associative functor if the following holds.
For every family (X;);er of objects of C let e : I — M(I) denote the canonical
map into the free monoid (without identity) on I. We require the existence of a
map F : M(I) — 0b(C) and isomorphisms a; : F(e(i)) = X;, and isomorphisms
agn : F(gh) = F(F(g), F(h)) such that the following diagram commutes:

(f(gh)) "% F(E(f), E(gh)) —2% F(E(f), F(E(g), E(h)) . (6)

H |

9h) s F(E(f9), E(h) —— F(F(E(f), E(9)), E(h))

2.1.3 Let (F,0) be as above. Let in addition be given a natural transformation of

bi-functors
T:F(X,)Y)— F(Y,X) .

Definition 2.2 (F,0,7) is called a commutative and associative functor if the fol-
lowing holds. For every family (X;),cr of objects in C let e : I — N(I) denote
the canonical map into the free abelian monoid (without identity) on I. We require
that there exist F' : N(I) — C, isomorphisms a; : F(e(i)) — X; and isomorphisms
agn : F(gh) = F(F(g), F(h)) such that (§) and

F(gh) =% F(E(g), F(h)) (7)

| ¥

E(hg) —= F(E(h), E(g))

commaute.

2.1.4 We can now define the notion of a strict Picard category. Instead of F' will
use the symbol "+

Definition 2.3 A Picard category is a groupoid P together with a bi-functor + :
P x P — P and natural isomorphisms o and 7 as above such that (+,0,7) is
a commutative and associative functor, and such that for all X € P the functor
Y — X +Y is an equivalence of categories.
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2.2 Examples of Picard categories

2.2.1 Let G be an abelian group. We consider G as a category with only identity
morphisms. The addition + : G x G — G is a bi-functor. For ¢ and 7 we choose
the identity transformations. Then (G, +, 0, 7) is a strict Picard category which we
will denote again by G.

2.2.2  Let us now consider the abelian group G as a category BG with one object
* and Morpg(*,*) := G. We let + : BG x BG — BG be the bi-functor which acts
as addition Morpg(*) X Morpg(*) — Morpg(x). For o and 7 we again choose the
identity transformations. We will denote this strict Picard category (BG,+,0,T)
shortly by BG.

2.2.3 Let G, H be abelian groups. We define the category EXT(G, H) as the cate-
gory of short exact sequences

E:0—-—H—-F—-G—=0.

Morphisms in EXT(G, H) are isomorphisms of complexes which reduce to the identity
on G and H. We define the bi-functor + : EXT(G, H) x EXT(G, H) — EXT(G, H) as
the Brauer addition

E4+E:0—-H—-F—-G—0,

where F' := F/H, F C E; x E, is the pre-image of the diagonal in G x G, and the
action of H on F is induced by the anti-diagonal action on E; X Ey. The associativity
morphism o : (E1+E&2)+E — &1+ (E2+E3) is induced by the canonical isomorphism
(E1 X Ey) x B3 — By X (Ey x E3). Finally, the transformation 7 : & + & — & + &
is induced by the flip £} x Fy — E5 X Ej. The triple (+, 0, 7) defines on EXT(G, H)
the structure of a Picard category.

2.2.4 Let G be a topological abelian group, e.g. G := T. On a space B we consider
the category of G-principal bundles BG(B). Given two G-principal bundles ) — B,
P — B we can define a new G-principal bundle Q ®g P := @ x5 P/G. The quotient
is taken by the anti-diagonal action, i.e. we identify (¢,p) ~ (qg,pg~'). The G-
principal structure on Q ®¢ P is induced by the action [q, p]g := [q, pg].

We define the associativity morphism

0:(Q®c P)®c R— Q&c (P ®cR)

as the map |[[q, p|, 7] — [q, [p,r]]. Finally we let 7: Q ®c P — P ®¢ @ be given by
9, ] — [p, .

We claim that (®¢, o, 7) is a strict Picard category. Let I be a collection of objects
of BG(B). We choose an ordering of I. Then we can write each element of j € N(I)
in a unique way as ordered product f = P P;... P, with P, < P--- < P.. We
define F(f) =P, ®q (P Qg ...+ ®cg P,)...). Welet ap : F(P) = P, P €1, be
the identity. Furthermore, for f,g € N (i) we define ay, : F(fg) = F(f) ®p F(g)
as the map induced the permutation which puts the factors of f and ¢ in order (and
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so that the order to repeated factors is not changed). Commutativity of () is now
clear. In order to check the commutativity of ([]) observe that 7: Q®cQ — Q®¢ Q

is the identity, as [qg,¢] — [, q9] = [q9, ]

2.3 Picard stacks and examples

2.3.1 We consider a site S. A prestack on S is a lax associative functor P : S? —
groupoids, where from now on by a groupoid we understand an essentially small
categoryf] in which all morphisms are isomorphisms. Lax associative means that as a
part of the data for each composeable pair of maps f, g in S there is an isomorphism
of functors Iy, : P(f) o P(g) = P(go f), and these isomorphisms satisfy higher
associativity relation. A prestack is a stack if it satisfies the usual descent conditions
one the level of objects and morphisms. For a reference of the language of stacks
see e.g. [[Vis0g).

2.3.2

Definition 2.4 A Picard stack P on S is a stack P together with an operation
+ : P x P — P and transformations o, T which induce for each U € S the structure
of a Picard category on P(U).

2.3.3 Let Shy,S denote the category of sheaves of abelian groups on S. Extending
the example to sheaves we can view each object F € Shy,S as a Picard stack,
which we will again denote by F.
2.3.4 We can also extend the example P.2.3 to sheaves. In this way every sheaf
F € ShypS gives rise to a Picard stack BF.
2.3.5  We now extend the example to sheaves. First of all note that one can
define a Picard category EXT(G, H) of extensions of sheaves 0 - H — & — G — 0
as a direct generalization of P.2.J. Then we define a prestack EXT(G,H) which
associates to U € S the Picard category EXT(G, H)(U) := EXT(Gv, Hjy). One
checks that EXT(G, H) is a stack.
2.3.6 Let G € Shy,S be a sheaf of abelian groups. We consider G as a group object
in the category ShS of sheaves of sets on S. A G-torsor is an object 7 € ShS with
an action of G such that 7 is locally isomorphic to G. We consider the category of
G-torsors Tors(G) and their isomorphisms. We define the functor + : Tors(G) x
Tors(G) — Tors(G) by 71 + 75 := T1 X T/G, where we take the quotient by the
anti-diagonal action. The structure of a G-torsor is induced by the action of G on
the second factor 7. We let 0 and 7 be induced by the associativity transformation
of the cartesian product and the flip, respectively. With these structures Tors(G)
becomes a Picard category.

We define a Picard stack 7ors(G) by localization, i.e. we set Tors(G)(U) :=
Tors(Gu).

ILater, e.g. in , we need that the the isomorphism classes in a groupoid form a set.



2 SHEAVES OF PICARD CATEGORIES 14

We have a canonical map of Picard stacks
U:EXT(Z,G) — Tors(G)

which maps the extension £ : 0 — G — & -5 Z — 0 to the G-torsor U() = 7~ 1(1).
Here Z denotes the constant sheaf on S with value Z. One can check that U is an
equivalence of Picard stacks (see for precise definitions).

2.3.7 The example P.2.4 has a sheaf theoretic interpretation. We assume that S is
some small subcategory of the category of topological spaces which is closed under
taking open subspaces, and such that the topology is induced by the coverings of
spaces by families of open subsets.

Let G be a topological abelian group. We have a Picard prestack PBG on S which
associates to each space B € S the Picard category PBG(B) of G-principal bundles
on B. As in 24 the monoidal structure on ?PBG(B) is given by the tensor product
of G-principal bundles (this uses that G is abelian). We now define BG as the
stackification of PBG.

The topological group G gives rise to a sheaf G € Shy,S which associates to U € S
the abelian group G(U) := C(U, G). We have a canonical transformation

I': BG — Tors(G) .

It is induced by a transformation PI" : PBG — 7Tors(G). We describe the functor
PI'g : PBG(B) — Tors(G)(B) for all B € S. Let E — B be a G-principal bundle.
Then we define PI'g(E) € Tors(G ) to be the sheaf which associates to each (¢ :
U — B) € S/B the set of sections of ¢*E — U.

One can check that I' is an equivalence of Picard stacks (see P.4.3 for precise
definitions).

2.4 Additive functors

2.4.1 We now discuss the notion of an additive functor between Picard stacks
F: Pl — PQ.

Definition 2.5 An additive functor between Picard categories is a functor F : P| —
Py and a natural transformation F(x +y) = F(x) 4+ F(y) such that the following
diagrams commute:

1.
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F(z+y)+2) —=Flz+y) + F(z) —= (F(z) + F(y)) + F(2)
lF(a) la
Flz+(y+2) —=F(2) + F(y + 2)) — F(z) + (F(y) + F(2))
Definition 2.6 An isomorphism between additive functors u : F' — G is an iso-

morphism of functors such that

F(zx+y) %G(:c +v)

| |

F(z) + F(y) "2 G(z) + G(y)
commutes.

Definition 2.7 We let Hom(Py, P,) denote the groupoid of additive functors from P
to Py. By PIC we denote the two-category of Picard catgeories.

2.4.2 The groupoid Hom(Py, P,) has a natural structure of a Picard category. We
set
(Fl + Fg)(l’) = Fl(l’) + FQ(LL’)
and define the transformation
(F1+ B)(z+y) = (1 + F2)(2) + (F1 + F2)(y)
such that
(F1 + B)(z +v) (F1 + F2)(z) + (F1 + F2)(y)

aoTox

Fi(z +y) + Fa(z +y) —— (Fi(z) + F1(y)) + (Fa(z) + F2(y)) Fi(z) + Fa(z) + Fi(y) + Fa(y)

commutes. The associativity and commutativity constraints are induced by those
of PQ.
2.4.3 Let now P;, P, be two Picard stacks on S.

Definition 2.8 An additive functor F' : P, — P, is a morphism of stacks which
such that for each U € S we have an additive functor Fy @ Pi(U) — P(U) of
Picard categories. An isomorphism between additive functors u : Fy — Fy is a two-
isomorphism of morphisms of stacks which induces for each U € S an isomorphism
of additive functors uy : Fyy — Fay.

As in the case of Picard categories, the additive functors between Picard stacks form
again a Picard category.

Definition 2.9 We let Hom(Py, P,) denote the groupoid of additive functors from
Py, P,.We get a two-category PIC(S) of Picard stacks on S.

Definition 2.10 We let HOM( Py, P) denote the Picard category of additive functors
between Picard stacks Py and Ps.
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2.4.4 Let P, @ be Picard stacks on the site S. By localization we define a Picard
stack HOM(P, Q).

Definition 2.11 The Picard stack HOM(P, Q)) is the sheaf of Picard categories given
by
HOM(P, Q)(U) := HOM(Pp, Qo) -

A priori this describes a prestack. One easily checks the stack conditions.

2.5 Representation of Picard stacks by complexes of sheaves
of groups

2.5.1 There is an obvious notion of a Picard prestack. Furthermore, there is an
associated Picard stack construction a such that for a Picard prestack P and a
Picard stack () we have a natural equivalence

Hom(aP, Q) = Hom(P, Q) (8)

2.5.2 Let S be a site. We follow Deligne, SGA 4.3, Expose XVIII. Let C'(S) be the
two-category of complexes of sheaves of abelian groups

K:0—-K'% K L0

which live in degrees —1,0. Morphisms in C'(S) are morphisms of complexes, and
two-isomorphisms are homotopies between morphisms.

To such a complex we associate a Picard stack ch(K) on S as follows. We first
define a Picard prestack Pch(K).

1. For U € S we define the set of objects of Pch(K) as K°(U).

2. For z,y € K°(U) we define the set of morphisms by
Homeen 1)) (,y) := {f € K~ (U)ldf =z —y}.

3. The composition of morphisms is addition in K~!(U).

4. The functor + : Pch(K)(U) xPch(K)(U) — Pch(K)(U) is given by addition of
objects and morphisms. The associativity and the commutativity constraints
are the identities.

Definition 2.12 We define ch(K) as the Picard stack associated to the prestack
Pch(K), i.e. ch(K) := aPch(K).
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2.5.3 1If P is a Picard stack, then we can define a presheaf ? H°(P) which associates
to U € S the group of isomorphism classes of P(U). We let H°(P) be the associated
sheaf. Furthermore we have a sheaf H~!(P) which associates to U € S the group
of automorphisms Aut(ey), where ey € P(U) is a choice of a neutral object with
respect to +. Since the neutral object ey is determined up to unique isomorphism,
the group Aut(ey) is also determined up to unique isomorphism. Note that Aut(ey)
is abelian, as shows the following diagram

id+f g+id
et+te — e+e —— e+e

St

g
(& —_— (& e €

and the fact that (id+ f)o (g +1id) =g+ f = (g +id) o (id + f).

If V — U is a morphism in S, then we have a unique isomorphism f : (ey)y = ey
which induces a group homomorphism fo---o f~! : Aut(ey)y — Aut(ey). This
homomorphism is the structure map of the sheaf H~1(P) which is determined up
to unique isomorphism in this way:.

We now observe that

H\(eh(K) = HY(K),  H(ch(K)) = HO(K) . (9)
2.5.4 A morphism of complexes f: K — L in C(S), i.e. a diagram
0—> K1 -2 00
-l
dr,
0 Lt LO 0

induces an additive functor of Picard prestacks Pch(f) : Pch(K) — Pch(K) and, by
the functoriality of the associated stack construction, an additive functor

ch(f): ch(K) — ch(L) .

In view of (), it is an equivalence if and only if f is a quasi isomorphism: if ¢ is a
quasi-inverse to f then ch(g) is the inverse equivalence and a homotopy h between
gf and id induces the required transformation between ch(g)ch(f) and id.

2.5.5  We consider two morphisms f, g : K — L of complexes in C(S). A homotopy
H : f — g is a morphism of sheaves H : K — L~! such that f° — ¢° = d; o H and
f'—g ' = Hodg. It is easy to see that H induces an isomorphism of additive
functors Pch(H) : Pch(f) — Pch(g) and therefore

ch(H) : ch(f) — ch(g)

by the associated stack construction and (f).

One can show that the isomorphisms Pch(f) — Pch(g) correspond precisely to
homotopies H : f — g¢g. This implies that the morphisms ch(f) — ch(g) also
correspond bijectively to these homotopies.
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2.5.6  We have the following result.

Lemma 2.13 (Deligne, SGA 4.3, Expose XVIII, 1.4.13) 1. For every Pi-
card stack P there exists a complex K € C(S) such that P = ch(K).

2. For every additive functor F : ch(K) — ch(L) there exists a quasi iso-
morphism k : K' — K and a morphism | : K' — L in C(S) such that
F = ch(l) o ch(k)™!.

2.5.7 Let PIC’(S) be the category of Picard stacks obtained from the two-category
PICS by identifying isomorphic additive functors. Similarly, let C°(S) the category
of complexes concentrated in degree —1 and 0 with homotopy classes of morphisms.

Proposition 2.14 (Deligne, SGA 4.3, Expose XVIII,1.4.15) The construction
ch gives an equivalence of categories

DI (shy,S) — PIC(S) |

where D10 (Shy,S) is the full subcategory of D (ShyS) of objects whose cohomology
is trivial in degrees ¢ {—1,0}.

2.5.8

Lemma 2.15 (Deligne, SGA 4.3, Expose XVIII1,1.4.16) Let K, L € C(S) and
assume that L™ is injective.

1. Pch(L) is already a stack.

2. For every F' € Hompre(s)(ch(K), ch(L)) there exists a morphism f € Home (sny,s) (K, L)
such that ch(f) = F.

Lemma 2.16 (Deligne, SGA 4.3, Expose XVII1,1.4.17) The construction ch
induces an equivalence of the two-categories PIC(S) and C(S).

2.5.9 Finally we give a characterization of the Picard stack Hom(ch(K'), ch(L)).

Lemma 2.17 (Deligne, SGA 4.3, Expose XVIII,1.4.18.1) Assume that L™
15 wnjective. Then we have an equivalence

Ch(TSOHﬂsmbS(Kv L)) - MPIC(S)(Ch(K)v ch(L)) .
Lemma 2.18 Then we have an isomorphism
Hi(H_OMPIc(S)(Ch(K)a ch(L))) = RiHﬂsmbS(Kv L)

fori=—1,0.
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Proof : First observe that by the discussion above the left hand side and by
defintion of RHom the right side depend only on the quasi-isomorphism type of the
complex L of length 2. Without loss of generality we can therefore assume that L=*
is injective.

We now choose an injective resolution I : 0 — L™!' — % — I'. .. of L starting
with the choice of an embedding L° — I°. Then we have Hom(K, I) & RHom(K L).
We now observe that H'Hom(K,I) = H'Hom(K, L) for i = 0,—1. While the case
i = —1 is obvious, for i = 0 observe that a O-cycle in Hom(K, I) is a morphism of
complexes and necessarily factors over L — I. We thus have for i € {—1,0}

R'fion(K,, L) = H'ion(K, L) = H'(Hom(ch(K), ch(L))) .

2.5.10 For A, B € Shy,S we have canonical isomorphisms
Extg, s(B, A) = R°Homgy,,s(B, A[2]) = Homp(sn,s) (B, A[2]) .
In the following we recall two eventually equivalent ways how an exact complex
K:0—-A—-X—-Y—-B—=0
represents an element
Y (K) € Homp(snps) (B, A[2]) = Extg,, s(B, A)

(the letter Y stands for Yoneda who investigated this construction first). Let 4 be
the complex
Kr:0—-X—-Y—-B—0,

where B sits in degree 0. The obvious inclusion a : A[2] — K4 induced by A — X
is a quasi-isomorphism. Furthermore, we have a canonical map 3 : B — K4. The
element Y (KC) € Homp(sn,,s)(B, A[2]) is by definition the composition

Y(K): B2k, A2 . (10)
We can also consider the complex g given by
0-A—-X—-Y —=0

where A is in degree —2. The projection ¥ — B induces a quasi-isomorphism
v : Kg — B. We furthermore have a canonical map 0 : Kp — A[2]. We consider
the composition Y'(K) € Homp(sn,,s)(B, A[2])

Y(K): B Ky S Al2) . (11)



2 SHEAVES OF PICARD CATEGORIES 20

Lemma 2.19 In Hompsn,s)(B, A[2]) we have the equality
Y(K)=Y'(K) .

Proof : We consider the morphism of complexes ¢ : Kg — K4 given by obvious
maps in the diagram

B .

Y

X—Y ——

|

|

It fits into

It suffices to show that the two squares commute. In fact we will show that ¢ is
homotopic to oy and o 0 §. Note that ¢ — (3 oy is given by

X—Y—D .

A—X—Y
The dotted arrows in this diagram gives the zero homotopy of this difference.
Similarly ¢ — a0 is given by

X—Y ——

Y B

A—X—Y

Y

0

and we have again indicated the required zero homotopy. 0J

2.5.11 The equivalence between the two-categories PIC(S) and C(S) allows us to
classify equivalence classes of Picard stacks with fixed H'(P) = A;, i = —1,0,
A; € Shy,S. An equivalence of such Picard stacks is an equivalence which induces
the identity on the cohomology.

Lemma 2.20 The set Extpres)(Ao, A—1) of equivalence classes of Picard stacks P

~Y

with given isomorphisms H'(P) = A;, 1 = 0,—1, A; € ShyS is in bijection with
EthhAbS(AO’ A—l)-

Proof : We define a map

¢ . EXtPIC(S) (AQ, A—l) — EthhAbS(AO’ A—l) (12)
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as follows.
Consider an exact complex

K:0—-A, -K'>5K"—> A4, -0
and let K € C(S) be a complex
0—-K'—=K'—0

such that K ' is injective. Then we define ¢(ch(K)) := Y (K).

We must show that ¢ is well-defined. Indeed, if K = L by an isomorphism
which induce the identity on the level of cohomology, then Y (K) = Y (L£). Since
ch : C(S)” — PIC’(S) is an equivalence, hence in particular surjective on the
level of equivalence classes, the map ¢ is well-defined. Since every element of
Extd, g(A_1,Ap) can be written as Y (K) for a suitable complex K as above we con-
clude that ¢ is surjective. If ¢(ch(K)) = ¢(ch(L)), then there exists M € C(S) with
given isomorphisms H'(M) = A; together with quasi-isomorphisms K «— M — L
inducing the identity on cohomology. But this diagram induces an equivalence
ch(K) = ch(M) = ch(L). O

2.5.12  We continue with a further description of BF for F' € Shy,S, compare [.2.§.
Note that the sheaf of groups of automorphisms of BF' is F', whereas the group of
objects is trivial. Therefore we can represent BF as ch(F'[1]), with F/[1] the complex
0 — F — 0 — 0 concentrated in degree —1, where we put the sheaf F'.

2.5.13 Let P € PIC(S) be a Picard stack and G C H'(P). Let us assume that
P = ch(K) for a suitable complex K : 0 — K~' — K% — 0. We have a natural
injection G — ker(K 1 — K°). We consider the quotient K ~' defined by the exact
sequence 0 — G — K~! — K~! — 0 and obtain a new Picard stack P = ch(K),
where K : 0 — K~!' — K% — 0. The following diagram represents a sequence of
morphisms of Picard stacks

BG —-P— P
0 G 0 0 .

L

0 K1 K° 0
0 K1 K° 0

The Picard stack P can be considered as a quotient of the P by BG. We will employ
this construction in p.4.5.

3 Sheaf theory on big sites of topological spaces

3.1 Topological spaces and sites
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3.1.1 In this paper a topological space will always be compactly generated and
Hausdorff. We will define categorical limits and colimits in the category of compactly
generated Hausdorff spaces. Furthermore, we will equip mapping spaces Map(X,Y)
with the compactly generated topology obtained from the compact-open topology.
In this category we have the exponential law

Map(X x Y, Z) = Map(X,Map(Y, 7)) .

By Map(X,Y)? we will denote the underlying set. For details on this convenient
category of topological spaces we refer to [Ste67].
3.1.2 The sheaf theory of the present paper refers to the Grothendieck site S.
The underlying category of S is the category of compactly generated topological
Hausdorft spaces. The covering families of a space X € S are coverings by families
open subsets.

We will also need the sites S;. and S;c_q¢ye given by the full subcategories of locally
compact and locally compact locally acyclic spaces (see B-Z.17).
3.1.3 We let PrS and ShS denote the category of presheaves and sheaves of sets
on S. Then we have an adjoint pair of functors

i :PrS< ShS:i

where i is the inclusion of sheaves into presheaves, and i* is the sheafification functor.
If F € PrS, then sometimes we will write F* := {*F.

As before, by Pry, S and Shy, S we denote the categories of presheaves and sheaves
of abelian groups.

3.2 Sheaves of topological groups

3.2.1 In this subsection we collect some general facts about sheaves generated by
spaces and topological groups. We formulate the results for the site S. But they
remain true if one replaces S by S;. or S;c_acye-

3.2.2 Every object X € S represents a presheaf X € PrS of sets defined by

S>U+— X(U):=Homg(U, X) € Sets

on objects and by
Homg(U, V) > f+— f*: X(V) — X(U)
on morphisms.

Lemma 3.1 X is a sheaf.

Proof : Straight forward. OJ
Note that a topology is called sub-canonical if all representable presheaves are
sheaves. Hence S carries a sub-canonical topology.
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3.2.3 We will also need the relative version. For Y € S we consider the relative
site S/Y of spaces over Y. Its objects are morphisms A — Y, and its morphisms

are commutative diagrams
Y

The covering families of A — Y are induced from the coverings of A by open subsets.

An object X — Y € S/Y represents the presheaf X — Y € PrS/Y (by a similar
definition as in the absolute case B.2.9). The induced topology on S/Y is again
sub-canonical. In fact, we have the following Lemma.

A

B .

Lemma 3.2 For all (X —Y) €S the presheaf X — Y is a sheaf.

Proof : Straight forward. U

3.2.4 Let I be a small category and X € S?. Then we have

One can not expect a similar property for arbitrary colimits. But we have the
following result.

Lemma 3.3 Let I be a directed partially ordered set and X € S be a direct system
of discrete sets such that X (i) — X(j) is injective for all it < j. Then the canonical
map

colim;e X (i) — colim;er X (1)

18 an isomorphism.

Proof : Let Pcolim;c; X (i) denote the colimit in the sense of presheaves. Then we
have an inclusion
Pcolimier X (i) — colim;e; X (7) .

Since the target is a sheaf and sheafification preserves injections it induces an inclu-
sion

colimer X (i) < colim;e; X (i) . (13)
Let now A € Sand f € colim;e; X (i)(A) = Homg(A, colim;e; X (7)). Since colim;er X (4)
is discrete and f is continuous the family of subsets {f~!(x) C A|x € colim;c; X (i)}
is an open covering of A by disjoint open subsets. The family

I i@ € [[Peotime X (i) (f ' (x))

represents a section over A of the sheafification colim;c; X (i) of Pcolim;e; X (¢) which
of course maps to f under the inclusion ([3). Therefore ([[J) is also surjective. [
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3.2.5 If G € S is a topological abelian group, then Homg(U, G) := G(U) has the
structure of a group by point-wise multiplications. In this case G is a sheaf of abelian
groups G € Shy,S.

3.2.6 We can pass back and forth between (pre)sheaves of abelian groups and
(pre)sheaves of sets using the following adjoint pairs of functors

PZ(...) :PrS< PrypS:F, Z(...):ShS & Shy,S: F .

The functor F forgets the abelian group structure. The functors PZ(...) and Z(. . .)
are called the linearization functors. The presheaf linearization associates to a
presheaf of sets H € PrS the presheaf PZ(H) € Pry, S which sends U € S to
the free abelian group Z(H )(U) generated by the set H(U). The linearization func-
tor for sheaves is the composition Z(...) := i* oPZ(...) of the presheaf linearization
and the sheafification.

3.2.7

Lemma 3.4 Consider an exact sequence of topological groups in S
1-G—H—-L—1.

Then 1 — G — H — L is an exact sequence of sheaves of abelian groups.
The map of topological spaces H — L has local sections if and only if

1-G—-H—-L—1
s an exact sequence of sheaves of abelian groups.

Proof : Exactness at G and H is clear.
Assume the existence of local sections of H — L. This implies exactness at L.
On the other hand, evaluating the sequence at the object L € S we see that the ex-
actness of the sequence of sheaves implies the existence of local sections to H — L. [

3.2.8 For sheaves G, H € ShS we define the sheaf
HﬂShS(G, H) - ShS s mShS(G7 H)(U) = HomShS(G‘U, H|U) .

Again, this a priori defines a presheaf, but one checks the sheaf conditions in a
straight forward manner.

329 If X,H € S and H is in addition a topological group, then Map(X, H) is
again topological group. For a topological group G € S we let Homyop_ap (G, H) C
Map(G, H) be the closed subgroup of homomorphisms. Recall the construction of
the internal Homg, g(...,...), compare B.2.§8.

Lemma 3.5 Assume that G, H € S are topological groups. Then we have a canon-
ical isomorphism of sheaves of abelian groups

e: Homtop—Ab(G7 H) :) MShAbS(Qa ﬂ) .
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Proof : We first describe the morphism e. Let ¢ € Hom(G, H)(U). We define the
element e(¢) € Homg, (G, H)(U), i.e. a morphism of sheaves e(¢) : G, — Hy,
such that it sends f € G(o: V = U) to {V2ov— ¢(c(v))f(v)} € H(o: V — U).

Let us now describe the inverse e™!. Let ¢ € Homg, (G, H)(U) be given. Since
(pry : U x G — U) € S/U it gives rise to a map

Vg :Gpry :UxG—U)— H(pr,; : Ux G —U).

We now consider (pr, : U x G — G) € G(pry : U x G — U) and set ¢g =
Ya(prg) € H(pry : U x G — U) = Homg(U x G, H). We now invoke the ex-
ponential law isomorphism exp : Homg(U x G, H) = Homg(U,Map(G, H)). Since
1 was a homomorphism and using the sheaf property, we actually get an element
e () := exp(dg) € Homg(U, Homyop—an(G, H)) = Homgop—no(G, H)(U). (Details of
the argument for this fact are left to the reader). O

If S is replaced by one of the sub-sites S;. or Sjc_4eye, then it may happen that
Homgop—an(G, H) does not belong to the sub-site. In this case Lemma B.5 remains
true if one interprets Homeop_ap (G, H) as the restriction of the sheaf on S represented

by Homgop—a(G, H) to the corresponding sub-site.

3.3 Restriction

3.3.1 In this subsection we prove a general result in sheaf theory (Proposition B.13)
which is probably well-known, but which we could not locate in the literature. Let
S be a site. For Y € S we can consider the relative site S/Y. Its objects are maps
(U —Y)in S, and its morphisms are diagrams

N

The covering families for S/Y are induced by the covering families of S, i.e. for
(U —-Y) e S/Y a covering family 7 := (U; — U);es induces a covering family

U

V.

U

’7'|y = Uz

NS

Y

el

inS/Y.
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3.3.2 There is a canonical functor f:S/Y — S given on objects by f(U — Y) :=
U. Tt induces adjoint pairs of functors

f«:8hS/Y < ShS: f* Pf,: PrS/Y < PrS:Pf*.

We will often write f*(F') =: Fjy for the restriction functor. For F' € PrS it is given

in explicit terms by
Fy(U—=Y):=FU).

The functor f* is in fact the restriction of ? f* to the subcategory of sheaves ShS C
PrS. If F € ShS, then one must check that P f*F is a sheaf. To this end note that
the descend conditions for P f*F with respect to the induced coverings described in
B.3.1] immediately follow from the descent conditions for F.

3.3.3 Let us now study how the restriction acts on representable sheaves. We
assume that S has finite products. Let X,Y € S.

Lemma 3.6 If S has finite products, then we have a natural isomorphism
Xy 2XXxY Y.
Proof : By the universal property of the product for o : U — Y we have

XXxY—=>YU—-Y) = {fe€Homg(U, X xY)|pryof=o0}
Homg (U, X)
= X(U)

X\Y(U —Y).

12

O

3.34 Leti’:PrS — shSand i’ : PrS/Y — ShS/Y be the sheafification functors.

Lemma 3.7 We have a canonical isomorphism f* o if = zg/ oPf*,

Proof : The argument is similar to that in the proof of [BSY, Lemma 2.47]. The
main point is that the sheafifications i* F(U) and i§/F|y(U — Y’) can be expressed in
terms of the category of covering families covg(U) and covg,y (U — Y'). Compared
with [BSY, Lemma 2.47] the argument is simplified by the fact that the induc-
tion of covering families described in induces an isomorphism of categories
covg(U) — covg)y (U = Y). O
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3.3.5 Recall that a functor is called exact if it commutes with limits and colimits.
Lemma 3.8 The restriction functor f* : ShS — ShS/Y is exact.

Proof : The functor f* is a right-adjoint and therefore commutes with limits. Since
colimits of presheaves are defined object-wise, i.e. for a diagram

C—PrS, c—F,
of presheaves we have
(pCOlimCECFc)(U) = C01imc€CFc(U) )

it follows from the explicit description of P f*, that it commutes with colimits of
presheaves. Indeed, for a diagram of sheaves F' : C — ShS we have

colim.ccF,. = iﬁpcolimcech )
By Lemma B.7 we get

frcolimeecF, = f*i*PcolimyecF, = ig/pf*pcolimcech >~ *Pcolimeec? f*F, = colimeee f*F, .

OJ

3.3.6 Let H € ShS and X € S.

Lemma 3.9 For U € S we have a natural bijection

Homg,s (X, H)(U) 2 H(U x X) .
Proof :
We have the following chain of isomorphisms
Lemma

Homg, s (X, H)(U) = Homgns /v (X, Hy) = Homgus/u(U X X — U, Hy) = H{UxX) .

OJ

We will need the explicit description of this bijection. We define a map
U ¢ Homgys (X, H)(U) — H(U x X)

as follows. An element f € Homg,g (X, H)(U) = Homgps (X, Hrr) induces a map
f:Xy(UxX = U)— Hy(UxX — U). Now we have X,(Ux X — U) = X (U x
X)=Map(U x X, X) and Hy(Ux X - U)=H({U x X). Let pry : U x X — X
be the projection. We define W(f) := f(pry).

We now define ® : H(U x X) — Homg, (X, H)(U). Let g € H(U x X). For each
(e:V = U) €S/U we must define a map gyv_v) : X;y(V — U) — Hy(V — U).
Note that X ;;(V — U) = X(V) = Map(V, X)°. Let f € Map(V, X). Then we have
an induced map (e, f) : V — U x X. We define U(g) := H(e, f)(g). One checks
that this construction is functorial in e and therefore defines a morphism of sheaves.

A straight forward calculation shows that W and ® are inverses to each other and
induce the bijection above.
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3.3.7 ForamapsU — V — Y we have an isomorphism of sites S/U = (S/V) /(U —
V). Several formulas below implicitly contain this identification. For example, we
have a canonical isomorphism

Fu = (Fyv)u—v
for F' € ShS. For G, H € ShS this induces isomorphisms
Homg, s (G, H)IV = I'Iﬂ311S/V(G\\/= HIV) . (14)

3.3.8 We now consider a sheaf of abelian groups H € ShAbS. Ifre covsV(U) is a
covering family of U and H € Shy,S, then we can define the Cech complex C*(7; H)

(see [BSY, 2.3.5]).

Definition 3.10 The sheaf H is called flabby if H'(C*(m; H)) =2 0 for all i > 1,
UeS and Tt € covg(U).

For A € S we have the section functor
['(A;...):Shy,S — Ab, T'(A;H) := H(A).

This functor is left exact and admits a right-derived functor RI'(A;...) which can
be calculated using injective resolutions. Note that I'(A;...) is acyclic on flabby
sheaves, i.e. RT(A;H) = 0 for 1 > 1 if H is flabby. Hence, the derived functor
RI'(A;...) can also be calculated using flabby resolutions. Note that an injective
sheaf is flabby:.

3.3.9

Lemma 3.11 The restriction functor Shy,S — Shp,S/Y preserves flabby sheaves.

Proof : Let H € Shy,S be flabby. For (U — Y) € S/Y and 7 € covs(U) we
let 7y € covs/y(U — Y') be the induced covering family as in B:3-] Note that
C*(my; Hyy) = C*(r; H) is acyclic. Since covs)y (U — Y) is exhausted by families
of the form 7y, 7 € covg(U) it follows that H)y is flabby. O

3.3.10 We now consider sheaves of abelian groups F,G € Shy,S.

Proposition 3.12 Assume that the site S has the property that for all U € S
the restriction ShS — ShS/U preserves representable sheaves. If Y € S, then in
DT (Shy,S/Y) there is a natural isomorphism

RHﬂShAbS(Fv G)\Y = RmShAbS/Y(F\Yv GIY)’

Proof : We choose an injective resolution G — [ and furthermore an injective
resolution I}y — J. Note that by Lemma restriction is exact and therefore
G|y — J is a resolution of G|y. Then we have

RmShAbS(F’ G)|Y = Hﬂsmbs(Fa [)lY HﬂsmbS/Y(FlYa I\Y) .
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Furthermore,
RMShAbS/Y(F\Ya GIY) = MShAbS/Y(ﬂY7 J)

and the map Iy — J induces

RmShAbS(F7 G)\Y = HﬂsmbS/Y(F\Yv [\Y) = HﬂShAbS/Y(F\Yv J) = Rl'h;mShAbS/Y(Fligi;Y) .
If the restriction f*:S8hS — ShS/Y would preserve injectives, then Iy — J would
be a homotopy equivalence and the marked map would be a quasi-isomorphism.

In the generality of the present paper we do not know whether f* preserves injec-
tives. Nevertheless we show that our assumption on S implies that the marked map
in ([[3) is a quasi isomorphism for all sheaves F' € Shy,S.
3.3.11 We first show a special case.

Lemma 3.13 If F is representable, then the marked map in ([[]) is a quasi isomor-
phism.

N

Proof : Let (U —Y)eS/Y and (A —Y) €8S. Then on the one hand we have

Homg, s /v (Z(A)y, Liy)(U = Y) Homsys/v), w—v)(Ay)w—v), Uy)v—y)

g 1[F]

HomShS/U(A|U7 I|U) .

Since Ay is representable by our assumption on S there exists (B — U) € S/U
such that A, = B — U.
Since the restriction functor is exact (Lemma B-§) and the restriction of an injective

sheaf from S to S/Y" is still flabby (Lemma B.T1]) we see that Gy — Iy is a flabby
resolution. It follows that

Homsns, v (A, [jv) = Homsps /(B — U, Iiy) = Iy(B — U) = RI'(B — U,Gyy) .

On the other hand

12

Homg,, sy (Z(A)y, J)(U = Y) Hom(sns/v)/(w—v)(4)y )jv—v Jiv)
HomShS/U(A|Ua J\U)

Homgps /i (B = U, Jy—y)
J(B = U)

RT(B — U, Gyp).

111

I
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3.3.12 We consider the functor which associates to F' € Shy,S the cone
C(F) := Cone (HﬂShAbS/Y(FlYa I\Y) - HﬂsmbS/Y(ﬂYa J)) .

In order to show that the marked map in ([[J) is a quasi isomorphism we must show
that C'(F") is acyclic for all F' € Shy,S.

The restriction functor (...))y is exact by Lemma B.§. For H € Shy,S/Y the
functor Homg, sy (. .., H) is aright-adjoint. As a contravariant functor it transforms
colimits into limits and is left exact. In particular, the functors

Homgy /v ((-- )y Liy),  Homg, /v (-~ )y, /)

transform coproducts of sheaves into products of complexes. It follows that F' —
C(F) also transforms coproducts of sheaves into products of complexes. If P € Shy,S
is a coproduct of representable sheaves, then by Lemma B.13 C(A) is a product of
acyclic complexes and hence acyclic.

We claim that F' — C(F) transforms short exact sequences of sheaves to short
exact sequences of complexes. Since J is injective and (... )y is exact, the functor
F'— Homg, /v (Fly, J) is a composition of exact functors and thus has this property.
Furthermore we have Homg, /v (Fly, Ijy) = Homg, <(F) I)y. Since I is injective, the
functor F' — Homg, /v (Fjy, I)y) has this property, too. This implies the claim.

We now argue by induction. Let n € N and assume that we have already shown
that H(C'(F)) =0 for all F € Shy,S and i < n.

Consider F' € Shy,S. Then there exists a coproduct of representables P € Shy,S
and an exact sequence

0O K—-P—-F—0.

In order to construct P observe that in general one has a canonical isomorphism
F = colimy_pA .

We let P := ®4_pA. The collection of maps A — F' in the index category induces
a canonical surjection

P=®4.pA— colimy ,pA=F .
The short exact sequence of complexes
0—-C(F)—-C(P)—C(K)—0

induces a long exact sequence in cohomology. Since H'(P) = 0 for all i € Z we
conclude that H(C'(F)) = HY(C(K)) for all i € N. By our induction hypothesis
we get H"(C(F)) = 0.

By induction on n we show that C'(F') is acyclic for all F' € Shy,S, and this implies
Proposition B.12. O
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3.3.13 Note that a site S which has finite products satisfies the assumption of
Proposition B.13. In fact, for A € S we have by Lemma B.q that

A‘Y = A X Y — Y .
Therefore the restriction functor (... )y preserves representables.

Corollary 3.14 Let S be as in Proposition [3.13. For sheaves F,G € Shy,S and
Y €S we have ‘ '
ELtZShAbS(Fv G)\Y = ELtZShAbS/Y(F\Yu G|Y> .

Proof : Since (...)y is exact (Lemma B.§) we have

(H'RHomShy,S(F, G)) |y
H' (RHomSh,, S(F, G) \Y)

Eitéhm;s (F7 G) ‘Y

1%

Propositiow@
Y

H'(RHomShyS/Y (Fy, Gyy))
Extonmws)y (Flv: Gly) -

12

O

3.3.14 Let us assume that S has finite fibre products. Fix U € S. Then we can
define a morphism of sites Vg : S — S/U which maps A € Sto (Ux A — U) € S/U.
One easily checks the conditions given in [Tam94], 1.2.2]. This morphism of sites
induces an adjoint pair of functors

Vg, :ShS < ShS/U : Vg* .

Let Vf: S/U — S be the restriction defined in B.3.2 and let
Uf,:ShS/U < shS : YV f*

be the corresponding pair of adjoint functors.

Lemma 3.15 We assume that S has finite products. Then we have a canonical
isomorphism U f* = Ug, .

Proof : We first define this isomorphism on representable sheaves. Since every sheaf
can be written as a colimit of representable sheaves, Vg, commutes with colimits
as a left-adjoint, and Y f* commutes with colimits by Lemma [.§, the isomorphism
then extends all sheaves. Let W € S and F' € ShS/U). Then we have

112

Homgus (W, g* F)
Vg F(W)
FW xU—U)
Lemm
a@ HomShS/U((W X U — U),F)
Homgws i (Y f*W, F)

HomShS/U(Ug*wa F)

12

I

I
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This isomorphism is represented by a canonical isomorphism
in ShS/U.

3.3.15 Let f:S — S’ be a morphism of sites. It induces an adjoint pair
f« :ShS < sShS': f* .

Lemma 3.16 For F' € ShS the functor f. has the explicit description

f*(F) = COlim(Q_)F)Es/Ff(U) .
Proof : In fact, for G € ShS’ we have

I

HomShsr(colim(Q_)F)es/Fm,G) 11m(U_)F)eS/FHOmShS/( U),G)
m(U—>F)€S/FG( (U))
limy . pyes/rf G(U)
limy_ pyHomgns/ (U, f*G)
Homgys (colimy_mU, f*G)

Homgys (F), f*G)

11 1R

I

Lemma 3.17 For A € S we have

f(4) = f(4) .
Proof : Since (id4: A — A) € S/A is final we have

fi(4)

1%

Colim(gqé)es/éf(U)
colimy_ayes/af(U)

f4).

I

12

3.3.16

Lemma 3.18 If f : S — S’ is fully faithful, then we have for A € S that f*f,A =

Proof : We calculate for U € S that

emma p.17
praw) ER oy

12
=
=
=
sE=

1R
= I
o O
B B
w @
S =
s
=
=

I
[N
S

32

A.
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3.3.17 For U € S we have an induced morphism of sites f : S/U — S'/f(U)
which maps (A — U) to (f(A) — f(U)).

Lemma 3.19 For G € ShS’ we have in S/U the identity

vf*Girwy = (G

If we know in addition that S,S’ have products which are preserved by f : S — S/,
then for F' € S we have in S'/f(U) the identity

vfeFiu = (fF)pw)

Proof : Indeed, for (V — U) € S/U we have

(@ (V = U)=G(f(V)) = Gran(f(V) = fU)) = (] Cr))(V = U) .

In order to see the second identity note that we can write

Since y f is a left-adjoint it commutes with colimits. Furthermore the restriction
functors (...)y and (...)sw) are exact by Lemma B.§ and therefore also commute
with colimits. Writing

F= COlim(A_J:)es/FA

we get

Lemma @

F"U = (COlim(é—)F)ES/FA)‘U = COlim(AﬂF)eS/FA\U = COlim(A_,F)es/FA xU— A.

Using that f preserves products in the isomorphism marked by (!) we calculate

v fFlu i vficolimypyes/rA XU — U
& colimapyes/rufuA x U — U
Lemma
= colimy.pyes/rf(A x U) — f(U)
Q)
o colimig4_p) eS/Ff( ) x f(U) — f(U)
= colimyg . p) ES/Ff( )‘ F(U)
o (colimg—p) eS/Ff( Dir)
Lemni(/z

(fF )iy -

If f is fully faithful, then Y f is fully faithful for all U € S.
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3.3.18

Lemma 3.20 Assume that S, S’ have finite products which are preserved by f : S —
S’. For I' € ShS and G € ShS’ we have a natural isomorphism

MShS(Fv f*G) = f*HﬂShS’(f*Fv G) .
Proof : For U € S we calculate
HﬂShS (F> .f*G)(U) HomShS/U(F]Ua (f*G)\U)

Homgns /7 (Fjor, U f*G )
HomShs'/f(U)(Uf*(F\U)a Glf(U))

Lemnf_\l}a@

1

Lemma
[a=2

Homsns// 7(u) (f« F') rw)s Gy )
Homg, o (f.F, G)(f(U))
fHomg,o/ (foF', G)(U)

OJ
3.3.19 We now consider the derived version of Lemma B.20. Let F' € Shy,S and
G € Shy,S’ be sheaves of abelian groups.
Proposition 3.21 We make the following assumptions:

1. The sites S, S' have finite products.
2. The morphism of sites f : S — S’ preserves finite products.

3. We assume that f*: ShS’ — ShS is exact.

Then in DY (Shy,S) there is a natural isomorphism
RMShAbS(F> .f*G) g f*RmShAbS’(f*F? G)

Proof : By [Tam94, Proposition 3.6.7] the conditions on the sites and f imply
that the functor f, is exact. It follows that f* preserves injectives (see e.g. [Tam94,
Proposition 3.6.2]). We choose an injective resolution G — I°®. Then f*G — f*I*
is an injective resolution of f*G. It follows that

f*RmShAbsl(f*F’ G) = f*mShAbS’ (F? I.) = mShAbS(F’ f*[.) = RmShAbS(F? -f*G) ‘
U

Proposition B.2]] is very similar in spirit to Proposition B.I3. On the other hand,
we can not deduce from B.21] since the functor Vf : ShS/U — S in general
does not preserve products. In fact, if S has fibre products, then (A — U) X
(B—U)=(AxyB — U). Then Vf((A — U) x (B — U)) &2 A xy B while
UF(A—-U)xYf(B— A) =~ Ax B.
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3.3.20

Lemma 3.22 Let W € S. For every F' € ShS we have
Homg,s (W, F)(A) = Vg™ g.F(4) .

Proof : For A € S we have

Homg, s (W, F)(A) = H.JShS/A(w\A7F’\A) (16)
= Homgyg (" f* W, f*F)
Lemma
= HLIHShs/A(Ag*E, Af*F)
= Homg,s (W, “g" f*F)
~ Ag*Af*F(W)
= AP F(AXW — A)
= F(Ax W)
Lemma E
= Vg g.F(A)
UJ

3.3.21 To abbreviate, let us introduce the following notation.

Definition 3.23 If S has finite products, then for W € S we introduce the functor
Ry :="g*oWg,:ShS — ShS .

We denote its restriction to the category of sheaves of abelian groups by the same
symbol. Since g, is exact and Wg¢* is left-exact, it admits a right-derived functor
RRw : D (Shp,S) — DT (Shy,S).

3.3.22 Let now F' € Shy,S.

Lemma 3.24 We have a canonical isomorphism RHomg, (Z(W),F) = RRw(F').

[a¥)

Proof : This follows from the isomorphism of functors Homg, g(Z(W),...) =
Rw(...) from Shy,S to Shy,S. In fact, we have for F' € Shy,S that

Homg, o(Z(W),F) = Homggs(W,F(F)) (17)
@) Vg W g.(F)
= Ry (F) .
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3.4 Application to sites of topological spaces

3.4.1 In this subsection we consider the site S of compactly generated topological
spaces as in and some of its sub-sites. We are interested in proving that
restriction to sub-sites preserve Ext’-sheaves.

We will further study properties of the functor Ry, . In particular, we are interested
in results asserting that the higher derived functors R'Ry (F'), ¢ > 1 vanish under
certain conditions on F' and W.

3.4.2

Lemma 3.25 [f C € S is compact and H is a discrete space, then Map(C, H) is

discrete, and
Re(H) =Map(C, H) .

Proof : We first show that Map(C, H) is a discrete space in the compact-open
topology. Let f € Map(C, H). Since C'is compact, the image f(C') is compact, hence
finite. We must show that {f} C Map(C, H) is open. Let A4, ..., h, be the finite set of
values of f. Thesets f~*(h;) C C are closed and therefore compact and their union is
C'. The sets {h;} C H are open. Therefore U; := {g € Map(C, H)|g(f~(h;)) C {h;}}
are open subsets of Map(C, H). We now see that {f} = NI_,U; is open.

We have by the exponential law

Reo(H)(A) =2 H(AxC) = Homg(A x C, H) = Homg (A, Map(C, H)) = Map(C, H)(A) .
O

3.4.3 A sheaf G € Shy,S is called Ry-acyclic if RRy (G) =0 for i > 1.

Lemma 3.26 If G is a discrete group, then G is Rrn-acyclic.

Proof : Let G — I°® be an injective resolution. Then we have for A € S that

(L9
Rgn(I°)(A) g I*(AxR").
Therefore R"Rgn(G) is the sheafification of the presheaf
A H'(I*(AxR") .

Since G is discrete, the sheaf cohomology of G is homotopy invariant, and therefore

HI(I*(A x RY)) = H'(A x R"; G) = H(4;G) .

To be precise this can be seen as follows. Let (A) denote the site of open subsets of
A. Tt comes with a natural map v : (A) — S. The sheaf cohomology functor is the
derived functor of the evaluation functor. In order to indicate on which category
this evaluation functor was defined we temporarily use subscripts. If I € Shy,S is
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injective, then v € Shy,(A) is still flabby (see [BSY, Lemma 2.49]). This implies
The diagram

A—0 L AxRe
idg
A

is a homotopical isomorphism (in the sense of [K5994, 2.7.4]) A — A x R" over A.
We now apply [KS94], 2.7.7] which says that the natural map

R(pr)«pri(va(G)) — R(ida).1d}(v4(G))

is an isomorphism in D*(Shy,(A)). But since G is discrete we get pri (viG) =
Vixrn(G). If we apply the functor RI'(4)(A,...) to this isomorphism and take
cohomology we get the desired isomorphism marked by .

Now, the sheafification of the presheaf S > A — H'(A;G) € Ab is exactly the ith
cohomology sheaf of I* which vanishes for ¢ > 1. 0J

3.4.4
Lemma 3.27 The sheaf R" is Ry -acyclic for every compact W € S.

Proof :Let R™ — I°®be an injective resolution. Then R'Ryy (R™) is the sheafification
of the presheaf

S 5 A H'(Homg,, s(Z(Wy,), If)) = H'(I*(Ax W) .

Let [s] € H'(I*(A x W)) be represented by s € I'(A x W), and a € A. Then we
must find a neighbourhood U C A of a such that [s|jy.w = 0, i.e. sy w = dt
for some t € I'"Y(U x W), where d : ' — I' is the boundary operator of the
resolution.

The ring structure of R induces on R" the structure of a sheaf of rings. In order to
distinguish this sheaf of rings from the sheaf of groups R" we will use the notation
C. Note that R" is in fact a sheaf of C-modules.

The forgetful functor res : She_p09S — Shy,S fits into an adjoint pair

ind : Shy,S < She_pogS : res

where ind is given by Shy,S 3 V — V ®7C € She_poq. Since C is a torsion-free sheaf
it is flat. It follows that ind is exact and res preserves injectives.

We can now choose an injective resolution R" — J*® in She_50,4S and assume that
I* =res(J°).

2Tt is tempting to apply a Kiinneth formula to calculate H*(A x R™,G). But since A is not
necessarily compact it is not clear that the Kiinneth formula holds.
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Since the complex of sheaves I* is exact we can find an open covering (V,.),er of
A x W such that sy, = dt, for some t, € I'"'(V,). Since W is compact (locally
compact suffices), by [Ste67, Thm. 4.3]) the product topology on A x W is the
compactly generated topology used for the product in S. Hence after refining the
covering (V) we can assume that V,, = A, x W, for open subsets A, C A and
W, C W forall r € R..

We define R, := {r € Rla € A,}. The family (W,),cr, is an open covering
of W. Since W is compact we can choose a finite set r1,...,r, € R, such that
W= (W,,,...,W,,) is still an open covering of W. The subset U := ﬂé‘?:lA,,j is an
open neighbourhood of a € A.

Since I'~! is an injective we can choosef] extensions #, € I'"*(A x W) such that
(tr)\Vr = 1.

We choose a partition of unity (x1,- .., X») subordinated to the finite covering W.
We take advantage of the fact that I* = res(J*®) which implies that we can multiply
sections by continuous functions, and that d commutes with this multiplication. We
define

t:= ZX]C({T%)\UXW - [i_l(U X W) .
k=1

Note that xx(s — dfrk)‘UXw = 0. In fact we have yx(s — dfrk)\(UxW)mvrk = xk(s —
dtm)l(wa)ﬂVrk = 0. Furthermore, there is a neighbourhood Z of the complement of

(U x W)NV,, in U x W where y;, vanishes. Therefore the restrictions xy(s — dt,, )
vanish on the open covering {Z,(U x W) NV, } of U x W, and this implies the
assertion. We get

dt = Y d(x(tn)xw)
j=1

= > xwd(lr)sw
j=1

= > xuldhy,)uww
j=1

v
= E XkS|UxW
j=1

= S|Uxw -

O

3Let U C X be an open subset. Then we have an injection U — X and hence an injection
Z(U) — Z(X). For an injective sheaf I we get a surjection Homgy, s(Z(X), ) — Homsp,,s(Z(U), I).
In other symbols, I(X) — I(U) is surjective.
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Corollary 3.28 1. If G is discrete, then we have Extly, o(Z(R"),G) =0 for all
1> 1.

2. For every compact W € S and n > 1 we have Extl, o(Z(W),R") =0 for all
1> 1.

3.4.5

Lemma 3.29 If W is a profinite space, then every sheaf F' € ShAbS is Ry -acyclic.
Consequently, Exty, o(Z(W),F) =0 fori>1.

Proof :

We first show the following intermediate result which is used in B.4.7 in order to
finish the proof of Lemma [.29.
3.4.6

Lemma 3.30 If W is a profinite space, then I'(W;...) is ezact.

Proof :

A profinite topological space can be written as limit W = 1im;W,, for an inverse
system of finite spaces (W,,)ner. Let p, : W — W, denote the projections. First of
all, W is compact. Every covering of W admits a finite subcovering. Furthermore,
a finite covering admits a refinement to a covering by pairwise disjoint open subsets
of the form {p,!(z)},ew, for an appropriate n € I. This implies the vanishing
HP(W, F) 2 0 of the Cech cohomology groups for p > 1 and every presheaf F €
Pryy S.

Let H? = R% be the derived functor of the embedding i : Shy,S — Pry, S of
sheaves into presheaves. We now consider the Cech cohomology spectral sequence
Mamd4, 3.4.4] (E,,d,) = R*T(W, F) with EY? = HP(W;HI(F)) and use [Tam94,
3.4.3] to the effect that HO(W;H(F)) = 0 for all ¢ > 1. Combining these two
vanishing results we see that the only non-trivial term of the second page of the
spectral sequence is Ey” 2 HO(W;H°(F)) = F(W). Vanishing of R'['(W;...) for
i > 1 is equivalent to the exactness of I'(W;...). O

3.4.7  We now prove Lemma B.29. Let i > 1. We use that R'Ry (F) is the sheafi-
fication of the presheaf S 3 A — R'T'(A x W; F) € Ab. For every sheaf F' € Shy,S
we have by some intermediate steps in ([[G)

D(Ax W; F) 2 T(W;RA(F)) .

Let us choose an injective resolution F' — I*. Using Lemma B.30 for the second
isomorphism we get

HIT(A: R (1) "= HT(A x W2 1%) = T(W: HRA(I)) . (18)
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Consider a point a € A and s € H'T(A; Rw (I*)). We must show that there exists
a neighbourhood a € U C A of a such that sy = 0. Since I*® is an exact sequence
of sheaves in degree > 1 there exists an open covering {Y, },cg of A x W such that
8y, = 0. After refining this covering we can assume that Y, = U, x V, for suit-
able open subsets U, C A and V,, C W. Consider the set R, := {r € R|a € U, }.
Since W is compact the covering {V,},cr, of W admits a finite subcovering in-
dexed by Z C R,. The set U := N,ezU, C A is an open neighbourhood of a.
By further restriction we get 8.y, = 0 for all » € Z. By ([§) this means that
0 =3y, € D(W; H'Ry(I°)). Therefore s vanishes locally on W and therefore
globally. This implies s;; = 0. U

3.4.8 Let f:S;. — S be the inclusion of the full subcategory of locally compact
topological spaces. Since an open subset of a locally compact space is again locally
we can define the topology on S;. by

covg, (A) :=covs(A), Ae€S..

The compactly generated topology and the product topology on products of locally
compact spaces coincides. The same applies to fibre products. Furthermore, a
fibre product of locally compact spaces is locally compact. The functor preserves
fibre products. In view of the definition of the topology S,. the inclusion functor
f :S;c — S is a morphism of sites.

Lemma 3.31 Restriction commutes with sheafification, i.e.
FoPfra frogt

Proof : (Compare with the proof of Lemma B.].) This follows from covg, (A) =
covg(A) for all A € S and the explicit construction if i* in terms of the set covg,

(see [Tam94, Sec. 3.1]). O

Lemma 3.32 The restriction f*: ShS — ShS,. is exact.

Proof : (Compare with the proof of Lemma B.§.) The functor f* is a right-adjoint
and thus commutes with limits. Colimits of presheaves are defined object-wise, i.e.

for a diagram
C—PrS, c—F,

of presheaves we have
(PeolimeecFr)(U) = colimeec Fe(U) .

It follows from the explicit description of P f* that this functor commutes with col-
imits of presheaves. For a diagram of sheaves F' : C — ShS we have

colim.cF,. = iﬁpcolimcech .
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By Lemma B.31 we get
frcolimecF,. = f*iﬁpcolimcech = iﬁpf*pcolimcech = iﬁpcolimcecf”f*FC > colimecf*F, .

O

3.4.9 We have now verified that f : S;. — S satisfies assumptions of Proposition

B21.

Corollary 3.33 Let f : S;. — S be the inclusion of the site of locally compact
spaces. For F' € Shy,S;. and G € Shy,S we have

/" RHomg,, s (f.F, G) = RHomg,, s, (F, [*G) .
In particular we have
[ Extg, s(f.F.G) = Extg,, s, (F, fG)
for all k > 0.

In fact, the first assertion implies the second since f* is exact.

We need this result in the following special case. If G € S is a locally compact
group, then by abuse of notation we write G for for the sheaves of abelian group
represented by GG in both categories Shy,S and Shy,S,..

We have f*G = G. By Lemma B.I7 we also have f.G = G.

Corollary 3.34 Let G, H € S, be locally compact abelian groups. We have
f*ELtISChAbS(Q7 ﬁ) = Eitlsch,\bslc (Q7 ﬂ)
for all k > 0.

3.4.10 In some places we will need a second sub-site of S, the site Sy qcyc 0f locally
acyclic spaces.

Definition 3.35 A space U € S is called acyclic, if H(U; H) = 0 for all discrete
abelian groups H and i > 1.

By Lemma B.30 all profinite spaces are acyclic. The space R" is another example of
an acyclic space. In fact, the homotopy invariance used in the proof of shows
that the inclusion 0 — R” induces an isomorphism H*(R"; H) = H'({0}; H), and a
one-point space is clearly acyclic.

Definition 3.36 A space A € S is called locally acyclic if it admits an open covering
by acyclic spaces.
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In general we do not know if the product of two locally acyclic spaces is again
locally acyclic (the Kiinneth formula needs a compactness assumption). In order to
ensure the existence of finite products we consider the combination of the conditions
locally acyclic and locally compact.

Note that all finite-dimensional manifolds are locally acyclic and locally compact.
An open subset of a locally acyclic locally compact space is again locally acyclic.
We let Sic_qeye C S be the full subcategory of locally acyclic locally compact spaces.
The topology on S;._4cye is given by

covs,, _,.,.(A) = covs(4) .

Let g : Sic—acye — S be the inclusion. The proofs of Lemma B.3]], Lemma and
Corollary apply verbatim.

Corollary 3.37 1. The restriction g* : ShS — ShS;._ ey 5 ezact.

2. For F € Shy,Sic—aeye and G € Shy,S we have
9" RHomg,, (9., G) = RHﬂShAbslcfacyc(F7 9'G) .

and
g'Exth,, 5(0.F. G) = Ext} (Fg"G)

—ShAbSlcfacyc

for all k > 0.
Corollary 3.38 Let G, H € Sjc_qcyc be locally acyclic abelian groups. We have
0'Exth, o(G.H) = Exth, s (G.H)
for all k > 0.
Note that the product [ [ T is compact but not locally acyclic.

3.5 Z,,-modules

3.5.1 We consider the multiplicative semigroup Z,, of non-zero integers. Every
abelian group G (written multiplicatively) has a tautological action of Z,, by homo-
morphisms given by

Ly xG— G, (n,g)—g".

Definition 3.39 When we consider G with this action we write G(1).

The semigroup Z,, will therefore act on all objects naturally constructed from an
abelian group G. We will in particular use the action of Z,, on the group-homology
and group-cohomology of G.

If G is a topological group, then Z,, acts by continuous maps. It therefore also
acts on the cohomology of G as a topological space. Also this action will play a role
later.

The remainder of the present subsection sets up some language related to the
Z.,-actions.
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3.5.2

Definition 3.40 A Z,,-module is an abelian group with an action of Z,, by homo-
morphisms.

We will write this action as Z,, x G 2 (m,g) — U™(g) € G. Thus in the case of
G(1) we have ¥™(g) = g™.
3.5.3 We let Z,, —mod denote the category of Z,,-modules. An equivalent descrip-
tion of this category is as the category of modules under the commutative semigroup
ring Z[Z,). The category Z,, —mod is an abelian tensor category.

We have an exact inclusion of categories

Ab — Z,, —mod ., G+— G(1)

By
F . Z,, —mod — Ab

we denote the forgetful functor.
Let G be an abelian group.

Definition 3.41 For k € Z we let G(k) € Z,, — mod denote the Z,,-module given
by the action Z, x G 3 (p,g) — ¥P(g) := " € G.

Observe that for abelian groups V, W we have a natural isomorphism
V(k)@z W)= (Vs W)(k+1). (19)
3.5.4 Let V be a Z,,-module.

Definition 3.42 We say that V' has weight k if there exists an isomorphism V =
F(V(k) of Zy,.modules.

If V has weight &, then every sub-quotient of V' has weight k. Note that a Z,,-module
can have many weights. We have e.g. isomorphisms of Z,,-modules (Z/2Z)(1) =
(Z.)27) (k) for all k # 0.

3.5.5 Let V € Z,, —mod. We say that v € V has weight k if it generates a
submodule Z < v >C V of weight k. For k € N we let W}, : Z,, — mod — Ab be the
functor which associates to V' € Z,, —mod its subgroup of vectors of weight k. Then

we have an adjoint pair of functors
(k) : Ab & Z,,, —mod : W, .

Observe that the functor W; is not exact. Consider for example a prime p € N and
the sequence
0 — Z(1) = Z(1) — (Z/pZ)(p) — 0 .

The projection map is indeed Z,,-equivariant since m? = m mod p for all m € Z.
Then
0= Wy(Z(1)) — W,(Z/pZ) = Z/pZ

is not surjective.



4 ADMISSIBLE TOPOLOGICAL GROUPS 11

3.5.6 Let V € Ab and V(1) € Z,, — mod. Then we can form the graded tensor
algebra
va)=zeVl)aVl) e, V() ®... .

We see that T%(V (1)) has weight k. The elements * @ z € V(1) ® V(1) generate
a homogeneous ideal I. Hence the graded algebra A% (V (1)) := T;(V(1))/I has the
property that A%(V (1)) has weight k.

3.5.7 It makes sense to speak of a sheaf or presheaf of Z,,-modules on the site
S. We let Shyz, _n0qS and Pry _n.q S denote the corresponding abelian categories of
sheaves and presheaves.

Definition 3.43 Let V € Shy, _noaS (o1 V € Pry, neaS) and k € Z. We say that
V' is of weight k if the map V mism V' wanishes for all m € Z,,.

We define the functors (k) : ShpS — Shz, neaS, F : Shz, —naS — ShyS, and
Wy @ Shz,, noaS — ShyS (and their presheaf versions) object-wise. A sheaf has
weight k € Zif V= F(V)(k) = Wi(V)(k). We also have a pair of adjoints functors

(]f) . ShAbS = Sth—modS . Wk

(and the corresponding presheaf version).

4 Admissibility of sheaves represented by topo-
logical abelian groups

4.1 Admissible sheaves and groups

4.1.1 The main topic of the present paper is a duality theory for abelian group
stacks (Picard stacks, see P-4)) on the site S. A Picard stack P € PIC(S) gives rise
to the sheaf of objects H(P) and the sheaf of automorphisms of the neutral object
H~'(P). These are sheaves of abelian groups on S.

We will define the notion of a dual Picard stack D(P) (see p.4). With the intention
to generalize the Pontrjagin duality for locally compact abelian groups to group
stacks we study the question under which conditions the natural map P — D(D(P))
is an isomorphism. In Theorem we see that this is the case if the sheaves
are dualizable (see p-J) and admissible (see [[-]]). Dualizability is a sheaf-theoretic
generalization of the classical Pontrjagin duality and is satisfied e.g. for the sheaves
G for locally compact groups G € S (see p.3). Admissibility is more exotic and will
be defined below (.1]). One of the main results of the present paper asserts that the
sheaves G are admissible for a large (but not exhaustive) class of locally compact
groups G € S.
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4.1.2

Definition 4.1 We call a sheaf of groups admissible if Exty, o(F,T) =0 for i =
1,2. A topological abelian group G € S is called admissible, if G is an admissible
sheaf.

We will also consider the sub-site S;. C S of locally compact spaces.

Definition 4.2 A locally compact abelian topological group G € Sy is called admis-
sible on S if Extl, o (G, T) =0 fori=1,2.

Let f:S;. — S be the inclusion.

Lemma 4.3 If F € Shy,S;. and f.F is is admissible, then F' is admissible over S;.
in the sense that Exty, o (Fs,,,T) =0 fori=1,2.

Proof : This is an application of Corollary B.33. O

Corollary 4.4 If G € S;. is admissible, then it is admissible over S..

This is an application of Corollary B.34.
4.1.3

Lemma 4.5 The class of admissible sheaves is closed under finite products and
ertensions.

Proof : For finite products the assertions follows from the fact that Extg, g(...,T)
commutes with finite products. Given an extension of sheaves

00— F—-G—H-=0

such that ' and H are admissible, then also G is admissible. This follows immedi-
ately from the long exact sequence obtained by applying Extg, o(...,T). OJ

4.1.4 In this paragraph we formulate one of the main theorems of the present paper.
Let G be a locally compact topological abelian group.

Definition 4.6 We say that G satisfies the two-three condition, if
1. it does not admit [ ], . Z/2Z as a sub-quotient,

2. the multiplication by 3 on the compoent G of the identity has finite cokernel.

Theorem 4.7 1. If G is a locally compact abelian group which is satisfies the
two-three condition, then it is admissible over Sic_qcyc-
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2. If G satisfies the two-three condition and admits an open subgroup of the
form C x R™ with C compact such that G/C x R™ is finitely generated, then
it 1is admissible over S;..

Proof : By [HM9§, Thm. 7.57(i)] the group G has a splitting G = H x R™ for some
n € Ny, where H has a compact open subgroup U. The quotient G/(U xR") =2 H/U
is therefore discrete. Using Lemma [I.J conclude that G is admissible over S;. if R
and H are so.

Admissibility of R follows from .31 in conjunction with [.§ and 4.

Since D := G /U is discrete, the exact sequence

0—-U—H—-G/U—=0
has local sections and therefore induces an exact sequence of associated sheaves

by Lemma B.4. If D is finitely generated, then it is admissible by Theorem [.17,
and hence admissible over S;. by Lemma [I.4. Otherwise it is admissible on Si.—geye
by Theorem (.26

Therefore H is admissible over S;. (or Sjc—acye, respectively) by Lemma [L.5 if U is
admissible over S;.. The compact group fits into a sequence

0—-Uy—U—-P—0

where P is profinite and Uy is closed and connected. By assumption U, Uy and P
satisfy the two-three condition. The connected compact group Uy is admissible over
Sic by Theorem [.77, and the profinite P is admissible by Theorem (.64, and hence
admissible over S;. by Lemma [.4.
Note that
0—U, 0— U—-P—0

is exact by Lemma [L.37. Now it follows from Lemma [.§ that U is admissible. [

4.1.5  We conjecture that the assumption that G satisfies the two-three condition is

only technical and forced by our technique to prove admissibility of compact groups.
In the remainder of this section, we will mainly be concerned with the proof of

the statements used in the proof of Theorem [.7 above.

4.1.6 Our proofs of admissibility for a sheaf F' € Shy,S will usually be based on

the following argument.

Lemma 4.8 Assume that F' € Shy,S satisfies
1. Extly, o(F,Z) =0 fori=2,3

2. Extl, o(F,R) =0 fori=1,2.
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Then F' is admissible.

Proof : We apply the functor Extg, ¢(F,...) to the sequence
0—-Z—-R—->T—0

and get the following segments of the long exact sequence

- — Ext, s (F,R) — Extg, s (F,T) — Extgl o(F/Z) — ... .

We see that the assumptions on F imply that Extyy, o(F,T) =0 fori=1,2. O

4.1.7 A space W € S is called profinite if it can be written as the limit of an inverse
system of finite spaces. Lemma [3.29 has as a special case the following theorem.

Theorem 4.9 If W € S is profinite, then Z(W) is admissible.

4.2 A double complex

4.2.1 Let H € Shy,S be a sheaf of groups with underlying sheaf of sets F(H) € ShS.
Applying the linearization functor Z (see B:2.§) we get again a sheaf of groups
Z(F(H)) € Shy,S. The group structure of H induces on Z(F(H)) a ring structure.
We denote this sheaf of rings by Z[H]. It is the sheafification of the presheaf PZ[H]
which associates to A € S the integral group ring PZ[H](A) of the group H(A).

We consider the category Shz(m)—neaS of sheaves of Z[H]-modules. The trivial
action of the sheaf of groups H on the sheaf Z induces a structure of a sheaf of
Z|H]-module on Z. With the notation introduced below we could (but refrain from
doing this) write this sheaf of Z[H]-modules as coind(Z).
4.2.2  The forgetful functor res : Shyp]-naS — ShyS fits into an adjoint pair of
functors

ind : Shy,S < Shy(H]-—nodS : res .

Explicitly, the functor ind is given by
ind(V) :=Z[H| @,V .

Since Z[H] is a torsion-free sheaf and therefore a sheaf of flat Z-modules the functor
ind is exact. Consequently the functor res preserves injectives.
4.2.3 We let coinv : Shy[]—noaS — ShypS denote the coinvariants functor given by

Shz(H]-noaS 2 V — coinv(V) :=V Qg Z € ShyS .
This functor fits into the adjoint pair
coinv : Shy(H]-noaS ¢ ShypS : coind

with the coinduction functor which maps W &€ Shy,S to the sheaf of Z[H]-modules
induced by the trivial action of H in W, formally this can be written as

coind(W) := Homg, ¢(Z,W) .
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4.2.4
Lemma 4.10 Every sheaf F' € Shyjp]-—n.aS 15 a quotient of a flat sheaf.

Proof : Indeed, the counits of the adjoint pairs (Z(...),F) and (ind, res) induce
a surjection ind(Z(F(res(F)))) — F. Explicitly it is given by the composition of
the sum and action map (omitting to write some forgetful functors)

Z|H|®z Z|F) - ZH @ F - F .

Since Z[H] is a sheaf of unital rings this action is surjective. Moreover, for A €
Shz[H)-moaS We have

Az (Z[H) @2 ZF) = A®y ZIF] |

Since Z[F] is a torsion-free sheaf of abelian groups the operation A — A ®gzm
(Z{H| ®z Z[F) preserves exact sequences in Shyz)_neaS. Therefore Z[H| ®yz Z[F] is
a flat sheaf of Z[H]-modules. O

4.2.5
Lemma 4.11 The class of flat Z[H]|-modules is coinv-acyclic.

Proof : Let F* be an exact complex of flat Z[H]|-modules. We choose a flat
resolution P* — Z in Shy(p]—noaS which exists by [.2.4. Since F'® consists of flat
modules the induced map

e Qz[H] pP* — F* ®Qzim L = coinv(F*)

is a quasi-isomorphism. Since P*® consists of flat modules tensoring by P*® commutes
with taking cohomology so that we have

H*(F. ®Z[H} P.) = H*(H*(F.) ®Z[H] P.) =0.

Therefore coinv(...) maps acyclic complexes of flat Z[H]-modules to acyclic com-
plexes of Z-modules. O

Corollary 4.12 We thus can calculate L*coinv(Z) using a flat resolution.

4.2.6 We will actually work with a very special flat resolution of Z. The bar
construction on the sheaf of groups H gives a sheaf H*® of simplicial sets with an
action of H. We let C*(H) := C(Z(H*)) be the sheaf of chain complexes associated
to the sheaf of simplicial groups Z(H®). The H-action on H*® induces a H-action
on C*(H) and therefore the structure of a sheaf of Z[H]-modules. In order to
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understand the structure of C*(H) we first consider the presheaf version ?C*(H) :=
C(PZ(H?*)). In fact, we can write

H>=2HxHx --xH,
(A —

i factors
as a sheaf of H-sets, and therefore
PCYH) 2PZIH| @V PZ(H x -+ x H 2
C'(H) [H] @7 L ><f x H) (20)
1 factors

The cohomology of the complex PC*(H) is given by
; 7 1=0
(P (] ~Y =
wecrm={ T 0L

where PZ € Pry, S denotes the constant presheaf with value Z. Since sheafification
i* is an exact functor and by definition C*(H) = i*?C*(H) we get

rew (3120}

Furthermore,

C'(H)XZ[H) @z Z(H x -+ x H) = ind(Z(H x --- x H)) (21)

i factors i factors
shows that C?(H) is flat. Let us write C* := C*(H) = ind(D*) with

D' =7Z(H x---x H) .
—

i factors

Definition 4.13 For a sheaf H € Shy,S we define the complex U®* := U®(H) =
coinv(C*)

It follows from the construction that U® depends functorially on H. In particular,
for a : H — H' we have a map of complexes U*(a) : U*(H) — U*(H’).
4.2.7 The main tool in our proofs of admissibility of a sheaf F' is the study of the
sheaves
R*Hﬂsm[m,mods(za coind(W))

for W = Z,R. Let us write this in a more complicated way using the special
flat resolution C*(H) — Z constructed in [[.2.§. We choose an injective resolution
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coind(W) — I*® in Shzjy]-moaS. Using that resocoind = id, and that and res(/*)
is injective in Shy,S, we get

RHﬂShZ [H]—mod

§(Z,coind(W)) = HomSh

I

I

s(Z
Homg, . modS(P',I')
Homgy . s(ind(D*), I*)
Homgy, (D", res ()
Homg, o(D®, res(coind(res(/*))))
Homg, g(ind(D*®), coind(res(/*)))
Z[H]fmodS(C.’ coind(res(/*)))
Homg, g(coinv(C®),res(I*))
RHomg, ¢(Lcoinv(Z), W) .

1%

I

Homg,

12

I

4.2.8 In general, the coinvariants functor coinv(...) = - - -®gzu Z can be written in
terms of the tensor product in the sense of presheaves composed with a sheafification.
Furthermore, C*(H) is the sheafification of PC*(H). Using the fact that the tensor
product of presheaves commutes with sheafification

Ui Defimﬁon

1= 1

with

In particular, we have

12

12

7

coinv(C") (22)
(C(H) 28y Z)
(OO &y (T

(pCi(H) pZ[H} Z)ﬁ

(ZIH] &4 PE(H x - x H) G,
i factors
(PZ(H x --- x H))*
—_———

i factors

- pz)ﬁ

(pDi)ﬁ

PD' = PZ(H x ---x H) . (23)

i factors

Ul = Z(H') . (24)

4.2.9 Let G be a group. Then we can form the standard bar complex for the group
homology with integer coefficients

Ge ...

— Z(G") - Z(G") = - = Z — 0.
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The abelian group Z(G™) is freely generated by the underlying set of G™, and we
write the generators in the form [gq] .. .|g,]. The differential is given by

4= 3 (-1d (G — 2

where
[92] - - - |gn] i=0
dilgr| - - -gn) =S [l 19igisa| - lgn] 1<i<n—1
[91] -+ [gn—1] i=n

The cohomology of this complex is the group homology H,.(G;Z).

4.2.10 For A € S the complex PD*(A) (see RJ) is exactly the standard complex
(see 22.9) for the group homology H.(H(A),Z) of the group H(A). Let us write
U*® := coinv(C*(H)). The cohomology sheaves H*(U*®) are thus the sheafifications
of the cohomology presheaves

S>Aw— H,(H(A),Z) € Ab .

4.2.11 In this paragraph we collect some facts about the homology of abelian
groups. An abelian group V is the same thing as a Z-module. We define the
graded Z-algebra A}V as the quotient of the tensor algebra

TV i=PVe eV
—_—————

n20 n factors

by the graded ideal I C TV generated by the elements x ® x, x € V.
4.2.12 Let G be an abelian group. We refer to [Bro83, V.6.4] for the following fact.

Fact 4.14 There exists a canonical map
m: A,G — Hi(G;7Z) .

It is an isomorphism for 1 = 0,1, 2, and it becomes an isomorphism after tensoring
with Q for all i > 0. If G is torsion-free, then it is an isomorphism m : AL,G =
Hi(G;Z) for alli > 0.

4.2.13 Let U* = U*(H) (see Definition f.13) for H € Shy,S. The cohomology
sheaves L*coinv(Z)) = H*(U*) are the sheafifications of the presheaves H*?D®. By
the fact 14 we have H?D® = (AL H) for i = 0,1,2 for the presheaves S 5 U —
ALH(U). In particular we have H(U®) & Z and H'(U®) = H. If H is a torsion-free
sheaf, then H'(U®) = (AL H)* for all i > 0. Finally, for an arbitrary sheaf H € Shy,S
we have

(MH) ®,Q= HY(U®) ®2,Q .
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4.2.14 Our application of this relies on the study of the two spectral sequences
converging to
M;hAbs(LCOiHV(Z), Z) g Eﬁ;hz[H],modS(Za Z)

We choose an injective resolution Z — I® in Shy,S. Then
Exty,, s(Leoiny(Z), Z) = H (Homg, (U, I*))

The first spectral sequence denoted by (F}.,d,) is obtained by taking the cohomol-
ogy in the U®-direction first. Its second page is given by

Fy* = Extg, o(Licoinv(Z),Z) .
This page contains the object of our interest, namely by the sheaves of groups
FP'~Extt ((H,Z) .

=22 YShapS
The other spectral sequence (F,, d,) is obtained by taking the cohomology in the
I*-direction first. In view of (B2) its first page is given by
E{w = EﬁghAbS(Z(Hq)’Z) )

which can be evaluated easily in many cases.
Let us note that

H*Riong, o(Z.Z) = Exty, . §(Z.2)

has the structure of a graded ring with multiplication given by the Yoneda product.
4.2.15 We now verify Assumption 2 of Lemma [L.§ for all compact groups.

Proposition 4.15 Let H € S is a compact group. Then we have Eitghms(ﬁ, R)=0
fori=1,2.

As in Definition let U® :=U*(H). Let R — I*® be an injective resolution. Then
we get a double complex Homg, «(U®,I°).

We first take the cohomology in the I°-; and then in the U®-direction. We get a
spectral sequence with first term

EY? = Extg,, s (Z(FH"),R) .

It follows from Corollary B-2§, 2., that E}? = 0 for ¢ > 1.
We consider the complex

C*(H,R):0 — Map(H,R) — --- — Map(H”"*,R) — Map(H”,R) — ...

of topological groups which calculates the continuous group cohomology H} .(H;R)

of H with coefficients in R. Now observe that by the exponential law for A € S

Lemma

Extg, o(Z(FH?),R)(A) = Homg(H” x A,R) = Homg(A,Map(H?,R)) .
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Hence the complex (E°, dy)(A) is isomorphic to the complex
Homg(A,C*(H,R)) = C*(H,R)(A) .

Since H is a compact group we have H' (H;R) = 0 for i > 1. Of importance
for us is a particular continuous chain contraction h? : Map(H?, R) — Map(H?~!, R),
p > 1, which is given by the following explicit formula. If ¢ € Map(H? ,R) is a

cocycle, then we can define hP(c) := b € Map(H?~!,R) by the formula

b(tl, c. atp—l) = (—1)p/ C(tl, c. ,tp_l, t)dt s
H

where dt is the normalized Haar measure. Then we have db = ¢. The maps (h?),o
induce a chain contraction (h?),o
of the complex C*(H,R).
Therefore H'Map(A,C*(H,R)) = H'C*(H,R)(A) for i > 1, too.
The spectral sequence thus degenerates from the second page on. We conclude
that
H'Homg, o(U*,I°) =0, i>1.

We now take the cohomology of the double complex Homg, ¢(U*,I*) in the other
order, first in the U®-direction and then in the I°-direction. In order to calculate
the cohomology of U® in degree < 2 we use the fact [l.14. We get again a spectral
sequence with second term (for ¢ < 2, using [£.2.13)

F* = Extgy, o(AZH)',R) .
We know by Corollary B.2§, 2., that
B = Extfy s(ZR) =0, p>1
(note that we can write Z = Z({x}) for a one-point space). Furthermore note that

on’l = Homg,, s (H, R) = Homgop g (H,R) = 0

since there are no continuous homomorphisms H — R. The second page of the
spectral sequence thus has the structure

2 | Homg, s (AZH)*, R)

1 0 Extgn,s(H,R) | Extg, (M, R)

0 R 0 0 00
0 1 2 3[4

Since the spectral sequence must converge to zero we see that

Eitéhmjs(ﬂa K) = O .
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We claim that Homg, s((AZH)* R) =2 0. Note for A € S we have
Homg,, s ((AZH), R)(A) = Homp,,, s(AZH, R)(A) = Hompy,, 574 (AZH 4, Ry 4) -

An element \ € Homp,,, s/4(AZH 14, R|4) induces a family of a biadditive (antisym-
metric) maps
ANV H(W) x HW) — R(W)

for (W — A) € S/A which is compatible with restriction. Restriction to points
gives continuous biadditive maps H x H — R. Since H is compact the only such
map is the constant map to zero. Therefore AW vanishes for all (W — A). This
proves the claim.

Again, since the spectral sequence (F,., d,.) must converge to zero in higher degrees
we see that

}712271 = Eﬂgh,\bs(ﬁvg) = O .

This finishes the proof of the Lemma. U

4.3 Discrete groups

4.3.1 In this subsection we study admissibility of discrete abelian groups. First
we show the easy fact that a finitely generated discrete abelian group is admissible.
In the second step we try to generalize this result using the representation of an
arbitrary discrete abelian group as a colimit of its finitely generated subgroups. The
functor Extg, g(...,T) does not commute with colimits because of the presence of
higher Rlim-terms in the spectral sequence (Bf]), below.
And in fact, not every discrete abelian group is admissible.
4.3.2

Lemma 4.16 Forn € N we have Extg, g(Z/nZ,7Z) =0 fori > 2.
Proof : We apply the functor Ext§ o(...,Z) to the exact sequence
0> Z—Z—L/nL— 0
and get the long exact sequence
Extl ' o(Z,Z) — Exty, o(Z/nZ,Z) — Exty, §(Z,2) —
Since by Theorem [ Extl, ¢(Z,Z) =0 for i > 1, the assertion follows. O

Theorem 4.17 A finitely generated abelian group is admissible.

Proof : The group Z/nZ is admissible, since Assumption 2 of Lemma [L.§ follows
from Proposition [[.T5, while Assumption 1 follows from Lemma [L.Ig. The group Z
is admissible by Theorem [L.9 since we can write Z = Z({*}) for a point {x} € S.
A finitely generated abelian group is a finite product of groups of the form Z and
Z/nZ for various n € N. A finite product of admissible groups is admissible. O
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4.3.3 We now try to extend this result to general discrete abelian groups using
colimits. Let I be a filtered category (see [Tam94, 0.3.2] for definitions). The
category Shy,S is an abelian Grothendieck category (see [Tam94, Thm. 1.3.2.1]).
The category Home,, ([, Shy,S) is again abelian and a Grothendieck category (see

[Tam94, Prop. 0.1.4.3]). We have the adjoint pair
colim : Homgay (1, ShypS) < ShyS: C'

where C' associates to F' € Shy,S the constant functor C'r € Homeyt (I, Shy,S) with
value F'. The constant functor C'r also has a right-adjoint 1im.

C : ShypS < Homeay (7, ShypS) @ 1im

This functor is left-exact and admits a right-derived functor Rlim. Finally, for
F € Home,t (1, Shy,S) we have the functor

"Homg, &(F,...): ShypS — Homeas (I, ShypS)

which fits into the adjoint pair
I
/ et ® F . Homcat([Op, ShAbS) = ShAbS . IMShAbS (F, e ) s (25)

where for G € Home,, (17, ShypS) the symbol fIG ® F € Shy,S denotes the coend
of the functor I x I — Shy, (i,7) — G(i) ® F(j); correspondingly [, denotes the
end of the appropriate functor. Indeed we have for all A € Home,, (1%, Shy,S) and
B € Shy,S a natural isomorphism

I
HOmShAbS(/ A®F,B) = /IOPXIHomShAbS(A(XJF,B)
I

1%

/I Iopmsmbs (4, IHﬂsmbs (F,B))

= HomHOMCat(I"p,ShAbS) (Av IHﬂShAbS(Fv B))

The functor 'Homg, ¢(F,...) is therefore also left-exact and admits a right-derived
version.
4.3.4 We say that P € Homc,y (1, Shy,S) is object-wise flat if P(i) € Shy,S is flat for
all i e I.

Lemma 4.18 If P € Homca (1, Shy,S) is object-wise flat, and if J € Shy,S is injec-
tive, then "Homg, ¢(P,.J) € Homcay (17, ShyyS) is injective.

Proof : We consider an exact sequence

(A°:0— A — A — A% - 0)
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in Homeyt, (17, Shy,S). Then we have

(%) I
HomHOMCat(IOP,ShAbS)(A.> IHﬂShAbS(P? J)) = HomShAbS(/ A* ® P, J) .

Exactness in Home,, (1P, Shy,S) is defined object-wise [Tam94, Thm. 0.1.3.1].
Therefore 0 — A%(i) — A'(i) — A2(i) — 0 is an exact complex of sheaves for
all ¢ € I. Since P(j) is flat for all j € I the complex A*(i) ® P(j) is exact for all
pairs (i,7) € I x I. The complex of sheaves [ " A* ® P is the complex of push-outs
along the exact sequence of diagrams

.. N 1d®P(i—j) o .

I_l(i—>j)6Mor(I) A (']> ® P(Z) —j> I—leI A (j) ® P(']>
lA'(i—g)@id
Llier A°(@) ® P(i) -

One checks that by a diagram chase that [ " A* @ P is exact. Since J is injective we

conclude that Homgy, s ( [* A*® P, J) is exact. Therefore Homgong,, (1o sns) (- - - » 'Homg, o(P;J))

preserves exactness and hence "Homg, (P, J) is an injective object in Homear (177, ShypS).
0J

Lemma 4.19 We have a natural isomorphism in D (ShyS)
RHomg, g(colim(F),H) =~ RlimR'Homg, o(F, H) .

Proof : Every sheaf G € Shy,S can be represented as a quotient Z(G) — G.
Representing the kernel of this map again in this way and iterating we get a torsion-
free resolution P*(G) — G which is functorial in G. Let now F' € Homgay (1, Shy,S).
We define P*(F)(i) := P*(F(i)).

Let H € Shy,S and H — I* be an injective resolution. Then we have

RHomg, g(colim F, H) = Homg, g(colim F,I®) .

Since the category Shy,S is a Grothendieck abelian category [Tam94, Thm. 1.3.2.1]
the functor colim is exact [Tam94, Thm. 0.3.2.1]. Therefore colim P*(F) —
colim F' is a quasi-isomorphism. It follows that

Homg, (colim F, I*) & Homg, g (colim P*(F), I*)

By Lemma B.§ the restriction functor is exact and therefore commutes with col-
imits. We get

Hom,, s (colin P*(F), I*)(A)

I

Homgn,,s/4((colim P*(F))ja, I}y)
Homgp,,s/4(colim(P*(F)a), )
> 1imHomgy,s/a(P*(F)a, Ify)
>~ lim ("Homg,, g(P*(F),I°)(A))
(1im "Homg, ¢ (P*(F),I*))(A) ,

12

I
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where in the last step we use that a limit of sheaves is defined object-wise. In other
words

Homg, ¢(colim F,I*) 2 Homg, ¢(colim P*(F),I*) = lim 'Homg, o(P*(F),I°)

Applying Lemma we see that "Homg, §(P*(F),I*) € Homcas (1, ShapS) is injec-
tive, and

I

RHomg,, g(colim F, H) 1imIHomSh ws(P(F), I%)
Rlin "Homg, o(P*(F),I°)

(F
Rlim R! Homg, o(F, H) .

I

I

O

4.3.5 Lemma [[.19 implies the existence of s spectral sequence with second page
EP? >~ RPlim R"Homg, o(F,H) (26)

which converges to GrR*Homg, g(colim F, H).
4.3.6

Lemma 4.20 Let I be a category and A € S. Then we have a commutative diagram

D*((ShpS)! )22~ D (Shy,S)
lRF(U,...) lRF(U,...)
D*(Ab!™) _ Rlim D*(Ab)

Proof : Since the limit of a diagram of sheaves is defined object-wise we have
I'(U,...)olim = limo I'(U,...). We show that the two compositions RI'(U,...) o
Rlim ,Rlimo RI'(U,...) are both isomorphic to R(I'(U,...)o1lim) by showing that
lim and I'(U, . ..) preserve injectives.

The left-adjoint of the functor 1im : (Shy,S)!™ — Shy,S is the constant diagram
functor C' : Shyp,S — (Shy,S)!™ which is exact. Therefore 1im preserves injectives.

The left-adjoint of the functor I'(U,...) is the functor - -+ ®z Z(U). Since Z(U)
is a sheaf of flat Z-modules (it is torsion-free) this functor is exact (object-wise and
therefore on diagrams). It follows that I'(U, ... ) preserves injectives. O

4.3.7 The general remarks on colimits above are true for all sites with finite prod-
ucts (because of the use of Lemma B.§). In particular we can replace S by the site
Sic—acye 0f locally acyclic locally compact spaces.

Lemma 4.21 Let F € (ShypSic—acye)’ - If for all acyclic U € Sie—geye the canonical
map LimF'(U) — Rlim(F(U)) is a quasiisomorphism of complexes of abelian groups,
then 1imF — R1imF' is a quasiisomorphism.
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Proof : We choose an injective resolution F — I°® in (Shy,Sic—acye)’ - As in the
proof of Lemma for each U € Sj;._qeye the complex I°(U) is injective. If we
assume that U is acyclic, the map F(U) — I*(U) is a quasi-isomorphism in (Ab)™
and R1lim(F(U)) = 1im(/*(U)). By assumption

(1inF)(U) 2 1in(F(U)) — Lim(I*(U)) 2 (1inl*)(U) 2 (R1inF)(U)

is a quasiisomorphism for all acyclic U € S;c_qcye. An arbitrary object A € Sjc_aeye
can be covered by acyclic open subsets. Therefore 1imF — 1im/® is an quasiisomor-
phism locally on A for each A € S;._4cye. Hence 1imF' — R1imF is an isomorphism
in D+(ShAbSlc—acyc) . [

4.3.8 Let D be a discrete group. Then we let I be the category of all finitely
generated subgroups of D. This category is filtered. Let F' : I — Ab be the
"identity” functor. Then we have a natural isomorphism

D = colim F' .
By Theorem [I.T7 we know that a finitely generated group G is admissible, i.e.
RqHﬂShAbS(ga E) =0 ’ q= ]-7 2.

Note that by Lemma B.J we have colimF = D. Using the spectral sequence (BG)
we get for p = 1,2 that

R'Homg,, (D, T) = R’lim Homg, o(F, T) . (27)

Let g: Sic—qeye — S be the inclusion. Since T and D belong to Si.—qeye using Lemma
B.3§ we also have

12

g*RpmShAbS (Q7 I) RpHﬂShAbSlc,acyc (27 I) (28)

= Rpllm mShAbSlcfacyc (E’ E) :

4.3.9 We now must study the RPlim-term. First we make the index category
I slightly smaller. Let D C D ®; Q =: Dg be the image of the natural map
i: D — Dg,d+— d®1. We observe that D generates Dg. We choose a basis
B C D of the Q-vector space Dg and let ZB C D be the Z-lattice generated by B.
For a subgroup F' C D let F := i(F) C Dg. We consider the partially ordered (by
inclusion) set

J := {F C D|F finitely generated and QF NZB C F and [F : FNZB] < o} .

Here |G : H] denotes the index of a subgroup H in a group G. We still let F' denote
the ”identity” functor F': J — Ab.

Lemma 4.22 We have D = colim F.
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Proof :

It suffices to show that J C [ is cofinal. Let A C D be a finitely generated
subgroup. Choose a finite subset b C B sucht that the Q-vectorspace Qb C Dg
generated by b contains A and choose representatives b in D of the elements of b.
They generate a finitely generated group U C D such that U = i(U) = Zb. We now
consider the group G :=< U, A >. This group is still finitely generated. Similarly,
since QG = QU + QA = Qb we have

S
N
]
N
()

QGNZB=QbNZB =

Moreover, since QG = Qb = Q(GNZB), [G : GNZB] < oo, i.e. G C J. On the
other hand, by construction A C G. O

On J we define the grading w : J — Ny by

W(A) == |Argrs| +tkA+ [A: ANZB] for A€ J.

Lemma 4.23 The category J together with the grading w : J — Ny is a direct
category in the sense of [Hov99, Def. 5.1.1]

Proof : We must show that A C G implies w(A) < w(G), and that A & G implies
w(A) < w(G). F irst of all we have Ayrs C Giors and therefore | Asors| < |Glors|-
Moreover we have A C G, hence rkA < rkG. Finally, we claim that the canonical

o A/(anZB) — G/(GNZB)

is injective. In fact, we have AN (GNZB) = (ANG)NZB = ANZB . 1t follows
that o -
|A: ANZB| <|G:GNZB| .

Let now A C G and w(A) = w(G). We want to see that this implies A = G.
First note that the inclusion of finite groups A;s — Giors is an isomorphism since
both groups have the same number of elements. It remains to see that A — G is an
isomorphism. We have rkA = rkG. Therefore ANZB = QANZB = QG N BZ =
G N BZ. Now the equality [A: ANZB] = [G : G NZB] implies that A = G. O

4.3.10 The category C(Ab) has the projective model structure whose weak equiv-
alences are the quasi-isomorphisms, and whose fibrations are level-wise surjections.
By Lemma [[.23 the category J° with the grading w is an inverse category. On
C(Ab)’” we consider the inverse model structure whose weak equivalences are the
quasi-isomorphisms, and whose cofibrations are the object-wise ones. The fibra-
tions are characterized by a matching space condition which we will explain in the
following.
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For j € Jlet J; C J be the category with non-identity maps all non-identity maps
in J with codomain j. Furthermore consider the functor

Mj : C(Ab)Jop restr_icjion C(Ab)(Jj)op 1i>n C(Ab)

There is a natural morphism F(j) — M;F for all F € C(Ab)’”. The matching
space condition asserts that a map F' — G in C'(Ab)’” is a fibration if and only if

F(j) — G(J) xm;e MG F

is a fibration in C'(Ab), i.e. a level-wise surjection, for all j € J. In particular, F is
fibrant, if F'(j) — M;F is a level-wise surjection for all j € J.
For X € C(Ab)’” the fibrant replacement X — RX induces the morphism

limX — 1im RX = Rlim X .

Let now again F' denote the identity functor F': J — Ab for the discrete abelian
group F'.

Lemma 4.24 1. For all U € S which are acyclic the diagram of abelian groups
Homgy,,,s (£, T)(U) € C(Ab)’™ is fibrant.

2.
llm HomShAbSlcfacyc (E7 I) - Rl 1m HomShAbSlcfacyc (E7 I) e C(Ab>Jop
18 a quasi-isomorphism.
Proof : The Assertion 1. for locally compact acyclic U verifies the assumption of

Lemma [[.2]. Hence 2. follows from 1. We now concentrate on 1. We must show
that
HﬂShAbS(E(j)7 I)(U) - MjHﬂShAbS(E7 I)<U) (29>

is surjective. We have
MjHomg, s (F, T) = 1im msmbs(ﬁujal) = Homg,,, s(colim E|Jj=I) :
The map (P9) is induced by the map
colimF , — F(j) . (30)

By Lemma B.J we have colim F,; = colim Fj;;. The map colim Fj;, — F(j) is
of course an injection.

We finish the argument by the following observation. Let H — G be an injective
map of finitely generated groups (we apply this with H := colimF};; and G := F(j)).
Then for U € S

Homg, s(G, T)(U) — Homg, (H, T)(U)
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is a surjection. In fact we have

(and a similar equation for H). Since H — G is injective, its Pontrjagin dual
G — H is surjective. Because of the classification of discrete finitely generated
abelian groups, G and H both are homeomorphic to finite unions of finite di-

mensional tori. Because U is acyclic, every map U — H lifts to G. Therefore
G(U) — H(U) is surjective. O

Corollary 4.25 We have RP1im Homgy, g~ (F,T) =0 for allp > 1.

Theorem 4.26 Every discrete abelian group is admissible on Sic—aeyc-

Proof : This follows from (B§) and Corollary [£.25. O

4.3.11 We now present an example which shows that not every discrete group D
is admissible on S or S;., using Corollary .39 to be established later.

Lemma 4.27 Let I by an infinite set, 1 #n € N and D := @;Z/nZ. Then D is
not admassible on S or Sy..

Proof : We consider the sequence
0—Z/mZ—TS5T—0 (31)

which has no global section, and the product of I copies of it
O—>HZ/nZ—>HT—>HT—>O. (32)
I I I

This sequence of compact abelian groups does not have local sections. In fact, an
open subset of [[; T always contains a subset of the form U = [[,, T x V, where
I' C I'is cofinite and V' C []; ;T is open. A section s : U — []; T would consist of
sections of the sequence (B1]) at the entries labeled with I’.

By Lemma B.4 the sequence of sheaves associated to (B3) is not exact. In view of

Corollary below, the group HI/ZW’LZ >~ @ 7Z/nZ is not admissible on S or S;.. [
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4.4 Admissibility of the groups R" and T"
4.4.1
Theorem 4.28 The group T is admissible.

Proof : Since T is compact Assumption 2. of Lemma [L.§ follows from Proposition
B.15. It remains to show the first assumption of of Lemma f.§. As we will see this
follows from the following result.

Lemma 4.29 We have Extl, o(R,Z) =0 fori=1,2,3.

Let us assume this Lemma for the moment. We apply Extg, g(...,Z) to the exact
sequence
0—-Z—-R—-T—0

and consider the following part of the resulting long exact sequence for ¢ = 2, 3:

Eité;l\lbs (Z7 Z) - EitéhAbS (I7 Z) - EitéhAbS (R7 Z) - EitéhAbS (Z7 Z) .

The outer terms vanish by Theorem f.9. Therefore by Lemma [[.29
EitéhAbS (Iv Z) = EitéhAbS (R7 Z) = 0 )

and this is assumption 1. of ..

It remains to prove Lemma [.29.
4.4.2 Proof of Lemma

We choose an injective resolution Z — I°. The sheaf R gives rise to the complex
U* introduced in [L.13. We get the double complex Homg, (U*®, 1) as in [.2.14. As
before we discuss the associated two spectral sequences.
4.4.3 We first take the cohomology in the I°-, and then in the U®-direction. In
view of (B4), the first page of the resulting spectral sequence is given by

E{Lq = EitghAbS(Z(pr)vz> )

where FR denotes the underlying sheaf of sets of R. By Corollary B-2§, 1. we have
EPT =0 for ¢ > 1.

We now consider the case ¢ = 0. For A € S we have E"(A) = I'(A x RP; Z) =
['(A;Z) for all p, ie. EM = Z. We can easily calculate the cohomology of the
complex (E;°, dy) which is isomorphic to

0-22728%2%72%872 . ...

We get
7 *,0 ~ Z = 0
The spectral sequence (E,,d,.) thus degenerates at the second term, and
7 . o\ ~v Z Z: 0
HmShAbS(U 7[ ) = { 0 i Z 1 (33>
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4.4.4 We now consider the second spectral sequence (FP? d,.) associated to the
double complex Homg, ¢(U*®,I*) which takes cohomology first in the U® and then in
the I*-direction. Its second page is given by

F3 = Extg, s (H'U®, Z) .
Since R is torsion-free we can apply f.2.13 and get
P = Extg, o(AJR), Z) .
In particular we have AR = Z and thus
F;O = Extg,, s(Z,Z) =0

for p > 1 (recall that Ext} (Z, H) = 0 for every H € Shy,S and p > 1). Further-

=22 YShapS
more, since AJR = R we have

on’l = mShAbS(KaZ) = Homyoppo(R, Z) =

since Homgop—ao(R, Z) = 0.

Here is a picture of the relevant part of the second page.
Homg, s((AJR)*, Z)
mShAbS((A%E)ﬁ? Z) Eitéh;\bs ((A%E)ﬁ Z)

O = Do W

0 Extl, (R Z) |Exts o(R Z)|Extl, (R, Z) .
Z 0 0 0 010
0 1 2 3 415

4.4.5 Let V be an abelian group. Recall the definition of A*V from [.2.11] If V'
has the structure of a (Q-vector space, then TZZIV has the structure of a graded
Q-vector space, and I C T’ ZZIV is a graded Q-vector subspace. Therefore A%IV has
the structure of a graded QQ-vector space, too.
4.4.6 We claim that ' '
F207Z = MSh;\‘pS((‘/XzZK)ﬁ?Z) = 0
for + > 1. Note that
Homg, s ((AzR)?, Z) = Homp,,, s (AZR, Z) .
Let A €S. An element
\ € Homp,, s(ASR, Z)(A)  Hompr, s/4 (ALR 1, Z,4)

induces a homomorphism of groups AW : ALR(W) — Z(W) for every (W — A) €
S/A. Since AZR(W) is a Q-vector space and Z(TW) does not contain divisible ele-
ments we see that A\ = 0. This proves the claim.

The claim implies that F' = Extg, ¢(R,Z) survives to limit of the spectral
sequence. Because of (B3) it must vanish. This proves the Lemma [£.29 in the case
1= 2.

The term F,"' = Extg, s(R,Z) also survives to the limit and therefore also van-
ishes because of (BJ). This proves Lemma in the case i = 1.
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4.4.7 Finally, since Fg?’?’ = 0, we see that ds : FQI’2 — 1172?”1 must be an isomorphism,
ie.
dy : Extg,, s((AZR)*, Z) = Extd, (R, Z) .

We will finish the proof of Lemma [[.29 for ¢ = 3 by showing that dy = 0.

4.4.8 We consider the natural action of Z,, on R and hence on R. This turns R
into a sheaf of Z,,-modules of weight 1 (see B-5.1)). It follows that Homg, o(R,I®) is
a complex of sheaves of Z,,-modules of weight 1. Finally we see that Extl, (R, Z)
are sheaves of Z,,-modules of weight 1 for ¢ > 0.

Now observe (see B5.4) that A2R is a presheaf of Z,,-modules of weight 2. Hence
(A2R)* and thus Extg, ¢((A2R)*, Z) are sheaves of Z,,-modules of weight 2.

Since R — U*(R) =: U*® is a functor we get an action of Z,, on U® and hence
on the double complex Homg, o(U*®,I®). This implies that the differentials of the
associated spectral sequences commute with the Z,,-actions (see [.6.13 for more
details). This in particular applies to dy. The equality ds = 0 now directly follows
from the following Lemma.

Lemma 4.30 Let V,W € Shy,S be sheaves of Z,,-modules of weights k # 1. Assume
that W has the structure of a sheaf of Q-vector spaces. If d € Homgy,,s(V, W) is Zy,-
equivariant, then d = 0.

Proof : Let a:Z,, — Endgy,s(V) and 3 : Z,, — Endgy,,s(W) denote the actions.
Then we have d o a(q) — f(q) od = 0 for all ¢ € Z,,. We consider ¢ := 2. Then
(28 -2 od = 0. Since W is a sheaf of Q-vector spaces and (2 —2!) # 0 this implies
that d = 0. U

4.4.9

Theorem 4.31 The group R is admissible.

Proof : The outer terms of the exact sequence
0—-Z—-R—->T—0

are admissible by Theorem [£.2§ and Theorem [L.17. We now apply Lemma [L.F, sta-
bility of admissibility under extensions. ([l

4.5 Proinite groups

Definition 4.32 A topological group G is called profinite if there exists a small
left-filtered] category I and a system F € Ab! such that

1. for alli € I the group F(i) is finite,

4i.e. for every pair i,k € I there exists j € I with j <iand j <k
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2. for all i < j the morphism F(i) — F(j) is a surjection,
3. there exists an isomorphism G = lim;e F'(i) as topological groups.

For the last statement we consider finite abelian groups as topological groups with
the discrete topology. Note that the homomorphisms G — F(i) are surjective for
all 7 € I. We call the system F' € Ab! an inverse system.

Lemma 4.33 ([HRG63]) The following assertions on a topological abelian group G
are equivalent:

1. G is compact and totally disconnected.

2. Every neighbourhood U C G of the identity contains a compact subgroup K
such that G/K is a finite abelian group.

3. G is profinite.
4.5.1

Lemma 4.34 Let G be a profinite abelian group and n € Z. We define the groups
K, Q as the kernel und cokernel of the multiplication map by n, i.e. by the exact
sequence

0-K—-G5G—Q—0. (34)
Then K and Q) are again profinite.

Proof : We write G := limjc;G; for an inverse system (G;);es of finite abelian
groups. We define the system of finite subgroups (K);es by the sequences

O%KjHngGj.

Since taking kernels commutes with limits the natural projections K — K;, j € J
represent K as the limit K = lim;c ;K.

Since cokernels do not commute with limits we will use a different argument for Q.
Since G is compact and the multiplication by n is continuous, nG C G is a closed
subgroup. Therefore the group theoretic quotient () is a topological group in the
quotient topology.

A quotient of a profinite group is again profinite [HMO9Y], Exercise E.1.13. Here is a
solution of this exercise, using the following general structural result about compact
abelian groups.

Lemma 4.35 ([HR63]) If H is a compact abelian group, then for every open
neighbourhood 1 € U C H there exists a compact subgroup C' C U such that
H/C=T*x F for some a € Ny and a finite group F.
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Since G is compact, its quotient () is compact, too. This Lemma in particular
implies that @ is the limit of the system of these quotients Q/C. In our case, since
(G is profinite, it can not have T as a quotient, i.e given a surjection

G>Q =T xF

we conclude that @ = 0. Hence we can write () as a limit of an inverse system of
finite quotients. This implies that () is profinite. U

4.5.2 Let
0—-K—-G—H—0

be an exact sequence of profinite groups, where K — G is the inclusion of a closed
subgroup.

Lemma 4.36 The sequence of sheaves
0—-—K—-G—H—0
18 exact.

Proof : By [Ser02, Proposition 1] every surjection between profinite groups has a
section. Hence we can apply Lemma B4. O

In this result one can in fact drop the assumptions that K and G are profinite. In
our basic example the group K is the connected component Gg C G of the identity

of GG.

Lemma 4.37 Let
0—-—K—-G—H—0

be an exact sequence of compact abelian groups such that H is profinite. Then the

sequence of sheaves

18 exact.
Proof : We can apply [HM98, Thm. 10.35] which says that the projection G — H

has a global section. Thus the sequence of sheaves is exact by B.4 (even as sequence
of presheaves). O
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4.5.3 In order to show that certain discrete groups are not admissible we use the
following Lemma.

Lemma 4.38 Let
0—-K—-G—H—0

be an exact sequence of compact abelian groups. If the discrete abelian group K is
admissible, then sequence of sheaves

18 exact.

Proof : If U is a compact group, then its Pontrjagin dual U= Homyop—an(U, T) is
a discrete group. Pontrjagin duality preserves exact sequences. Therefore we have
the exact sequence of discrete groups

O—>f[—>@—>f(—>0.

The surjective map of discrete sets G — K has of course a section. Therefore by
Lemma B.4 the sequence of sheaves of abelian groups

— G —

s}
[
=)

0— — 0

is exact. We apply Homg, (..., T) and get the exact sequence

o~

0 - HﬂShAbS(K’ I) - mShAbS(Q’ E) - HﬂShAbS(E? I) - Eitéhm;s (K? E) e
By Lemma B.§ we have @smbs(é> T) = G etc. Therefore this sequence translates

to
0—K—G— H— Extl o(K,T)—.... (35)

By our assumption EﬂéhAbs(K ,T) = 0 so that G — H is surjective. O

4.5.4 The same argument would apply for the site S;.. Evaluating the surjection
G — H on H we conclude the following fact.

Corollary 4.39 If K C G is a closed subgroup of a compact abelian group such
that K is admissible or admissible over Sy, then the projection G — G /K has local
sections.

4.5.5 If G is an abelian group, then let Gy,.s C G denote the subgroup of torsion
elements. We call G a torsion group, if Gy,.s = G. If Gy = 0, then we say that G
is torsion-free. If G is a torsion group and H is torsion-free, then Homy,(H, G) = 0.

A presheaf F' € Prg S is called a presheaf of torsion groups if F/(A) is a torsion
group for every A € S. The notion of a torsion sheaf is more complicated.



4 ADMISSIBLE TOPOLOGICAL GROUPS 68

Definition 4.40 A sheaf F' € Shy,S is called a torsion sheaf if for each A € S and
f € F(A) there exists and open covering (U;)icr of A such that fiy, € F(U;)tors-

The following Lemma provides equivalent characterizations of torsion sheaves.

Lemma 4.41 ([Tam94], (9.1)) Consider a sheaf F' € Shy,S. The following as-

sertions are equivalent.
1. F is a torsion sheaf.
2. F is the sheafification of a presheaf of torsion groups.

3. The canonical morphism colim,en(n,F') — F is an isomorphism, where (, F')pen
is the direct system ,F := ker(F = F).

Note that a sub-sheaf or a quotient of a torsion sheaf is again a torsion sheaf.

Lemma 4.42 If H is a discrete torsion group, then H 1is a torsion sheaf.

Proof : We write H = colim,en(,H), where ,,H := ker(H = H). By Lemma B3
we have H = colim,en, . Now colim,en,/ is the sheafification of the presheaf
Pcolim,enn, H of torsion groups and therefore a torsion sheaf. 0J
In general H is not a presheaf of torsion groups. Consider e.g. H := @,enZ/nZ.
Then the element id € H(H) is not torsion.

4.5.6

Definition 4.43 A sheaf F' € Shy,S is called torsion-free if the group F(A) is
torsion-free for all A € S.

A sheaf F is torsion-free if and only if for all n € N the map F - F is injective. It
suffices to test this for all primes.

Lemma 4.44 If F € Shy,S is a torsion sheaf and E € Shy,S is torsion-free, then
HﬂShAbS(F7 E) = O

Proof : We have
Homg, s(F, E) = Homg, s(colimpen(n "), E) = lim,enHomg, o(nf E) .

On the one hand, via the first entry multiplication by n! induces on Homg, ¢(,,F, E)
the trivial map. On the other hand it induces an injection since E is torsion-free.
Therefore Homg, ¢(nF, E) =0 for all n € N. This implies the assertion. O
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457 If F € 8hS and C € S, then we can form the sheaf Ro(F) € ShS by the
prescription Re(F)(A) := F(A x C) for all A € S (see B.3.21)). We will show that
R¢ preserves torsion sheaves provided C'is compact.

Lemma 4.45 If C € S is compact and H € Shy,S is a torsion sheaf, then R (H)
is a torsion sheaf.

Proof : Given s € Ro(H)(A) = H(A x C) and a € A we must find n € N and
a neighbourhood U of a such that (ns)yxc = 0. Since C'is compact and A € S is
compactly generated by assumption on S, the compactly generated topology (this
is the topology we use here) on the product A x C' coincides with the product
topology ([Bte67, Thm. 4.3]). Since H is torsion there exists an open covering
(W; = A; X Cy)ier of A x C and a family of non-zero integers (n;);c; such that
The set of subsets of C'
{Ciliel,ac A}

forms an open covering of C'. Using the compactness of C' we choose a finite set
i1y...,4, € I with a € A;_ such that {C; |k = 1,...r} is still an open covering of
C. Then we define the open neighbourhood U of a € A by U := Nj_;A,,. Set
n:=[[,_, ni,- Then we have (ns)yxc = 0. O

4.5.8

Lemma 4.46 Let H be a discrete torsion group and G € S be a compactly gener-
ated] group. Then the sheaf Homg, o(G, H) is a torsion sheaf.

Proof : Let C' C G be a compact generating set of G. Precomposition with the
inclusion C' — G gives an inclusion Homop_a(G, H) — Map(C, H). We have for
AeS

Hom (G H)(A) "2 omy (G114
~ Homg (A, Homopao (G, H))
- Homg (A, Map(C, H))
- Homg(A x C, H)
> H(AxC)
> Ro(H)A).

By Lemma [1.47 the sheaf H is a torsion sheaf. It follows from Lemma [1.4] that
Re(H) is a torsion sheaf. By the calculation above Homg, ¢(G, H) is a sub-sheaf of
the torsion sheaf R (H) and therefore itself a torsion sheaf. O

%i.e. generated by a compact subset
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4.5.9

Lemma 4.47 If G is a compact abelian group, then

~

Extg,,s(G, Z) = Homg,, (G, T) = G .
Moreover, if G is profinite, then Q s a torsion sheaf.
Proof : We apply the functor Extg, (G, ...) to
0—-Z—-R—->T—0
and get the following segment of a long exact sequence

e Msmbs (Qa K) - MShAbS(Q? E) - Eﬁémbs(ga Z) - Eﬁéh“s (Qa E) — ..

Lemma

Since G is compact we have 0 = Homyop— (G, R) = 7 Homg, s(G,R). Further-

more, by Proposition [E15 we have Extg, ¢(G,R) = 0. Therefore we get

Lemma

Eﬁémbs(g> Z) = mShAbS(Q?I) = Homtop—Ab(G> T) = @ .

If G is profinite, then (and only then) its dual G is a discrete torsion group by
[HMDIg, Cor. 8.5]. In this case, by Lemma .49 the sheaf G is a torsion sheaf. O

4.5.10 Let H be a discrete group. For A € S we consider the continuous group
cohomology H .(G;Map(A, H)), which is defined as the cohomology of the group
cohomology complex

0 — Map(A, H) — Homg(G,Map(A, H)) — - -+ — Homg(G",Map(A, H)) —
with the differentials dual to the ones given by [.2.9. The map

S>A— H

cont

(G;Map(A, H))
defines a presheaf whose sheafification we will denote by H*(G, H).

Lemma 4.48 If G is profinite and H is a discrete group, then H'(G, H) is a torsion
sheaf for v > 1.

Proof :
We must show that for each section s € H! . (G;Map(A, H)) and a € A there
exists a neighbourhood U of a and a number | € Z such that (Is)y = 0. This

additional locality is important. Note that by the exponential law we have
Ci

cont

(G,Map(A, H)) := Homg(G",Map(A, H)) = Homg(G" x A, H) .
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Let s € H!,,(G;Map(A,H)) and a € A. Let s be represented by a cycle 5 €
C!,..(G,Map(A, H)). Note that s : G' x A — H is locally constant. The sets
{s1(h)|h € H} form an open covering of G* x A.

Since G and therefore G* are compact and A € S is compactly generated by
assumption on S, the compactly generated topology (this is the topology we use
here) on the product G* x A coincides with the product topology ([Bte67, Thm.
4.3]).

Since G' x {a} C G" x A is compact we can choose a finite set hy, ..., h, € H such
that {s71(h;)|i = 1,...,7r} covers G x {a}. Now there exists an open neighbourhood
U C Aof asuch that G* x U C |J!_, 5 '(h;). On G* x U the function § has at most
a finite finite number of values belonging to the set {hq,...,h.}.

Since @ is profinite there exists a finite quotient group G' — G such that S|Gixu
has a factorization 5: G* x U — H. Note that 5 is a cycle in C° ,(G,Map(U, H)).

Now we use the fact that the higher (i.e. in degree > 1) cohomology of a finite
group with arbitrary coefficients is annihilated by the order of the group. Hence
|G|5 is the boundary of some € C’ (G, Map(U, H)). Pre-composing ¢ with the
projection G* x U — G x U we get t € C?, (G, Map(U, H)) whose boundary is 3.
This shows that (|G|s)y = 0. O

4511 Let G be a profinite group. We consider the complex U® := U*(G) as
defined in {.13. Let Z — I* be an injective resolution. Then we get a double

complex Homg, ¢(U*®,1°) as in [.2.14].
Lemma 4.49 Fori > 1
H'Homg, (U*,I°) is a torsion sheaf . (36)

Proof : We first take the cohomology in the I°-; and then in the U®-direction.
The first page of the resulting spectral sequence is given by

B = Extg,, s(Z(G). Z) .

Since the G" are profinite topological spaces, by Lemma B:29 we get E7? = 0 for
q > 1. We now consider the case ¢ = 0. For A € S we have

ET°(A) 2 Z(A x G") = Homg (G" x A, 7Z) = Homg(G", Map(A, Z))

for all 7 > 0. The differential of the complex (E;°(A), d;) is exactly the differential
of the complex C! (G, Map(A,Z)) considered in [£E5.10. By Lemma we con-
clude that the cohomology sheaves Eé’o are torsion sheaves. The spectral sequence
degenerates at the second term. We thus have shown that H'Homg, ¢(U®,I°) is a
torsion sheaf. O
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4.5.12 For abelian groups V, W let V sz W := TorZ(V, W) denote the Tor-product.
If V and W in addition are Z,,-modules then V %« W is a Z,,-module by the functo-
riality of the Tor-product.

Lemma 4.50 If VW are Z,,-modules of weight k,l, then V @z W and V %z W are
of weight k + 1.

Proof : The assertion for the tensor product follows from ([[9). Let P* — V' and
Q* — W’ be projective resolutions of the underlying Z-modules V', W' of V, W.
Then P*(k) — V and Q*(l) — W are Z,,-equivariant resolutions of V' and W. We

have by ([9)
Vg W2 HY(P*(k) @2 Q°(1)) = H'(P* ®2 Q°)(k +1) .
L]

4.5.13 The tautological action of Z,, on an abelian group G (we write G(1) for this
Z,-module) (see B.5.1]) induces an action of Z,, on bar complex Z(G*) by diagonal
action on the generators, and therefore on the group cohomology H*(G(1);Z) of G.

In the following Lemma we calculate the cohomology of the group Z/pZ(1) as a
Z,,-module.

Lemma 4.51 We have

Z(0) i=0
HYZ/pZ(1); Z) = 0 i odd
Z)pZ(k) i=2k>2

Proof : The cohomology of Z/pZ can be identified as a ring with the ring Z @
cZ/pZ]c|, where ¢ has degree 2. Furthermore, by a direct calculation H?(Z/pZ;Z) =

Z/pZ = 7./pZ. Tts generator in the bar complex is represented by a: G — Z with
alk,lm) =0ifl —k <m—k € {0,...,p— 1} and a(k,l,m) = 1if | — k >
m—k € {0,...,p— 1} (for the comparison we use representatives of [ —k,m — k €
{0,...,p—1}). The Z/pZ-module homomorphism f3: Z(G) — Z(G?) determined by
[0] ZZ;%[O, k, k+1] is the component in degree 3 of a chain homotopy equivalence
between the standard resolution ... — Z(G) — Z(G) — Z(G) — Z and the bar
complex.

The image W'c € H3*(Z/pZ;Z) = Z/pZ of « under the action of v € Z,, is
represented by a(W,(f3[0])) = S0} (0, kv, kv +v). In this sum, kv runs through
all multiples of v in Z/pZ, and hits each such multiple exactly (p,v) times. Exactly
for those multiples kv which have a representative in {0,...,p — 1} smaller than v
(mod p), (0, kv, kv + v) is not in the correct cyclic order and therefore a(0, kv, kv +
v) = 1, otherwise a(0, kv, kv +v) = 0. There are exactly v/(p,v) such multiples
(including 0). Therefore a(¥¥(f3[0])) = v (mod p).

Therefore the generator ¢ € H?*(Z/pZ(1); Z) has weight one, and we get H?(Z/pZ(1); Z) =
Z]pZ(1) as a Zp,-module.
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For higher cohomological degrees, observe that if v € Z,, then
(U a*) (g0, -, gor) = (¥’g0, ... Wygor)

k
= H c(UWgni 0, .., Ug9;) = (Ua)*(go, ..., gor)-
j=1

Since ¢, which is represented by «, has weight 1, the formula implies that c*, being
represented by o, has weight k. O

4.5.14 For a Z,,-module V (with Z,,-action V) let P’ be the operator z — U’z —
v*x. Note that this is a commuting family of operators. We let M be the monoid
generated by Py, P5.

Definition 4.52 A Z,,-module V' is called a weight 2-3-extension if for all x € V
and all v € Z,, there is P’ € M3, such that

PUz = 0. (37)

A sheaf of Z,,-modules is called a weight 2-3-extension, if every section locally
satisfies Equation (B1) (with PU depending on the section and the neighborhood).

In the tables below we will mark weight 2-3-extensions with attribute weight 2 — 3.

Lemma 4.53 FEvery Z,,-module of weight 2 or of weight 3 is a weight 2-3-extension.
The class of weight 2-3-extensions is closed under extensions.

Proof : This is a simple diagram chase, using the fact that for a Z,,-module W of

weight k, Uz = v*z for all k € Z,, and x € W. O

Lemma 4.54 Let n € N and V' be a torsion-free Z-module. For i € {0,2,3} the
cohomology H'((Z/pZ)"(1); V) is a Z/pZ-module whose weight is given by the table

i 012(3]| 4
weight |0]1]22—-3

Moreover, H ((Z/pZ)"; V') = 0.

Proof : We first calculate H'((Z/pZ)™; Z) using the Kiinneth formula and induction
by n > 1. The start is Lemma [L.5]. Let us assume the assertion for products with
less than n factors. The cases ¢ = 0,1, 2 are straight forward. We further get

H*(Z/pZ)"(1);Z) = H*(Z/pZ(1); Z) %z H*((Z/pZ)" " (1); Z) .
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By Lemma [[.5( the xz-product of two modules of weight 1 is of weight 2. Similarly,
we have an exact sequence

0— @Hj(Z/pZ"_l(l); Z) @ H*(Z/pZ; Z) — H*((Z/pZ)"(1); Z) —
— @D H(Z/pL(1); 2) %2 H*((Z/pL)" " (1);Z) — 0.

=2

By Lemma inductively we conclude that H*(Z/pZ(1); Z) is a weight 2-3-extension.
We can calculate the cohomology H'(G;V) of a group G in a trivial G-module
by the standard complex C*(G; V) := C'(Map(G*,V)). If G is finite, then we have
C*(G; V)= C*(G;Z) ®z V. If V is torsion-free, it is a flat Z-module and therefore
H(C*(G;Z) @7, V) =2 H(C*(G;Z)) ®z V. Applying this to G = (Z/pZ)" we get
the assertion from the special case Z = V. O

4.5.15 An abelian group G is a Z-module. Let p € Z be a prime. If pg = 0 for
every g € (G, then we say that G is a Z/pZ-module.

Definition 4.55 A sheaf F' € Shy,S is a sheaf of Z/pZ-modules if F(A) is a Z/pZ-
module for all A € S.

4.5.16 Below we consider profinite abelian groups which are also Z/pZ modules.
The following lemma describes its structure.

Lemma 4.56 Let p be a prime number. If G is compact and a Z/pZ-module, then
there exists a set S such that G = [[4Z/pZ. In particular, G is profinite.

Proof : The dual group G of the compact group G is discrete and also a Z/pZ-
module, hence an [F)-vector space. Let S C G be an F,-basis. Then we can write
G = ®gZ/pZ. Pontrjagin duality interchanges sums and products. We get

G=Gzapr=]]z/e=]]z/e .
S S

O

4.5.17 Assume that G is a compact group and a Z/pZ-module. Note that the
construction G — U*® := U*(@G) is functorial in G (see for more details). The
tautological action of Z,, on G induces an action of Z,, on U®. We can improve
Lemma (.49 as follows.

Lemma 4.57 Let Z — I* be an injective resolution. For i € {2,3,4} the sheaves

Hiomg,, (U*, I')
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are sheaves of Z/pZ-modules and Z,-modules whose weights are given by the fol-
lowing table:

i 012|3]| 4
weight |0 ]1]12]2—3

Moreover, H'Homg, o(U®,I°) = 0.

Proof : We argue with the spectral sequence as in the proof of 49. Since E7? =0
for ¢ > 1, it suffices to show that the sheaves F5° are sheaves of Z/pZ-modules and
Zy-modules of weight k, where k corresponds to i as in the table (and with the
appropriate modification for i = 4).
We have for A € S
EP(A) = Z(A x G') = Homg (G, Map(A, Z)) = C"

cont

(GiMap(A, Z)) ,
where for a topological G-module V' the complex C?,,.(G; V') denotes the continuous
group cohomology complex. We now consider the presheaf X' defined by

Then by definition Ey° := X? := (X?) is the sheafification of X".

The action of Z,, on G induces an action ¢ — [g] on the presheaf X which
descends to an action of Z,, on the associated sheaf X?.

We fix i € {0,1,2,3} and let k be the associated weight as in the table. For i > 2
we must show that for each section s € H: ,,(G;Map(A,Z)) and a € A there exists
a neighbourhood U of a such that ((¢* — [¢])s)y = 0 and (ps);y = 0 for all g € Z,.
For i = 4, instead of ((¢" — [¢])s);y = 0 we must find P” € My, (depending on U
and s) (see [1.5.14 for notation) such that PVs;; = 0. For i = 1 we must show that
S|y = 0.

|VVe perform the argument in detail for ¢ = 2,3. It is a refinement of the proof of

Lemma [£.48. The cases i = 1 and ¢ = 4 are very similar.
Let s be represented by a cycle s € C' (G, Map(A,Z)). Note that 5: G' x A — Z
is locally constant. The sets {s~*(h)|h € Z} form an open covering of G* x A. Since
G and therefore G* is compact and A € S is compactly generated by assumption
on S, the compactly generated topology (this is the topology we use here) on the
product G* x A coincides with the product topology ([Ste67, Thm. 4.3]). This allows
the following construction.

The set of subsets

{57 (Wl € Z}

forms an open covering of G* x A. Using the compactness of the subset G* x {a} C
G' x A we choose a finite set hy, ..., h, € Z such that G* x {a} C J,_, 5 ().
There exists a neighbourhood U C A of a such that G* x U C [J;_,; ().

We now use that G is profinite by Lemma [.50. Since 5(G*xU) is a finite set (a sub-
set of {hi,...,h,}) there exists a finite quotient group G — G such that S|qixy has
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a factorization 5 : G* x U — H. In our case G = (Z/pZ)" for a suitable r € N. Note
that 5is a cycle in C?, (G, Map(U, H)). Now by Lemma .54 we know that (¢* —[q])5
and ps are the boundaries of some #,f; € C’éonlt(G Map(U, H)). Pre-composing 7,
with the projection G x U — G x U we get t,t; € C', (G, Map(U, H)) whose
boundaries are (¢* — [¢])$ and ps, respectively. This shows that (¢* — [¢]s)y = 0
and (ps)y = 0. O
4.5.18 We consider a compact group G and form the double complex Homgp,,s(U®, I*)
defined in [L.5.11]. Taking the cohomology first in the U® and then in the I*-direction
we get a second spectral sequence (FP, d,) with second page

FP9 = Extl, ((HU®,Z) .

In the following we calculate the term F,"* and show the vanishing of several other
entries.

Lemma 4.58 The left lower corner of Fy'? has the form

310

2 [0 | Bxtly o (A2C).2)

110 EXtéh S(G Z) Extg,,s(G,Z) | Extg, o(G.Z)

0|Z 0 0 0|0
0 1 2 3 415

Proof : The proof is similar to the corresponding argument in the proof of .15

Using we get
Fy* = Exty, s((AJG), Z)

for ¢ = 0,1,2. In particular we have AYG = Z and thus
P > Extl, §(Z,Z) =0

for p > 1 by Lemma B:29. Furthermore, since ALG = G we have

on’l = Homg,, 5(G, Z) @ Homeop—ap (G, Z) = 0

since Homyop—ap(G, Z) = 0 by compactness of G.
We claim that
Fy"* = Homg,, s ((AG)F, Z) = 0 .

Note that for A € S we have
Homg, . s((AZG)F, Z)(A) = Homp,,, (AZG, Z)(A) = Hompy,, /4 (A5G 4, Z; ) -

An element A € Homp,,, s/4(AZG|4,Z4) induces a family of biadditive (antisymmet-
ric) maps

AL G(W) x G(W) — Z(W)
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for (W — A) € S/A which is compatible with restriction. Restriction to points
gives biadditive maps G x G — Z. Since G is compact the only such map is the
constant map to zero. Therefore A\ vanishes for all (W — A). This proves the
claim. The same kind of argument shows that Homg, ¢((AZG)* Z)(A) =0 for ¢ > 2.

Let us finally show that Fy® & Homg, o((H?U®)%,Z) = 0. By [14 we have an
exact sequence (see (R3) for the notation P D*)

0—K—AG— H*D*—C—0,

where K and C' are defined as the kernel and cokernel presheaf, and the middle map
becomes an isomorphism after tensoring with Q. This means that 0 =2 K ® Q and
0 =2 C ® Q. Hence, these K and C are presheaves of torsion groups. Let A € S.
Then an element s € Homg, g((H*U®)*, Z)(A) induces by precomposition an element
§ € Homg, §((A3G)* Z)(A) = 0. Therefore s factors over s € Homg, o(C* Z)(A).
Since C' is torsion we conclude that s = 0 by Lemma [.44. The same argument
shows that Homg, o((HU*)* Z) =0 for q > 3. O

4.5.19

Lemma 4.59 Assume that p is an odd prime number, p # 3. If G is a compact
group and a Z/pZ-module, then Extl, o(G;Z) =0 fori=2,3.
If p = 3 the at least Extg, o(G,Z) = 0.

Proof : We consider the spectral sequence (F,., d,.) introduced in fl.5.18. It converges
to the graded sheaves associated to a certain filtrations of the cohomology sheaves
of the associated total complex of the double complex Homg, g(U*®,I*) defined in
E511. In degree 2,3,4 these cohomology sheaves are sheaves of Z/pZ-modules
carrying actions of Z,, with weights determined in Lemma .57

The left lower corner of the second page of the spectral sequence was evaluated in
Lemma [['58. Note that Extl, ¢(G,Z) is a sheaf of Z/pZ-modules with an action of
Z,, of weight 1 for all i > 0. The term Fy' = Ext2, ¢(G,Z) survives to the limit of
the spectral sequence and is a submodule of a sheaf of Z/pZ-modules of weight 2.
On the other hand it has weight 1.

A Z/pZ-module V with an action Z,, which has weights 1 and 2 at the same time
must be trivialf]. In fact, for every ¢ € Z,, we get the identity ¢*> —g= (¢ —1)g =0
in Endz(V'), and this implies that ¢ = 1( mod p) for all ¢ & pZ. From this follows
p = 2, and this case was excluded.

Similarly, the sheaf Extd, o((A2G)*,Z) is a sheaf of Z/pZ-modules of weight 2
(see B5.0), and Extd, o(G,Z) is a sheaf of Z/pZ-modules of weight 1. Since p is
odd, this implies that the differential dy® : Exty, s((A2G)' Z) — Ext}, o(G,Z) is
trivial. Hence, Extg, o(G,Z) survives to the limit. It is a subsheaf of a sheaf of
Z./pZ-modules which is a weight 2-3-extension. On the other hand it has weight 1.

6Note that in general a Z/pZ-module can very well have different weights. E.g a module of
weight k has also weight pk.
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Substituting the weight 1-condition into equation (B7), because then Py = v —v? =

(1 —v)vand Py = v —v® = (1 —v)(1 + v)v this implies that locally every section
satisfies (1 — v)"(1 + v)7v"s = 0 for suitable n,j € N (depending on s and the
neighborhood) and for all v € Z,,. If p > 3 we can choose v such that (1 — v),
(1+wv), v are simultaneously units, and in this case the equation implies that locally

every section is zero.
We conclude that Ext3, ¢(G,Z) = 0. O

Lemma 4.60 If G = (Z/pZ)" for some r € N, then Extly, §(G,Z) =0 fori > 0.

Proof : We apply Ext§, g(...,Z) to the exact sequence
O—>Z£>Z—>Z/pZ—>O

and use Extyy, §(Z,Z) =0 for i > 1. O

4.5.20

Lemma 4.61 Let G be a compact group which satisfies the two-three condition.
Then the sheaves Eitéhm,s(g, Z) are torsion-free for i = 2,3.

Proof : We must show that for all primes p and ¢ = 2, 3 the maps of sheaves
Extg,,s(G,Z) © Exty,, s(G, Z)
are injective. The multiplication by p can be induced by the multiplication
p:G—G.
We consider the exact sequence
0—-K—-G5%G—-C—0.

The groups K and C' are groups of Z/pZ-modules and therefore profinite by [£.56.
Since C' is profinite, by Lemma and Lemma .4 the sequence of sheaves

0—-K—G 2, G—-C—0
is exact. We decompose this sequence into two short exact sequences

Now we apply the functor Ext§, q(...,Z) to the first sequence and study the asso-
ciated long exact sequence

ELtZS;AtS(Q7 Z) - Eth;Ais (K7 Z) - Eﬁéh;ﬂ,S(Q? Z) - EitéhAbs(Q’ Z) .
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Note that Ext3, ¢(K,Z) = 0 by Lemma if p is odd, and by Lemma [.60 if
p = 2. This implies that

EitghAbS(Q7 Z) - EitzsahAbS(Q7 Z)
is injective.

Next we show that
Eﬂgmbs(@a Z) — Eitghm,s(gv Z)

is injective. For this it suffices to see that
Eitéh,\bs(g? Z) - EﬁéhAbS(K> Z)
is surjective. But this follows from the diagram

Extg, (G, Z) —=Extg,

1%
-~ U)
1%

surjective

G

where the vertical maps are the isomorphisms given by Lemma [f.47, and surjectivity
of G — K follows from the fact that Pontrjagin duality preserves exact sequences.
Next we apply Extg, o(...,Z) to the sequence

0—-Q—-G—C—0
and get the long exact sequence
EXtéhAbS(QaZ) - Eﬁémbs(g> Z) - Eﬁémbs(@»Z) -

Again we use that Extl, ¢(C,Z) = 0 for i = 2,3 by Lemma .5 for p > 3, and by
Lemma if p € {2,3} in order to conclude that

Eitéhm;s(g? Z) - EﬁéhAbS(Q? Z)
is injective for ¢ = 2, 3. Therefore the composition
EitéhAbS(Q7 Z) - EitéhAbS (Q7 Z) - EitéhAbS(Q7 Z)
is injective for ¢ = 2, 3. This is what we wanted to show. O

4.5.21

Lemma 4.62 Let G be a profinite abelian group. Then the following assertions are
equivalent.

1. Extl, §(G,Z) is torsion-free for i =2,3
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2. Extl, (G, Z) =0 fori=2,3.

Proof : It is clear that 2. implies 1. Therefore let us show that Eﬁémbs(g, Z)=0
for ¢ = 2,3 under the assumption that we already know that it is torsion-free.

We consider the double complex Homg, ¢(U*, I®) introduced in .5.1]. By Lemma,
A9 we know that the cohomology sheaves H'(Homg, ¢(U*,I*)) of the associated
total complex are torsion sheaves.

The spectral sequence (F,., d,.) considered in calculates the associated graded
sheaves of a certain filtration of H'(Homg, g(U®,I®)). The left lower corner of its
second page the was already evaluated in Lemma [£.58.

The term F"' 2 Ext2, (G, Z) survives to the limit of the spectral sequence. On
the one hand by our assumption it is torsion-free. On the other hand by Lemma
.19, case i = 2, it is a subsheaf of a torsion sheaf. It follows that

Eitgh“s(g7 Z) = O .

This settles the implication 1. = 2. in case i = 2 of Lemma [.62.

We now claim that Exty, «((A3G)*, Z) is a torsion sheaf. Let us assume the claim
and finish the proof of Lemma 63 Since Fj' =2 Extd, (G, Z) is torsion-free by
assumption the differential dy must be trivial by Lemma [£.44. Since also Fg? S|
the sheaf Ext3, ¢(G,Z) survives to the limit of the spectral sequence. By Lemma
[.49, case i = 3, it is a subsheaf of a torsion sheaf and therefore itself a torsion sheaf.
It follows that Ext3, (G, Z) is a torsion sheaf and a torsion-free sheaf at the same
time, hence trivial. This is the assertion 1. = 2. of Lemma for i = 3.

We now show the claim. We start with some general preparations. If F, H are
two sheaves on some site, then one forms the presheaf S 3 A — F @) H(A) =
F(A)®z H(A) € Ab. The sheaf F'®y H is by definition the sheafification of F' @7 H.
We can write the definition of the presheaf A2ZG in terms of the following exact
sequence of presheaves

0— K —"Z(F(G) > GEehEGE — N3G — 0,

where K is by definition the kernel. For W € S the map aw : PZ(G(W)) —
G(W)®zG(W) is defined on generators by aw () = x®x, v € G(W). Sheafification
is an exact functor and thus gives

0— (PZ(F(G)/K) — G@7G — (AZG)f — 0.

We now apply the functor Homg, (...,Z) and consider the following segment of the
associated long exact sequence

— Homg,, (G ®z G, Z) — Homg,, s(("Z(F(G))/ K ), L)
— Extg, s((AZG)!, Z) — Extg, o(G®2 G,Z) — (38)

The following two facts imply the claim:
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1. Ext, (G ®z G,Z) is torsion
2. Homg, §((PZ(F(G))/K)* Z) vanishes

Let us start with 1. Let Z — I°® be an injective resolution. We study H 1Hﬂsmbs(§®z
G, I*). We have

mShAbS(Q ®Z Q? I.) = HﬂShAbS(Q? HﬂShAbS(Q’ [.)) .

Let K* = Homg, ¢(G,I®). Since Homg, (G, Z) = Homeop—po (G, Z) = 0 by the com-
pactness of G the map d° : K° — K! is injective. Let d' : K' — K? be the second
differential. Now

Hlmsmbs (G ®z G, I°) = Homg,,, 5(G, ker(d"))/im(dY)

where d) : Homg, ¢(G,K°) — Homg, (G, ker(d")) is induced by d°. Since d° is
injective we have

im(d) = Homg, ,s(G, in(d")) .
Applying Homg, (G, ...) to the exact sequence
0 — K — ker(d") — ker(d")/im(d’) — 0

and using ker(d')/im(d") = Extg, <(G,Z) we get

0
0 - HﬂShAbS(Q? KO) ﬁ) HﬂShAbS(Q’ ker(dl)) - HﬂShAbS(Q? Eitéh;\bs(g’ Z)) - Eitéh,\bs(g? KO) ..
In particular,
Extg,,,s(G®2G, Z) = Homg,, (G, ker(d')) /Homg, (G, K*) C Homg,, o (G, Extg,, 5(G, Z)) .

By Lemma [[47 we know that Extg, ¢(G,Z) = G. Since G is compact and profinite,
the group @ is discrete and torsion. It follows by Lemma [I4q that Homg, (G, Extg, o(G,Z))
is a torsion sheaf. A subsheaf of a torsion sheaf is again a torsion sheaf. This finishes
the argument for the first fact.
We now show the fact 2.
Note that

Homg, s (("Z(F(G))/K)*, Z) = Homg, s (Z(F(G))/ K*,Z) . (39)

Consider A € S and ¢ € Homg, ¢(Z(F(G))/K* Z)(A). We must show that each
a € A has a neighbourhood U C A such that ¢y = 0. Pre-composing ¢ with the
projection Z(F(G)) — Z(F(GQ))/K* we get an element

Lemma @
2z

¢ € Homg,  (Z(F(G)), Z)(A) = Homg,s(F(G), Z)(A) (AxG).
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We are going to show that ¢ = 0 after restriction to a suitable neighbourhood of
a € A using the fact that it annihilates K*. Let us start again on the left-hand side
of (BY). We have

Homg,  s(("Z(F(G))/K)*, Z)(A) = Homp,, s((*Z(F(G))/K), Z)(A)
> Homp,, 5/4("Z(F(Ga))/ K4, Zy4) -

For (A x G — A) € S/A the morphism ¢ gives rise to a group homomorphism
¢ ZL(FGAXQ))/K(AXG) = ZLAXG) .

The symbol F(G(AxG)) denotes the underlying set of the group G(AxG). We have
(pry 1 AXG — G) € G(Ax @) and by the explicit description of the element ¢ given
after the proof of Lemma B.9 we see ¢ = g/g({[prG]}), where [prs| € Z(F(G(AXG)))
denotes the generator corresponding to pr, € G(A x G), and {...} indicates that
we take the class modulo K(A x G).

The homomorphism ¢ € Homy (ZF (G(AXG))/K(AXG), Z(A X G)) is represented
by a homomorphism

¢:ZF(GAX Q) = Z(AXG) .
By definition of K we have the exact sequence
0— K(AXG) = Z(F(GAX Q) = GAXxG)@,G(AXG) = A2G(AXG) — 0.

For x € G(A x G) let [z] € Z(F(G(A x G))) denote the corresponding generator.
Since (nz) ® (nr) = n*(x @ x) in G(A x G) ®z G(A x G) we have n*[z] — [nz] € K
for n € Z. It follows that ¢ must satisfy the relation ¢(n2[z]) = ¢([nx]) for all n € Z
and z € G(A x G). Let us now apply this reasoning to x = [pr,|. Note that Z
acts on A X G by endomorphisms such that n(a, g) := (a,ng). We therefore have
maps n* : Z(A x G) — Z(A x G). We conclude that ¢ € Z(A x G) must satisfy the
equation
2§ =n"d

For k € Z we define the open subset V;, := ¢~'(k) C A x G. The family (Vi)rex
forms an open pairwise disjunct covering of AxG. Since G is compact the compactly
generated topology of A x G is the product topology ([Bte6q, Thm. 4.3]). Since G is
compact, we can choose a finite sequence ky, ..., k, € Z such that Gx{a} C J,_, V.
Furthermore, we can find a neighbourhood U C A of a such that G x U C Ug:1 V.

Note that qB‘GXU has at most finitely many values. Therefore there exists a finite
quotient G — F' such that qz_ﬁ‘UXg factors through f: U x F — Z.

The action of Z on G is compatible with the corresponding action of Z on F,
and we have an action n* : Homg(U X F,Z) — Homg(U x F,7Z). The element f €
Homg (U x F,Z) still satisfies n?f = n*f. We now take n := |F| + 1. Then n* = id
so that (n> — 1)f = 0, hence f = 0. This implies ¢rxc = 0.

This finishes the proof of the second fact. 0J
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4.5.22 The Lemma [L.6]] verifies Assumption 1. in [L.63 for a large class of profinite
groups.

Corollary 4.63 IfG is a profinite group which satisfies the two-three condition [,
then we have Extly, o(G,Z) =0 fori=2,3.

Theorem 4.64 A profinite abelian group which satisfies the two-three condition is
admissible.

4.6 Compact connected abelian groups

4.6.1 Let G be a compact abelian group. We shall use the following fact shown in
[HM98, Corollary 8.5].

Fact 4.65 G is connected if and only if@ is torsion-free.

4.6.2 For aspace X € S and F € Pry, S let H*(X; F) denote the Cech cohomology
of X with coefficients in F. It is defined as follows. To each open covering U
one associates the Cech complex C* (U; F). The open coverings form a left-filtered
category whose morphisms are refinements. The Cech complex depends functorially

on the covering, i.e. if ¥V — U is a refinement, then we have a functorial chain map
C*(U; F) — C*(V; F). We define

C*(X; F) := colim,C*(U; F)
and
H*(X; F) := colim H*(C*(U; F)) = H*(colimy,C*(U; F)) = H*(C*(X; F)) .

4.6.3 Fix a discrete group H. Let P H be the constant presheaf with values H. Note
that then the sheafification ?H* is isomorphic to H as defined in B.2.5. Moreover

C*(X;PH) = C*(X,H) . (40)

In general Cech cohomology differs from sheaf cohomology. The relation between
these two is given by the Cech cohomology spectral sequence (E,,d,) (see [Tamdd,
3.4.4]) converging to H*(X;F). Let H*(F) := R*(F) denote the right derived
functors of the inclusion ¢ : Shy,S — Pry, S. Then the second page of the spectral
sequence is given by

B I (X HI(E))

By [[am94], 3.4.7] the edge homomorphism

HP(X;F) — HP(X; F)

is an isomorphism for p = 0, 1 and injective for p = 2.
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4.6.4 We now observe that Cech cohomology transforms strict inverse limits of
compact spaces into colimits of cohomology groups.

Lemma 4.66 Let H be a discrete abelian group. If (X;)ier is an inverse system of
compact spaces i S such that X = 1im;c; X;, then

HP(X; H) = colime HP (X H) .

Proof : We first show that the system of open coverings of X contains a cofinal
system of coverings which are pulled back from the quotients p; : X — X;. Let
U = (U,),er be a covering by open subsets. For each r there exists a family I, C [
and subsets U,; C X;, i € I, such that U, = Uie]rpi_l(Ur’i). The set of open subsets
{p;*(U.)|r € R, i € I,} is an open covering of X. Since X is compact we can
choose a finite subcovering V := {U,, ;,, ... U,, ;. } which can naturally be viewed as
a refinement of U. Since [ is left filtered we can choose j € I such that j < iy for
d=1,...,k For j <ilet p;; : X; — X, be the structure map of the system which
are all surjective by the strictness assumption on the inverse system. Therefore
V' = {p;} (U,,:,) |d=1,... k} is an open covering of X, and V = p;l(V’).

jyid

Now we observe that C*(p*V';?H) = C*(V';?H). Therefore

) .
C*(X;PH)
colimyC*(U;PH)
= Colimiejcolimcoverings U of Xié.(u;pﬂ)

colimieIC"(Xi;pﬂ)

C*(X; H)

IRE]

I

IRET 1R

colimigé'(Xi;ﬂ)

since one can interchange colimits. Since filtered colimits are exact and therefore
commute with taking cohomology this implies the Lemma. 0J

4.6.5 Next we show that Cech cohomology has a Kiinneth formula.

Lemma 4.67 Let H be a discrete ring of finite cohomological dimension. Assume
that X, Y are compact. Then there exists a Kinneth spectral sequence with second
term . .
E., = @B Tor/(H'(X;H), H/(Y; H))
i+j=q
which converges to HPT1(X x Y; H).

Proof : Since X is compact the topology on X X Y is the product topology [Ste61,
Thm. 4.3]. Using again the compactness of X and Y we can find a cofinal system
of coverings of X x Y of the form p*Ud Ng*V for coverings U of X and V of Y, where
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p: X XY — X and ¢: X XY — Y denote the projections, and the intersection of
coverings is the covering by the collection of all cross intersections. We have

C*(PUNGV;PH) = C*(pU;PH) @y C*(q"ViPH) -
Since the tensor product over H commutes with colimits we get
C'(X x Y3PH) = C*(X:PH) @ C*(YiPH) |
and hence by ([()
C*(X xY; H) = C*(X; H) o C*(Y; H) .

The Kiinneth spectral sequence is the spectral sequence associated to this double
complex of flat (as colimits of free) H-modules. O

4.6.6 'We now recall that sheaf cohomology also transforms strict inverse limits of
spaces into colimits, and that it has a Kiinneth spectral sequence. The following is
a specialization of [Bre97, 14.6] to compact spaces.

Lemma 4.68 Let (X;);cr be an inverse system of compact spaces and X = lim;e; X;,
and H let be a discrete group. Then

H*(X;H) = colimye  H* (X H) .

For simplicity we formulate the Kiinneth formula for the sheaf Z only. The fol-
lowing is a specialization of [Bre97, 18.2] to compact spaces and the sheaf Z.

Lemma 4.69 For compact spaces X,Y we have a Kinneth spectral sequence with
second term

B}, = @D Tor)(H'(X;Z), H(Y;Z))
i+j=p
which converges to HPT1(X x Y;Z).
Of course, this formulation is much to complicated since Z has cohomological di-

mension one. In fact, the spectral sequence decomposes into a collection of short

exact sequences.
4.6.7

Lemma 4.70 IfG is a compact connected abelian group, then H*(G;Z) = H*(G; Z).
Proof : The Cech cohomology spectral sequence provides the map
H*(G;Z) — H*(G;Z) .

We now use that fact that G is the projective limit of groups isomorphic to T,
a € N. A compact abelian group G is connected if and only if G is torsion-free by
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[AMOS, Corollary 8.5). Since G is torsion-free it is the filtered colimit of its finitely
generated subgroups F. If F' C G is finitely generated, then F' = 7Z° for some

a € N, therefore F' := F = T“. Pontrjagin duality transforms the filtered colimit
G = colimpF into a strict limit G = limgF'.

Since T is a manifold it admits a cofinal system of good open coverings where all
multiple intersections are contractible. Therefore we get the isomorphism

HY(T*Z) = H*(T*% L) .
Since both cohomology theories commute with limits of compact spaces we get
H*(G;Z) = H*(G;Z) .
OJ
4.6.8 We now use the calculation of cohomology of the underlying space of a con-
nected compact abelian group G. By [HM9§, Theorem 8.83] we have
H(G,Z) = ALG (41)

as a graded Hopf algebra. This result uses the two properties [£66 and [67 of Cech
cohomology in an essential way:.
By Lemma [L.7(] we also have

HY(G;Z) =~ A5G .

Note that A}@ is torsion free. In fact, A%@ = colimlaA%]3 , where the colimit is

taken over all finitely generated subgroups F' of G. We therefore get a colimit of
injections of torsion-free abelian groups, which is itself torsion-free.
4.6.9 Recall the notation related to Z,,-actions introduced in B.3.

Lemma 4.71 If V.W € Ab with W torsion-free and k,l € Z, k # 1, then
Homz,, —nea(V'(K), W (1)) =0 .
Proof : Let ¢ € Homy,(V, W) and v € V. Then for all m € Z,, we have
mFo(v) = T"(d(v)) = (T (v)) = ¢(m'v) = m'¢(v) ,
i.e. each w € im(¢) C W(I) satsifies (m* — m!')w = 0 for all m € Z,,. This set of

equations implies that w = 0, since W is torsion-free. ([l

4.6.10
Lemma 4.72 If VW & ShyS with W torsion-free and k,l € Z, k # 1, then

HomSthfmodS(V(k)7 W(l>> =0.

We leave the easy proof of this sheaf version of Lemma [L.7]] to the interested reader.
Note that a subquotient of a sheaf of Z,,-modules of weight k also has weight k.
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4.6.11 By S;. C S we denote the sub-site of locally compact objects. The restriction
to locally compact spaces becomes necessary because of the use of the Kiinneth (or
base change) formula below.

The first page of the spectral sequence (E,,d,) introduced in is given by

ET" = Extg,, s(Z(G"), Z) .
This sheaf is the sheafification of the presheaf
S>A— HP(AXx GI,Z) € Ab .

In order to calculate this cohomology we use the Kiinneth formula
and the fact that H*(G,Z) is torsion-free. We get for A € S, that

H*(Ax G 7) = H*(A,Z) @, (NG)®

for locally compact A. The sheafification of S;. 3 A — H*(A,Z) vanishes for i > 1,
and gives Z for ¢ = 0. Since sheafification commutes with the tensor product with

a fixed group we get R
(EY ). = (A°G)* (42)

4.6.12 'We now consider the tautological action of the multiplicative semigroup Z,,
on G of weight 1. As before we write G(1) for the group G with this action. Observe
that this action is continuous. Applying the duality functor we get an action of Z,,
on the dual group G which is also of weight 1. Therefore

G(1)=G(1).
The calculation of the cohomology (f]]) of the topological space G with Z-coefficients

~

is functorial in G. We conclude that H*(G(1),Z) = A5(G(1)) is a decomposable
Z,-module. By B.5.9 the group

HP(G(1), Z) = [(A*G(1)™=)

is of weight p.

4.6.13 We now observe that the spectral sequence (F,,d,) is functorial in G. To
this end we use the fact that G — U®(G) is a covariant functor from groups G € S to
complexes of sheaves on S. If Gy — G is a homomorphism of topological groups in
S, then we get an induced map U?(Gy) — U?(G), namely the map Z(G}) — Z(GY).
Under the identification made in [.6.11] the induced map

Extgy,s, (Z(G1), Z) — Extg, s, (Z(G), Z)

goes to the map
HP(GY; Z) — HP (G Z)

induced by the pull-back
H*(GY;Z) — HP (GG Z)

associated to the map of spaces G — Gf.
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4.6.14 The discussion in [.6.13 and [.6.17 shows that the Z,,-module structure
G(1) induces one on the spectral sequence (E,,d,), and we see that ET" has weight
p (which is the number of factors @(1) contributing to this term).

We introduce the notation H* := H*(Homg, ¢(U®,I*))s,.. Note that H* has a
filtration

0=F'H*C F°H* C ... C FFH* = H*

which is preserved by the action of Z,,. The spectral sequence (FE,,d,) converges to
the associated graded sheaf Gr(H*).

Note that Gr?(H*) is a subquotient of Ef “PP_ Since a subquotient of a sheaf of
weight p also has weight p (see [1.6.10) we get the following conclusion.

Corollary 4.73 GrP(H*) has weight p.

4.6.15 We now study some aspects of the second page E3” of the spectral sequence
in order to show the following Lemma.

Lemma 4.74 1. Fork > 1 we have FOH* = 0.
2. For k > 2 we have F1H* 2~ 0.

Proof : We start with 1. We see that ES’O is the cohomology of the complex
Ey° = Homg, o(U*,Z). Explicitly, using in the last step the fact that G and therefore
(G1 are connected,

)
Hﬂsmbs (Z(gq) ) Z)

An inspection of the formulas .29 for the differential of the complex U*® shows that
dy : EP° — ETY vanishes for even ¢, and is the identity for odd ¢. In other words
this complex is isomorphic to

0-z2z2%z82%72%725% .

This implies that Eg’o = 0 for ¢ > 1 and therefore the assertion of the Lemma.
We now turn to 2. We calculate

HY(GHZ) 2 (MG * ' =Ga - oG .

q summands

By (£2) we get
EP = Go.

We see that (E;"', dy) is the sheafification of the complex of discrete groups

G 0—-G—-G -G —..., (43)
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where the differential is the dual of the differential of the complex
0—G—G?—G°—

induced by the maps given in [L2.9. Let us describe the differential more explicitly.
If fx € G and X G xG — G is the multlphcatlon map, then we have pu*x = (x, x) €

Gx GG xG. We can write 9 : G — G as

q+1

aZZ(—

Using the formulas of l.2.9 we get

8i(le---7Xq) (X17"'7Xi7Xi7"'7Xq)

fort=1,...,q. Furthermore

do(x1s - Xq) = (0, X155 Xq)

and
Og+1(X15 -y Xg) = (X1 -+ Xg,0) .

Note that 0 = 9 : G° — GL. We see that we can write the higher (> 1) degree part
of the complex ([3) in the form
K*®; G ,

where K9 = Z4 for ¢ > 1 and 9 : Z9 — Z*! is given by the same formulas as above.

One now showsf] that
iy =4 2 171
0 g>2 '

Since G is torsion-free and hence a flat Z-module we have
HY(G*) =~ HY(K* ®, G) = HY(K*) ®,, G .

Therefore HY(G*) = 0 for ¢ > 2. This implies the assertion of the Lemma in the
case 2. ]

4.6.16

Lemma 4.75 Let FO C F' C ... C FF1 C F* = F be a filtered sheaf of Zi,-
modules such that Gr'(F) has ‘weight I, and such that F = F* = 0. If V C F is a
torsion-free sheaf of weight 1, then V = 0.

"We leave this as an exercise in combinatorics to the interested reader.
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Proof : Assume that V # 0. We show by induction (downwards) that F'NV # 0
for all [ > 1. The case [ = 1 gives the contradiction. Assume that [ > 1. We
consider the sequence

0—F'NV - F'nV — Gry(F) .

First of all, by induction assumption, the sheaf V' N F' is non-trivial, and a as a
subsheaf of V' it is torsion-free of weight 1. Since Gr;(F") has weight [ # 1, the map
V' N F; — Gr;(F') can not be injective. Otherwise its image would be a torsion-free
sheaf of two different weights [ and 1, and this is impossible by Lemma [.6.10. Hence
FEInVv #£0. O

4.6.17 We now show that Lemma extends to connected compact groups.

Lemma 4.76 Let G be a compact connected abelian group. Then the following
assertions are equivalent.

1. Extly o (G,Z) is torsion-free for i =2,3
2. Extly o (G,Z) =0 fori=2,3.

Proof : The non-trivial direction is that 1. implies 2.. Thus let us assume
that @éhmslc (G,Z) is torsion-free for i = 2,3. We now look at the spectral se-
quence (F,,d,). The left lower corner of its second page was calculated in .53
We see that Fy? = Extl, o ((A2G)?,Z) has weight 2, while Ext}, ¢ (G,Z) has
weight 1. Since Eitgmbslc(g, Z) is torsion-free by assumption, the differential dé’z :
Exty,, s, (ASG)!, Z) — Extd, o (G,Z) is trivial by Lemma 73,

We conclude that Extg, o (G,Z) and Extd o (G,Z) survive to the limit of the
spectral sequence. We see that Extg, o (G,Z) are torsion-free sub-sheaves of weight
1 of H™! for ¢« = 2,3. Using the structure of H*™ given in [E79 in conjunction with
the Lemmas .74 and [E79 we get Extl, o (G,Z) = 0 for i = 2,3. O

4.6.18 The combination of Lemma .61 and Lemma [.7q gives the following result.

Theorem 4.77 A compact connected abelian group G which satisfies the two-three
condition is admissible on the site Sy..

5 Duality of locally compact group stacks

5.1 Pontrjagin Duality

5.1.1 In this subsection we extend Pontrjagin duality for locally compact groups to
abelian group stacks whose sheaves of objects and automorphisms are represented by



5 DUALITY OF LOCALLY COMPACT GROUP STACKS 91

locally compact groups. In algebraic geometry a parallel theory has been considered
in [DA].

The site S denotes the site of compactly generated spaces as in or one of its
sub-sites Sjc, Sic—qeye- The reason for considering these sub-sites lies in the fact that
certain topological groups are only admissible on these sub-sites (see the Definitions

B, 3 and Theorem [.17).
5.1.2 Let F' € Shy,S.

Definition 5.1 We define the dual sheaf of F' by
D(F) := Homg,, s (F,T) .
5.1.3

Definition 5.2 We call F' dualizable, if the canonical evaluation morphism
c: F— D(D(F)) (44)
s an isomorphism of sheaves.

Lemma 5.3 If G is a locally compact group which together with its Pontrjagin dual
Homyop—an(G, T) is contained in S, then G € Shy,S is dualizable.

Proof : By Lemma B.§ we have isomorphisms

Hﬂsh;\bs(g7 I) = Homtop—Ab(G, T)

and

HﬂShAbS(@ShAbS (Qa E)a E) = @ShAbS(Homtop—Ab(G7 T)) T) = Homtop—Ab(Homtop—Ab(G7 T)a T) .

The morphism ¢ in ([4)) is induced by the evaluation map G — Homgop—ap (Homeop—an (G, T), T)
which is an isomorphism by the classical Pontrjagin duality of locally compact

abelian groups [[FoI93], [HM9]]. O

5.1.4 The sheaf of abelian groups T € Shy,S gives rise to a Picard stack BT €
PIC(S) as explained in P.3.4. Recall from the following alternative description
of BT. Let T[1] be the complex with the only non-trivial entry T[1]™! := T. Then
we have BT = ch(T[1]) in the notation of P.13.

5.1.5 Let now P € PIC(S) be a Picard stack. Recall the definition P.TT of the
internal HOM between two Picard stacks.

Definition 5.4 We define the dual stack by
D(P) = MPIC(S)(Pv BT) .

We hope that using the same symbol D for the dual in the case Picard stacks and
the case of a sheaf of abelian groups will not cause confusion.
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5.1.6 This definition is compatible with the definition f.]] of the dual of a sheaf of
abelian groups in the following sense.

Lemma 5.5 [If F' € Shy,S, then we have a natural isomorphism
ch(D(F)) = D(BF) .

Proof : First observe that by definition D(BF) = HOMpq () (ch(F[1]), ch(T[1])).
We use Lemma P.1§ in order to calculate H'(D(BF)). We have

“Y(D(BF)) & R'Hon, ¢(F[1],T[1]) £ 0

and
H°(D(BF)) = R°Homg,, s(F[1], T[1]) = Homg,, (F,T) = D(F) .

The composition of this isomorphism with the projection D(BF) — ch(H°(D(BF)))
from the stack D(BF') onto its sheaf of isomorphism classes (considered as Picard
stack) provides the asserted natural isomorphism. O

5.1.7 A sheaf of groups F € Shy,S can also be considered as a complex F €
C(Shy,S) with non-trivial entry F° := F. It thus gives rise to a Picard stack ch(F).
Recall the definition of an admissible sheaf [L.].

Lemma 5.6 We have natural isomorphisms
H~'(D(ch(F))) = D(F), H"(D(ch(F))) = Extg, s(F.T) .
In particular, if F' is admissible, then D(ch(F)) = B(D(F)).
Proof : We use again Lemma P.1§. We have
H~'(D(ch(F))) = R™'Homg,  s(F, T[1]) = Homg, s(F, T) = D(F) .
Furthermore,
H"(D(ch(F))) = RHomg,, s (F, T[1]) = Extg,, o(F, T) .
O

5.1.8  Assume now that F' is dualizable and admissible (at this point we only need
Extg, g(F,T) = 0). Then we have

poeF)) =Y pioEy) “EY o) = ar)

Similarly, if F is dualizable and D(F') admissible (again we only need Extg, o(D(F'),T) =
0), then we have

poBR) =8 by “EE o) ~ 51
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5.1.9 Let us now formalize this observation. Let P € PIC(S) be a Picard stack.

Definition 5.7 We call P dualizable if the natural evaluation morphism P —
D(D(P)) is an isomorphism.

The discussion of can now be formulated as follows.
Corollary 5.8 1. If F' is dualizable and admissible, then ch(F') is dualizable.
2. If F is dualizable and D(F) is admissible, then BE' is dualizable.

The goal of the present subsection is to extend this kind of result to more general
Picard stacks.
5.1.10 Let P € PIC(S).

Lemma 5.9 We have

and an ezact sequence
0 — Bxtly g (HY(P), T) — HY(D(P)) — D(H(P)) — Ext2, §(H'(P),T) . (45)
Proof : By Lemma we can choose K € C(Shy,S) such that P = ch(K). We

now get

Lemma m
H7Y(D(P b R™'Homg,, s (K, T[1])
HOmShAbS(K7 T)
mShAbS(HO(K>7 I)

D(H"(P)) .

11

12

Again by Lemma P.T§ we have
HO(D(P)) = ROMShAbS (K7I[1]) = RIMShAbS<K7 I) .

In order to calculate this sheaf in terms of the cohomology sheaves H'(K) of K we
choose an injective resolution T — . Then we have

RmShAbS(K? E) = HﬂShAbS(K’ [) .

We must calculate the first total cohomology of this double complex. We first take
the cohomology in the K-direction, and then in the I-direction. The second page of
the associated spectral sequence has the form

[ Bt s (B (7). 1) | Bty o (A" (P).0) | Bt o(H-"(P). 1) | Extl, o(H-"(P).T)

Extg, s(H(P),T) | Extg, s(H°(P),T) | Extg, (H°(P).T) | Extg,s(H°(P) T)

0 1 2 3

The sequence () is exactly the edge sequence for the total degree-1 term. O
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5.1.11 The appearance in (fH) of the groups Exty, g(H°(P),T) for i = 1,2 was
the motivation for the introduction of the notion of an admissible sheaf in [.1].

Corollary 5.10 Let P € PIC(S) be such that H°(P) is admissible. Then we have
HY(D(P)) = D(H™'(P)), H '(D(P))=D(H(P)) .
5.1.12
Theorem 5.11 Let P € PIC(S) and assume that
1. H°(P) and H™*(P) are dualizable
2. HO(P) and D(H-(P)) are admissible.
Then P s dualizable.

Proof : In view of P.14 is suffices to show that that the evaluation map ¢: P —
D(D(P)) induces isomorphisms

H'(c) : H'(P) — H'(D(D(P)))
for i = —1,0. Consider first the case i = 0. Then by Corollary [.I(] we have an

isomorphism

~

K’ H'(D(D(P))) = D(H ' (D(F)) = D(D(H°(P))) .
One now checks that the map
Ko H'(c) : HO(P) — D(D(H"(P)))

is the evaluation map (). Since we assume that H°(P) is dualizable this map is
an isomorphism. Hence H°(c) is an isomorphism, too.
For i = —1 we use the isomorphism

Wt H-(D(D(P))) = D(H(D(P))) = D(D(H™(P)))

and the fact that h=' o H=Y(c) : H~Y(P) — D(D(H~(P))) is an isomorphism. [J

5.1.13 If G is a locally compact group which together with its Pontrjagin dual
belongs to S, then by the sheaf G is dualizable. By Theorem (.7 we know a
large class of locally compact groups which are admissible on S or at least after
restriction to S;. or Sic—acye-

We get the following result.

Theorem 5.12 Let Gy, G_1 € S be two locally compact abelian groups. We assume
that their Pontrjagin duals belong to S, and that Go and DG _1 are admissible on S.
If P € PIC(S) has H(P) = G, fori= —1,0, then P is dualizable.
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Let us specialize to the case which is important for the application to T-duality.
Note that a group of the form T" x R x F’ for a finitely generated abelian group F is
admissible by Theorem [.7. This class of groups is closed under forming Pontrjagin
duals.

Corollary 5.13 If P € PIC(S) has H'(P) = T" x R™ x F; for some finitely
generated abelian groups F; fori = —1,0, then P is dualizable.

For more general groups one may have to restrict to the sub-site S;. or even to

Slc—acyc-

5.2 Duality and classification

5.2.1 Let A, B € Shy,S. By Lemma .20 we know that the isomorphism classes
Extpres) (A, B) of Picard stacks with H(P) = B and H~'(P) = A are classified by

a characteristic class
¢ : Exteres)(B, A) = Extg, o(B, A) . (46)
5.2.2

Lemma 5.14 [f A is dualizable and D(A), B are admissible, then there is a natural
isomorphism
D : EthhAbS(B7 A) ; EthhAbS (D(A)7 D(B>)

such that
¢p(D(P)) =D(¢(P)) VP € Extpics)(4, B) . (47)

Proof : In order to define D we use the identifications
Extgy,s(B, A) = Homp+ (sn,s)(B, A[2]), Extg, ¢(D(A), D(B)) = Homp+ (sn,.s)(D(A), D(B)[2]) .

We choose an injective resolution T — Z. For a complex of sheaves F' we define
RD(F) := Homg, g(F,Z). The map T — T induces a map D(F) — RD(F'). Note
that RD descends to a functor between derived categories RD : D’(Shy,S)? —
D7 (Shy,S). We now consider the following web of maps

HomD+(ShAbS)(B...7.A.[.2.]“)LHomD+ ShabS) (RD(A[-2]), RD(B)) .

D’ lD )—RD(A)
HOmD+(ShAbS (D(A ( )[ ])
B)—RD(B T
HomD+(ShAbs)(D D(B)[2])

Since B is admissible the map D(B) — RD(B) is an isomorphism in cohomology
in degree 0,1,2 (because D(B) is concentrated in degree 0 and H*(RD(B)) =
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R*Homgy,,s(B,T) = Extf, ¢(B,T)). Since D(A) is acyclic in non-zero degree the
map u is an isomorphism. For this, observe that D(B) — RD(B) can be replaced

upto quasi-isomorphism by an embedding 0 — RD(B) — RD(B) — @ — 0 such
that the quotient is zero in degrees 0, 1,2. The statement then follows from the long
Ext-sequence for Homg,,,s(D(A), —), because Extl, o(D(A),B) =0 for i = 0,1,2.
Therefore the diagram defines the map

D:=u"" oD : Homp+(sns) (B, A[2]) — Homp+(sn,s)(D(A), D(B)[2]) .

5.2.3 We now show the relation (f7). By Lemma it suffices to show (7)) for
P € PIC(S) of the form P = ch(K) for complexes

K:0-A—-X—-Y—-B—-0, K:0-X->Y —=0.
As in P.5.17 we consider
Kgq:0-X—>Y —>B—0

with B in degree 0. Then by the definition ([J) of the map ¢ and the Yoneda map
Y the element ¢(ch(K)) € Homp+(sn,s) (5, A[2]) is represented by the composition

(see ([d))
Y(K): B2 K, & A2

Since RD preserves quasi-isomorphisms we get RD(a™') = RD(a)™!. Tt follows

that
RD(Y(K)) : RD(A[2]) """ rRD(1C) ™2 RD(B) .

We read off that

D(Y(K)): D(A) — RD(A) ™97 rD(C2] ™Y RD(B)[2] .

Let T — I° — I' — ... be the injective resolution Z of T. We define J := ker(I* —
I?) and I := I°. Then we have BT = ch(L) with L : 0 — [ — J — 0 with J in
degree zero. Note that [ is injective. Then by Lemma we have

D(P) = ch(H) , (48)
where H := 7<oHomg, (K, L). Let
@ := ker(Homgy, (X, I) ® Homg, (Y, J) — Homgy, (X, J)) .
Then H is the complex
H : 0 — Homg,, (Y, I) = Q — 0.

There is a natural map D(B) — Homg, ¢(Y, /) (induced by T — I and Y — B),
and a projection ) — D(A) induced by A — X and passage to cohomology. Since
B is admissible the complex

H :0 — D(B) — Homg, (Y, 1) = Q — D(A) =0
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is exact. Note that ker(d) = H 'Homg, g(K,I) and coker(d) = HHomg, o(K,1I).
We get

o(D(P) ® g(enmy) B vy Horme By 3y

Explicitly, in view of ([LT) the map Y’(H) € Homp+(sn,s)(D(A), D(B)[2]) is given by
the composition

Y'(H) : D(A) = Hpw > D(B)[2] ,

where

Hpay : 0 — D(B) — Homg, (Y, 1) = Q — 0

with @ in degree 0, the map v : Hp)y — D(A) is the quasi-isomorphism induced
by the projection @ — D(A), and 6 : Hpay — D(B)[2] is the canonical projection.
Since B is admissible we have R'Homg, ¢(B,T) = 0 and hence a quasi-isomorphism
Hpy — H’D( A) fitting into the following larger diagram

Hp(ay : 0 D(B) Hﬂsmbs(y’ I) Q 0 .

- | l |

H/D(A) : 0 — Homg, (B, I) — Homg, (B, J) ® Homg,, (Y, 1) Q 0
RD(Ka) : 0 — Homg, (B, ) —— Homg, (B, ') ® Homg, g(Y,]) ——> HﬂghAbS(’CAvI) —_—

5.2.4 The final step in the verification of ([[7]) follows from a consideration of the
diagram

showing the marked equality in
¢(D(P)) =Y'(H) =D(Y(K)) = D(6(P)) -
It remains to show that
D : EthhAbS(B7 A) - EthhAbS (D(A)7 D(B>)

is an isomorphism.
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To this end we look at the following commutative web of maps

R2HomShAbS(D(A)7 D(B)) e R HomShAbS(B A)

= 2

R*Homgy,, s (D(A), RD(B)) ——= R*Homgy,,s(D(A) @* B ’]r) E R HomShAbs (B, RD(D(A))

R?Homgy,,s(RD(A), RD(B)) — R*Homgy,,s(RD(A) @ B, T) ~— R? HomShAbs(B RD(RD(A)))

The horizontal isomorphisms in the two lower rows are given by the derived ad-
jointness of the tensor product and the internal homomorphisms. The horizontal
isomorphism in the first row is induced by the isomorphism A — D(D(A)). The
maps u and v is an isomorphism since we assume that D(A) is admissible, compare
the corresponding argument in the proof of Lemma p.I14. The map z is induced by
the canonical map A — RD(RD(A)). O

6 T-duality of twisted torus bundles

6.1 Pairs and topological T-duality

6.1.1 The goal of this subsection is to introduce the main objects of topological
T-duality and review the structure of the theory. Let B be a topological space.

Definition 6.1 A pair (E, H) over B consists of a locally trivial principal T"-bundle
E — B and a gerbe H — E with band T\g. An isomorphism of pairs is a diagram

i
|

B=——=2B

— /

I

¢
_

~— O

consisting of an isomorphism of T"™-principal bundles ¢ and an isomorphism of T-
banded gerbes v. By P(B) we denote the set of isomorphism classes of pairs over
B. If f: B — B is a continuous map, then pull-back induces a functorial map
P(f): P(B") — P(B).
6.1.2 The functor

P : TOP? — Sets

has been introduced in [BS0Y] for n = 1 and in [BRY] for n > 1 in connection with
the study of topological T-duality.
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The main result of [BS0J| in the case n = 1 is the construction of an involutive
natural isomorphism 7" : P — P, the T-duality isomorphism, which associates to
each isomorphism class of pairs ¢ € P(B) the class of the T-dual pair ¢ := T(t) €
P(B).

In the higher-dimension case n > 2 the situation is more complicated. First of all,

not every pair t € P(B) admits a T-dual. Furthermore, a T-dual, if it exists, may
not be unique. The results of [BRY] are based on the notion of a T-duality triple.
In the following we recall the definition of a T-duality triple.
6.1.3 As a preparation we recall the following two facts. Let 7 : £ — B be a
T"-principal bundle. Associated to the decomposition of the global section functor
['(E,...) as composition I'(E,...) = I'(B,...) om : Shy,S/E — ADb there is a
decreasing filtration

- CF"H*(E;Z) C F" 'H*(E;Z) C --- C F'H*(E; Z)

of the cohomology groups H*(F;Z) = R*I'(E;Z) and a Serre spectral sequence with
second term Ey’ = HY(B; Riw,Z) which converges to GrH*(E;Z).
6.1.4 The isomorphism classes of gerbes over X with band Ty are classified by
H?(X;T) = H3*(X;Z). The class associated to such a gerbe H — X is called
Dixmier-Douady class d(X) € H3(X;Z).

If H — X is a gerbe with band T,y over some space X, then the automorphisms
of H (as a gerbe with band T|y) are classified by H'(X;T) = H*(X;Z).
6.1.5 In the definition of a T-duality triple we furthermore need the following
notation. We let y € H'(T;Z) be the canonical generator. If pr, : T® — T is the
projection onto the ith factor, then we set y; := priy € H'(T";Z). Let E — B be
a T"-principal bundle and b € B. We consider its fibre E;, over b. Choosing a base
point e € Ej, we use the T"-action in order to fix a homeomorphism a, : £ = T" such
that a.(et) =t for all t € T". The classes x; := a}(y;) € H'(Ey; Z) are independent
of the choice of the base point. Applying this definition to the bundle E — B below
gives the classes 7; € H'(Ey; Z) used in Definition [.2.

Definition 6.2 A T-duality triple t := ((E, H), (E, H),u) over B consists of two
pairs (E,H),(E, H) over B and an isomorphism u : p*H — p*H of gerbes with
band T\EXBE defined by the diagram

i : (49)
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where all squares are two-cartesian. The following conditions are required:

1. The Dizmier-Douady classes of the gerbes satisfy d(H) € F?H3(E;Z) and
d(H) € F?H3(E;Z).

2. The isomorphism of gerbes u satisfies the condition [BRY, (2.7)] which says
the following. If we restrict the diagram (@) to a point b € B, then we can
trivialize the restrictions of gerbes H\g,, H‘E to the fibres Eb,Eb of the T"-

bundles over b such that the induced zsomorph@sm of trivial gerbes uy, over
E, x Eb is classified by > "7, pry, z; U prAxZ € H?(Ey x Eb, 7).

6.1.6 There is a natural notion of an isomorphism of T-duality triples. For a map
f : B — B and a T-duality triple over B there is a natural construction of a
pull-back triple over B’.

Definition 6.3 We let Triple(B) denote the set of isomorphism classes of T-
duality triples over B. For f : B' — B we let Triple(f) : Triple(B) — Triple(B’)
be the map induced by the pull-back of T-duality triples.

6.1.7 In this way we define a functor
Triple : TOP”” — Sets .
This functor comes with specializations
s,5:Triple — P
given by s((E, H), (E, H),u) := (E,H) and 5((E, H), (E, H),u) = (E, H).

Definition 6.4 A pair (E, H) is called dualizable if there ezists a triplet € Triple(B)
such that s(t) = (E, H). The pair s(t) = (E, H) is called a T-dual of (E, H).

Thus the choice of a triple t € s™'(E, H) encodes the necessary choices in order to
fix a T-dual. One of the main results of [BRY| is the following characterization of
dualizable pairs.

Theorem 6.5 A pair (E, H) is dualizable in the sense of Definition p] if and only
if d(H) € F?H3(E; Z).

Further results of [BRY, Thm. 2.24] concern the classification of the set of duals of
a given pair (£, H).

6.1.8 For the purpose of the present paper it is more natural to interpret the
isomorphism of gerbes u : p*H — p*H in a T-duality triple ((E, H), (E, H),u) in

a different, but equivalent manner. To this end we introduce the notion of a dual
gerbe.
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6.1.9 First we recall the definition of the tensor product w : H®x H' — X of gerbes
u:H — X and v : H — X with band T|y over X € S. Consider first the fibre
product of stacks (u,u’) : Hxx H' — X. Let T'€ S/X. An object s € H xx H'(T)
is given by a triple (¢,t', ¢) of objects t € H(T), t' € H'(T) and an isomorphism
¢ u(t) — u/(t'). By the definition of a T-banded gerbe the group of automorphisms
of ¢ relative to u is the group Aut g(7)/re1(w) (t) = T(T"). We thus have an isomorphism
Aut iy b rer(uar))(8) = T(T) x T(T'). Similarly, for sg,s1 € H xx H'(T) the set
Homp 17 /re1((uw')) (S0, 51) is a torsor over T(T') x T(T').

We now define a prestack H ®% H’'. By definition the groupoid H ®% H'(T)
has the same objects as H xx H'(T'), but the morphism sets are factored by the

antidia
anti-diagonal T(7T') C ’ T(T) x T(T), i.e.

Homper 117 fre1(w) (505 $1) = HOMEr s 1 jren ((u,ur)) (S0, 1) /antidiag(T(T)) .

The stack H @x H' is defined as the stackification of the prestack H ®% H'. It
is again a gerbe with band T y. We furthermore have the following relation of
Dixmier-Douady classes.

d(H) + d(H') = d(H ®x H') .

6.1.10 The sheaf T|y € Shy,S/X gives rise to the stack BTy (see P:3.7). Then
X x BT x — X is the trivial T-banded gerbe over X. Let H — X be a gerbe with
band T .

Definition 6.6 A dual of the gerbe H — X is a pair (H' — X,¢) of a gerbe
H' — X and an isomorphism of gerbes ¢ : H ®x H" — X x BTy.

Every gerbe H — X with band Ty admits a preferred dual H?? — X which we call
the opposite gerbe. The underlying stack of H°? is H, but we change its structure
of a T x-banded gerbe using the inversion automorphism ~' : Ty = T .

If (H) — X,4p) and (H] — X, %) are two duals, then there exists a unique iso-
morphism class of isomorphisms H) — Hj of gerbes such that the induced diagram

H®XH(/) H®XH{

X x BT, x

can be filled with a two-isomorphism. Note that if H' — X is opposite to H — X,
then we have the relation of Dixmier-Douady classes

d(H) = —d(H') .
Lemma 6.7 Let H — X and H — X be a gerbes with band T, . There is a

natural bijection between the sets of isomorphism classes of isomorphisms H—H
of gerbes over X and isomorphism classes of isomorphisms of T\ x-banded gerbes

H®H? — X x BTy
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Proof :An isomorphism H — H induces an isomorphism H® xH? - HRx H? 2,
X X BT|x. On the other hand, an isomorphism H @x H” — X x BT,y presents

H — X as a dual of H” — X. Since ¢ : H @x H? — X x BTy presents H as

a dual of H? we have a preferred isomorphism class of isomorphisms H—H , too.

6.1.11 In view of Lemma 53, in Definition B2 of a T-duality triple ((E, H), (E, H), u)

we can consider u as an isomorphism

PH?@xpH — ExpgExBLy, 5.

The condition .9 2. can be rephrased as follows. After restriction to a point b € B
we can find isomorphisms

v:T"x BT = Hy,, 7:T"x BT H,. (50)

After a choice of x — BT in order to define the map s below we get a map 7 :
T" x T" — BT by the diagram

o~ /\0 u o~ pI‘ T
H” % H, HY @y 5, Hy— E, x Ey x BT —= BT

(fhv)T

(T" x BT?) x (T" x BT)

T x T"

The condition 6.9 2. is now equivalent to the condition that we can choose the
isomorphisms u, v in (p{) such that

n

* _ * *
r(z) = E pryxUpr,,r,
i=1

where z € H?(BT;Z) and x € H'(T;Z) are the canonical generators, and pr, ;,

T" x T" e By T, k=1,2,i=1,...,n are projections onto the factors.
6.1.12  Important topological invariants of T-duality triples are the Chern classes of
the underlying T™-principal bundles. For a triple t = ((F, H), (E, H),u) we define

These classes belong to H?(B;Z").

6.2 Torus bundles, torsors and gerbes

6.2.1 In this subsection we review various interpretations of the notion of a T"-
principal bundle.
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6.2.2 Let G be a topological group. Let us start with giving a precise definition of
a G-principal bundle.

Definition 6.8 A G-principal bundle £ over a space B consists of a map of spaces
7w E — B which admits local sections together with a fibrewise right action ExX G —
E such that the natural map

ExG—ExgFE, (et)— (e et)

is an homeomorphism. An isomorphism of G-principal bundles €& — &' is a G-
equivariant map E — E' of spaces over B.

By Pring(G) we denote the category of G-principal bundles over B. The set
H°(Pring(@G)) of isomorphism classes in Pring(G) is in one-to-one correspondence
with homotopy classes [B, BG| of maps from B to the classifying space BG of G.
If we fix a universal bundle FG — BG, then the bijection

[B, BG] = H°(Pring(G))
is given by
[f : B— BG|+— [B xspc EG — B] .

6.2.3 We now specialize to G := T". The classifying space BT" of T" has the
homotopy type of the Eilenberg-MacLane space K (Z",2). We thus have a natural
isomorphism

HX(B:Z") ¥ (B, K(Z",2)] = [B, BT"] = H'(Pring(T")) .

Therefore, T"-principal bundles are classified by the characteristic class ¢(€) €
H?*(B;Z"). Using the decomposition

H*(B;Z") = H*(B;Z)® ... H*(B; Z)

J

Vv
n summands

we can write

Definition 6.9 The class ¢(€) is called the Chern class of £. The ¢;(€) are called
the components of ¢(E).

In fact, if n = 1, then ¢(&) is the classical first Chern class of the T-principal bundle
E.
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6.2.4 Let S be a site and F' € Shy,S be a sheaf of abelian groups.

Definition 6.10 An F'-torsor T is a sheaf of sets T € ShS together with an action
T x ' — T such that the natural map T X F' — T x T 1is an isomorphism of
sheaves. An isomorphism of F-torsors T — T’ is an isomorphism of sheaves which
commutes with the action of F.

By Tors(F') we denote the category of F-torsors.
6.2.5 In we have introduced the category EXT(Z, F') whose objects are exten-
sions of sheaves of groups

W:0—-F—-W3Z—0, (51)

and whose morphisms are isomorphisms of extensions. We have furthermore defined
the equivalence of categories

U : EXT(Z, F) = Tors(F)
given by UW) := w™(1).

6.2.6 Consider an extension W as in (Bl]) and apply Extsy,.s(Z,...). We get the
following piece of the long exact sequence

-+ — Homgy,, s (Z, W) — Homgy, s(Z, Z) o Extg, g(Z, F) — Extg, o(Z,W) — ... .
Let 1 € Homgp,,s(Z,Z) be the identity and set
e(W) := dw(1) € Extg, ¢(Z, F) .

Recall that H°(EXT(Z, F')) denotes the set of isomorphism classes of the category
EXT(Z, F'). The following Lemma is well-known (see e.g. [Yon6(])

Lemma 6.11 The map
EXT(Z,F) > W — e(W) € Exty, ¢(Z, F)

induces a bijection
e: HY(EXT(Z, F)) = Extg, o(Z,F) .

In view of .2.5 we have natural bijections

H"(Tors(F)) = HY(EXT(Z. F)) & Extl, §(Z. F) . (52)
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6.2.7 Let G be an abelian topological group and consider a principal G-bundle
& over B with underlying map 7 : £ — B. By 7(£) :== E — B € ShS/B (see
B.2.3) we denote its sheaf of sections. The right action of G on E induces an action

T(E)x Gy —T(E).
Lemma 6.12 7 (£) is a G|p-torsor.

Proof : This follows from the following fact. If X — B and Y — B are two maps,
then
XxpgY —-B=2X->BxY —>1B

in ShS/B. We apply this to the isomorphism

Exp(BXG)Z2EXG=EXxgFE
of spaces over B in order to get the isomorphism

T(E) x Gy = T(E) x T(E) .

6.2.8 The construction £ +— 7 (€) refines to a functor
T : Prinp(G) — Tors(G\p)

from the category of G-principal bundles Pring(G) over B to the category of G 5-
torsors Tors(G,p) over B.

Lemma 6.13 The functor
T : Pring(G) — Tors(G\p)
is an equivalence of categories.

Proof : It is a consequence of the Yoneda Lemma that 7 is an isomorphism on
the level of morphisms sets. It remains to show that the underlying sheaf T of a
G| p-torsor is representable by a G-principal bundle. Since T'is locally isomorphic
to Gp this is true locally. The local representing objects can be glued to a global
representing object. ([l

We can now prolong the chain of bijections (FZ) to

[B, BG] = H°(Pring(G)) = HO(Tors(Q‘B))
= HY(EXT(Zp, G p)) = Extgy,,s/5(Lip, Gp) = H'(B;G) . (53)
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6.2.9 Let S be some site and F' € S be a sheaf of abelian groups. By Gerbe(F)
we denote the two-category of gerbes with band F over S. It is well-known that
isomorphism classes of gerbes with band F are classified by Extg, ¢(Z; F'), i.e. there
is a natural bijection

d : H°(Gerbe(F)) = Extg, o(Z; F) .

6.2.10 Let H — G be a homomorphism of topological abelian groups with kernel
K :=ker(H — G). Our main example is R" — T" with kernel Z".

Definition 6.14 Let T be a space. An H-reduction of a G-principal bundle £ =
(E — B) onT is a diagram

(F,¢) . F—2>
|

E
T—B

where F' — T 1s a H-principal bundle, and ¢ is H-equivariant, where H acts on

E vie H — G. An isomorphism (F,¢) — (F',¢') of H-reductions over T is an

isomorphism f : F — F' of H-principal bundles such that ¢/ o f = ¢. Let R&(T)

denote the category of H-reductions of £.

Observe that the group of automorphisms of every object in R (T) is isomorphic to
Map (T, K)° (the superscript § indicates that we take the underlying set). For a map
u: T — T’ over B there is a natural pull-back functor R (u) : RE(T") — R%(T).

Let S be a site as in and assume that K, G, H, B belong to S. In this case it
is easy to check that

T — R&(T)

is a gerbe with band K 5 on S/B.
6.2.11 Let 7: E — B be a G-principal bundle. Note that the pull-back 7*F — E
has a canonical section and is therefore trivialized. A trivialized G-bundle has a
canonical H-reduction. In other words, there is a canonical map of stacks over B

can: F — RY . (54)

Note that an object of E(T") is a map 7" — E; to this we assign the pull-back of the
canonical H-reduction of 7*F.

6.2.12 The construction Pring(G) > & — R% € Gerbe(K) is functorial in £ and
thus induces a natural map of sets of isomorphism classes

r: H'(Pring(G)) — H°(Gerbe(K)) .

Lemma 6.15 If H — G is surjective and has local sections, and H'(B, H) =
H?*(B,H) =0, then

r: H'(Pring(G)) — H"(Gerbe(K))

s a bijection.
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Proof : The exact sequence 0 — K — H — G — 0 induces by B4 an exact
sequence

of sheaves. We consider the following segment of the associated long exact sequence
in cohomology:

- HY(B;H) — HY(B;G) > H?(B; K) — HXB;H) — ... .

By our assumptions 0 : H'(B;G) — H?(B; K) is an isomorphism. One can check
that the following diagram commutes:

H°(Pring(G)) —— H°(Gerbe(K z)) . (55)

| ld

H'(B;G) *— H*(B; K)

This implies the result since the vertical maps are isomorphisms. O]

Note that we can apply this Lemma in our main example where H = R" and
G = T". In this case the diagram (b3) is the equality

c(E) = d(R,) (56)

in H2(B;Z").

6.3 Pairs and group stacks

6.3.1 Let &£ be a principal T™-bundle over B, or equivalently by (5J), an extension
€ € ShyS/B
0—-Tp—&—Zp—0 (57)

of sheaves of abelian groups. Let ¢(€) € ExtéhAbS/B(Z‘B;_ﬁB) be the class of this
extension. Under the isomorphism

Bockstein

EXtéhAbS/B(Z|B;_|nB) = HI(BQITL) = H2(B§Zn)

it corresponds to the Chern class ¢(€) of the principal T"-bundle introduced in [.9.
6.3.2 We let Q¢ = Extpre(s) (€, Tj5) (see Lemma P20 for the notation) denote the
set of equivalence classes of Picard stacks P € PIC(B) with isomorphisms

HP) 26, HUP) ST,
By Lemma P.2( we have a bijection

EthhAbS/B(57I|B) g Qf °
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This bijection induces a group structure on )¢ which we will use in the discussion of
long exact sequences below. We will not need a description of this group structure
in terms of the Picard stacks themselves.

We apply Extg, o 5(--Ij5) to the sequence (B7) and get the following segment
of a long exact sequence

B8
Extg,s/8(Lf5: T jp) = Extgy, s/ p(Zp: Tp) — Q¢ — Extgy, o/ p(Tfs, T p) = Extd, o p(Zp, T p) -
58

The maps «, (3 are given by the left Yoneda product with the class ¢(€) € Extg, vs/8 (L5 Tp).
6.3.3 In this paragraph we identify the extension groups in the sequence (p§) with

sheaf cohomology. For a site S with final object x and X,Y € Shy,S we have a
local-global spectral sequence with second term

EP7 = RPT(x;Extd, ¢(X,Y))

which converges to Exth, I¢(X,Y).

We apply this first to the sheaves Z 5, T|p € Shy,S/B. The final object of the site
S/Bisid: B — B. We have Ext{ S/B(Z‘B,E‘B) = 0 for ¢ > 1 so that this spectral
sequence degenerates at the second page and gives

Extg Z\BaT\B) HP(B§HﬂShAbS/B(Z|BaI\B)) = HP(B;I\B) ~ H?(B;T) = HPH(B;Z) .

St s/ (
Since the group T is admissible by Theorem [.2§, and by Corollary B.14 we have
EitghAbS/B(ITEaI\B) =0 for ¢ = 1,2, we get

Extg, s3T5 Ip) = HP(B;Homgy, s/ 5(T(5. T)5))
= HP(B;Homg, (T",T)5) = H"(B; Z[z) = H(B; Z")

for p = 1,2. Therefore the sequence (B§) has the form
HY(B;Z") % HY(B; ) — Qs 5 HA(B; ") > HY(B;Z) . (59

In this picture the maps «, ( are both given by the cup-product with the Chern
class c(€) € H*(B;Z"), i.e. a((z;)) = > x; Ug(E).

6.3.4 Recall from F.I.3 the decreasing filtration (F* H*(E;Z))r>0 and the spectral
sequence associated to the decomposition of functors ['(E;...) = I'(B,...) o p, :
Shy,S/FE — Ab. This spectral sequence converges to Gr H*(F; Z). Its second page is
given by Ey’ = H'(B; Rip,Z). The edge sequence for F?H?3(F;Z) has the form

ker(dy? : Ey* — E3') i> coker(dy' : By — E3°)
2,1
— FPHY(B;Z) — (B3 in(dy : B9 — E3') = E}°.

We now make this explicit. Since the fibre of p is an n-torus, R°p,Z = Z, R'p.Z =
7", R%p,Z = A?Z". The differential dy can be expressed in terms of the Chern class
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c(€). We get the following web of exact sequences, where K, A, B are defined as
the appropriate kernels and cokernels.

K- A F2H(E; Z) B HY(B; 2)

Since K as a subgroup of the free abelian group H°(B, A2Z") is free we can choose
a lift s as indicated.
6.3.5 We now define a map (the underlying pair map)

up : Q¢ — P(B)

as follows. Any Picard stack P € PIC(S/B) comes with a natural map of stacks
P — H°(P) (where on the right-hand side we consider a sheaf of sets as a stack). If
P € Qg, then HO(P) = £ has a natural map to Zp (see (B7)). We define the stack
G by the pull-back in stacks on S/B

L
L
Wy —Zp

All squares are two-cartesian, and the outer square is the composition of the two
inner squares. We have omitted to write the canonical two-isomorphisms. By con-
struction FE is a sheaf of T"-torsors (see f.2.5), i.e. by Lemma a T™-principal
bundle, and G — FE is a gerbe with band T. We set

up(P) := (E,G) .
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6.3.6 Recall Definition [.4 of a dualizable pair.
Lemma 6.16 If P € Qg¢, then up(P) € P(B) is dualizable.

Proof : Let (E,H) :=up(E). In view of Theorem [.f we must show that d(H) €
F?H3(E;Z). For k € Z we define G(k) — E(k) by the two-cartesian diagrams

G(k)——P : (61)
|

E(k) —¢&
|

ﬁua —>ZIB

The group structure of £ induces maps
w: E(k) xg E(m) — E(k+m) (62)

On fibres appropriately identified with T" this map is the usual group structure on
T™. Since P is a Picard stack these multiplications are covered by i : G(k)xG(m) —
G(k +m). The isomorphism class of G(k) therefore must satisfy

PG (k) ® Pri,G(m) = @ G(k +m) € Gerbe(E(k) x5 E(m)) . (63)

We now write out this isomorphism in terms of Dixmier-Douady classes dj :=
d(G(k)) € H(E(k); Z).

We fix a generator of H'(T;Z). This fixes a choice of generators of z; € H'(T";Z),
1 =1,...,n via pullback along the coordinate projections. Let a : T" x T" — T™ be
the group structure. Then we have

a*(x;) = priz; + proz; . (64)

where pr, : T" x T" — T", 7 = 1, 2, are the projections onto the factors.

Let us for simplicity assume that B is connected. Let (E,(k),d.(k)) be the Serre
spectral sequence of the composition E(k) — B — % (see p.1.7). Then we can
identify ES°(k) = A3H'(T™;Z). The class d; has a symbol in Ey°(k) which can
be written as D, _;_; a;ji(k)x; A xj A z;. Since the map i (see f2) on fibres can be
written in terms of the group structure we can use (64) in order to write out the
symbol of p*(d). Equation (f3) implies the identity

Z a; ;1 (k)pry(z; Axj Axp) + Z st (M)prs(Ts AT A Ty)

1,5, s,tau

=D aapelk +m)(priz, + praza) A (prizy + pram) A (priz. + priz.) -

a,b,c
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Because of the presence of mixed terms this is only possible if everything vanishes.
This implies that dj, € F'H*(E(k); Z). We write 3, - x; Ax; @u; (k) for its symbol
in Ey?, where u;; € H'(B;Z). As above equation (B3) now implies

Z pri(x; A xj) @ u; (k) + Z priy(x A x,) @ ug,(m)
irj Lk
= Z(pr’{xa + prix,) A (prizy + pryxy) @ ugp(k +m) .

a,b

Again the presence of mixed terms implies that everything vanishes. This shows
that d, € F?H3(E(k); Z). The assertion of the Lemma is the case k = 1. O

6.3.7 Let us now combine (B() and (F9) into a single diagram. We get the following
web of horizontal and vertical exact sequences:

HY(B;Z")
/ ) h ¢ B
o' (B;Z") —>§3(B;Z) Qe — H*(B;Z") — H*(B;Z)
e f
K A F2H3(E; ) 1£ ’ . HA(B:Z)
L

(65)
The map f : Q¢ — F?H3(E;Z) associates to P € Q¢ the Dixmier-Douady class
of the gerbe of the pair up(P) € P(B) with underlying T"-bundle E. Here we use
Lemma [.16. Surjectivity of f follows by a diagram chase once we have shown the
following Lemma.

Lemma 6.17 The diagram ([63) commutes.

Proof : We have to check the left and the right squares

HYB;Z) ——> Qs Qe S-HAB;Z") . (66)

A

A F?H3(E;Z) F?H3(E;7Z) —=

Let us start with the left square. Let d € H3(B;Z). Under the identification

H?’(B;Z) ~ HQ(B;E) i~ EthhAbS/B(Z; T)
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it corresponds to a group stack P € PIC(S/B) with H°(P) 2 Z and H '(P) = T.
The group stack h(d) € Q¢ is given by the pull-back (two-cartesian diagram)

h(d) —>1’ :
P——%
In particular we see that the gerbe H — F of the pair u(h(d)) =: (E, H) is given

by a pull-back
H——F ,

L

G—B

where G € Gerbe(B) is a gerbe with Dixmier-Douady class d(G) = d. The compo-
sition foh : H¥B;Z) — H?*(E;Z) is thus given by the pull-back along the map
p: E — B,ie p* = foh. By construction the composition H*(B;Z) — A —
H3(E;Z) is a certain factorization of p*. This shows that the left square commutes.

Now we show that the right square in (6f) commutes. We start with an explicit
description of ¢. Let P € Qg. The principal T"-bundle in G(0) — E(0) — B is
trivial (see (pBI]) for notation). Therefore the Serre spectral sequence (£,(0),d,(0))
degenerates at the second term. We already know by Lemma that the Dixmier-
Douady class of G(0) — FE(0) satisfies dy € F?H?*(E(0);Z). Its symbol can be
written as ., z; ® ¢;(P) for a uniquely determined sequence ¢;(P) € H*(B;Z).
These classes constitute the components of the class ¢(P) € H*(B;Z").

We write the symbol of f(P) =d; as Y, z; ® a; for a sequence a; € H*(B;Z). As
in the proof of Lemma the equation (B3) gives the identity

n

Z prozv; @ a; + Z priz; ¢ (P) = Z(pr’{xi + prixi) ® a;
i=1 i=1

i=1

modulo the image of a second differential dy*(1). This relation is solved by a; :=
¢i(P) and determines the image of the vector a := (ay, ..., a,) under H*(B;Z") —
H?*(B;Z")/im(dy*(1)) =: B uniquely. Note that e o f(P) is also represented by the
image of the vector a in B. This shows that the right square in (6g) commutes. [

6.4 T-duality triples and group stacks

D P J

6.4.1 Let R, be the classifying space of T-duality triples introduced in [BRY].
It carries a universal T-duality triple tuni = ((Eunivs Huniv), (Eumv, f]umv), Unniv)-
Let Cuniv, Cuniv € H?(Ry;Z™) be the Chern classes of the bundles E ., — Ry,
Eum-v — R,. They satisfy the relation cypi, U Cuniy = 0. Let E,pni be the extension
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of sheaves corresponding to Fy,;, — R, as in .3.1. In [BRY] we have shown that
H3(R,;Z) = 0. The diagram (f5) now implies that there is a unique Picard stack
Puniv € Qs,..., With €(Pyuniv) = Cuninv and underlying pair up(Puniv) = (Eunivs Huniv)
(see B.3.3).

6.4.2 Let us fix a T"-principal bundle £ — B, or the corresponding extension
of sheaves €. Let us furthermore fix a class h € F?H3(FE;Z). In [BRY we have
introduced the set Ext(F, h) of extensions of (E, h) to a T-duality triple. The main
theorem about this extension set is [BRS, Theorem 2.24].

Analogously, in the present paper we can consider the set of extensions of (F,h)
to a Picard stack P with underlying T"-bundle £ — B and f(P) = h, where
f: Qg — F?H3(E;Z) is as in (7). In symbols we can write f~'(h) for this set.

The main goal of the present paper is to compare the sets Ext(F, h) and f~(h) C
Qe. In the following paragraphs we construct maps between these sets.

6.4.3 We fix a T"-principal bundle £ — B and let £ € Shy,S/B be the correspond-
ing extensions of sheaves. Let Triple,(B) denote the set of isomorphism classes of
triples ¢ such that ¢(t) = ¢(E). We first define a map

¢ : Tripley(B) — Q¢ -

Let ¢t € Tripleg(B) be a triple which is classified by a map f; : B — R,. Pulling
back the group stack P,,;, € PIC(S/R,) we get an element ®(t) := f;(Puniv) €
PIC(S/B). If t € Tripley(B), then we have ®(t) € Q¢ . We further have

/C\((I)(t)) = t*/C\(Puniv) = t*/c\univ = /C\(t) . (67)
6.4.4 In the next few paragraphs we describe a map
U : Qs — Tripleg(B) ,

i.e. a construction of a T-duality triple U(P) € Triple,(B) starting from a Picard
stack P € Q¢.

6.4.5 Consider P € PIC(S/B). We have already constructed one pair (E, H). The
dual D(P) := HOMprs,5) (P, BL| ) is a Picard stack with (see Corollary p.10)

H(D(P)) = D(H'(P)) = D(T\p) = L
H Y (D(P)) = D(H(P))= D(€) .

In view of the structure (B7) of &, the equalities D(T[y) = Z(;5, D(Z5) = T, and
Extg, o /(L5 T5) = 0 we have an exact sequence

0—Tz— D(E)—Zjp—0. (68)
Using the construction we can form a quotient D(P) which fits into the
sequence of maps of Picard stacks

BT; — D(P) — D(P) ,
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where H(D(P)) = Z;z and H~'(D(P)) = Zj3. The fibre product

R——D(P)

.

{1} ——Zp

defines a gerbe R — B with band Zj.

6.4.6 By Lemma there exists a unique isomorphism class E — B of a T
bundle whose Z5-gerbe of R"-reductions RZ, is isomorphic to R. We fix such an
isomorphism and obtain a canonical map of stacks can (see (B4)) fitting into the
diagram

Hor f:\[ D(P) . (69)
Lo
RE, R D(P)
N
B {1} ——24p

The gerbes H? — E and H — R are defined such that the squares become two-
cartesian (we omit to write the two-isomorphisms). The squares are cartesian, and
the upper square is the definition of the gerbe H — E. In this way the Picard stack
P € Q¢ defines the second pair (E, H) of the triple V(P) = ((E,H),(E,H),u)
whose construction has to be completed by providing u.

6.4.7

Lemma 6.18 We have the equality ¢(P) = ¢(V(P)) in H*(B;Zjp).

~

Proof : By the definition in [5.1.19 we have ¢(¥(F)) = ¢(£). Furthermore, by (b0)
we have ¢(F) = d(Rg‘nB) = d(R). By Lemma [.I4 we have ¢(D(P)) = D(¢(P)),
where ¢ is the characteristic class (fg), and

D: Qe = Extg, /58, Tp) = Extgy, s/5(D(T ), D(E))
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is as in Lemma [f.14. The map ¢ : Q¢ — H?(B;Z) by its definition fits into the
diagram

EthhAbS /B (—|nB ; E\B)

D

D(f)—>€(£n ) n
TER, o/ p(D(Tg); D(T)

o

EthhAbS/B (Z|B7 —TLB)

o

HZ(BQZTLB)

By construction the class a(P) € ExtghAbs /B(Z\ B L) classifies the Picard stack

D(&). This implies that ¢(P) classifies the gerbe R — B , i.e. ¢(P) = C(E) O

6.4.8 It remains to construct the last entry

qu@ExBEHop_)BEWXBE (70)

of the triple U(t) = ((E, H), (E, H), u), where we use the picture B.I.11. Note that
HYP) ~ T,5. The construction 2.5.13 gives rise to a sequence of morphisms of
Picard stacks

BIz— P — P

(we could write P = &).
We have an evaluation ev : P xp D(P) — BT|g. For a pair (r,s) € Z x Z we
consider the following diagram with two-cartesian squares.

Hep i, =0 X O 75 e
H, @5 H Cp ®p<P> D(P)
E, ><;RS P x m
@m Zig X L

By an inspection of the definitions one checks that the natural factorization w, g
exists if r = s. Furthermore one checks that

(w>ur,s) . Hr ®ET><BR5 ﬁs - (Er XB Rs) X BI|B
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is an isomorphism of gerbes with band T\g ,  p if and only if 7 = s = 1. Both
statements can be checked already when restricting to a point, and therefore become
clear when considering the argument in the proof of Lemma

We define the map ([f0) by

u

T

o X ull
H ®E><BE Her H, ®E1><B§1 Hy BE“B

l |

~ (id,can) ~
FE XB FE E1 XB R1

(note that Ry = R, £y = E and H; = H)
6.4.9

Lemma 6.19 The triple U(P) = ((E,H),(F, H),u) constructed above is a T-
duality triple.

Proof : It remains to show that the isomorphism of gerbes u satisfies the condition

6.9, 2 in the version of p.1.11].
By naturality of the construction ¥ in the base B and the fact that condition .3,

2 can be checked at a single point b € B, we can assume without loss of generality
that B is a point. We can further assume that £ =Z x T" and P = BT x Z x T".
In this case

D(P) = D(BT) x D(Z) x D(T") = Z x BT x BL" .

We have <
H x H= (BT xT") x (BT x BZ") .

The restriction of the evaluation map H x H — H® H — BT is the composition
(BT x T") x (BT x BZ") = BT x (BT) x T" x BZ" **33**" BT x BT x BT = BT .

We are interested in the contribution ev : T" x BZ" — BT™.
It suffices to see that in the case n = 1 we have

ev'(z) =z ®y,

where z € HY(T;Z),y € H'(BZ;Z), and z € H?(BT) = Z are the canonical genera-
tors. In fact this implies via the Kiinneth formula that ev*(z) = Y | z; ® y;, where
x; = pi(x), y; := ¢} (y) for the projections onto the components p; : T" — T and
q; : BZ" = (BZ)" — BZ. Finally we use that can*(y;) = x;, where can : T" — BZ"
is the canonical map (B4) from a second copy of the torus to its gerbe of R"-
reductions (after identification of this gerbe with BZ"). O

This finishes the construction of ¥ which started in [6.4.4]
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6.4.10 In [BRY, 2.11] we have seen that the group H?3(B;Z) acts on Triple(B)
preserving the subsets Triple(B) C Triple(B) for every T"-bundle E — B. We
will recall the description of the action in the proof of Lemma .20 below. By (B3)
it also acts on Q¢.

Lemma 6.20 The map V is H3(B;Z)-equivariant.

The proof requires some preparations.
6.4.11 Note that we have a canonical isomorphism T = D(Z). In order to work
with canonical identifications we are going to use D(Z) instead of T.
The isomorphisms classes of gerbes with band D(Z) over a space B € S are
classified by
H(B; D(Z) ) = Extlys/5(Zs D(Z)3) - (71)

~

The latter group also classifies Picard stacks P with fixed isomorphisms H°(P)
Z)p and H7Y(P)~ D(Zp).
Given P the gerbe G — B can be reconstructed as a pull-back

G P
_
gm — %5

If we want to stress the dependence of G on P we will write G(P).

Recall that an object in P(T') as a stack over S consists of a map 7' — B and an
object of P(T'— B). In a similar manner we interpret morphisms.

For example, the stack Q‘B is the space B.

6.4.12 Let P € Extpic(s/) (Z|B, D(Z)5) be a Picard stack P with a fixed isomor-
phisms H(P) = Zjp and H'(P) = D(Z). Let ¢ : Extpre(s/n)(Zz, D(Z)5) —
ExtZ,,s/5(Zp, D(Z)5) be the characteristic class.

Lemma 6.21 ¢(D(P)) = —(P).

Proof : First of all note that we have canonical isomorphisms

12

H(D(P)) = D(H™(P) = D(D(Z)) = Z5

and
H™'(D(P)) = D(H°(P)) = D(Z) = D(Z)5 -

Therefore we can consider D(P) € Extpic(s/B)(Z5, D(Z)|) in a canonical way, and
¢(P) and ¢(D(P)) belong to the same group.
Note that
d(G(P)) = ¢(P) ,d(G(D(P))) = ¢(D(P))

under the isomorphism (). It suffices to show that d(G(P)) = —d(G(D(P))).
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In fact, as in p.4.§ we have the following factorization of the evaluation map

G(P) @p G(D(P)) —= P @z, D(P) <— P xg,, D(P) — P x D(P)*—1T3

| | | |

Q\B Zip Zyg e Lyg X L

This represents G(D(P)) as the dual gerbe G(P)° of G(P) in the sense of Definition
6.6. The relation d(G(p)) = —d(G(D(P))) follows. O

6.4.13 We now start the actual proof of Lemma [6.21].

In order to see that W is H?(B;Z)-equivariant we will first describe the action of
H3(B;Z) on the sets of isomorphism classes of T-duality triples with fixed underlying
T*-bundles F and E on the one hand, and on the set of isomorphism classes of Picard
stacks D¢, on the other.

Consider g € H3(B;Z). It classifies the isomorphism class of a gerbe G — B with
band T . If t is represented by ((E, H), (E, H),u), then g+t is represented by

(E,H®7G),(E,H®7G),u® id-q) ,

where the maps 7, 7, r are as in ([9).
Note the isomorphism H?(B;Z) = H*(B;T) = Ext}, o p(Zp,T)p). Therefore

the class g also classifies an isomorphism class of Picard stacks with H(G) = Zyg
and H'(G) = T, From G we can derive the gerbe G by the pull-back

G G
|
{L}|B—>Z|B

6.4.14 Recall that we consider an extension £ € Shy,S/B of the form
O—>I|"B—>8—>Z|B—>O,

We consider a Picard stack P € Extpre(s/p)(E, D(Z)).
Let furthermore G € Extpic(s/B) (Z|B, D(Z),). Then we define Po:G e Extercs/s) (€, D(Z)B)
by the diagram

BE\B ~ BI\B XB BI\B . (72)
P®e G P xz, G PxyC

| |

diag
L Zyp X Ly
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The right lower square is cartesian, and in the left upper square we take the
fibre-wise quotient by the anti-diagonal action of BT .
6.4.15 We have D(P) € Extprc(s/)(Z, D(E)), where

0— BTz — D(E)— DE)—0.

We define D(P) to be the quotient of D(P) by BT, in the sense of B.5.13 so that

D(P) — D(P) is a gerbe with band T.

We define D(P) @ppy D(G) by the diagram

BI|B BI|B XB BI\B . (73)

]

D(P) ®@pp; D(G) <— D(P) Xz, D(G) —= D(P) x5 D(G)

| !

diag
Z|B Z\B ><BZ|B

Again, the right lower square is cartesian, and in the left upper square we take the
fibre-wise quotient by the anti-diagonal action of BT, .
6.4.16

Proposition 6.22 We have an equivalence of Picard stacks
D(P®s G) = D(P) @557 D(G) .

Proof : The diagram ([d) defines D(P) ®ppy D(@G) by forming the pull-back to
the diagonal and then taking the quotient of the anti-diagonal BT, g-action in the
fibre. One can obtain this diagram by dualizing ([2) and interchanging the order of
pull-back and quotient. O]

6.4.17 We can now finish the argument that ¥ is H?(B;Z)-equivariant. We let
U(P) = ((E,H),(E,H),u) and U(g+P) = (E', H'), (E', H'), ). Note that g+P =
P®¢G. An inspecttion of the construction of the first entry of ¥ shows that £/ = E
and H' =2 H@gpprkl — BG. Proposition p.29 shows that D(P ®¢ G) = D(P). This
implies that £’ = E. Furthermore, if we restrict D(P ®¢ G) along {1} — Zyp we

get by Proposition (.29 and the proof of Lemma [6.21] a diagram of stacks over B

H? @ G? —— H ®pp s G —= D(P @¢ G) — D(P) @ D(G)

| 1 |

E RE D(P ®¢ G) D(P)

|

0,1z,

1%
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The map o' is induced by the evaluation (P ®¢ G) x D(P ®¢ G) — BT. With
the given identifications using the “duality” between ([J) and ([[J) we see that this
evaluation the induced by the product of the evaluations

(P x D(P)) x (G x D(G)) — BT x BT — BT .

After restriction to Q‘B we see that v/ = u ® v, where v : G ® G? — BT is the
canonical pairing. This finishes the proof of the equivariance of W. 0

Theorem 6.23 The maps ¥ and ® are inverse to each other.

Proof :We first show the assertion under the additional assumption that H?(B;Z) =
0. In this case an element P € Q¢ is determined uniquely by the class ¢(P) €
H?*(B;Z"). Similarly, a T-duality triple ¢t € Triple(B) with ¢(t) = ¢(F) is uniquel
determined by the class &(t) = ¢(E). Since for P € Qg we have &(® o U(P)) D
2w (pP)) "B 5Py and 2w o (1)) "B 2@ 1)) © 3() this implies that
DoV, =idg, and Vo @1 = idjs-1(g), Where s : Triple — P is as in f.1.7.
Note that H3(R,;Z) = 0. Therefore

I

Now consider a general space B € S. We first show that ¥ o & = id. Let
t € s7Y(F) be classified by the map f; : B — R,, i.e. fituynn = t. Then we have

VUod=id. (74)
We consider the group
[ := (im() + im(s))/im(a) C H*(B;Z)/im(a) .

This group is exactly the group ker(7*)/C in the notation of [BRY, Theorem 2.24(3)].
It follows from (B3) that the action of H3(B;Z) on Q¢ induces an action of I's on
Q¢ which preserves the fibres of f. In [BRY, Theorem 2.24(3)] we have shown that
it also acts on Triplej(B) and preserves the subsets Ext(E, h).

Let us fix a Picard stack P € Qg, and let ¢ := ¢(P) and h € H3(E;Z) be such
that f(P) € Ext(E,h). From (BF) we see that the group I'¢ acts simply transitive
on the set

Ase={Qe f(h) |€Q) =3} .
By [BRS, Theorem 2.24(3)] it also acts simply transitive on the set

Beg:= {t € Ext(E, h) | &(t) = ¢} .
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By Lemma [.I§ we have U(Agz) € Bes By Lemma p.2(0 the map ¥ is I'g-
equivariant. Hence it must induce a bijection between Agz and Bez. If we let ¢ run
over all possible choices (solutions of c¢Uc(E) = 0) we see that ¥ : Q¢ — Triple(B)
is a bijection. In view of ([[4) we now also get ® o ¥ = id. O

Acknowledgment: We thank Tony Pantev for the crucial suggestion which initiated
the work on this paper.
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