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Abstract

Let G be a compact Lie-group, X a compact G-CW-complex. We
define equivariant geometric K-homology groups KG

∗ (X), using an ob-
vious equivariant version of the (M, E, f)-picture of Baum-Douglas for
K-homology. We define explicit natural transformations to and from
equivariant K-homology defined via KK-theory (the “official” equivariant
K-homology groups) and show that these are isomorphism.

1 Introduction

K-homology is the homology theory dual to K-theory. For index theory, concrete
geometric realizations of K-homology are of relevance, as already pointed out
by Atiyah [2]. In an abstract analytical setting, such a definition has been given
by Kasparov [11]. About the same time, Baum and Douglas [3] proposed a very
geometric picture of K-homology (using manifolds, bordism, and so on), and
defined a simple map to analytic K-homology. This map was “known” to be an
isomorphism. However, a detailed proof of this was only published in [4].

The relevance of a geometric picture of K-homology extends to equivariant
situations. Kasparov’s analytic definition of K-homology immediately does allow
for such a generalization, and this is considered to be the “correct” definition.
The paper [4] is a spin-off of work on a Baum-Douglas picture for Γ-equivariant
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K-homology, where Γ is a discrete group acting properly on a Γ-CW-complexs.
This requires considerable effort because of the difficulty to find equivariant
vector bundles in this case. Emerson and Meyer give a very general geometric
description even of bivariant equivariant K-theory, provided enoug such vector
bundles exist —compare [5].

In the present paper, we give a definition of G-equivariant K-homology for
the case that G is a compact Lie group, in terms of the “obvious” equivariant
version of the (M,E, φ)-picture of Baum and Douglas. Our main result is that
these groups indeed are canonically isomorphic to the standard analytic equiv-
ariant K-homology groups. The main point of the construction is its simplicity,
we were therefore not interested in utmost generality.

In the case of a compact Lie group, equivariant vector bundles are easy to
come by, and therefore the work is much easier than in the case of a discrete
proper action. We will in part follow closely the work of [4], and actually
will omit detailed descriptions of the equivariant generalizations where they are
obvious. In other parts, however, we will deviate from the route taken in [4] and
give actually simpler constructions. Much of our theory is an equivariant (and
more geometric) version of a general theory of Jakob [8]. These constructions
have no generalization to proper actions of discrete groups and were therefore
not used in [4]. Moreover, we will use the full force of Kasparov’s KK-theory
in some of our analytic arguments. The diligent reader is then asked to supply
full arguments where necessary.

2 Equivariant geometric K-homology

Let G be a compact Lie group, (X,Y ) be a compact G-CW -pair with a G-

homotopy retraction (X,Y )
j−→ (W,∂W )

q−→ (X,Y ). We require that (W,∂W ) is
a smooth G-spinc manifold with boundary. G-homotopy retraction means that
qj is G-homotopy equivalent to the identity (and the homotopy preserves Y ).

2.1 Lemma. Every finite G-CW-pair, more generally every compact G-ENR
and in particular every smooth compact G-manifold (absolute or relative to its
boundary) has the required property, i.e. is such a homotopy retraction of a
manifold with boundary.

Proof. This is trivial for a G-spinc manifold.
The following argument is partly somewhat sketchy, we leave it to the reader

to add the necessary details.
In general, by [9], every finite G-CW-complex X has a (closed) G-embedding

into a finite dimensional complex linear G-space (using [14]) with an open G-
invariant neighborhood U with a G-equivariant retraction r : U → X onto X.
Even better, every such G-embeddings admit such a neighborhood retraction,
using [6]). In other words, a finite G-CW-complex is a G-ANR. By [1], the
converse is true upto G-homotopy equivalence.

A complex G-representation in particular has a G-invariant spinc-structure,
and therefore so has U . Choose a G-invariant metric on U , e.g. the metric
induced by a G-invariant Hermitean metric on the G-representation. Let f be
the distance to X, a G-invariant map on U . Choose r > 0 such that f−1([0, r]) is
compact. This is possible since X is compact: choose r smaller than the distance
from X to the complement of U . Choose a smooth G-invariant approximation g
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to f , i.e. g has to be sufficiently close to f in the chosen metric. To construct g,
we can first choose a non-equivariant approximation and then average it to make
it G-invariant. Choose a regular value 0 < r′ < r such that V := f−1((−∞, r′])
is a neighborhood of X and is a compact manifold (necessarily a G-manifold)
with boundary. Its double W is a G-manifold with inclusion i : X → W (into
one of the two copies) and with retraction W → X obtained as the composition
of the “fold map” and the retraction r (restricted to V ).

This covers the absolute case.
If (X,Y ) is a G-CW-pair, choose an embedding j of X into some linear G-

space E of real dimension n (with spinc-structure), and a G-invariant distance
function. The distance to Y then gives a G-invariant function h : X → [0,∞)
with h(x) = 0 if and only if x ∈ Y . ConsiderX∪YX with the obvious Z/2-action
by exchanging the two copies of X, and G-action by using the given action on
both halves. Extend h to a G×Z/2-equivariant map to R with Z/2-action given
by multiplication with −1 (and with trivial G-action). Let q : X ∪Y X → X be
the folding map. Taking the product of j ◦ q with h : X ∪Y X → R (with trivial
G-action on R), we obtain a G×Z/2-embedding of X ×Y X into E × R.

Construct now the G × Z/2-neighborhoood retract U+ and the manifold
W+ for this embedding as above. By construction, there is a well defined R-
coordinate r for all points in these neighborhoods and also in W+ (a priori only
a continuous function). The subset {r = 0} consisting exactly of the Z/2-fixed
points. The Z/2-action on W+ is smooth. For each Z/2-fixed point x ∈ U+,
(being an open subset of E × R with Z/2-action fixing E and acting as −1 on
R) TxU+ ∼= Rn ⊕ R− as Z/2-representation (where R denotes the trivial Z/2-
representation and R− denotes the non-trivial Z/2-representation). The same
is then true for any Z/2-submanifold with boundary of codimension 0, and also
for a double of such a manifold, like W+.

Because of this special structure of the Z/2-fixed points it follows that
W := W+/Z/2 obtains the structure of a G-manifold with boundary, here
homeomorphic to the subset {r ≥ 0} (as this is a fundamental domain for the
action of Z/2). The boundary of W = W+/Z/2 is exactly the (homeomorphic)
image of the fixed point set {r = 0}. The G×Z/2-equivariant retraction of W+

ontoX∪YX descends to aG-equivariant retraction ofW ontoX = X∪YX/Z/2;
the Z/2-equivariance of the retraction implies that ∂W , the image of the fixed
point set is mapped under this retraction to Y (the image of the Z/2-fixed point
set of X ∪Y X), so we really get a retraction of the pair (W,∂W ) onto (X,Y ).

2.2 Definition. A cycle for geometric equivariant K-homology is a triple (M,E, f),
where

(1) M is a G-spinc manifold (possibly with boundary)

(2) E is a G-equivariant Hermitean vector bundle on M

(3) f : M → X is a continuous G-equivariant map such that f(∂M) ⊂ Y .

Here, a G-spinc-manifold is a spinc-manifold with a given spinc structure —
given as in [4, Section 4] in terms of a complex spinor bundle for TM , now with
a G-action lifted to and compatible with all the structure.

We define isomorphism of cycles (M,E, f) in the obvious way, given by maps
which preserve all the structure (in particular also the G-action).
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The set of isomorphism classes becomes a monoid under the evident opera-
tion of disjoint union of cycles, we write this as +. This addition is obviously
commutative.

More details about spinc-structures can be found in [4, Section 4]. All state-
ments there have obvious G-equivariant generalizations.

2.3 Definition. If (M,E, φ) is a K-cycle for (X,Y ), then its opposite is the
K-cycle (−M,E, φ), where −M denotes the manifold M equipped with the
opposite spinc-structure.

2.4 Definition. A bordism of K-cycles for the pair (X,Y ) consists of the fol-
lowing data:

(i) A smooth, compact G-manifold L, equipped with a G-spinc-structure.

(ii) A smooth, Hermitian G-vector bundle F over L.

(iii) A continuous G-map Φ: L→ X.

(iv) A smooth map G-invariant map f : ∂L → R for which ±1 are regular
values, and for which Φ[f−1[−1, 1]] ⊆ Y .

The sets M+ = f−1[+1,+∞) and M− = f−1(−∞,−1] are manifolds with
boundary, and we obtain two K-cycles (M+, F |M+ ,Φ|M+) and (M−, F |M− ,Φ|M−)
for the pair (X,Y ). We say that the first is bordant to the opposite of the second.

2.5 Definition. Let M be a G-spinc-manifold and let W be a G-spinc-vector
bundle of even dimension over M . Denote by 1 the trivial, rank-one real vector
bundle (with fiberwise trivial G-action). The direct sum W ⊕ 1 is a G-spinc-
vector bundle, and the total space of this bundle is equipped with a G-spinc

structure in the canonical way, as in [4, Definition 5.6].
Let Z be the unit sphere bundle of the bundle W ⊕1 with bundle projection

π. Observe that an element of Z has the form (t, w) with w ∈ W , t ∈ [−1, 1]
such that t2 + |w|2 = 1. The subset {t = 0} is canonically identified with the
unit sphere bundle of W , {t ≥ 0} is called the “northern hemisphere”, {t ≤ 0}
the “southern hemisphere”. The map s : M → Z;m 7→ (0, z(m)) is called
the north pole section, where z : M → W is the zero section. Since Z is the
boundary of the disk bundle, we may equip it with a natural G-spinc-structure
by first restricting the given G-spinc-structure on the total space of W ⊕ 1 to
the disk bundle, and then taking the boundary of this spinc-structure to obtain
a spinc-structure on the sphere bundle.

We construct a bundle F over Z via clutching : if SW is the spinor bundle
of W (a bundle over M), then F is obtained from π∗S∗W,+ over the northern
hemisphere of Z and π∗S∗W,− over the southern hemisphere of Z by gluing along
the intersection, the unit sphere bundle of W , using Clifford multiplication with
the respective vector of W . One can show that this bundle is isomorphic to
S∗V,+, the dual of the even-graded part of the Z/2-graded bundle SV . The
modification of a K-cycle (M,E, φ) associated to the bundle W is the K-cycle
(Z,F ⊗ π∗E, φ ◦ π).

2.6 Definition. We define an equivalence relation on the set of isomorphism
classes of cycles of Definition 2.2 as follows. It is generated by the following
three elementary steps:
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(1) direct sum is disjoint union. Given (M,E1, f) and (M,E2, f),

(M,E1, f) + (M,E2, f) ∼ (M,E1 ⊕ E2, f).

(2) bordism. If there is a bordism of K-cycles (L,F,Φ) as in Definition
2.4 with boundary the two parts (M1, E1, f1) and −(M2, E2, f2), we set
(M1, E1, f1) ∼ (M2, E2, f2).

(3) modification. If (Z,F ⊗ π∗E, φ ◦ π) is the modification of a K-cycle
(M,E, φ) associated to the G-spinc bundle W , then (Z,F ⊗φ∗E, φ ◦π) ∼
(M,E, φ).

2.7 Definition. For a pair (X,Y ) as above, we define the equivariant geometric
K-homology KG,geom

∗ (X,Y ) as the set of isomorphism classes of cycles as in
Definition 2.2, modulo the equivalence relation of Definition 2.6.

Disjoint union of K-cycles provides a structure of Z/2Z-graded abelian
group, graded by the parity of the dimension of the underlying manifold of
a cycle.

2.8 Lemma. Given a compact G-spinc-manifold M with boundary, a G-map
f : (M,∂M) → (X,Y ) and a class x ∈ K0

G(M), we get a well defined element
[M,x, f ] ∈ KG,geom

∗ (X,Y ) by representing x = [E] − [F ] with two G-vector
bundles E,F over M and setting

[M,x, f ] := [M,E, f ]− [M,F, f ] ∈ KG,geom
∗ (X,Y ).

In the opposite direction, we can assign to each triple (M,E, φ) a triple
(M, [E], φ) with [E] ∈ K0

G(M) the K-theory class represented by E.

Proof. We have to check that this construction is well defined, i.e. we have to
check that [E ⊕H]− [F ⊕H] gives the same geometric K-homology class, but
this follows from the relation “direct sum-disjoint union”.

2.9 Remark. Lemma 2.8 allows to use a geometric picture of equivariant K-
homology (for a compact Lie group G) where the bundle E is replaced by a
K-theory class x; and all other definitions are translated accordingly.

2.10 Definition. KG,geom
∗ is a Z/2-graded functor from pairs of G-spaces to

abelian groups. Given g : (X,Y )→ (X ′, Y ′), the transformation g∗ : KG,geom
∗ (X,Y )→

KG,geom
∗ (X ′, Y ′) is given by g∗[M,E, f ] := [M,E, g ◦ f ]. An inspection of our

equivalence relation shows that this is well defined, and it is obviously functorial.
Moreover, we define a boundary homomorphism

∂ : KG,geom
∗ (X,Y )→ KG,geom

∗−1 (Y, ∅); [M,E, f ] 7→ [∂M,E|∂M , f |∂M ].

Again, we observe directly from the definitions that this is compatible with
the equivalence relation, natural with respect to maps of G-pairs and a group
homomorphism.

Our main Theorem 3.1 shows that we have (for the subcategory of compact
G-pairs which are retracts of G-spinc manifolds) explicit natural isomorphisms
to KG,an

∗ . In particular, we observe that on this category KG,geom
∗ with the

above structure is a G-equivariant homology theory.



6 Paul Baum, Hervé Oyono, Thomas Schick

3 Equivariant analytic K-homology

For G a compact group and (X,Y ) a compact G-CW -pair, analytic equivariant
K-homology and analytic equivariant K-theory are defined in terms of bivariant
KK-theory:

KG,an
∗ (X,Y ) := KKG

∗ (C0(X \ Y ),C); K∗G(X,Y ) := KKG
∗ (C, C0(X,Y )).

Of course, it is well known thatK0
G(X,Y ) is naturally isomorphic to the Grothen-

dieck group of G-vector bundle pairs over X with a isomorphism over Y . More-
over, most constructions in equivariant K-homology and K-theory can be de-
scribed in terms of the Kasparov product in KK-theory.

3.1 Analytic Poincaré duality

The key idea we employ to describe the relation between geometric and ana-
lytic K-homology is Poincaré duality in the setting of equivariant KK-theory
developped by Kasparov [12]. An orientation for equivariant K-theory is given
by a G-spinc-structure. This Poincaré duality was in fact originally stated by
Kasparov for general oriented manifolds by using the Clifford algebra Cτ (M).
But for a manifold M with a G-spinc-structure, the Clifford algebra Cτ (M)
used in [12] is G-Morita equivalent to C0(M), the Morita equivalence being im-
plemented by the sections of the spinor bundle. We refer to [12] (see also [16])
for the definition of the representable equivariant K-theory group RK∗G(X) of a
locally compact G-space X. We only recall here that the cycles are given by the
cycles (E, φ, T ) for Kasparov’s bivariant K-theory group KKG

∗ (C0(X), C0(X))
such that the representation φ of C0(X) on E is the one of the C0(X)-Hilbert
structure. By forgetting this extra requirement, we get an obvious homomor-
phism ιX : RK∗G(X)→ KKG

∗ (C0(X), C0(X)). Hence it makes sense to take the
Kasparov product with elements in K∗G(C0(X)) = KKG

∗ (C0(X),C) and this
gives rise to a product

RK∗G(X)×K∗G(C0(X))→ K∗G(C0(X)); (x, y) 7→ ιX(x)⊗ y.

Recall that for any G-spinc-manifold M , there is a fundamental class [M ] ∈
K

dim(M)
G (C0(M)) associated to the Dirac element of theG-spinc-structure onM .

Moreover, if N is an open G-invariant subset of M , then [N ] is the restriction
of [M ] to N , i.e the image of [M ] under the morphism K

dim(M)
G (C0(M)) →

K
dim(M)
G (C0(N)) induced by the inclusion C0(N) ↪→ C0(M). This is the obvious

equivariant generalization of [4, Theorem 3.5], compare also the discussion of
[7, Chapters 10,11]

3.1 Theorem. Given any G-spinc-manifold M , the Kasparov product with the
class [M ] gives an isomorphism

PDM : RK∗G(M)
∼=−→ KG

dimM−∗(C0(M)); x 7→ ιM (x)⊗ [M ].

3.2 Remark.

(1) For a compact space, the equivariant K-theory and the equivariant repre-
sentable K-theory coincide. In particular, for a compact G-spinc-manifold
M , the Poincaré duality can be stated as an isomorphism

PDM : K∗G(M)
∼=−→ KG,an

dimM−∗(M),
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and moreover, for any complex G-vector E on M , PDM ([E]) is the class in
KG,an

dimM+∗(M) = KKdimM+∗
G (C0(M),C) associated to the Dirac operator

DE
M on M with coefficient in the complex vector bundle E.

(2) Recall that representable equivariant K-theory is a functor which is in-
variant with respect to G-homotopies. In particular, if M is a com-
pact G-spinc-manifold with boundary ∂M , then M is G-homotopy equiv-
alent to its interior M \ ∂M and thus we get a natural identification
K∗G(M) ∼= RK∗G(M \ ∂M) given by restriction to M \ ∂M of the C(M)-
structure. In view of this, the Poincaré duality for the pair (M,∂M) can
be stated in the following way

PDM : K∗G(M)
∼=−→ KG,an

dim(M)−∗(M,∂M),

For a compact G-space X and a closed G-invariant subset Y of X, let us
denote by ιX,Y , the composition

K∗G(X) ∼= RK∗G(X)→ RK∗G(X \ Y )
ιX,Y→ KKG

∗ (C0(X \ Y ), C0(X \ Y )),

where the first map is induced by the inclusion X \ Y ↪→ X. Then, with
this notations and under the identification K∗G(M) ∼= RK∗G(M \ ∂M), we
get for any x in K∗G(M) that PDM (x) = ιM,∂M (x)⊗ [M \ ∂M ].

3.3 Definition. We are now in the situation to define the natural isomorphisms

α : KG,geom
∗ (X,Y )→ KG,an

∗ (X,Y )

β : KG,an
∗ (X,Y )→ KG,geom

∗ (X,Y ).

To define α, let (M,E, f) be a cycle for geometric K-homology, with E a
complex G-vector bundle on M . Then we set

α([M,E, f ]) := f∗(PDM ([E])).

To define β, given x ∈ KG,an
k (X,Y ), choose a retraction (X,Y )

j−→ (M,∂M)
p−→

(X,Y ) with M a compact G-spinc manifold with dim(M) ≡ k (mod 2) (such a
manifold exists by assumption, if the parity is not correct just take the product
with S1 with trivial G-action). Then set

β(x) := [M,PDMσ−1(j∗(x)), p].

3.4 Lemma. The transformation α is compatible with the relation “direct
sum—disjoint union” of the definition of KG,geom

∗ (X,Y ). Under the assumption
that α is well defined, it is a homomorphism.

Proof.

α([M,E, f ] + [N,F, g]) = α([M qN,E q F, f q g])
= (f q g)∗(PD([E])⊕ PD([F ])) = f∗(PD([E])) + g∗(PD([F ])).

This implies both assertions, as PD and f∗ are both homomorphisms.



8 Paul Baum, Hervé Oyono, Thomas Schick

To prove that both maps are well defined and indeed inverse to each other
we need a few more properties of Poincaré duality which we collect in the sequel.
These statements are certainly well known, for the convenience of the reader we
give proofs of most of them in an appendix.

We first relate Poincaré duality to the Gysin homomorphism, and also de-
scribe vector bundle modification in terms of the Gysin homomorphism.

Let f : M → N be a smooth G-map between two compact G-spinc-manifolds
without boundary. We use, as a special case of [13, Section 4.3] (see also [17,
Section 7.2]), the Gysin element f! in KKG

dimM−dimN (C(M), C(N)). It has the
functoriality property that if f : M → N and g : N → N ′ are two smooth G-
maps between compact G-spinc-manifolds, then f! ⊗ g! = (g ◦ f)!. We will also
need the corresponding construction for manifolds with boundary. We recall all
this in the appendix.

3.5 Lemma. An equivalent description of vector bundle modification, using
Remark 2.9, is given as follows:

Let (M,x, φ) be a triple for Kgeom,G
∗ (X,Y ), with x ∈ K0

G(M), and let W be
a G-spinc vector bundle over M of even rank. Let π : Z →M be the underlying
G-manifold of the modification with respect to W . Recall from definition 2.5
that s : M → Z is the north pole section and that the bundle F is obtained via
clutching. Then the triple (Z, s!(x), φ ◦ π) is equivalent to (Z, π∗x ⊗ [F ], φ ◦ π)
in KG,geom

∗ (X,Y ), i.e. represents the vector bundle modification of x.

Proof. Note first that the bundle B obtained in the same way as S∗v,+, but
by gluing π∗S∗W,− on both hemispheres with the identity along the unit sphere
bundle of W is just π∗SW,− and therefore extends to the disk bundle. Therefore
(Z, π∗x⊗B,φ ◦ π) is ∅-bordant and represents 0 ∈ Kgeom,G

∗ (X,Y ).
Observe that the normal bundle of s : M → Z is isomorphic to W . We

now establish that s!([E]) = π∗[E] ⊗
(
[S∗v,+]− [B]

)
for any complex G-vector

bundle E over M , using the definition of s! as given in Section A.1. We use
the notation of A.1. Let us start with E = M × C. We denote by EZ the
C(Z)-module of sections of S∗v,+. By viewing W as a tubular neighborhood
of M in the northern hemisphere of Z, the operator TW : q∗W ξ

+
W → q∗W ξ

−
W of

A.1 is a compact pertubation of the restriction to C0(W ) of the C(Z)-linear
map T ′Z : EZ → π∗ξ−W , whose restriction to the northern hemisphere is given by
pontwise Clifford multiplication and restriction to the southern hemisphere is
the identity. Pointwise action of T ′Z provides a map of C(Z)-module

{f : [0, 1]→ EZ , f(0) ∈ q∗W ξ+W } −→ {f : [0, 1]→ π∗ξ−W , f(0) ∈ q∗W ξ−W }

and we get in this way a homotopy between s!([1]) and the class in K0(Z)
of the K-cycle corresponding to T ′Z : EZ → π∗ξ−W . But since Z is compact
and T ′Z is indeed induced by an isomorphism of vector bundles, we can forget
this isomorphism and we finally get s!([1]) = [S∗v,+] − [B]. Now if we want to
take the complex vector bundle E into account, we have to perform the above
construction with coefficient in E, i.e replace q∗W ξ

+
W by q∗W (E) ⊗C0(W ) q

∗
W ξ

+
W

and EZ by π∗(E)⊗C(Z) EZ .
We finally get s!(E) = π∗E ⊗

(
[S∗v,+]− [B]

)
. The fact that B is ∅-bordant

implies for the geometric K-homology cycles, as desired, that

[Z, s!(E), φ ◦ π] = [Z, π∗E ⊗ S∗v,+, φ ◦ π] ∈ Kgeom,G
∗ (X,Y ).
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From now on, we will use the following notation: if f : M → N is a G-map
between G-spinc and E is a complex vector bundle over M , then f !E will stand
for the element f ![E] of K∗+n−MG (N). It is well known that the Gysin map and
functoriality in K-homology are intertwined by Poincaré duality. This is the
key for proving that α is compatible with vector bundle modification, using the
description of the latter given in Lemma 3.5. We will prove the next assertion
in A.2.

3.6 Lemma. Let f : M → N be a G-map between G-spinc manifolds with m =
dimM and n = dimN , possibly with boundary. Assume that f(∂M) ⊂ ∂N .
Then we have the following commutative diagram

K∗G(M) PDM−−−−→ KG,an
m−∗ (M,∂M)

f!

y yf∗
K∗+n−mG (N) PDN−−−−→ KG,an

m−∗ (N, ∂N).

3.7 Lemma. The transformation α of Definition 3.3 is compatible with vector
bundle modification.

Proof. The assertion is a direct consequence of Lemma 3.5 and Lemma 3.6.
Explicitly, if (M,E, f) is a cycle for KKG,geom

∗ (X,Y ) and (Z, s!(E), f ◦ π) the
result of vector bundle modification according to Lemma 3.5, then

α(Z, s!(E), f ◦ π) = f∗π∗PDZ(s!(E))
Lemma 3.6= f∗π∗s∗PDM (E) π◦s=id= f∗PDM (E)
= α(M,E, f).

We now recall that, in the usual long exact sequences in K-homology, the
boundary of the fundamental class is the fundamental class, or, formulated
more casually: the boundary of the Dirac is Dirac of the boundary. To deal
with bordisms of manifolds with boundary, we actually need a slightly more
general version as follows, which we prove in Appendix A.4.

3.8 Lemma. Let L be a G-spinc manifold with boundary ∂L, let M be a G-
invariant submanifold of ∂L with boundary ∂M such that dimM = dimL − 1
and let ∂ ∈ KKG

1 (C0(M \ ∂M), C0(L \ ∂L)) be the boundary element associated
to the exact sequence

0→ C0(L \ ∂L)→ C0((L \ ∂L) ∪ (M \ ∂M))→ C0(M \ ∂M)→ 0.

Then [∂]⊗ [L \ ∂L] = [M \ ∂M ].

3.9 Corollary. With notation of Lemma 3.8, the following diagram commutes

K∗G(L) −−−−→ K∗G(M)yPDL yPDM
KG,an

dimL−∗(L, ∂L) ∂⊗−−−−→ KG,an
dimL−∗−1(M,∂M),

where the top arrow is induced by the inclusion i : M ↪→ L.
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Proof. Fix x ∈ K∗G(L) and denote by x|M the image of x under the homomor-
phism K∗G(L)→ K∗G(M) induced by the inclusion M ↪→ L. Then we get

∂ ⊗ PDL(x) = ∂ ⊗ ιL,∂L(x)⊗ [L, ∂L]
= ιM,∂M (x|M )⊗ ∂ ⊗ [L \ ∂L]
= ιM,∂M (x|M )⊗ [M \ ∂M ]
= PDM (x|M ),

where the second equality should be a well known consequence of the naturality
of boundaries and is proved in Lemma A.8 and where the third equality holds
by Lemma 3.8.

3.10 Lemma. The transformation α is compatible with the bordism relation
of KG,geom

∗ (X,Y ), i.e. let (L,F, φ, f) be a bordism for a G-CW -pair (X,Y ).
Then, with notations of Definition 2.4,

α(M+, F |M+ , φ|M+) = (φ|M+)∗PDM+([F |M+ ])

= −(φ|M−)∗PDM−([F |M− ]) = α(M−, F |M− , φ|M−).

Proof. If we setM = M−qM+, this amounts to prove that (φ|M )∗PD([F |M ]) =
0 in KG,an

∗ (X,Y ) = KKG
∗ (C0(X \ Y ),C). But this a consequence of Corollary

3.9, together with naturallity of boundaries in the following commutative dia-
gram with exact rows

0 −−−−→ 0 −−−−→ C0(X \ Y ) −−−−→ C0(X \ Y ) −−−−→ 0y y y
0 −−−−→ C0(L \ ∂L) −−−−→ C0(L \ f−1([−1, 1])) −−−−→ C0(M \ ∂M) −−−−→ 0

,

where the middle and right vertical arrows are induced by φ.

We are now in the situation to state and prove our main theorem.

3.11 Theorem. The transformations α and β of Definition 3.3 are well defined
and inverse to each other natural transformations for G-homology theories.

Proof. Lemmas 3.4, 3.7, and 3.8 together imply that α is a well defined homo-
morphism. If we fix, for given (X,Y ) the manifold (M,∂M) which retracts to
(X,Y ) (or rather two such manifods, one for each parity of dimensions), then β
also is well defined. As soon as we show that β is inverse to α we can conclude
that it does not depend on the choice of (M,∂M).

It is a direct consequence of the construction (and of naturality of K-homology)
that α is natural with respect to maps g : (X,Y )→ (X ′, Y ′).

Corollary 3.9 implies that α is compatible with the boundary maps of the
long exact sequence of a pair, and therefore a natural transformation of homol-
ogy theories (strictly speaking, we really know that KG,an

∗ is a homology theory
only after we know that α is an isomorphism).

We now prove that α ◦ β = id. Fix x ∈ KG,an
∗ (X,Y ). Then

α(β(x)) = α([M,PD−1(j∗(x)), p]) = p∗(PD ◦ PD−1(j∗(x)))
= p∗j∗(x) = x

The proof of β ◦ α = id is given in the next section.
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4 Normalization of geometric cycles

The goal of this section is to prove that β◦α : KG,geom
∗ (X,Y )→ KG,geom

∗ (X,Y )

is the identity whenever (X,Y ) is a compact G-pair with a retraction (X,Y )
j−→

(N, ∂N)
p−→ (X,Y ). Since α and β are natural, the above map is a direct

summand of β ◦ α : KG,geom
∗ (M,∂M)→ KG,geom

∗ (M,∂M). It therefore suffices
to show that β ◦ α = id for G-spinc manifolds.

Fix now (M,x, f) a cycle for Kgeom
∗ (M,∂M) as above, with x in K0

G(M).
Then

β(α[M,x, f ]) = [N,PD−1f∗PD(x), id] Lemma3.6= [N, f!x, id].

4.1 Theorem. Let h : (M,∂M) ↪→ (N, ∂N) be the inclusion of a G-spinc sub-
manifold, E a complex G-vector bundle on M (or more generally an element
of K0

G(M)) and let φ : (N, ∂N) → (X,Y ) be a G-equivariant continuous map,
where (X,Y ) is a G-space. Let ν be the normal bundle of h. Fix the trivial
complex line bundle on N . Then the vector bundle modification of (M,E, φ ◦h)
“along” C ⊕ ν (with its canonical spinc-structure) and of (N,h!E, φ) “along”
C×N are bordant. In particular,

[M,E, φ ◦ h] = [N,h!E, φ] ∈ KG,geom
∗ (X,Y ).

Proof. We just have to write down the bordism. Recall the construction of
vector bundle modification (of N along C×N): we consider C×R×N , equip this
with the standard Riemannian metric, and consider the unit disc bundle D3×N
with its boundary S2×N within this bundle. It comes with a canonical “north-
pole inclusion” i : N → S2×N , and the modificaton is (S2×N,φ ◦ prN , i!h!E).

Fix ε > 0 small enough and an embedding of ν into N as tubular neighbor-
hood of M . Fix a G-invariant Riemannian metric on ν. Then the ε-disk bundle
and the ε-sphere bundle of ν⊕C⊕R are contained in D3×N , and if we remove
the ε-disk bundle we get a manifold W with two boundary components, being
S2 ×N and the sphere bundle of ν ⊕ C ⊕ R, i.e. the underlying manifold S of
the modification of (M,φ ◦ h,E), with its north pole embedding iM : M → S.

Observe that we have an obvious embedding e (using the R-coordinate of
the vector bundle) of M × [ε, 1] into W .

We actually get cartesian diagrams

M
i1−−−−→ M × [ε, 1]yi◦h ye

S2 ×N j−−−−→ W

,

M
iε−−−−→ M × [ε, 1]yiM ye

S
j′−−−−→ W

.

Consider e!(pr∗M E) on W , with prM : M × [ε, 1]→M the obvious map. We
claim that (W,φ◦pr, e!(pr∗M E)) is a bordism (in the sense of cycles for geometric
K-homology) between the two cycles we consider.

Obviously, the boundary has the right shape, and φ ◦ pr: W → X restricts
on S2×N to the correct map. The restriction φ◦pr |S is homotopic to the map
of the vector bundle modification of (M,E, φ ◦ h) (one has to compose with the
projection from the normal bundle to M , composed with the inclusion h); an
easy modification of φ ◦ pr will produce a true bordism.

The final point concerns the K-theory class. Here we use the compatibility
of pullback and push-down along cartesian products, i.e. that j∗ ◦ e! = (i ◦ h)! ◦
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(i1)∗ and (iM )! ◦ (iε)∗ = (j′)∗e!. The restriction j∗(e!(pr∗M E)) of e!(pr∗M E) to
S2×N therefore is equal to j∗(e!(pr∗M E)) = (i ◦ h)!(i∗1 pr∗M )E = i!h!E, and the
restriction of e!(pr∗M E) to S is equal to (j′)∗e!(pr∗M E) = (iM )!i∗ε pr∗M E = iM !E.
The claim is proved.

We now finish the proof that β(α(M,E, f)) = [N, f!E, id] = [M,E, f ].
For this, choose a finite dimensional G-representation V and a G-embedding
jV : M → V (this is possible because G is a compact Lie group and M is
compact, compare e.g. [14]). Observe that jV is G-homotopic to the constant
map with value 0. Embed V into its one-point compactification V +, a sphere
(it can also be realized as the unit sphere in V ⊕ R). By composition we ob-
tain a G-embedding j : M → V + which is still homotopic to the constant map
c : M → V + with value 0.

We obtain an embedding M
(f,j)−−−→ N × V +, with prN ◦(f, j) = f .

By Theorem 4.1 therefore

[M,E, f ] = [N × V +, (f, j)!E,prN ]. (4.2)

On the other hand, (f, j) : M → N×V + is G-homotopic to (f, c) : M → N×V +.
Lemma 3.6 shows that (f, j)!E depends only on the homotopy class of the map.
Therefore

[N × V +, (f, j)!E,prN ] = [N × V +, (f, c)!E,prN ]. (4.3)

Finally, (f, c) = (idN , c) ◦ f , and (idN , c) : N → N × V + is an embedding
with prN ◦(idN , c) = idN . Using functoriality of the Gysin homomorphism and
Theorem 4.1 again, we obtain

[N, f!E, id] = [N × V +, (f, c)!E,prN ]. (4.4)

This finishes the proof of our main theorem.

A Analytic Poincaré duality and Gysin maps

A.1 Construction of the Gysin element for closed mani-
folds

Let f : M → N be a smooth G-map between two compact G-spinc manifolds
without boundary. We describe the construction of the (functorial) Gysin ele-
ment f ! ∈ KKG

dimM−dimN (C(M), C(N)).
By using the composition rule and since every smooth G-map f : M →

N between compact G-spinc-manifolds can be written as the composition of
the embedding M ↪→ M × N ; x 7→ (x, f(x)) with the canonical projection
π2 : M × N → N , it will be enough for our purpose to describe the Gysin
elements associated to an equivariant embedding and to π2.

For the projection π2, the Gysin element is π2! = τC(N)([M ]), where τC(N)([M ])
is the element of KKG

dimM (C(M×N), C(N)) ∼= KKG
dimM (C(M)⊗C(N), C(N))

obtained from [M ] ∈ KKG
dimM (C(M),C) by tensoring with C(N). Notice that

in the special case of the map f : M → {∗}, f! = [M ].
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In order to define the Gysin element associated to an embedding, we first
recall the KK-theory description of the Thom isomorphism. For a G-space X
and a G-spinc vector bundle W

qW−→ X, the Thom isomorphism

K∗G(X)
∼=−→ K∗+rankW

G (W )

is implemented by an element βW ∈ KKG
rankW (C0(X), C0(W )) represented by

the following K-cycle. Let SW be the G-spinor bundle associated to the G-
spinc structure on W and let ξW be the C0(X)-module of continuous sections
of SW . If we choose a G-spinc metric on SW , then ξW can be endowed with a
G-equivariant C0(X)-Hilbert module structure. Then the pull-back q∗W ξX is the
C0(W )-Hilbert module of continuous sections on the pulled-back vector bundle
q∗WSW and the morphism

C0(X)→ Cb(W ); f 7→ f ◦ qW

gives rise to an equivariant representation φW of C0(X) on q∗W ξW . Let

TW : q∗W ξW → q∗W ξW

be the operator defined using the Clifford representation on SW by

TW .e(v) :=
v

1 + ‖v‖
· e(v) for e ∈ q∗W ξW .

Then (φW , q∗W ξW , TW ) is a K-cycle for KKG
rankW (C0(X), C0(W )) and its class

βW implements by (right) Kasparov product the Thom isomorphism.

Now if f : M → N is a G-equivariant embedding of G-spinc-manifolds, let
us consider the normal bundle νM

qνM−→ M corresponding to this embedding.
Then νM is a G-spinc-vector bundle, and if we fix a G-invariant metric on N ,
νM can be viewed as a G-invariant open tubular neighborhood of M in N via
the exponential map. This gives rise to an equivariant inclusion θM : C0(νM ) ↪→
C(N) and then

f! = βνM ⊗ [θM ].

A.2 Gysin and Poincaré duality

Proof of Lemma 3.6, case ∂M = ∅ = ∂N . Let us denote by [f ] the element of
KKG

∗ (C(N), C(M)) corresponding to the morphism C(N)→ C(M);h 7→ h◦f .
Then the commutativity of the diagram amouts to prove that

ιN (x⊗ f!) = [f ]⊗ ιM (x)⊗ f! (A.1)

for all x in K∗G(M). Namely, using this equality, we have

PDN (x⊗ f!) = ιN (x⊗ f!)⊗ [N ] = [f ]⊗ ιM (x)⊗ f! ⊗ [N ].

Since [N ] is the Gysin element corresponding to the map N → {∗}, we get then
that f! ⊗ [N ] = [M ] and hence that

PDN (x⊗ f!) = [f ]⊗ ιM (x)⊗ [M ] = f∗(PDM (x)).
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Let us now prove Equation A.1. Since f can be written as the composition of
an embedding and of the projection π2 : M × N → N , it is enought by using
the functoriality in K-homology and the composition rule for Gysin elements to
check this for an embedding and for π2.

We start with π2. Fix x ∈ K∗G(M × N). Recall now first that for G-
C∗-algebras A,A′, B,B′ and z ∈ KKG(A,A′), z′ ∈ KK(B,B′) we have the
following commutativity of the exterior Kasparov product:

τB(z)⊗ τA′(z′) = τA(z′)⊗ τB′(z) ∈ KKG(A⊗B,A′ ⊗B′).

(where for a G-C∗-algebras, τD : KKG(A,B) → KKG(A ⊗ D,B ⊗ D) is ten-
sorising by D). Recall then that π2! = τC(N)([M ]) and [π2] = τC(N)([pt]), for
pt : M → {∗} , and that we can write

ιM×N (x) = τC(M×N)(x)⊗ µM×N ,

where µM×N : C(M × N) ⊗ C(M × N) → C(M × N) is the multiplication.
Then

[π2]⊗ ιM×N (x)⊗ π2! = τC(N)[pt]⊗ τC(M×N)(x)⊗ [µM×N ]⊗ π2!

= τC(N)

(
[pt]⊗ τC(M)(x)

)
⊗ [µM×N ]⊗ π2!

= τC(N)

(
x⊗ τC(M×N)[pt]

)
⊗ [µM×N ]⊗ π2!

= τC(N)(x)⊗ τC(N×M×N)[pt]⊗ [µM×N ]⊗ π2!
= τC(N)(x)⊗ τC(M)([µN ])⊗ τC(N)([M ])
= τC(N)(x)⊗ τC(N×N)([M ])⊗ [µN ]
= τC(N)(x⊗ τC(N)([M ]))⊗ [µN ]
= τC(N)(x⊗ π2!)⊗ [µN ]
= ιN (x⊗ π2!).

Recall that, if x is an element in K∗G(M), then ιM (x) is the element of
KKG

∗ (C(M), C(M)) obtained from any K-cycle representing x by noticing that
C(M) being commutative, the right action is also a left action. Since x⊗ f! =
[p]⊗ιM (x)⊗f!, where [p] is the element of K∗G(M) corresponding to the inclusion
C ↪→ C(M), we can see that if (φ, T, ξ) is a K-cycle representing ιM (x) ⊗ f!,
then ιN (x⊗ f!) can be represented by the K-cycle (φ′, T, ξ) where φ′ is equal to
the (right) action of C(N) on ξ. Thus we only have to check that (φ′, T, ξ) and
(φ ◦ f, T, ξ) represent the same class in KKG

∗ (C(N), C(N)).
Since f is an embbeding, f! can be represent by the K-cycle (φνM , q

∗
νM ξνM , TνM )

where q∗νM ξνM is viewed as a C(N)-Hilbert module via the inclusion C0(νM ) ↪→
C(N) and where φνM is the representation induced by φ0 : C(M)→ Cb(νM );h 7→
h ◦ qνM . Thus we can choose the K-cycle (φ, T, ξ) representing ιM (x) ⊗ f! in
such a way that

• ξ is in fact a C0(νM )-Hilbert module (by associativity of the Kasparov
product);

• T commutes with the action of Cb(νM ) viewed as the multiplier algebra
of C0(νM ) (use an approximate unit and the continuity of T , observe that
The = heT = hTe for all h ∈ Cb(νM ), e ∈ C0(νM ));
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• the C(M)-structure is induced by φ0.

The maps νM → νM ; v 7→ tv for t in [0, 1] provide a homotopy between φ0 ◦ f
and the restricton map C(N) → Cb(νM ) and this homotopy commutes with
TνM . But the restriction map corresponds precisely to the C(N)-Hilbert module
structure on q∗νM ξνM , and hence we get the result.

A.3 Gysin and Poincaré duality if ∂M 6= ∅
Our key tool to study G-manifolds with boundary is the double.

For a manifold X with boundary ∂X, let us define the double DX of X
to be the manifold obtained by identifying the two copies of the boundaries
∂X in X q X. To distinguish the two copies, we write DX = X ∪ X−. Let
pX : DX → X be the map obtain by identifying the two copies of X. Let
X : X → DX be the map induced by the inclusion of the first factor of X qX,
and let us set gX = X ◦ pX . It is straightforward to check that if X is a
G-spinc compact manifold with boundary ∂X, then DX is a G-spinc compact
manifold without boundary. The given orientation or G-spinc structure on the
first copy of X and the negative structure on the second copy X− together define
canonically a G-spinc structure on DX. Note that pX ◦ jX = idX . Therefore,
the exact sequence

0→ C0(X− \ ∂X) ιX−−→ C(DX)
j∗X−−→ C(X)→ 0

has a split, and we get induced split exact sequences in K-theory and K-
homology. Note that in general there is not split of ιX by algebra homomor-
phisms, but the corresponding split in K-theory and K-homology of course exists
nonetheless. We use the corresponding sequence and split with the roles of X
and X− interchanged.

We now state the workhorse lemma for the extension of the treatment of
Gysin homomorphism from closed manifolds to manifolds with boundary.

A.2 Lemma. Poincaré duality for M is a direct summand of Poincaré dual-
ity for DM , i.e. the following diagram commutes, if M is a compact G-spinc

manifold with boundary.

K∗G(M)
p∗M−−−−→ K∗(DM)

j∗M−−−−→ K∗(M)yPDM yPDDM yPDM
KG
n−∗(M,∂M) s−−−−→ KG

n−∗(DM)
(ιM )∗−−−−→ KG

n−∗(M,∂M).

(A.3)

Here, s is the K-homology split mentioned above, and n = dim(M) = dim(DM).

Proof. This result is certainly well known. For the convenience of the reader,
we give a proof of it in this appendix.

We use the following alternative description of the Poincaré duality homo-
morphism. For a compact manifold M (possibly with boundary) it is the com-
position

KK({∗},M)
τC0(M◦)−−−−−→ KK(M◦,M◦×M)

µ−→ KK(M◦,M◦)
⊗[M◦]−−−−→ KK(M◦, {∗}).



16 Paul Baum, Hervé Oyono, Thomas Schick

Here we abbreviate KK for KKG
∗ (and ask the reader to add the correct grad-

ing), and write KK(X,Y ) = KK(C0(X), C0(Y )) for two spaces X,Y , µ is the
map induced by the multiplication C0(M×M◦) = C(M)⊗C0(M◦)→ C0(M◦).

Naturality of KK-theory and of the fundamental class (under inclusion of
open submanifolds) now gives the following commutative diagram, writing N =
DM

KK({∗}, M)
τC0(M◦)−−−−−−→ KK(M◦, M◦ ×M) −−−−−→

µ
KK(M◦, M◦)x??j∗ x??j∗ ‚‚‚

KK({∗}, N)
τC0(M◦)−−−−−−→ KK(M◦, M◦ ×N)

µ−−−−−→ KK(M◦, M◦) −−−−−→
⊗[M◦]

KK(M◦, {∗})??y ??yι∗ ??yι∗ ‚‚‚
KK(N, N ×N)

ι∗M−−−−−→ KK(M◦, N ×N)
µ−−−−−→ KK(M◦, N)

⊗[N ]−−−−−→ KK(M◦, {∗})‚‚‚ x??ι∗ x??ι∗ x??ι∗
KK(N, N ×N) KK(N, N ×N)

µ−−−−−→ KK(N, N)
⊗[N ]−−−−−→ KK(N, {∗})

Walking around the boundary of this diagram shows that the right square of
(A.3) is commutative.

The commutativity of the left square of (A.3) is more difficult to show, in
particular since s is not induced from an algebra homomorphism. However,
from what we have just seen we can conclude that

ι∗PDDMp∗ = PDM j∗p∗
p◦j=idM= PDM = ι∗sPDM . (A.4)

The section s is characterized by the properties ι∗s = id and sp∗ = 0.
Therefore, to be allowed to “cancel” ι∗ in Equation (A.4) we have to show that
PDDMp∗ maps to the image of s, i.e. to the kernel of p∗: we must show that

0 = p∗PDNp∗ : KK({∗},M)→ KK(N, {∗}). (A.5)

The relevant groups, namely K∗(M), K∗(DM), K∗(DM), K∗(M◦) all are
K∗(M)-modules, and all homomorphisms are K∗(M)-module homomorphisms.
The module structure on K∗(M) is induced via the ring structure of K∗(DM)
and the map p∗. K∗(DM) is a K∗(DM)-module via the cap product, and via
p∗ it therefore also becomes a K∗(M)-module; the cap product also gives the
K∗(M)-module structure on K∗(M◦).

As K∗(M) is generated by 1 as a K∗(M)-module, Equation (A.5) follows if

0 = p∗PDDMp∗1 = p∗[DM ].

To see this, remember that every double of a manifold with boundary is
canonically a boundary, namely DM = ∂(Y := (M × [−1, 1]/ ∼)), where the
equivalence relation is generated by (x, t) ∼ (x, s) is x ∈ ∂M and s, t ∈ [−1, 1].
Observe that this construction is valid in the world of G-spinc manifolds. Note
that pM : DM → M extends to P : Y = (M × [−1, 1]/ ∼) → (M × [0, 1]/ ∼
); (x, t) 7→ (x, |t|). From the long exact sequences of the pairs (Y,DM) and
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(M×{1},M × [0, 1]/ ∼), we have the following commutative diagram

KdimM+1(Y ◦) P∗−−−−→ KdimM+1(C0((M × [0, 1]/ ∼) \M × {1}) = {0}y∂ y∂
KdimM (DM)

p∗−−−−→ KdimM (M).

In this diagram, [Y ◦] is, according to Lemma 3.8, mapped under the boundary
to [DM ]. Therefore, by naturality, p∗[DM ] = ∂P∗([Y ◦]). However,

M × [0, 1]/ ∼ \M × {1} = M◦ × [0, 1),

and C0(M◦ × [0, 1)) is G-equivariantly contractible, hence its equivariant K-
homology vanishes. The assertion follows.

A.6 Definition. Let now f : M → N be a G-equivariant continuous map
between G-spinc manifolds with boundary such that f(∂M) ⊂ ∂N . Then we
define f! : K∗G(M)→ K∗+n−mG (N) as the composition

f! = PD−1
N f∗PDM .

A.7 Remark. Note that this is consistent with the definition for closed manifolds
and smooth maps by the considerations of Section A.2. Lemma 3.6 holds in the
general case by definition.

However, at least in special situations, we can also define the Gysin map geo-
metrically. Let, for example, M be a G-spinc compact manifold with boundary,
let W be a G-spinc vector bundle over M , let Z be the manifold obtained from
vector bundle modification with respect to W and, as above, let π : Z → M
and s : M → Z be the canonical projection or the “north pole” section of π,
respectively. The vector bundle W is the normal vector bundle of M in Z
(with respect to the embedding s) and is therefore a G-invariant tubular open
neighbourhood of M .

We can then define the Gysin element s! ∈ KKG(C(M), C(Z)) associated
to s as we did for manifold without boundary by s! = βW ⊗ [θM ], where
θM : C0(W ) → C(Z) is the morphism induced by the inclusion of W into Z.
The Gysin homomorphism can then be defined correspondingly.

With arguments similar to those of Section A.2 we can show that with this
definition Lemma 3.6 holds, so that our Definition A.6 is consistent with the
geometric one. The proof will also use Lemma A.2, that PDM is a direct
summand of PDDM .

A.8 Lemma. If i : M ↪→ L is as in Lemma 3.8, then

∂ ⊗ ιL,∂L(x) = ιM,∂M (i∗x)⊗ ∂ ∀x ∈ K∗G(L),

where ∂ ∈ KK(C0(M◦), C0(L◦)) is the boundary element of the exact sequence
of C0(L◦) ↪→ C0(L◦ ∪M◦) � C0(M◦) as in Lemma 3.8.

Proof. We first recall a KK-description of ιL,∂L. We abbreviate L◦ = L \ ∂L.
It is given by the composition

KK({∗}, L)
τC0(L◦)−−−−−→ KK(L◦, L× L◦) ⊗µ−−→ KK(L◦, L◦)
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where µ is the multiplication homomorphism. By commutativity of the exterior
Kasparov product, we therefore get that ∂ ⊗ ιL,∂L equals the composition

KK({∗}, L)
τM◦−−−→ KK(M◦, L×M◦) ⊗∂−−→ KK(M◦, L× L◦) µ−→ KK(M◦, L◦).

(A.9)

Now observe that we have commutative diagrams of short exact sequences

C0(L× L◦) −−−−→ C0(L× (L◦)∪M◦) −−−−→ C0(L×M◦)y y= i∗×idM◦

y
C0(L \M ×M◦ ∪ L× L◦) −−−−→ C0(L× (L◦ ∪M◦)) −−−−→ C0(M ×M◦)yµ yµ µ

y
C0(L◦) −−−−→ C0(L◦ ∪M◦) −−−−→ C0(M◦)

Using naturality of the boundary map, we observe that the composition of the
last two arrows of (A.9) coincides with the composition

KK(M◦, L×M◦) i∗−→ KK(M◦,M×M◦) ⊗µ−−→ KK(M◦,M◦) ⊗∂−−→ KK(M◦, L◦).

As i∗ commutes with the exterior product with C0(M◦), this implies the asser-
tion.

A.4 Proof of Lemma 3.8

We finish by proving Lemma 3.8. Recall that it states

A.10 Lemma. Let L be a G-spinc manifold with boundary ∂L, let M be a
G-invariant submanifold of ∂L with boundary ∂M such that dimM = dimL−1
and let ∂ ∈ KKG

1 (C0(M \ ∂M), C0(L \ ∂L)) be the boundary element associated
to the exact sequence

0→ C0(L \ ∂L)→ C0((L \ ∂L) ∪ (M \ ∂M))→ C0(M \ ∂M)→ 0.

Then [∂]⊗ [L \ ∂L] = [M \ ∂M ].

Proof. Using a G-invariant metric on L and a corresponding collar, (0, 1]×M \
∂M can be viewed as a G-invariant open neighborhood of (L \ ∂L)∪ (M \ ∂M)
and with {1} ×M \ ∂M ⊂ ∂L, moreover, the inclusion C0((0, 1]×M \ ∂M) ↪→
C0((∂L\∂L)∪ (M \∂M)) gives rise to the following commutative diagram with
exact rows
0 −−−−−→ C0(L \ ∂L) −−−−−→ C0((L \ ∂L) ∪ (M \ ∂M)) −−−−−→ C0(M \ ∂M) −−−−−→ 0x?? x?? x??
0 −−−−−→ C0((0, 1)×M \ ∂M) −−−−−→ C0((0, 1]×M \ ∂M) −−−−−→ C0(M \ ∂M) −−−−−→ 0.

By naturality of the boundary homomorphism and since by [7, Proposition
11.2.12] (for the non-equivariant case, but the equivariant one follows along
identical lines) the restriction of [L\∂L] to (0, 1)×M \∂M is [(0, 1)×M \∂M ],
the statement of the lemma amouts to show that

[∂′]⊗ [(0, 1)×M \ ∂M ] = [M \ ∂M ],
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where ∂′ ∈ KKG
1 (C0(M \ ∂M), C0((0, 1)×M \ ∂M)) is the boundary element

associated to the bottom exact sequence of the diagram above. Viewing M \
∂M as an invariant open subset of DM , using naturality of boundaries in the
following commutative diagram with exact rows

0 −−−−−→ C0((0, 1)×DM) −−−−−→ C0((0, 1]×DM) −−−−−→ C0(DM) −−−−−→ 0x?? x?? x??
0 −−−−−→ C0((0, 1)×M \ ∂M) −−−−−→ C0((0, 1]×M \ ∂M) −−−−−→ C0(M \ ∂M) −−−−−→ 0,

and since the elements [M \∂M ] of KKG
∗ (C0(M \∂M),C) and [(0, 1)×M \∂M ]

of KKG
∗ (C0((0, 1)×M \ ∂M),C) are the restrictions of [DM ] to M \ ∂M and

of and of [(0, 1)×DM ] to (0, 1)×M \ ∂M , respectively, we can indeed assume
without loss of generality that M has no boundary.

Observe now that in the exact sequence in (non-equivariant) K-homology

0→ C0((0, 1))→ C0((0, 1])→ C({1})→ 0

by the well known principle that “boundary of Dirac is Dirac” we indeed ob-
serve [∂′′]⊗ [(0, 1)] = [{1}] in KK0(C({1}),C), compare [7, Propositions 9.6.7,
11.2.15]. We can now take the exterior Kasparov product of the whole situation
with with [M ] ∈ KKG

dimM (C0(M),C). By naturality of this Kasparov prod-
uct, we obtain [∂′] ⊗ [(0, 1)] ⊗ [M ] = [{1}] ⊗ [M ]. Finally, we know that the
fundamental class of a product is the exterior Kasparov product of the funda-
mental classes, compare again [7, Proposition 11.2.13]; the equivariant situation
follows similarly. This implies the desired relation [∂′] ⊗ [(0, 1) ×M ] = [M ] ∈
KKdimM (C0(M),C).
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