
REMARKS ON A CONJECTURE OF GROMOV AND
LAWSON

WILLIAM DWYER

THOMAS SCHICK

STEPHAN STOLZ∗

Dwyer and Stolz: Dept. of Mathematics
University of Notre Dame

Notre Dame, IN 46556
USA

Schick: Fachbereich Mathematik — Universität Göttingen
Bunsenstr. 3

37073 Göttingen, Germany

Gromov and Lawson conjectured in [GL2] that a closed spin manifold M of di-

mension n with fundamental group π admits a positive scalar curvature metric if
and only if an associated element in KOn(Bπ) vanishes. In this note we present

counter examples to the ‘if’ part of this conjecture for groups π which are tor-

sion free and whose classifying space is a manifold with negative curvature (in the
Alexandrov sense).

1. Introduction

In their influential paper [GL2] Gromov and Lawson proposed the following
conjecture.

1.1. Gromov-Lawson Conjecture [GL2]. Let M be a smooth, compact
manifold without boundary of dimension n ≥ 5 with fundamental group
π. Then M admits a positive scalar curvature metric if and only if p ◦
D([M,u]) = 0 ∈ KOn(Bπ).

Here u : M → Bπ is the map classifying the universal covering of M , and
[M,u] ∈ Ωspinn (Bπ) is the element in the spin bordism group represented
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by the pair (M,u). The maps D and p are natural transformations between
generalized homology theories:

Ωspinn (X) D→ kon(X)
p→ KOn(X),

referred to as ‘spin bordism’, ‘connective KO-homology’ and ‘periodic
KO-homology’, respectively. As the name suggests, KOn( ) is periodic
in the sense that KOn(X) ∼= KOn+8(X); moreover,

KOn(point) ∼=


Z if n ≡ 0 mod 4

Z/2 if n ≡ 1, 2 mod 8

0 otherwise

.

The homology theory kon( ) is connective; i.e. kon(point) = 0 for
n < 0. Moreover, the natural transformation p induces an isomorphism
kon(point) ∼= KOn(point) for n ≥ 0 (this does not hold with point replaced
by a general space X).

We remark that the assumption n ≥ 5 (which wasn’t present in [GL2])
should be added since Seiberg-Witten invariants show that the conjecture
is false for n = 4 even if the group π is trivial. In their paper [GL2] Gromov
and Lawson prove the ‘only if’ part of Conjecture 1.1 for some groups π,
but later Rosenberg [Ro1] noticed that the ‘only if’ statement does not hold
e.g. for finite cyclic groups, since any lens space M admits a metric with
positive scalar curvature, but p ◦D([M,u]) is non-trivial. He proposed the
following variant of Conjecture 1.1.

1.2. The Gromov-Lawson-Rosenberg Conjecture [Ro3]. Let M be
a smooth, compact manifold without boundary of dimension n ≥ 5 with
fundamental group π. Then M admits a positive scalar curvature metric if
and only if α([M,u]) = 0 ∈ KOn(C∗rπ).

Here α is the following composition

Ωspinn (Bπ) D→ kon(Bπ)
p→ KOn(Bπ) A→ KOn(C∗rπ), (1.3)

where A is the assembly map, whose target is the KO-theory of the (re-
duced) real group C∗-algebra C∗rπ (this is a norm completion of the real
group ring Rπ and is equal to the latter for finite π).

Rosenberg proved the ‘only if’ part of this Conjecture in [Ro2] by in-
terpreting the image of [M,u] ∈ Ωspinn (Bπ) under α as a ‘fancy’ type of
index of the Dirac operator on M and showing that this index vanishes
if M admits a metric of positive scalar curvature. We note that if A is
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injective for a group π (which can be shown for many groups π and is ex-
pected to hold for all torsion free groups according to the so called strong
Novikov-Conjecture), both conjectures are equivalent.

All partial results concerning Conjectures 1.1 and 1.2 discussed so far
have to do with the ‘only if’ part or equivalently, with finding obstruc-
tions (like the index obstruction α) against the existence of positive scalar
curvature metrics. For a few groups π constructions have been found of
sufficiently many positive scalar curvature metrics to prove the ‘if’ part
as well and hence to prove the Gromov-Lawson-Rosenberg Conjecture 1.2.
This includes the trivial group [St1], cyclic groups and more generally all
finite groups π with periodic cohomology [BGS]. However, a counter ex-
ample has been found for π = Z/3 × Z4, n = 5 [Sch]. So far, no counter
example to the Gromov-Lawson-Rosenberg Conjecture has been found for
finite groups π (which actually is the class of groups the conjecture was
originally formulated for; cf. [Ro3], Conjecture 0.1 and §3).

In this paper we address the question of whether the Gromov-Lawson
Conjecture and/or Gromov-Lawson-Rosenberg Conjecture might be true
for torsion free groups. Alas, the answer is ‘no’ in both cases; more precisely:

Theorem 1.4. There are finitely generated torsion free groups π for which
the ‘if ’ part of the Gromov-Lawson Conjecture 1.1 (and hence also the ‘if ’
part of the Gromov-Lawson-Rosenberg Conjecture 1.2) is false. In other
words, there is a closed spin manifold M of dimension n ≥ 5 with funda-
mental group π and p◦D([M,u]) = 0 which does not admit a positive scalar
curvature metric.

Still, one might hope to save these conjectures at least for groups π sat-
isfying some additional geometric conditions, say of the kind that guarantee
that the assembly map A is an isomorphism. We remark that according to
the Baum-Connes Conjecture the assembly map is an isomorphism for all
torsion free groups π, and we also remark that the two Conjectures become
equivalent if A is injective. For these groups in particular the ‘only if’ part
of the conjectures is true.

Example 1.5. Examples of groups π for which the assembly map

is an isomorphism

(1) Any countable group π in the class C = ∪n∈NCn, where the class
C0 consists just of the trivial group, and Cn is defined inductively
as the class of groups which act on trees with all isotropy subgroups
belonging to Cn−1 [Oy].
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(2) The fundamental group of a closed manifold which is CAT(0)-
cubical complex, i.e. a piecewise Euclidean cubical complex which
is non-positively curved in the sense of Alexandrov (cf. (5.1))

(3) Any word hyperbolic group in the sense of Gromov, in particular
fundamental groups of strictly negatively curved manifolds (in the
Riemannian sense or in the sense of Alexandrov).

In the second case the claim that the assembly map is an isomorphism
follows from combining work of Niblo and Reeves [NR] and Higson and
Kasparov [HK]. Niblo and Reeves [NR], compare [Ju, p. 158] show that
any group acting properly on a CAT(0)-cubical complex has the Haagerup
property (in other words, is a-T-menable). Higson and Kasparov prove that
for such groups the Baum-Connes Conjecture holds.

The third case is proved by Mineyev and Yu [MY] (reducing to some
deep results of Lafforgue [L1,L2]). Note that the fundamental group of a
negatively curved manifold is known to be word hyperbolic.

We note that the papers cited above deal with the complex version of the
Baum-Connes Conjecture, whereas we are interested in the real version.
However, it is a “folk theorem” that the complex isomorphism implies the
real isomorphism, compare e.g. [Ka].

Unfortunately, making these kinds of assumptions about the group π

does not save Conjectures 1.1 or 1.2:

1.6. Addendum to Theorem 1.4. The group π in Theorem 1.4 may be
chosen to be in the class C and to be the fundamental group of a closed
manifold which is a CAT(0)-cubical complex. Alternatively, we may choose
π to be the fundamental group of a closed manifold which is negatively
curved in the Alexandrov sense.

With this ‘negative’ result showing that Conjectures 1.1 and 1.2 are
false even for very “reasonable” groups π, the challenge is to find a nec-
essary and sufficient condition for a general M to admit a positive scalar
curvature metric. To the authors’ knowledge, at this point there is not even
a candidate for this condition.

Acknowledgements: We thank the referee for carefully reading the
paper and many useful suggestions which improved the exposition of the
paper.
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on top of this it ask to use undocumented style files which produce some
very strange results. Only after lengthy discussions, and changes in these
style file made by the authors, acceptable appearance could be achieved.

2. Outline of the proof

As a first step we rephrase Conjectures 1.1 and 1.2. The key for this is the
following result of Gromov-Lawson [GL1] (see also [RS]):

Theorem 2.1. Let M be a spin manifold of dimension n ≥ 5, and let
u : M → Bπ be the classifying map of its universal covering. Then M ad-
mits a positive scalar curvature metric if and only if [M,u] ∈ Ωspin,+n (Bπ).

Here for any space X, the group Ωspin,+n (X) is by definition the following
subgroup of Ωspinn (X):

Ωspin,+n (X) =

[N, f ]

∣∣∣∣∣
N is an n-dimensional spin manifold

with positive scalar curvature metric,

f : N → X


It should be emphasized that while the ‘only if’ portion of the above the-
orem is of course tautological, the ‘if’ part is not; it can be rephrased by
saying that if M is bordant (over Bπ) to some spin manifold N with a posi-
tive scalar curvature metric, then M itself admits a positive scalar curvature
metric.

We claim that for a finitely presented group π the Gromov-Lawson Con-
jecture 1.1 (resp. Gromov-Lawson-Rosenberg Conjecture 1.2) is equivalent
to the first (resp. second) of the following equalities for n ≥ 5

Ωspin,+n (Bπ) = ker p ◦D (2.2)

Ωspin,+n (Bπ) = kerα (2.3)

By the Bordism Theorem 2.1 it is clear that these equations imply Con-
jectures 1.1 resp. 1.2. Conversely, if π is a finitely presented group, then
a surgery argument shows that every bordism class in Ωspinn (Bπ), n ≥ 5
can be represented by a pair (M,u), where M is a manifold with funda-
mental group π, and u : M → Bπ is the classifying map of the universal
covering of M . This shows that the Gromov-Lawson Conjecture 1.1 implies
equation (2.2) and that the Gromov-Lawson-Rosenberg Conjecture 1.2 im-
plies equation (2.3). Recall that it is known that Ωspin,+n (Bπ) ⊂ kerα.
If the Baum-Connes map A is injective for π, this is implies even that
Ωspin,+n (Bπ) ⊂ ker p ◦D.
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Using this translation, our main result Theorem 1.4 is a consequence of
the following slightly more precise result.

Theorem 2.4. For 5 ≤ n ≤ 8, there are finitely presented torsion free
groups π such that Ωspin,+n (Bπ) ( ker p ◦D.

To prove this statement, we produce a bordism class x ∈ Ωspinn (Bπ) in
the kernel of p ◦D and show that it cannot be represented by a manifold
of positive scalar curvature. At present, three methods are known to show
that a manifold M does not admit a positive scalar curvature metric: the
index-theory of the Dirac operator on M , the Seiberg-Witten invariants,
and the stable minimal hypersurface method pioneered by Schoen and Yau
[SY]. For the case at hand, the first two methods are useless: the index of
any manifold M representing x vanishes due to our assumption p◦D(x) = 0
and the Seiberg-Witten invariants of M are only defined for 4-dimensional
manifolds. As explained in [Sch, Proof of Cor. 1.5], a corollary of the stable
minimal hypersurface method is the following result [Sch, Cor. 1.5].

Theorem 2.5. Let X be a space, and let H+
n (X;Z) be the subgroup of

Hn(X;Z) consisting of those elements which are of the form f∗[N ], where
N is an oriented closed manifold of dimension n which admits a positive
scalar curvature metric, and f is a map f : N → X. Let

α∩ : Hn(X;Z)→ Hn−1(X;Z)

be the homomorphism given by the cap product with a class α ∈ H1(X;Z).
Then for 3 ≤ n ≤ 8 the homomorphism α∩ maps H+

n (X;Z) to H+
n−1(X;Z).

We remark that a better regularity result for hypersurfaces with minimal
volume representing a given homology class proved by Smale [Sm] makes
it possible to include the case n = 8 in the above result (see [JS, §4] for a
detailed explanation). The case n = 8 was not covered in [Sch].

Corollary 2.6. Let X be the classifying space of a discrete group π. As-
sume that x ∈ Ωspinn (X) is a bordism class for 5 ≤ n ≤ 8, satisfying the
condition

α1 ∩ · · · ∩ αn−2 ∩H(x) 6= 0 ∈ H2(X;Z) (2.7)

for some cohomol-
ogy classes α1, . . . , αn−2 ∈ H1(X;Z) (here H : Ωspinn (X) → Hn(X;Z) is
the Hurewicz map given by sending a bordism class [M,f ] to f∗[M ], where
[M ] ∈ Hn(M ;Z) is the fundamental class of M). Then x is not in the
subgroup Ωspin,+n (X).
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Proof. Assume x ∈ Ωspin,+n (X). Then H(x) ∈ H+
n (X;Z) (by definition of

H+
n (X;Z)); applying Theorem 2.5 first to the cohomology class α1, then α2,

e.t.c., we conclude α1 ∩ · · · ∩ αn−2 ∩H(x) ∈ H+
2 (X;Z). This is the desired

contradiction, since the element α1∩· · ·∩αn−2∩H(x) is assumed to be non-
zero, while the group H+

2 (X;Z) is trivial: by the Gauss-Bonnet Theorem,
the only closed oriented 2-manifold N with positive scalar curvature are
disjoint unions of 2-spheres; however any map f from such a union to the
classifying space of a discrete group is homotopic to the constant map,
which implies f∗[N ] = 0.

We note that Corollary 2.6 implies Theorem 2.4, provided we can find a
bordism class x in the kernel of p◦D satisfying condition 2.7. Whether there
is such a bordism class is in general a pretty hard question; fortunately the
following homological condition is much easier to check, and, as Theorem
2.9 below shows, it implies the existence of a spin bordism class x in the
kernel of p ◦D with property (2.7).

2.8. Homological condition. There are (co)homology classes

α1, . . . , αn−2 ∈ H1(X;Z) and z ∈ Hn+5(X;Z)

such that

α1 ∩ · · · ∩ αn−2 ∩ δP 1ρ(z) 6= 0 ∈ H2(X;Z)

Here

• ρ : H∗(X;Z)→ H∗(X;Z/3) is mod 3 reduction,
• P 1 : H∗(X;Z/3) −→ H∗−4(X;Z/3) is the homology operation dual

to the degree 4 element P 1 of the mod 3 Steenrod algebra (see [SE,
Chapter VI, section 1]), and

• δ : H∗(X;Z/3) → H∗−1(X;Z) is the Bockstein homomorphism as-
sociated to the short exact coefficient sequence Z ×3→ Z → Z/3
(i.e. the boundary homomorphism of the corresponding long exact
homology sequence).

In section 3 we will use the Atiyah-Hirzebruch spectral sequences con-
verging to ΩSpin∗ (X) resp. KO∗(X) to prove the following result.

Theorem 2.9. Let X be a space which satisfies the homological condition
2.8 for 5 ≤ n ≤ 8. Then there is a bordism class x ∈ Ωspinn (X) in the kernel
of p ◦D satisfying condition (2.7) above.

Putting these results together, we obtain the following corollary.
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Corollary 2.10. Let X be a space satisfying the homological condition 2.8
for some n with 5 ≤ n ≤ 8. If X is the classifying space of some discrete
group π, then Ωspin,+n (Bπ) ( ker p ◦D.

For a given space X it is not hard to check the homological condition 2.8,
provided we know enough about the (co)homology of X. For example, in
section 4 we will prove the following result by a straightforward calculation.

Proposition 2.11. For n ≥ 2, let Γn be the cartesian product of 2 copies
of Z/3 and n− 2 copies of Z. Then the classifying space BΓn satisfies the
homological condition 2.8.

In particular, Corollary 2.10 then shows that the Gromov-Lawson Con-
jecture 1.1 does not hold for the group Γn for 5 ≤ n ≤ 8. This is very similar
to the result of one of the authors [Sch] who constructed a 5-dimensional
spin manifold with fundamental group π = Z/3× Z4 whose index obstruc-
tion α([M,u]) ∈ KO5(C∗π) is trivial, but which does not admit a metric of
positive scalar curvature. However, the example in [Sch] does not provide
a counter example to the Gromov-Lawson Conjecture 1.1, since it can be
shown that p ◦D([M,u]) ∈ KO5(Bπ) is non-trivial.

As explained in the introduction, it is more interesting to find torsion
free groups π for which the conjecture goes wrong. It seems conceivable that
experts might know explicit examples of torsion free groups and enough
about their (co)homology to conclude that the homological condition 2.8 is
satisfied (or the cohomological condition 4.2, which is stronger, but easier
to check).

Lacking this expertise, we argue more indirectly to prove Theorem 2.4.
We use a construction of Baumslag, Dyer and Heller [BDH], who associate
a discrete group π to any connected CW complex X and show that there
is a map Bπ → X which is an isomorphism in homology. Moreover, if X
is a finite CW complex, then Bπ has the homotopy type of a finite CW
complex. In particular, the group π is finitely presented. We would like to
mention that originally Kan and Thurston described a similar construction
[KT]. However, their groups are usually not finitely presented and hence
not suitable for our purposes.

To prove Theorem 2.4 we let X be any finite CW complex satisfying the
condition 2.8, e.g., the n+5-skeleton of BΓn and let π be the discrete group
obtained from X via the Baumslag-Dyer-Heller procedure. Then π is a
discrete group which is finitely presented and torsion free since its classifying
space Bπ is homotopy equivalent to a finite CW complex. Moreover, Bπ
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satisfies the homological condition 2.8 and hence Corollary 2.10 implies
Theorem 2.4.

Applying more sophisticated ‘asphericalization procedures’ due to
Davis-Januskiewicz [DJ] respectively Charney-Davis [CD], we can produce
groups π satisfying the geometric conditions mentioned in Addendum 1.6.
This is explained in section 5.

3. A spectral sequence argument

The goal of this section is the proof of Theorem 2.9. We consider the
Atiyah-Hirzebruch spectral sequence (AHSS for short)

E2
p,q(X) = Hp(X; Ωspinq ) =⇒ Ωspinp+q (X). (3.1)

We recall that the Hurewicz map H : Ωspinn (X) −→ Hn(X;Z) is the edge
homomorphism of this spectral sequence; i.e. H is equal to the composition

Ωspinn (X)� E∞n,0(X) ↪→ E2
n,0(X) = Hn(X;Z).

This shows that in order to produce a bordism class x ∈ Ωspinn (X) satisfying
condition (2.7) it suffices to produce a homology class y ∈ Hn(X;Z) such
that

y ∈ Hn(X;Z) = E2
n,0 is an infinite cycle for the AHSS (3.1) (3.2)

α1 ∩ · · · ∩ αn−2 ∩ y 6= 0 (3.3)

In order to find y we will use the map of spectral sequences

Erp,q(X; ΩSpin) −→ Erp,q(X;KO).

induced by the natural transformation p ◦ D : ΩSpinn (X) → KOn(X). To
guarantee that the element x produced this way is in the kernel of p ◦ D
requires an addition argument to be given later.

To simplify the analysis of these spectral sequences, from now on we
localize all homology theories at the prime 3, which has the effect of replac-
ing all homology groups as well as the groups in the AHSS converging to
them by the corresponding localized groups; i.e. their tensor product with
Z(3) = {ab | b is prime to 3}. Note that we continue to write e.g. H∗(X;Z),
but mean the localized group.

In particular, the coefficient ring KO∗ is now the ring of polynomials
Z(3)[b] with generator b ∈ KO4. This implies that in the AHSS converging
to KO∗(X) only the rows Erp,q for q ≡ 0 mod 4 are possibly non-trivial. In
particular, the first differential that can be non-trivial is d5. To finish the
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proof of Theorem 2.9 we will need the following result, which identifies d5

with a homology operation. This is certainly well known among experts;
since we failed to find an explicit reference in the literature, for completeness
we include a proof of this result below.

Lemma 3.4. In the AHSS converging to KO∗(X) localized at 3, the dif-
ferential

d5 : E5
p,q = E2

p,q = Hp(X;Z) −→ E5
p−5,q+4 = E2

p−5,q+4 = Hp−5(X;Z)

for q ≡ 0 mod 4 is up to sign the composition

Hp(X;Z)
ρ−→ Hp(X;Z/3) P 1

−→ Hp−4(X;Z/3) δ−→ Hp−5(X;Z). (3.5)

For the notation, compare 2.8.

Proof of Theorem 2.9. Assume that the space X satisfies the homological
condition 2.8; i.e. there are (co)homology classes α1 . . . , αn−2 ∈ H1(X;Z)
and z ∈ Hn+5(X;Z) with

α1 ∩ · · · ∩ αn2 ∩ y 6= 0 for y
def= δ ◦ P 1 ◦ ρ(z).

We observe that y has property 3.3 by our assumption on z; moreover, it
also has property 3.2 (i.e. it survives to the E∞-term of the AHSS converg-
ing to Ωspin∗ (X)) by the following argument. Recall that Ωspinn → KOn is
an isomorphism for 0 ≤ n < 8. Therefore, the map of spectral sequences

Erp,q(X; ΩSpin) −→ Erp,q(X;KO)

is an isomorphism on the rows q = 0, 4 for r = 2 and hence for r = 3, 4, 5 (all
the other rows in the range −4 < q < 8 are trivial since we work localized
at the prime 3). Lemma 3.4 shows that the differential

d5 : E5
n+5,−4(X;KO) −→ E5

n,0(X;KO)

sends z ∈ Hn+5(X;Z) = E2
n+5,−4(X;KO) = E5

n+5,−4(X;KO) to y ∈
E5
n,0(X;KO) or to −y. In particular, y is in the kernel of d5 in the spectral

sequence converging to KO∗(X), and hence also in the kernel of d5 in the
spectral sequence converging to ΩSpin∗ (X). The next possibly non-trivial
differential

d9 : E9
n,0(X; ΩSpin)→ E9

n−9,8(X; ΩSpin)

is trivial due to our assumption n ≤ 8.
This shows that there is a bordism class x ∈ ΩSpinn (X) with H(x) = y.

Next we want to show that with a careful choice of x we can also arrange for
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p ◦D(x) = 0. We note that the relation d5(z) = y in the spectral sequence
converging to KO∗(X) implies that p ◦D(x) is zero in

E∞n,0(X;KO) = FnKOn(X)/Fn−1KOn(X).

Here, FkH∗(X) denotes the n-the term in the Atiyah-Hirzebruch filtration
for H∗(X) (which gives rise to the Atiyah-Hirzebruch spectral sequence),
i.e. is the image of H∗(X(k)) in H∗(X), where X(k) is the k-skeleton of X.

The relation dr(z) = y does not imply that p ◦D(x) is zero, only that
p ◦D(x) lies in the filtration n− 1 subgroup Fn−1KOn(X) ⊂ KOn(X).

We want to show that replacing x by x′ = x − x′′ for a suitable x′′ ∈
Fn−1ΩSpinn (X) produces an element with the desired properties H(x′) =
H(x) and p ◦ D(x′) = 0. We note that the first condition is satisfied
because H sends elements of

Fn−1Ωspinn (X) = im
(

Ωspinn (X(n−1)) −→ Ωspinn (X)
)

to zero, since Hn(X(n−1);Z) = 0. To obtain p ◦D(x′) = 0, we need to be
able to choose x′′ such that p ◦D(x′′) = p ◦D(x); in other words, it suffices
to show that the map

p ◦D : Fn−1Ωspinn (X)→ Fn−1KOn(X)

is surjective for n ≤ 8. The argument is the following. The map Ωspinq →
KOq is an isomorphism for 0 ≤ q < 8 and surjective for q = 8. It follows
that the map of spectral sequences

Erp,q(X; ΩSpin) −→ Erp,q(X;KO)

is a surjection for r = 2, 0 ≤ q ≤ 8. Since all the differentials of the domain
spectral sequence in the range 0 < q ≤ 8, n = p + q ≤ 8 are trivial, the
above map is also surjective for r = 3, . . . ,∞ in that range. The groups
E∞p,q(X; Ωspin), n = p+ q ≤ 8, q > 0, are the associated graded groups for
the filtered groups Fn−1Ωspinn (X) (resp. Fn−1KOn(X)). This shows that
the map Fn−1Ωspinn (X)→ Fn−1KOn(X) is surjective for n ≤ 8 and finishes
the proof of Theorem 2.9.

Proof of Lemma 3.4. Multiplication by the periodicity element b ∈ KO4

produces a homotopy equivalence of spectra Σ4KO ∼= KO, which
in turn induces an isomorphism of spectral sequences Erp,q(X;KO) ∼=
Erp,q+4(X;KO). Hence it suffices to prove the corresponding statement
for the differential d5 : E5

p,0(X;KO)→ E5
p−5,4(X;KO).
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Given an integer k, let KO〈k〉 → KO be the (k− 1)-connected cover of
KO. Up to homotopy equivalence, KO〈k〉 is characterized by the properties
that πn(KO〈k〉) = 0 for n < k and that the induced map

πn(KO〈k〉) −→ πn(KO)

is an isomorphism for n ≥ k. The spectrum KO〈0〉 is also known as
the connective real K-theory spectrum and is usually denoted ko. Given
a second integer l ≥ k, let KO〈k, l〉 be the part of the Postnikov tower
for KO, whose homotopy groups πn(KO〈k, l〉) are trivial for n < k or
n > l and are isomorphic to πn(KO) for k ≤ n ≤ l (this isomorphism is
induced by a map KO〈k〉 → KO〈k, l〉). In particular, KO〈k, k〉 has only
one possibly non-trivial homotopy group and hence can be identified with
the Eilenberg-MacLane spectrum ΣkHπk(KO) (here HA for an abelian
group A is the Eilenberg-MacLane spectrum characterized by π0(HA) = A

and πn(HA) = 0 for n 6= 0).
We note that the maps KO〈0〉 → KO and KO〈0〉 → KO〈0, 4〉 induce

isomorphisms of AHSS’s in the range 0 ≤ q ≤ 4 for r = 2, 3, 4, 5 (since we
work localized at 3, all rows for q 6= 0 mod 4 are trivial, and hence the first
possibly non-trivial differential is d5). The AHSS-term Erp,q(X;KO〈0, 4〉)
has only two non-trivial rows and hence degenerates to a long exact se-
quence

. . . −→ KO〈0, 4〉n(X) −→ E5
n,0 = Hn(X;Z) d5−→

E5
n−5,4 = Hn−5(X;Z) −→ KO〈0, 4〉n−1(X) −→ . . . .

This can be identified with the long exact homotopy sequence induced by
the Puppe sequence

KO〈4, 4〉 ∧X −→ KO〈0, 4〉 ∧X −→ KO〈0, 0〉 ∧X = HZ ∧X
f∧1−→ ΣKO〈4, 4〉 ∧X = Σ5HZ ∧X

The homotopy class of f : HZ → Σ5HZ can be interpreted as a coho-
mology class in H5(HZ;Z) ∼= Z/3 (we’ve localized at 3). The gener-
ator of H5(HZ;Z) is given by applying δ ◦ P 1 ◦ ρ to the generator of
H0(HZ;Z) ∼= Z(3). This shows that d5 is a multiple of the homology oper-
ation (3.5).

To show that it is a non-trivial multiple (i.e. either the element itself
or its negative, since the group is isomorphic to Z/3/Z), it suffices to show
that the differential is non-trivial for some space or spectrum X. We choose
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X = HZ/3, and consider the AHSS

Erp,q(HZ/3; ko) =⇒ kop+q(HZ/3) = πp+q(ko ∧HZ/3) = Hp+q(ko;Z/3).

It is well known that H∗(ko;Z/3) ∼= A/ (AQ1 +Aβ). For this, see [AP,
Prop. 2.3]; that proposition applies to the spectrum X = KO〈4〉, which
localized at 3 by Bott-periodicity may be identified with Σ4ko. Here A is
the mod 3 Steenrod algebra, β ∈ A1 is the Bockstein (An ⊂ A consists of the
elements of degree n), and Q1 ∈ A5 is the commutator of P 1 ∈ A4 and β.
In particular, since βP 1 and P 1β form a basis of A5, the cohomology group
H5(ko;Z/3) and hence the group H5(ko;Z/3) = ko5(HZ/3) is trivial. It
follows that the non-trivial elements in

E2
5,0(HZ/3; ko) = H5(HZ/3;Z) ∼= Z/3

do not survive to the E∞-term. For dimensional reasons the only possibly
non-trivial differential is d5. This finishes the proof of Lemma 3.4.

4. Construction of spaces satisfying the homological
condition 2.8

The goal of this section is the construction of spaces satisfying the homo-
logical condition 2.8; in particular, we will prove Proposition 2.11, which
claims that the classifying space BΓn satisfies this condition, where Γn is
the product of two copies of Z/3 and n− 2 copies of Z. For this calculation
it is convenient to pass to cohomology. The following lemma will give a
cohomological condition which implies the homological condition 2.8.

To state the lemma, we first need some notation. Let ρ : H∗(X;Z) →
H∗(X;Z/3) be mod 3 reduction and let β : H∗(X;Z/3) → H∗+1(X;Z/3)
the mod 3 Bockstein homomorphism, the boundary map of the long ex-
act cohomology sequence induced by the short exact coefficient sequence
Z/3 ×3−→ Z/32 −→ Z/3. We recall that β is the composition ρδ, where
δ : H∗(X;Z/3) → H∗+1(X;Z) is the integral Bockstein. Let Q1 be the
degree 5 element of the mod 3 Steenrod algebra which is the commutator
Q1 = [P 1, β].

Lemma 4.1. Let X be a space and assume there are cohomology classes
α1, . . . , αn−2 ∈ H1(X;Z) and ζ ∈ H2(X;Z/3) such that

ρ(α1) ∪ · · · ∪ ρ(αn−2) ∪ βQ1ζ 6= 0 ∈ Hn+6(X;Z/3). (4.2)

Then X satisfies the homological condition 2.8.
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Proof. The assumption of the lemma implies that there is a homology class
y ∈ Hn+6(X;Z/3) such that the Kronecker product

〈ρ(α1) ∪ · · · ∪ ρ(αn−2) ∪ βQ1ζ, y〉

is non-zero. We calculate, using that Q1 and β are graded derivations and
that the cohomological β and Q1 are dual to the homological versions,

0 6= 〈ρ(α1) ∪ · · · ∪ ρ(αn−2) ∪ βQ1ζ, y〉
= 〈ρ(α1) ∪ · · · ∪ ρ(αn−2) ∪Q1ζ, βy〉 (since βρ = 0)

= 〈ρ(α1) ∪ · · · ∪ ρ(αn−2) ∪ ζ,Q1(βy)〉 (since Q1(H1(X)) = 0)

= 〈ρ(α1) ∪ · · · ∪ ρ(αn−2) ∪ ζ,−βP 1(βy)〉 (since ββ = 0)

= −〈ζ, ρ
(
α1 ∩ · · · ∩ αn−2 ∩ δP 1ρ(δy)

)
〉 (since β = ρδ)

This shows that the non-triviality of ρ(α1) ∪ · · · ∪ ρ(αn−2) ∪ βQ1ζ implies
that α1 ∩ · · · ∩ αn−2 ∩ δP 1ρ(z) for z = δy is non-trivial.

Recall the statement of Proposition 2.11:

Proposition 4.3. For n ≥ 2, let Γn be the Cartesian product of 2 copies
of Z/3 and n− 2 copies of Z. Then the classifying space BΓn satisfies the
homological condition 2.8.

Proof of Proposition 2.11. We recall that the cohomology ring of

BΓn = S1 × · · · × S1︸ ︷︷ ︸
n−2

×BZ/3×BZ/3

is given by

H∗(BΓn;Z/3) = Λ (ρ(α1), . . . , ρ(αn−2), x1, x2)⊗ Z/3[βx1, βx2],

where αi ∈ H1(BΓn;Z) is the pull back of the generator of H1(S1;Z) via
the projection to the i-th copy of S1, and x1 (resp. x2) is the pull back of the
generator of H1(BZ/3;Z/3) via the projection to the first (resp. second)
BZ/3-factor of BΓn.

We calculate for j = 1, 2

Q1(xj) = [P 1, β]xj = P 1βxj − βP 1xj = (βxj)3.

Since β and Q1 are graded derivations, it follows that

βQ1(x1x2) = β
(
(βx1)3x2 − x1(βx2)3

)
= (βx1)3βx2 − βx1(βx2)3 6= 0.

It follows that the αi, i = 1, . . . , n − 2 and ζ = x1x2 satisfies the cohomo-
logical condition (4.2).
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5. Asphericalization procedures

In this section we prove Addendum 1.6 to our main theorem claiming that
the groups π for which we can construct counter examples to the Gromov-
Lawson Conjecture 1.1 may be chosen to have classifying spaces which are
manifolds which are non-positively (resp. negatively) curved in the Alexan-
drov sense. This means the following.

Definition 5.1. A length space is a metric space where any two points can
be joined by a geodesic. A length space X is called a (locally) CAT(r)-space
for r ∈ R, if given a triangle T in a sufficiently small open set of X and
a vertex x of T , the distance from x to the opposite edge is not more than
the corresponding distance in a comparison triangle in a simply connected
manifold with constant curvature equal to r. A comparison triangle is a
triangle with the same side lengths as the given one.

We say that X is negatively curved in the Alexandrov sense (resp. non-
positively curved), if X is a CAT(r)-space with r < 0 (resp. r = 0).

This is a generalization of the classical notion in Riemannian geometry:
every complete Riemannian manifold of negative curvature is negatively
curved in the Alexandrov sense, and correspondingly for non-positive cur-
vature.

To produce discrete groups π whose classifying space is a manifold which
is non-positively curved (resp. negatively curved) in the Alexandrov sense,
we use asphericalization procedures due to Davis-Januskiewicz [DJ] and
Charney-Davis [CD]. An asphericalization procedure assigns to every space
X in a certain class of spaces an aspherical space BLX together with a
map BLX → X with certain homological properties. Here the notation
BLX is chosen to reflect the fact that BLX serves as a classifying space
for its fundamental group, for which the notation LX is used.

Typically, the spaces X considered are simplicial (or cubical) cell com-
plexes and BLX is constructed by replacing each n-cell of X by some
‘model space’, and then gluing together these model spaces to form BLX

according to the same combinatorial patters as the cells of X are glued to
form X.

If this is done carefully, as in the procedures described below, one can
construct metrics on the result which satisfy appropriate curvature condi-
tions. Some constructions even give yield CAT(0)-spaces BLX that can
be given the structure of a smooth manifold, however, it is not at all clear
whether the metric on BLX can be chosen to be a smooth Riemannian
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metric.

Baumslag-Dyer-Heller asphericalization

The construction of Baumslag, Dyer and Heller uses as basic building block
an acyclic group, i.e. a non-trivial group with trivial integral homology.
For suitable choices of this building block, their construction gives explicit
descriptions of LX as elements of C. This description uses the combinatorics
of the simplicial complex X (compare also the description of a very similar
asphericalization procedure in [Bl]). The map BLX → X they produce
induces an isomorphism in homology.

Davis-Januskiewicz asphericalization

The goal of constructing BLX which is non-positively curved can be
achieved using an asphericalization procedure of Davis and Januskiewicz
[DJ]. If X is a closed n-manifold, their construction produces a new
n-manifold BLX which is non-positively curved in the Alexandrov sense,
and whose fundamental group LX belongs to the class C. The price to
be paid is that the map BLX → X unlike in the case of the Baumslag-
Dyer-Heller procedure in general does not induces an isomorphism in
homology (necessarily so: e.g. for X = S2 there is no non-positively
curved 2-manifold with the same homology as S2). However, the map
H∗(BLX;Z)→ H∗(X;Z) is still surjective.

This is good enough to prove part (1) of Addendum 1.6, The argument is
as follows. Let Y be the manifold with boundary obtained as a ‘thickening’
of the n+ 5-skeleton of BΓn (cf. Prop. 2.11) in RN with N large. Let X be
the boundary of Y . We note that the homology of X is isomorphic to the
homology of BΓn in degrees ≤ n+ 5 for N sufficiently large. In particular,
since BΓn satisfies the homology condition 2.8, so does the manifold X.
Then the surjectivity of the map H∗(BLX;Z) → H∗(X;Z) implies that
also BLX satisfies the condition, and hence Corollary 2.10 implies that the
Gromov-Lawson Conjecture does not hold for π = LX.

Charney-Davis asphericalization

This procedure is essentially a strengthening of the Davis-Januskiewicz pro-
cedure: from a closed n-manifold X it produces an n-manifold BLX which
is negatively curved in the Alexandrov sense and a map BLX → X which
induces a surjection on homology. However, LX might not belong to the
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class C.
With the same argument as above, we can then produce a group π for

which the Gromov-Lawson Conjecture doesn’t hold, which is the funda-
mental group of a negatively curved manifold. This proves the second part
of Addendum 1.6.
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Oy. Oyono-Oyono, Hervé: “La conjecture de Baum-Connes pour les groupes
agissant sur les arbres”, C.R. Acad. Sci. Paris, séries 1 326, 799–804 (1998)
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