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(Received April 19, 1962) 

1. Introduction 

All manifolds, with or without boundary, are to be compact, oriented, 
and differentiable of class C". The boundary of M will be denoted by 
bM. The manifold M with orientation reversed is denoted by -M. 

DEFINITION.The manifold M is a homotopy n-sphere if M is closed 
(that is, bM = 0)and has the homotopy type of the sphere Sn. 

DEFINITION.TWOclosed n-manifolds Ml and M, are h-cobordantl if the 
disjoint sum Ml + (- M,) is the boundary of some manifold W, where 
both MI and (- M,) are deformation retracts of W. I t  is clear that  this 
is an  equivalence relation. 

The connected sum of two connected n-manifolds is obtained by re-
moving a small n-cell from each, and then pasting together the resulting 
boundaries. Details will be given in 9 2. 

THEOREM1.1. The h-cobordism classes of homotopy n-spheres form a n  
abelian group under the connected sum operation. 

This group will be denoted by On, and called the nthhomotopy sphere 
cobordism group. I t  is the object of this paper (which is divided into 2 
parts) to investigate the structure of On. 

I t  is clear that  Ol = 0, = 0. On the other hand these groups are not 
all zero. For example, it follows easily from Milnor [14] that  O, f 0. 

The main result of the present Par t  I will be: 

THEOREM1.2. For  n f 3 the group On i s  finite. 
(Our methods break down for the case n = 3. However, if one assumes 

the Poincare hypothesis, then i t  can be shown that  O, = 0.) 
More detailed information about these groups will be given in Par t  11. 

For example, for n = 1, 2, 3, . . , 18, it will be shown that  the order of 
the group On is respectively: 

[O,] I 1 1 ? 1 1 1 28 2 8 6 992 1 3 2 16256 2 16 16. 

Partial summaries of results are given also a t  the end of 8 4 and of $7.  

1 The  term "J-equivalent" has previously been used for this relation. Compare [15], 

[161, P71. 
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505 HOMOTOPY SPHERES: I 

REMARK. S. Smale [25] and J. Stallings [27], C. Zeeman 1331 have 
proved that  every homotopy n-sphere, n # 3,4,  is actually homeomorphic 
to the standard sphere Sn. Furthermore, Smale has proved [26] that  two 
homotopy n-spheres, n # 3, 4, are h-cobordant if and only if they are 
diffeomorphic. Thus for n # 3, 4 (and possibly for all n) the group O, 
can be described as the set of all diffeomorphism classes of differentiable 
structures on the topological n-sphere. These facts will not be used in 
the present paper. 

2. Construction of the group On 

First we give a precise definition of the connected sum Ml # M2 of two 
connected n-manifolds Ml and M,. (Compare Seifert [22] and Milnor [15], 
1161.) The notation D n  will be used for the unit disk in euclidean n-space. 
Choose imbeddings 

i l : D n - M , ,  i 2 : D n - M 2  

so that  il preserves orientation and i, reverses orientation. Now obtain 
Ml # M, from the disjoint sum 

by identifying i,(tu) with i,((l- t)u) for each unit vector u E S"-' and 
each 0 < t < 1. Choose the orientation for Ml # M, which is compatible 
with that  of Ml and M,. (This makes sense since the correspondence 
il(tu) - i,((l - t)u) preserves orientation.) 

I t  is clear that  the sum of two homotopy n-spheres is a homotopy n-  
sphere. 

LEMMA2.1. The connected sum operation i s  well defined, associative, 
and commutative up  to orientation preserving difeomorphism. The 
sphere Snserves a s  identity element. 

PROOF. The first assertions follow easily from the lemma of Palais [20] 
and Cerf [5] which asserts that  any two orientation preserving imbed- 

0
dings i ,  i': Dn-M are related by the equation if= f i ,  for some 
diffeomorphism f :  M- M. The proof that  M #  Snis diffeomorphic to M 
will be left to the reader. 

LEMMA2.2. Let MI, M: and M, be closed and simply connected.' If 
Ml i s  h-cobordant to Mi then Ml # M, i s  h-cobordant to M: # M,. 

PROOF. We may assume that  the dimension n is 2 3 .  Let Ml + (-Mi)= 
b Wl, where Ml and -Mi are deformation retracts of Wl. Choose a differ- 
entiable arc A from a point p E M, to a point p' E -Mi within Wl so that  

T h i s  hypothesis is  imposed in order to simplify the proof. It could easily be eliminated. 
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a tubular neighborhood of this arc is diffeomorphic to R n  x [0, 11. Thus 
we obtain an imbedding 

i: R n  x [0, 11- W, 

with i (Rn x 0) c MI, i (Rn  x 1) c Mi, and i(0 x 10, 11) = A. Now form 
a manifold W from the disjoint sum 

by identifying i( tu,  s) with i2((l - t)u) x s for each 0 < t < 1, 0 I s I 1, 
u e Sn-I. Clearly W is a compact manifold bounded by the disjoint sum 

We must show that  both boundaries are deformation retracts of W. 
First i t  is necessary to show that  the inclusion map 

is a homotopy equivalence. Since n 2 3, it  is clear that  both of these 
manifolds are simply connected. Mapping the homology exact sequence 
of the pair (M,, M, - p) into that  of the pair (W,, W, - A), we see that  
j induces isomorphisms of homology groups, and hence is a homotopy 
equivalence. Now it follows easily, using a Mayer-Vietoris sequence, 
that  the inclusion 

is a homotopy equivalence; hence that  MI # M, is a deformation retract 
of W. Similarly M{ # M, is a deformation retract of W, which completes 
the proof of Lemma 2.2. 

LEMMA2.3. A simply connected manifold M i s  h-cobordant to the 
sphere Snif and only if M bounds a contractible manifold. 

(Here the hypothesis of simple connectivity cannot be eliminated.) 
PROOF. If M + (-Sn) = b W then filling in a disk Dm+' we obtain a 

manifold W' with b W' = M. If Snis a deformation retract of W, then 
it clearly follows that  W' is contractible. 

Conversely if M = b W' with W' contractible, then removing the in- 
terior of an imbedded disk we obtain a simply connected manifold W 
with b W = M + (-Sn). Mapping the homology exact sequence of the 
pair (Dnf', S n )  into that  of the pair (W', W), we see that  the inclusion 
S "  -W induces a homology isomorphism; hence Sn is a deformation 
retract of W. Now applying the Poincari! duality isomorphism 

Hk( W, M )  2: Hnfl-k( W, S") , 
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we see that  the inclusion M -W also induces isomorphisms of homology 
groups. Since M is simply connected, this completes the proof. 

LEMMA2.4. If M i s  a homotopy sphere, then M # (- M) bounds a con-
tractible manifold. 

PROOF. Let H ZcDZ denote the half-disk consisting of all (t sin B, t cos 0) 
with 0 5 t 5 1, 0 5 B 5 n ,  and let $0"'c D n  denote the disk of radius 4. 
Given an imbedding i :  D n  -M, form W from the disjoint union 

M - %( -Dm )I x [0, n] + Sn-'x H" 

by identifying i(tu) x B with u x ((2t - 1) sin B, (2t - 1) cos 0) for each 
+ < t 5 1, 0 5 B 5 x. (Intuitively we are removing the interior of i($Dn) 
from M and then "rotating" the result through 180' around the resulting 
boundary.) I t  is easily verified that  W is a differentiable manifold with 
b W = M # (- M). Furthermore W contains M-Interior i($Dn) as defor- 
mation retract, and therefore is contractible. This proves Lemma 2.4. 

PROOFOF THEOREM1.1. Let O, denote the collection of all h-cobordism 
classes of homotopy n-spheres. By Lemmas 2.1 and 2.2 there is a well 
defined, associative, commutative addition operation in a,. The sphere 
Sn serves as zero element. By Lemmas 2.3, 2.4, each element of 0, has 
an inverse. Therefore O, is an additive group. 

Clearly O, is zero. For n 5 3, Munkres [I91 and Whitehead [31] have 
proved that  a topological n-manifold has a differentiable structure which 
is unique up to diffeomorphism. I t  follows that  O, = 0. If the Poincar6 
hypothesis were proved, i t  would follow that  0, is zero; but a t  present 
the structure of O, remains unknown. For n > 3 the structure of O, 
will be studied in the following sections. 

Addendum. There is a slight modification of the connected sum con- 
struction which is frequently useful. Let W, and W, be (n + 1)-manifolds 
with connected boundary. Then the sum b Wl # b W, is the boundary of a 
manifold W constructed as follows. Let Hn+'denote the half-disk con- 
sisting of all x = (x,,x,, . . .,x,) with I x I 5 1, x, 2 0 and let D" denote 
the subset x, = 0. Choose imbeddings 

i,: (Hn+', Dn) -( W,, b W,) , 

so that  i, 0 i;' reverses orientation. Now form W from 

Fy identifying i,(tu) with i,((l- t)u) for each 0 < t < 1, u E Snn Hn+'. 
I t  is clear that  W is a differentiable manifold with b W = b Wl # b W,. 
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Note that  W has the homotopy type of Wl V W,: the union with a single 
point in common. 

W will be called the connected sum along the boundary of Wl and W,. 
The notation ( W, b W) = ( W,, b Wl) # ( W,, b W,) will be used for this sum. 

3. Homotopy spheres are S-parallelizable 

Let M be a manifold with tangent bundle T = r(M), and let E' denote 
a trivial line bundle over M. 

DEFINITION. M will be called s-parallelixable if the Whitney sum 
T @ E' is a trivial b ~ n d l e . ~  The bundle r @ E' will be called the stable 
tangent bzkndle of M. It is a stable bundle in the sense of [lo]. (The 
expression s-parallelizable stands for stably parallelizable.) 

THEOREM3.1. Every hornotopy sphere i s  s-parallelixable. 
In the proof, we will use recent results of J. F. Adams [I], [2]. 
PROOF. Let 2 be a homotopy n-sphere. Then the only obstruction to 

the triviality of r @ E' is a well defined cohomology class 

The coefficient group may be identified with the stable group n,-,(SO). 
But these stable groups have been computed by Bott [4], as follows, for 
n 2 2: 

residue class of n mod8: 0 1 2 3 4 5 6 7 

(Here Z,  Z,, 0 denote the cyclic groups of order a,2, 1respectively.) 
Case 1. n - 3, 5, 6, or 7 (modulo 8). Then n,-,(SO) = 0, so that  o,(C) 

is trivially zero. 
Case 2. n = 0 or 4 (modulo 8). Say that  n = 4k. According to [18], 

[lo], some non-zero multiple of the obstruction class o,(C) can be identi- 
fied with the Pontrjagin class p , ( ~  @ cl) = p , ( ~ ) .  But the Hirzebruch 
signature4 theorem implies that  p,[C] is a multiple of the signature o(C) 
which is zero since H"(C) = 0. Therefore every homotopy 4k-sphere is 
s-parallelizable. 

Case 3. n E 1or 2 (modulo 8), so that  n,-,(SO) is cyclic of order 2. For 

3 The  authors have previously used the term "n-manifold" for an s-parallelizable 
manifold. 

4 We will substitute the word "signature" for "index" as used in [7; 14; 17; 18; 281 
since this is more in accord with the usage in other parts of mathematics. The signature 
of the form xf + .. .  + xi - xi,, - ,.- - xi tL  is defined to be u = k - 1. 
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each homotopy sphere C the residue modulo 2 

o,[C] E n,-,(SO) = ZZ 

is well defined. I t  follows from an argument of Rohlin that  

J,-1(0,) = 0 , 

where J,_,denotes the Hopf-Whitehead homomorphism 


J,-1: n,-i(SOk) +n,+k-i(Sk) 

in the stable range k > n. (Compare [18, Lemma I].) But Jn-,is a mono- 
morphism for n E 1or 2 (modulo 8). For the case n = 2 this fact is well 
known, and for n = 9, 10 i t  has been proved by Kervaire [Ill. For n = 
17,18, i t  has been verified by Kervaire and by Toda in unpublished compu- 
tations. A proof that  J,-, is injective for all n - 1 or 2 (modulo 8) has 
recently been given by J.F. Adams [I], [2]. Now the relation J,-,(on) = 0 
together with the information that  JnPlis a monomorphism implies 
t h a t  on = 0. This finishes the proof of Theorem 3.1. 

In  conclusion, here are two lemmas which clarify the  concept of s-
parallelizability. The first is essentially due to J. H. C. Whitehead [32]. 

LEMMA3.3. Let  M be a n  n-dimensional submanifold of Sm+k,n < k. 
Then  M i s  S-parallelixable i f  and only i f  i t s  normal bundle i s  t r i v ia l .  

LEMMA3.4. A connected mani fo ld  w i t h  non-vacuous boundary i s  s-
parallelixable i f  and only i f  i t  i s  parallelixable. 

The proofs will be based on the following lemma. (Compare Milnor 
1[17, Lemma 41.) 

Let 5 be a k-dimensional vector space bundle over an n-dimensional 
complex, k > n. 

LEMMA3.5. I f  the W h i t n e y  s u m  of 5 w i t h  a t r iv ia l  bundle E' i s  t r iv ia l  
t hen  5 i tsel f  i s  t r iv ia l .  

PROOF. We may assume tha t  r = 1, and tha t  f is oriented. An iso- 
morphism Z @ w ck+' gives rise to a bundle map f from 5 to  the  bundle 
yk of oriented k-planes in (k + 1)-space. Since the base space of 5 has 
dimension n ,  and since the base space of yk is the  sphere S k ,  k > n, i t  
follows tha t  f is null-homotopic; and hence tha t  5 is trivial. 

PROOFOF LEMMA3.3. Let r ,  u denote the  tangent and normal bundles 
of M. Then T@ u is trivial hence ( r  @ E ' )  @ u is trivial. Applying Lemma 
3.5 the  conclusion follows. 

PROOFOF LEMMA3.4. This follows by a similar argument. The hypoth- 
esis on the  manifold guarantees that  every map into a sphere of the  
same dimension is null-homotopic. 
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4. Which homotopy spheres bound parallelizable manifolds? 

Define a subgroup bPny lc On as follows. A homotopy n-sphere M 
represents an element of bP,+, if and only if M is the boundary of a 
parallelizable manifold. We will see that  this condition depends only on 
the h-cobordism class of M, and that  b P n y l  does form a subgroup. The 
object of this section will be to prove the following 

THEOREM4.1. The quotient group @,/bPn+, i s  jinite. 
PROOF. Given an s-parallelizable closed manifold M of dimension n,  

choose an imbedding 
i :  M +  Snfk 

with k > n + 1. Such an imbedding exists and is unique up to differenti- 
able isotopy. By Lemma 3.3 the normal bundle of M is trivial. Now 
choose a specific field p of normal k-frames. Then the Pontrjagin-Thorn 
construction yields a map 

p(M, 9):  Snyk Sk.+ 

(See Pontrjagin [21, pp. 41-57], Thom [28].) The homotopy class of p(M, p )  
is a well defined element of the stable homotopy group 

Allowing the normal frame field p to vary, we obtain a set of elements 

LEMMA4.2. The subset p(M) c 11, contains the zero element of 11, if 
and only if M bounds a parallelizable manifold. 

PROOF. If M= b W with W parallelizable then the imbedding i:M-SnGk 
can be extended to an imbedding W+ DnPk-l, and W has a field $r of 
normal k-frames. We set p = Q / M. Now the Pontrjagin-Thom map 
p(M, 9):  Sn+?+S extends over Dnfk+l ,  hence is null-homotopic. -+ 

Conversely if p(M, p )  - 0, then M bounds a manifold W c D"-kyl, 
where 9 extends to a field Q of normal frames over W. I t  follows from 
Lemmas 3.3 and 3.4 that  W is parallelizable. This completes the proof 
of Lemma 4.2. 

LEMMA4.3. If Mo i s  h-cobordant to MI, then p(Mo) = p(M,). 
PROOF. If Mo+ (-MI) = bW, we choose an imbedding of W in 

Snykx [O, 11SO that  Mq -) Snfkx (q) for q = 0, 1. Then a normal frame 
field 9, on M, extends to a normal frame field Q on W which restricts to  
some normal frame field 9,-, on MI-,. Clearly (W, Q) gives rise to a 
homotopy between p(M,, 9,) and p(M,, 9,). 
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LEMMA4.4. I f  M and M' are s-parallelixable then 

PROOF. Star t  with the disjoint sum 

M x [0, 11 + M r  x [0, 11 , 
and join the boundary components M x 1 and M' x 1together, as de- 
scribed in the addendum a t  the end of 5 2. Thus we obtain a manifold 
W bounded by the disjoint sum 

( M # M')  + (- M )  + (- M')  . 
Note that  W has the homotopy type of M V M, the union with a single 
point in common. 

Choose an imbedding of W in S n f kx [ O ,  11 SO that  ( - M )  and ( - M ' )  
go into well separated submanifolds of Sn+kx 0,  and so that  M # M' goes 
into S n - k x 1. Given fields q and q' of normal k-frames on ( - M )  and 
( - M ' ) ,  it  is not hard to see that  there exists an extension defined 
throughout W. Let $r denote the restriction of this field to M # M r .  Then 
clearly p(M, q)+ p(Mr,9')is homotopic to p(M # M',  Q). This completes 
the proof. 

LEMMA4.5. The set p (Sn)  c nni s  a subgroup of the stable homotopy 
group 11,. For any homotopy sphere C the set p(C) i s  a coset of this  sub- 
group p(Sn) .  Thus the correspondence C -p(C) defines a homomorphism 
p' from O,  to the quotient group IIn/p(Sn).  

PROOF. Combining Lemma 4.4 with the identities 
( 1 )  sn#sn= sn, 
( 2 )  s n # c = c ,  
( 3 )  C # ( - 2 ) - S n  

we obtain 

( 1 )  p(Sn>+ ~ ( 8 % )c p(Sn) , 
which shows that  p(Sn) is a subgroup of II,; 

( 2 )  P(S" )+ P(C)c P(C) , 

which shows that  p(S) is a union of cosets of this subgroup; and 


( 3 )  ~ ( 2 )+ P ( - 2)c P(S"), 
which shows that  p(Z) must be a single coset. This completes the proof 
of Lemma 4.5. 

By Lemma 4.2 the kernel of p': On-IT,/p(Sn) consists exactly of all 
h-cobordism classes of homotopy n-spheres which bound parallelizable 
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manifolds. Thus these elements form a group which we will denote by 
bP,+,c 0,. I t  follows that  O,/bP,+, is isomorphic to a subgroup of 
II,/p(Sn). Since II, is finite (Serre [24]), this completes the proof of Theo- 
rem 4.1. 

REMARKS. The subgroup p(Sn) c II, can be described in more familiar 
terms as the image of the Hopf-Whitehead homomorphism 

J,: n,(SO,) -- n,,,(Sk) . 
(See Kervaire [9, p. 3491.) Hence II,/p(Sn) is the cokernel of J,. The 
actual structure of these groups for n S 8 is given in the following table. 
For details, and for higher values of n ,  the reader is referred to Par t  I1 
of this paper. 

The prime q >= 3 first divides the order of O,/bPnI1 for n = 2q(q - 1) - 2, 
Using Theorem 4.1, the proof of the main theorem (Theorem 1.2), 

stating that  O, is finite for n f 3, reduces now to proving that  bPSLl is 
finite for n f 3. 

We will prove that  the group bP,+,is zero for n even ($9 5,6), and is 
finite cyclic for n odd, n f 3, (see $9 7,8). The first few groups can be 
given as follows: 

(Again see Par t  I1 for details.) The cyclic group bPmI,  has order 1or 2 
for n r 1 (mod 4), but the order grows more than exponentially for  
n - 3 (mod 4). 

5. Spherical modifications 

This section, and $ 6 which follows, will prove that  the groups bP,,,, 
are zero.5 That is: 

THEOREM5.1. If a homotopy sphere of dimension 2k bounds a n  s-
parallelixable manifold M, then i t  bounds a contractible manifold MI. 

An independent proof of this theorem has been given by C.T.C. Wall [29] 
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For the case k = 1,  this assertion is clear since every homotopy 2-sphere 
is actually diffeomorphic to S2. The proof for k > 1will be based on the  
technique of "spherical modifications." (See Wallace [30], Milnor [15; 
1716.) 

DEFINITION. Let M be a differentiable manifold of dimension n = 
p + q f1and let 

be a differentiable imbedding. Then a new differentiable manifold M' = 
x(M, 9 )  is formed from the disjoint sum 

( M  - ?(Sp x 0)) fDp+lx Sq 

by identifying ~ ( u ,  tv) with (tu, v) for each u E S p ,  v E S" 0 < t 5 1. 
We will say that  M' is obtained from M by the spherical modijication 
~ ( 9 ) .  Note tha t  the boundary of M' is equal to the boundary of M. 

In order to prove Theorem 5.1 we will show that  the homotopy groups 
of M can be completely killed by a sequence of such spherical modifica- 
tions. The effect of a single modification ~ ( 9 )  on the  homotopy groups 
of M can be described as follows. 

Let k E 7ipM denote the  homotopy class of the map g, 1 SPx 0 from 
SPX 0 to M. 

LEMMA5.2. The homotopy groups of M' a re  given by 

for i < Min (p, q) , 
and  

provided that p < q; where A denotes a certain subgroup of 7ipM con- 
taining k. 

The proof is straightforward. (Compare [17, Lemma 21.) 
Thus if p < q (that  is, if p 5 n/2 - I) ,  the  effect of the modification 

~ ( 9 )is to kill the homotopy class k. 

Now suppose that  some homotopy class X E n,M is given. 

LEMMA5.3. If M" i s  s-parallelixable and  if p < n/2, then the class 
x i s  represented by some imbedding 9: Spx +M. 

PROOF. (Compare [17, Lemma 31.) Since n 2 2p f1 it  follows from 
a well known theorem of Whitney tha t  k can be represented by an im- 
bedding 

9,: S "  -M . 
6 The term "surgery" is used for this concept in 115; 171. 



514 KERVAIRE AND MILNOR 

I t  follows from Lemma 3.5 that  the normal bundle of q,Spin M is trivial. 
Hence g,, can be extended to the required imbedding SPx Dn-p+M. 

Thus Lemmas 5.2 and 5.3 assert that  spherical modifications can be 
used to kill any required element X E x,Mn provided that  p 5 n/2 - 1. 
There is one danger however. If the imbedding p is chosen badly then 
the modified manifold M' = x(M, p )  may no longer be s-parallelizable. 
However the following was proven in [17]. Again let n 2 2p + 1. 

LEMMA5.4. The imbedding q :  SPx Dn-P+M can be chosen within 
i t s  homotopy class so that the modified manifold x(M, q )  will also be s-
parallelixable. 

For the proof, the reader may either refer to [17, Theorem 21, or make 
use of the sharper Lemma 6.2 which will be proved below. 

Now combining Lemmas 5.2, 5.3, 5.4, one obtains the following. (Com-
pare [17, p. 461.) 

THEOREM5.5. Let M be a compact, connected s-parallelixable mani- 
fold of dime?zsion n 2 2k. By a sequence of spherical modifications on 
M one can obtain a n  S-parallelixable manifold Ml which i s  (k - 1)-
connected. 

Recall that  bMl = bM. 
PROOF. Choosing a suitable imbedding q: S1x Dn-I 4 M, one can ob- 

tain an s-parallelizable manifold M'= x(M, p )  such that  x1Mt is generated 
by fewer elements than xlM. Thus after a finite number of steps, one 
can obtain a manifold M" which is 1-connected. Now, after a finite 
number of steps, one can obtain an s-parallelizable manifold Mu' which 
is 2-connected, and so on until we obtain a (k - 1)-connected manifold. 
This proves Theorem 5.5. 

In order to prove 5.1, where dim M = 2k f1, we must carry this argu- 
ment one step further obtaining a manifold MI which is k-connected. I t  
will then follow from the Poincare duality theorem that  Ml is contrac- 
tible. 

The difficulty in carrying out this program is that  Lemma 5.2 is no 
longer available. Thus if M' = x(M, p)  where q imbeds Skx Dk+' in M, 
the group r k M t  may actually be larger than nkM. I t  is first necessary 
to describe in detail what happens to n k M  under such a modification. 
Since we may assume that  M is (k - 1)-connected with k >1, the homo- 
topy group n k M  may be replaced by the homology group HkM= Hk(M; 2). 

LEMMA5.6. Let M' = x(M, q )  where g, imbeds Skx Dk+' i n  M, and  
let 

M, = M - (interior q ( S k  x Dk+l)). 
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Then there is  a commutative diagram 

such that the horizontal and vertical sequences are exact. It follows that 
the quotient group H k M / h ( Z )is  isomorphic to HkM'/h ' (Z) .  

Here the following notations are to be understood. The symbol h de-
notes the element of HkM which corresponds to the homotopy class 
9 I S% 0, and h also denotes the homomorphism Z- t  HkM which carries 
1 into h. On the other hand - h: Hk,,M -Z denotes the homomorphism 
which carries each p E Hkl,M into the intersection number p - h. The 
symbols h' and ah' are to be interpreted similarly. The element h' E HkM1 
corresponds to the homotopy class 9' I 0 x S%here 

denotes the canonical imbedding. 
PROOFOF LEMMA5.6. As horizontal sequences take the exact sequence 

.I i 
Hk+,M--+ HkL,(M, M,) -HkM, -HkM- Hk(M, Ma) 

of the pair ( M ,  M,). By excision, the group H,(M, Ma) is isomorphic to 

Thus we obtain 

a s  asserted. Since a generator of Hk,,(M, M,) clearly has intersection 
number -tl with the cycle ?(S" 0 )  which represents h,i t  follows that  
the homomorphism Hk+,M- Z can be described as the homomorphism 
p . h. The element E' = E HkMacan clearly be described as the -p ~ ' ( 1 )  
homology class corresponding to the "meridian" ~ ( x ,x S k )of the torus 
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q ( S k  x Sic),where x, denotes a base point in Sk. 
The vertical exact sequence is obtained in a similar way. Thus E = 

~ ( 1 )E HkM, is the homology class of the "parallel" q ( S kx x,) of the  
torus. Clearly i ( ~ )E H,M is equal to the homology class h of q ( S kx 0). 
Similarly if(&')= XI. 

From this diagram the isomorphisms 

HkM/h(Z)c HkMo/i(Z)+ i'(Z) 2: HkM1/h'(Z) 

are apparent. This completes the proof of Lemma 5.6. 
As an application, suppose that  one chooses an element h E H k Mwhich 

is primitive in the sense that  ,u-X= 1 for some p ~1Hk,,M. I t  follows 
that  

i: H,M, -- H,M 

is an isomorphism, and hence that  

HkM1c HkM/h(Z). 
Thus: 

ASSERTION.Any primitive element of H,M can be killed by a spheri-
cal modification. 

In order to apply this assertion we assume the following: 
Hypothesis. M is a compact, s-parallelizable manifold of dimension 

2k + 1, k >1, and is (k - 1)-connected. The boundary bM is either vacu-
ous or a homology sphere. 

This hypothesis will be assumed for the rest of 9 5 and for 5 6. 

LEMMA5.7. Subject to this hypothesis, the homology group H k Mcan 
be reduced to i t s  torsion subgroup by a sequence of spherical modifica-
tions. The modified manifold Ml will still satisfy the hypothesis. 

PROOF. Suppose that  H,M -. Z @ . @ Z @ T where T is the torsion 
subgroup. Let h generate one of the infinite cyclic summands. Using 
the Poincar6 duality theorem one sees that  pl.h = 1 for some element 
pl E Hk,,(M, bM). But the exact sequence 

H,IIM-- HkL1(M,bM) -- H,(bM) = 0 

shows that  pl can be lifted back to H,+,M. Therefore h is primitive, and 
can be killed by a modification. After finitely many such modifications, 
one obtains a manifold Ml with H,Ml -. T c H,M. This completes the 
proof of Lemma 5.7. 

Let us specialize to the case k even. Let M be as above, and let 
F: Skx Dk+l-- M be any imbedding. 

LEMMA5.8. If k i s  even then the modification X(F)necessarily changes 
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the kth Betti number of M. 
The proof will be based on the following lemma. (See Kervaire [8, 

Formula (8.8)].) 
Let F be a fixed field and let W be an orientable homology manifold of 

dimension 2r. Define the semi-characteristic e*(b W; F )  to be the follow- 
ing residue class modulo 2: 

e*(bW, F )  - Clli rank Hi(b W, F )  (mod 2) . 
LEMMA5.9. The rank of the bilinear pairing 

given by the intersection number, i s  congruent modulo 2 to e*(b% F )  
plus the Euler  characteristic e( W). 

[For the convenience of the reader, here is a proof. Consider the exact 
sequence 

where the coefficient group F is to be understood. A counting argument 
shows that  the rank of the indicated homomorphism h is equal to the 
alternating sum of the ranks of the vector spaces to the right of h in 
this sequence. Reducing modulo 2 and using the identity 

rank Hi( W, b W) = rank Hz,-,W , 
this gives 

rank h = CIIA rank Hi(b W) + c=,rank HiW 

= e * ( b w F ) + e ( W )  (mod2).  

But the rank of 

h: H, W-- H,( W, b W) -. Hom,(H, W, F) 

is just the rank of the intersection pairing. This completes the proof.] 
PROOFOF LEMMA5.8. First suppose that  M has no boundary. As shown 

in [15] or [I71 the manifolds M and M'  = x(M, q),suitably oriented, to- 
gether bound a manifold W = W(M, 9 )  of dimension 2k + 2. For the 
moment, since no differentiable structure on W is needed, we can simply 
define W to be the union 

( M  x [0, 11) U (DM' x DkL1), 

where it is understood that  S% DD1 is to be pasted onto M x 1by the  
imbedding 9. Clearly W is a topological manifold with 

b W = M x O + M 1 x l .  
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Note that  W has the homotopy type of M with a (k + 1)-cell attached. 
Since the dimension 2k + 1of M is odd, this means that  the Euler charac- 
teristic 

Since k is even, the intersection pairing 

is skew symmetric, hence has even rank. Therefore Lemma 5.9 (with 
rational coefficients) asserts that  

e*(M+ M'; Q) + (-l),+' - 0 (mod 2) , 
and hence that  

e*(M Q) S e*(M'; Q) . 
But H,M -- H,M' -- 0 for 0 < i < k, so this implies that  

rank H,(M Q) S rank H,(M'; Q) . 
This proves Lemma 5.8 provided that  M has no boundary. 

If M is bounded by a homology sphere, then attaching a cone over bM, 
one obtains a homology manifold M, without boundary. The above argu- 
ment now shows that  

rank H,(M,; Q) + rank H,(M$; Q) . 
Therefore the modification ~ ( 9 )  changes the rank of H,(M Q) in this case 
also. This completes the proof of Lemma 5.8. 

I t  is convenient a t  this point to insert an analogue of 5.8 which will 
only be used later. (See the end of 9 6.) Let M be as above, with k even 
or odd, and let W = W(M, 9) .  

LEMMA5.10. Suppose that every mod 2 homology class 

has self-intersection number 5.5: = Then the modification ~ ( 9 )  0. neces-
sar i ly  changes the rank of the mod 2 homology group H,(M 2,). 

The proof is completely analogous to that  of 5.8. The hypothesis, 5.5 = 
0 for all 5, guarantees that  the intersection pairing 

will have even rank. 
We now return to the case k even. 
PROOFOF THEOREM5.1, for k even. According to 5.6, we can assume 

that  H,M is a torsion group. Choose 
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a s  in 5.4 so as to represent a non-trivial X E H,M. According to 5.6 we 
have 

H,M/x(Z) C. HkM'/X'(Z) . 
Since the group X(Z) is finite, it  follows from 5.8 that  h'(Z) must be 
infinite. Thus the sequence 

is exact. I t  follows that  the torsion subgroup of H,M' maps monomor- 
phically into H,M'/h'(Z); and hence is definitely smaller than HkM. Now 
according to 5.7, we can perform a modification on M' so as to obtain a 
new manifold M u  with 

H,M" 2: Torsion subgroup of H,M' < H,M . 
Thus in two steps one can replace H,M by a smaller group. Iterating this 
construction a finite number of times, the group H,M can be killed com- 
pletely. This completes the proof of Theorem 5.1 for k even. 

6. Framed spherical modifications 

This section will complete the proof of Theorem 5.1 by taking care of 
the case k odd. This case is somewhat more difficult than the case k even 
(which was handled in 9 5), since i t  is necessary to choose the imbeddings 
9 more carefully, taking particular care not to lose s-parallelizability in 
the process. Before starting on the proof, i t  is convenient to sharpen 
the concepts of s-parallelizable manifold, and of spherical modification. 

DEFINITION. A framed manifold (M, f )  will mean a differentiable 
manifold M together with a fixed trivialization f of the stable tangent 
bundle T, @ E,. 

Now consider a spherical modification ~ ( 9 )  of M. Recall that  M and 
M' = x(M, 9 )  together bound a manifold 

W = ( M  x [0, 11) U (Dp+'x Dq+l) 

where the subset Spx Dq+l of Dp+l x Dq+l is pasted onto M x 1by the 
imbedding 9.(Compare Milnor [17].) I t  is easy to give W a  differentiable 
structure, except along the "corner" SPx Sq. A neighborhood of this 
corner will be "diffeomorphic" with Spx Sqx Q where 

Q c R2 

denotes the three-quarter disk consisting of all ( r  cos 8, r sin 8) with 
0 5 r < 1 ,  0 5 8 5 3 ~ 1 2 .In order to "straighten" this corner, map Q onto 



520 KERVAIRE AND MILNOR 

the half-disk H,  consisting of all ( r  cos 8', r sin 8') with 0 5 r < 1, 
0 5 8' S n; by setting 8' = 2813. Now carrying the differentiable struc- 
ture of Hback to Q, this makes Q into a differentiable manifold. Carry-
ing out the same transformation on the neighborhood of SPx Sqlthis 
makes W = W(M, 9 )  into the required differentiable manifold. Note that  
both boundaries of W get  the correct differential structures. 

Now identify M with M x 0 c W, and identify the stable tangent 
bundle r, @ E, with the restriction r, 1 M. Thus a framing f of M de- 
termines a trivialization of r, ( M. 

DEFINITION.A framed spherical modijication ~ ( 9 ,  F )  of the framed 
manifold (M, f )  will mean a spherical modification ~ ( 9 )  of M together 
with a trivialization F of the tangent bundle of W, satisfying the con- 
dition 

Note that  the modified manifold M' = x(M, 9 )  automatically acquires 
a framing 

f ' = F I M ' .  

I t  is only necessary to identify r, 1 M' with the stable tangent bundle 
r,, @ E,,. To do this, we identify the positive direction in E,, with the 
outward normal direction in r, 1 M'. 

The following question evidently arises. Given a modification ~ ( 9 )  of 
M and a framing f of M, does f extend to a trivialization F of r,? The 
obstructions to such an extension lie in the cohomology groups 

for r = p 

for r # p .  

Thus the only obstruction to extending f is a well defined class 

The modification ~ ( 9 )  can be framed if and only if this obstruction r (9 )  
is zero. 

Now consider the following alteration of the imbedding 9.Let 

a: SP Soq+]-f 

be a differentiable map, and define 

9,: SPX DPil-M 

by 

Q)~(u ,V)= P(U, v . ~ ( u ) )  1 
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where the dot denotes the usual action of SO,+, on DqA1.Clearly 9, is an 
imbedding which represents the same homotopy class X E is,M as 9. 

LEMMA6.1. The obstruction ~ ( 9 , )depends only on y ( 9 )  and on the 
homotopy class ( a )  of a. I n  fact 

~ (9 , )= f s*(a)~ ( 9 )  

where s,: is,(SO,+,)-is,(SO,+,) i s  induced by the inclusion s: SO,+l-SO,+l. 
PROOF. (Compare [17],proof of Theorem 2.) Let W ,  be the manifold 

constructed as W above, now using 9,. There is a natural differentiable 
imbedding 

and i, / S P  x Dq+' coincides with 9,: S P  x Dq+l-M followed by the in- 
clusion M-M x I c W,. 

~ ( 9 , )is the obstruction to extending f 1 9,(SP x 0 )  to a trivialization 
of .r(W,) restricted to i,(Dp+l x 0)  Let tn+l= ePf lx eq+'be the standard 
framing on DP+l x D q f l .  Then i;(tn+l)is a trivialization of the tangent 
bundle of W ,  restricted to i , (Dpf l  x Dqtl), and ~ ( 9 , )is the homotopy 
class of the map g: S P  -SO,+,, where g ( u )  is the matrix <f "+I, i;(tn+')> 
at 9,(u, 0). 

Since i, I Dp+' x 0 is independent of a,  and i, I SPx Dq+'= F,, we have 

at every point (u,0) E S P  x Dq+l. 
Since 

q&(ee" = 9'(eq") .a(u) 

at (u,0) ,  i t  follows that  

i;(tn+')= i '(tn+l).s(a). 
Hence 

< f n + l ,  i;(tn")> = <f "3,il(t"+')>.s(a) 

and the lemma follows. 
Now suppose (as usual) that  p 5 q .  Then the homomorphism 

is onto. Hence a can be chosen so that 

i s  zero. Thus we obtain: 

LEMMA6.2. Given 9:S Px Dq+l-+M wi th  p 5 q ,  a map  a can be chosen 
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so that the modification ~ ( 9 , )can be framed. 
In particular, i t  follow tha t  the manifold x(M, q,) will be s-parallel- 

izable. Thus we have proved Lemma 5.4 in a sharpened form. 
We note however that  a is not always uniquely determined. In the  

case p = q = k odd, the homomorphism 

S*:  rk(SOk+l) rk(SOn+l)-+ 

has an infinite cyclic kernel. This freedom in the choice of a will be t h e  
basis of the proof of 5.1 for k odd. 

Let us study the homology of the manifold 

where q is now chosen, by Lemma 6.1, so that  the spherical modification 
~ ( q )  Clearly the deleted manifold can be framed. 

M, = M - (interior q,(Sk x DkLl))  

does not depend on the  choice of a. Furthermore the  meridian q,(x, x S k )  
of the torus q,(S" S k )c M, does not depend on the choice of a; hence 
the homology class 

E' E HkM, 

does not depend on a. On the other hand t h e  parallel q,(Sk x x,) does 
depend on a. In fact i t  is clear that  the homology class i, E HkM,of this 
parallel is given by 

E ,  = i + j ( a ) ~ '  

where the homomorphism 

is induced by the canonical map 
j

P -X 0 . P  

from SOkI1to S k .  

The spherical modification ~ ( 9 , )can still be framed provided a is a n  
element of the  kernel of 

Identifying the  stable group nk(SO,+,)with the  stable group ;rik(SOk+2), 
there is an exact sequence -a S* 

rk+l(sk+l) rk(SOk+~> rk(S0k+2) 

associated with the fibration S0,+2/S0,+l= Sk+'. It is well known tha t  
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the composition 

carries a generator of a,+,(SW1)onto twice a generator of n , (Sk) ,provided 
that  k is odd. Therefore the integer j,(a) can be any multiple of 2. 

Let us study the effect of replacing i by E ,  = E + j(a)i' on the homol- 
ogy of the modified manifold. Consider the exact sequence 

of 5.6, where i carries E into an element h of order 1 > 1. Evidently l i  
must be a multiple of i ' ,  say: 

I &  + I'E' = 0 . 
Since E' is not a torsion element, these two elements can satisfy no other 
relation. Since E ,  = E + j , (a )~ 'i t  follows that  

l i ,  + (I' - 1j(a))cr= 0 . 
Now using the sequence 

we see that  the inclusion homomorphism i 2  carries E' into an element 

h&€ HkM&. 

of order j 1' - 1j (a)  1 .  Since HkM;/h;(Z) is isomorphic to H,M/h(Z),  we 
see that  the group H,M; is smaller than H,M, if and only if 

0 < 11' - l j ( a ) l <  1 .  

But j (a)  can be any even integer. Thus j (a)  can be chosen so that  

This choice of j (a)  will guarantee an improvement except in the special 
case where I' happens to be divisible by 1. 

Our progress so far  can be summarized as follows. 

LEMMA6.3. Let M be a framed (k  - 1)-connected manifold of dimen- 
sion 2k + 1 with k odd, k > 1 ,  such that HkM i s  finite. Let ~ ( p ,  F )  be a 
framed modification of M which replaces the element E HkM of order 
1 > 1 by a n  element X' E H,Mr of order f1'. I f  1' $ 0 mod 1 then i t  i s  
possible to choose (a)E ak(SO,+,) so that the modijication ~ ( p , )  can still 
be framed, and so that the group H,ML i s  dejinitely smaller than HkM. 

Thus one must study the residue class of 1' modulo 1. Recall the defini- 
tion of linking numbers. (Compare Seifert-Threlfall [23, 3 771.) Let 
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X E H,M, p E HqM be homology classes of finite order, with dim M = 
p + q + 1. Consider the homology sequence 

associated with the coefficient sequence 

Since k is of finite order, i,x]= 0 and X = P(v) for some v E H,+,(M; Q/Z). 
The pairing 

Q /Z@ 2- Q l z  

defined by multiplication induces a pairing 

H,+l(M; Q/Z)  C3 HqM+ Q/Z 

defined by the intersection of homology classes. We denote this pairing 
by a dot. 

DEFINITION. The linking number L(X, p )  is the rational number modulo 
1defined by 

L(X,p) = v - p .  

This linking number is well defined, and satisfies the symmetry relation 

(Compare Seifert and Threlfall.) 

LEMMA6.4. The ratio I'll modulo 1 is, u p  to sign, equal to the self- 
linking number L(X, X). 

PROOF. Since 

le + l r e r=  0 

in HkMo, we see that  the cycle le + Ire' on bM, bounds a chain c in M,. 
Let c, = p(x, x Dk+') denote the cycle in p (Sk  x Dk+l)c M with bounda- 
ry E'. Then the chain c - lrcl has boundary 1 ~ ;  hence (c - lrcl)/l has 
boundary E, representing the homology class X in HkM. Taking the inter- 
section of this chain with p (Sk  x 0), representing X, we obtain t l r / l ,  
since c is disjoint and cl has intersection number 'F1. Thus L(h, k) = 

t l'/l mod 1. 
Now if L(X, X) $= 0, then 1' + 0 (mod I), hence the class X can be re- 

placed by an element of smaller order under a spherical modification. 
Hence, unless L(X, X) = 0 for all X E H,M, this group can be simplified. 

LEMMA6.5. If H,M is a torsion group, with L(X, X) = 0 for everg 
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k E H,M, and if k i s  odd, then this group H k M  must be a direct sum of 
cyclic groups of order 2. 

PROOF. The relation 

with p = q - 1(mod 2) implies that  

Now if self-linking numbers are all zero, the identity 

implies that  

for all t and 1;. But, according to the Poincar6 duality theorem for tor- 
sion groups (see [23, p. 245]), L defines a completely orthogonal pairing 

Hence the identity L(2f, 1;) = 0 for all 1; implies that  2 t  = 0. This proves 
Lemma 6.5. 

I t  follows that, by a sequence of modifications, one can reduce H,M to 
a group of the form Z, @ .. . @ Z, = sZ,. 

Now let us apply Lemma 5.10. Since the modification ~ ( p , )  is framed, 
the  corresponding manifold W = W(M, p,) is parallelizable. I t  follows 
from the formulas of Wu that  the Steenrod operation 

is zero. (See Kervaire [8, Lemma (7.9)].) Hence every t E H,+,(W; 2,) 
has self-intersection number f.5: = 0. Thus, according to 5.10, the modi- 
fication ~ ( p , )  changes the rank of H,(M; 2,). 

But the effect of ~ ( p , )  on H,(M; Z) ,  provided that  a is chosen properly, 
will be to replace the element X of order 1 = 2 by an element XL of order 
I: where 

Thus 1; must be 0 or 2. Now using the sequence 

where the right hand group is isomorphic to (s - l)Z,, we see that  H,M; 
is  given by one of the following: 
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'2,+ ( S  - 2)22 . 
But the first two possibilities cannot occur, since they do not change t he  
rank of Hk(M;2,). In the remaining two cases, a further modification 
will replace HkMi by a group which is definitely smaller than H,M. 
Thus in all cases H,M can be replaced by a smaller group by a sequence 
of framed modifications. 

This completes the proof of Theorem 5.1. Actually we have proved the 
following result which is slightly sharper. 

THEOREM6.6. Let M be a compact, framed manifold of dimension 
2k + 1, k > 1, such that bM i s  either vacuous or a homology sphere. By  
a sequence of framed modijications, M can be reduced to a k-connected 
manifold MI. 

If bM is vacuous then the  Poincarh duality theorem implies tha t  M, is 
a homotopy sphere. If bMis a homology sphere, then MI is contractible. 

The proof of 6.6 is contained in the above discussion, provided that  M 
is connected. But using [17, Lemma 2'1 it  is easily seen that  a discon-
nected manifold can be connected by framed modifications. This com-
pletes the proof. 

7. The groups bP,, 

The next two sections will prove that  the groups bP,, are finite cyclic 
for k # 2. In fact for k odd, the group bP,, has a t  most two elements. 
For k = 2m # 2 we will see in Par t  I1 that  bP,, is a cyclic group of order' 

22m-2 , (2'"-' - 1) numerator (4B,/m) , 
where B,  denotes the mthBernoulli number, and E ,  equals 1 or 2. 

The proofs will be based on the following. 

LEMMA7.1. Let M be a (k  - 1)-connected manifold of dimension 2k, 
k 2 3, and suppose that H,M i s  free abelian wi th  basis {k,, ..a ,  k,, 
p,, .. ,p,} where 

x i . x , j = 0 ,  x i .p j=a. .2 3 

for all i,j (where a,, denotes a Kronecker delta). Suppose further that 
every imbedded sphere in M which represents a homology class in the 
subgroup generated by k,, ,k, has trivial normal bundle. Then H,M 

This expression for the order of bP,,, relies on recent results of J. F. Adams [I1 



HOMOTOPY SPHERES: I 527 

can  be killed by a sequence of spherical modifications. 
PROOF. According to [17, Lemma 61 or Haefliger [6] any homology 

class in H k Mcan be represented by a differentiably imbedded sphere. 

REMARK.I t  is a t  this point that  the hypothesis k 2 3 is necessary. 
Our methods break down completely for the case k = 2 since a homology 
class in H,(M4)need not be representable by a differentiably imbedded 
sphere. (Compare Kervaire and Milnor [13].) 

Choose an imbedding 9,: Sk-+ M SO as to represent the homology class 
x,. Since the normal bundle is trivial, p, can be extended to an imbed-
ding p: Skx D k-+M. Let M' = x(M,  9 )  denote the modified manifold, 
and let 

M, = M - Interior p(Skx Dk)= M' - Interior 9'(D k + l  x SkP1). 
The argument now proceeds just as in [17, p. 541. There is a diagram 

where the notation and the proof is similar to that  of Lemma 5.6. Since 
p,.k, = 1it  follows that  Hk-,Ma= 0. From this fact one easily proves 
that  Moand M' are (k - 1)-connected. The group HkMois isomorphic to 
the  subgroup of H k Mgenerated by {XI, ..,X,,p,, , ,u,-3. The group 
HkMris isomorphic to a quotient group of HkM,. I t  has basis {x:, ,x',-,, 
pi, ,pi-,}where each xl corresponds to a coset 

xi + x,Z C H k M ,  

and each ,uJcorresponds to a coset pj + x,Z. 
The manifold M' also satisfies the hypothesis of 7.1. In order to verify 

that  
x; .x; = 0 , x: ,u; = Sij , 

note that  each k: or ,u; can be represented by a sphere imbedded in Mo 
and representing the homology class Xi or ,ujof M. Thus the intersection 
numbers in M' are the  same as those in M. In order to verify that  any 
imbedded sphere with homology class n,X: + + n,-,X:-, has trivial 
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normal bundle, note that  any such sphere can be pushed off ~ ' ( 0x Sk-I), 
and hence can be deformed into M,. I t  will then represent ahomology class 

and thus will have trivial normal bundle. 
Iterating this construction r times, the result will be a k-connected 

manifold. This completes the proof of Lemma 7.1. 
Now consider an S-parallelizable manifold Mof dimension 2k, bounded 

by a homology sphere. By Theorem 5.5, we can assume that  M is (k - 1)-
connected. Using the Poinear6 duality theorem it follows that  H,M is  
free abelian, and that  the intersection number pairing 

H,M@ H,M--Z 

has determinant +I. The argument now splits up into three cases. 

Case 1. Let k = 3 or 7. (Compare [17, Theorem 4'1.) Since k is odd 
the intersection pairing is skew symmetric. Hence there exists a "sym-
plectic" basis for HkM; that  is, a basis {XI, ,A,, p,, ,p,) with 

Xi . Xj= pi ,u; = 0 , Xi .p; = . 
Since n,-,(SO,) = 0 for k = 3, 7, any imbedded k-sphere will have trivial 
normal bundle. Thus Lemma 7.1 implies that  H,M can be killed. Since 
an analogous result for k = 1is easily obtained, this proves: 

LEMMA7.2. The groups bP,, bP,, and bPl, are zero. 

Case 2. k is odd, but k f 1, 3, 7. Again one has a symplectic basis; 
but the normal bundle of an imbedded sphere is not necessarily trivial. 
This case will be studied in $8. 

Case 3. k is even, say k = 2m. Then the following is true. (Compare 
[17, Theorem 41.) 

LEMMA7.3. Let M be a framed manifold of dimension 4m > 4,  
bounded by a homology sphere.' The homotopy groups of M c a n  be killed 
by a sequence of framed spherical modifications i f  and only i f  the 
signature o ( M )i s  zero. 

Since a proof of 7.3 is essentially given in [17] we will only give a n  
outline here. 

In one direction the lemma follows from the assertion that  a ( M )  is 
invariant under spherical modifications. (See [17, p. 411. The fact that  
M has a boundary does not matter here, since we can adjoin a cone over 

8 This lemma is of course also true if bM is vacuous. In this case the signature o ( M )  
is necessarily zero, by Hirzebruch's signature theorem. 
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the  boundary, thus obtaining a closed homology manifold with the same 
signature.) 

Conversely suppose that  o(M) = 0. We may assume that  M is (k - 1)-
connected. Since the quadratic form X -X . X has determinant f1and 
signature zero, i t  is possible to choose a basis {XI, .,k,, ,u1, ,p,) for 
H,M so that  Xi k j  = 0, Xi pj = a,,. The proof is analogous to  that  of 
[17, Lemma 91, but somewhat simpler since we do not put any restric-
tion on pi pj. For any imbedded sphere with homology class X = 

nlXl + ... + n,k,, the self-intersection number . X is zero. Therefore, 
according to [17, Lemma 71, the normal bundle is trivial. 

Thus M satisfies the hypothesis of 7.1. I t  follows that  H,M can be 
killed by spherical modifications. Since the homomorphism 

is onto for k even, i t  follows from Lemma 6.2 that  we need use only 
framed spherical modifications. This completes the  proof of Lemma 7.3. 

LEMMA7.4. F o r  each k = 2m there exists a parallelixable manifold 
Mowhose boundary bM, i s  the ordinary (4m - 1)-sphere, such that the 
signature a(M,) i s  non-zero. 

PROOF.According to  Milnor and Kervaire [18, p. 4571 there exists a 
closed "almost parallelizable" 4m-manifold whose signature is non-zero. 
Removing the interior of an imbedded 4m-disk from this manifold, we 
obtain the required parallelizable manifold Mo. 

Now consider the collection of all 4m-manifolds Ma which are  s-paral-
lelizable, and are bounded by the (4m - 1)-sphere. Clearly the cor-
responding signatures o(Ma)E Z form a group under addition. Let o m>0 
denote the generator of this group. 

THEOREM7.5. Let C1and  C, be homotopy spheres of dimension 4m - 1, 
m > 1,  which bound s-parallelixable manifolds MI and  M, respectively. 
Then Cl i s  h-cobordant to C, if and  only if 

PROOF. First suppose that  

o(M1) = a(M2) + o(Mo) 

Form the connected sum along the boundary 

as in 8 2; with boundary 
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Since 

i t  follows from 7.3 that  bM = -2, # C, belongs to the trivial h-cobordism 
class. Therefore C, is h-cobordant to 2,. 

Conversely let W be an h-cobordism between -2, # 2, and the sphere 
S4+l.Pasting W onto (-MI, -bMl)#(M,, bM,) along the common boundary 
-2, # C,, we obtain a differentiable manifold M bounded by the sphere 
~ 4 , - I  . Since M is clearly s-parallelizable, we have 

a ( M ) = O  (modo,). 

But 

Theref ore 

which completes the proof. 

COROLLARY7.6. The group bP,,, m > 1, i s  isomorphic to a subgroup 
of the cyclic group of order a,. Hence bP,, i s  finite cyclic. 

The proof is evident. 
Discussion and  computations. In Par t  I1we will see that  bP,, is cyclic 

of order precisely a,/8. In fact a given integer a occurs as a (M)  for some 
s-parallelizable M bounded by a homotopy sphere if and only if 

a - 0 (modulo 8) . 
The following equality is proved in [18, p. 4571: 


a, = 22,-l(22m-I - 1)BmjmamIm 


where B, denotes the mth Bernoulli number, j, denotes the order of the 
cyclic group 

J(r4m--l(SO))c n 4 m - 1  , 
and a, equals 1or 2 according as m is even or odd. Thus bP,, is cyclic 
of order 

According to recent work of J. F. Adams [I], the integer j, is precisely 
equal to the denominator of B,/4m, a t  least when m is odd. (Compare 
[18, Theorem 47.) Therefore 

B, j,a,/4m = a,  numerator (Bm/4m) = numerator (4B,/m) 
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where the last equality holds since the denominator of B, is divisible by 
2 but not 4. Thus bP4, is cyclic of order 

( 2 )  Bn.18 = - ,22m-2(22m-11) numerator (4Bm/m) 

when m is odd. 
One can also give a formula for the order of the full group 04,-,. In 

Par t  I1 we will see that  O,m-l/bP,, is isomorphic to I1,,-,/J(n4,-,(SO)). 
(Compare $4.) Together with formula (1)above this implies that: 

order 04,-,= (order II,m-,)22m-4(2"-1- l )Bmam/m. 
8. A cohomology operation 

Let 2 5 k 5 n - 2 be integers and let (K ,  L )  be a CW-pair which satis- 
fies the following: 

Hypothesis. The cohomology groups Hi(K, L ;  G) vanish for k < i < n 
and for all coefficient groups G. 

Then a cohomology operation 

+: Hk(K,  L ;  2 )-- Hn(K,  L ;  xn-,(Sk)) 

is defined as followsg. Let enE S k denote a base point and let 

denote a generator. Then +(c) will denote the first obstruction to the 
existence of a map 

f: ( K ,  L )  -- ( S k ,en) 

satisfying the condition f ' ( s )= c. 
To be more precise let K' denote the r-skeleton of K. Then given any 

class 
x E Hk(K,  L ;  2)2: Hk(Kn-IU L ,  L ;  2), 

i t  follows from standard obstruction theory that  there exists a map 

f,: (Kn-I U L, L )  - ( S k ,en) 

with f,Xs = x; and that  the restriction 

is well defined up to homotopy. The obstruction to extending f, over 
K n  U L is the required class 

+(x)E Hn(K, L ;  nn-,(Sk)) . 
9 A closely related operation 90has been studied by Kervaire [12]. The operation po 

would serve equally well for our purposes. 
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LEMMA8.1. The function 

is well defined, and i s  natural  i n  the following sense. If the cw-pair  
(K', L') also satisfies the hypothesis above, then for any map  

and any x E Hk(K,  L ;  2 )  the identity 

g*+(x) = +g*(x) 
i s  satisjied. 

The proof is straightforward. I t  follows that  j+ does not depend on 
the particular cell structure of the pair (K, L). 

Now let us specialize to the case n = 2k. 

LEMMA8.2. The operator + satisfies the identity 

where the last term stands for the image of the class x -y E HZk(K,L ;  2 )  
under that coeficient homomorphism 

-'TZk-l(Sk) 

which carries 1into the Whitehead product class [i, i]. 
PROOF. Let U = e0u ekU {e",}U {(ekkfl}U . . . denote a complex formed 

from the sphere Skby adjoining cells of dimensions 2 2 k  so as to kill the  
homotopy groups in dimensions 2 2 k  - 1. Let 

be a standard generator. Evidently the functions 

+: HkU +  HZk((?TZkPl(Sk)) 
and 

+: H k ( UX U) --t H Z k ( UX (~ ~ ~ - 1 ( s ~ ) )  

are defined. We will first evaluate +(u x 1+ 1x u). 
The (2k + 1)-skeleton of U x U consists of the union 

Therefore the cohomology class +(u x 1+ 1 x u) E H Z k ( U xU;T ~ ~ - ~ ( S ~ ) )  
can be expressed uniquely in the form 

with a ,  b E H"(( u ; ~ ~ - ~ ( S ~ ) )and Y E ?T,,~,(S"). Applying 8.1 to the inclu- 
sion map 
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we see that  a must be equal to +(u). Similarly b is equal to +(u). Ap-
plying 8.1 to the inclusion 

we see that  +(s x 1 + 1 x s) = r ( s  x s). But +(s x 1 + 1 x s) is just 
the obstruction to the existence of a mapping 

satisfying f (eo,x)  = f ( x ,eo)= x. Therefore r must be equal to the White-
head product class [i,i]E n,,-,(Sk). Thus we obtain the identity 

+(u x 1 + 1 x u )  = $(u)x I + 1 x +(u) + [i,i ] ( ux u )  
= +(u x 1)  + +(lx U )  + [ i , i ] ( ( ux 1 ) - ( 1  x u ) ) .  

Now consider an arbitrary cw-pair ( K ,L ) ,  and two classes x,  y e 
H k ( K ,L ) .  Choose a map 

g :  ( K ,L )  - ( U  x U, e0 x eO) 

so that  g X ( ux 1) = x, g X ( l  x u )  = y. (Such a map can be constructed 
inductively over the skeletons of K since the obstruction groups 
Hi(H,L ;  ni-,(U x U ) )are all zero.) Then by 8.1: 

+(x + y) = g*+(u x 1 + 1 x u )  
= g X + ( u  x 1)  + g X + ( l  x u) + [i , i]gX((ux 1) + (1  x u ) )  

= +(x>+ +(Y) + [i,il(x Y )  

This completes the proof of Lemma 8.2. 
Now let M be a 2k-manifold which is (k -- 1)-connected. Then 

is defined. 

LEMMA8.3. Let k be oddlo and let M be s-parallelizable. Then an  
imbedded k-sphere in M has trivial normal bundle i f  and only i f  i t s  
dual cohomology class v E H Y M ,  bM) satisfies the condition +(v) = 0. 

PROOF.Let N be a closed tubular neighborhood of the imbedded 
sphere, and let 

Ma= M - Interior N . 
Then there is a commutative diagram 

10 This  lemma is actually t rue  for k even also. 
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where a generator w of the infinite cyclic group Hk(N,bN) corresponds 
to the cohomology class v under the left hand vertical arrows. Thus" 

I t  is clear that  the homotopy class +(w)[N] depends only on the normal 
bundle of the imbedded sphere. 

The normal bundle is determined by an element v of the group xk-,(SOk). 
Since M is s-parallelizable, u must belong to the kernel of the homo-
morphism 

But this kernel is zero for k = 1, 3, 7, and is cyclic of order 2 for other 
odd values of k. The unique non-trivial element corresponds to the tan-
gent bundle of S k ,or equivalently to the normal bundle of the diagonal 
in Skx Sk. 

Thus if u f 0 then N can be identified with a neighborhood of the 
diagonal in Skx Sk. Then 

+(w)[N] = +(s x 1+ 1 x s)[Sk x S k ]= [i, i] # 0 

(assuming that  k # 1 ,3 ,7 ) .  On the other hand if u = 0 then +(w)is 
clearly zero. This completes the proof of Lemma 8.3. 

Henceforth we will assume that  k is odd and f 1, 3, 7. The subgroup 
of a,,-,(Sk) generated by [i, i]will be identified with the standard cyclic 
group 2,.Thus a function 

is defined by the formula 

where x E Hk(M,bM) denotes the Poinear6 dual of the homology class X. 
Evidently: 

(1) qo(h+ p) -- +o(X) + +,(p) + p (mod 2), and 

11 The  symbol [MI denotes the homomorphism H a ( M ,  bM; G)  + G determined by the 
orientation homology class in H,(M, bM; 2). 
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(2) l;ro(X)=0 if and only if an imbedded sphere representing the homol-
ogy class X has trivial normal bundle. 

Now assume that  bM has no homology in dimensions k, k - 1, so tha t  
the intersection pairing has determinant t l .  Then one can choose a 
symplectic basis for H,M that  is a basis {XI, .,X,, p,, ,p,) such that  

x i . x j = 0 ,  . = 0 , Xi . pj = . 
DEFINITION.The Arf invariant c(M) is defined to be the residue class'" 

(Compare [3].) This residue class modulo 2 does not depend on the choice 
of symplectic basis. 

LEMMA8.4. If c(M) = 0 then H,M can be killed by a sequence of 
framed spherical modijications. 

The proof will depend on Lemma 7.1. Let {XI, ,A,, p,, ,p,) be a 
symplectic basis for H,M. By permuting the Xi and pi we may assume 
that  

for i 5 s ,  
for i > s ,  

where s is an integer between 0 and r. The hypothesis 

c(M) = C +o(Xi)+o(~i)= 0 

implies that  s - 0 (mod 2). 
Construct a new basis {X:, . . .,p:} for H,M by the substitutions 

Xhi-1 = Xzi-1 + Xzi , Xhi = pZi-'- pzi, 
A-I= Pzi-I 9 pli = h i  

for 2i 5 s, with 

for i > s. This new basis is again symplectic, and satisfies the condition: 

For any sphere imbedded in M with homology class X = nlX: + ... + n,X: 
the invariant +,(X) is zero, and hence the normal bundle is trivial. Thus 
the basis {Xi, ,pi) satisfies the hypothesis of Lemma 7.1. Thus H,M can 
be killed by spherical modifications. 

If M is a framed manifold then i t  is only necessary to use framed 
modifications for this construction. This follows from Lemma 6.2, since 

12 This coincides with the invariant Q ( M )  as defined by Kervaire [12]. 
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the homomorphism n,(SO,) -n,(SO,,.+,) is onto for k 5- 1, 3, 7. This 
completes the proof of Lemma 8.4. 

THEOREM8.5. For k odd the group bP,, is either zero or cyclic of 
order 2. 

According to Lemma 7.2 the groups bP,, bP ,  and bPl, are zero. Thus 
we may assume that  k f 1, 3,7. 

Let MI and M, be s-parallelizable and (k - 1)-connected manifolds of 
dimension 2k, bounded by homotopy spheres. If 

we will prove that  bMl is h-cobordant to bM,. This will clearly prove 8.5. 
Form the connected sum (M, bM) = (MI, bMl) # (M,, bM,) along the  

boundary. Clearly 
c(M) = c(M1) -4- c(M,) = 0 . 

Therefore, according to 8.4, i t  follows that  the boundary 

bounds a contractible manifold. Hence, according to Theorem 1.1the 
manifold bMl is h-cobordant to -bM,. Since a similar argument shows 
that  bM, is h-cobordant to -bM,, this completes the proof. 

REMARK. I t  seems plausible that  bP,, -. 2, for all odd k other than 
1 ,3 ,7;  but this is known to be true only for k = 5 (compare Kervaire [12]) 
and k = 9. 
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