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Abstract

Let G = Z/2Z o Z be the so called lamplighter group and k a commu-
tative ring. We show that kG does not have a classical ring of quotients
(i.e. does not satisfy the Ore conditions). Assume that kG is contained
in a ring R in which the element 1 + x is invertible, with x a generator
of Z ⊂ G. Then R is not flat over kG. If k = C, this applies in particu-
lar to the algebra UG of unbounded operators affiliated to the group von
Neumann algebra of G.

In this note, we give an alternative (and rather shorter and more elementary)
proof of results proved in [1]. Moreover, the method gives slightly more general
results. This proof is due to Warren Dicks. We feel that it should be published
to put the methods of [1] in perspective.

Recall the following definition:

0.1 Definition. A ring R satisfies the Ore condition if for any x, y ∈ R with
x a non-zero divisor there are s, t ∈ R with s a non-zero divisor such that
sy = tx. Formally, this means that s−1t = yx−1, and the condition makes sure
that a classical ring of quotients, inverting all non-zero divisors of R, can be
constructed.

We study, which group rings satisfy the Ore condition. It is well known that
this fails for a non-abelian free group.

On the other hand, abelian groups evidently satisfy the Ore condition. In
this note we show that the lamplighter groups (and relatives) do not satisfy
it. Note, however, that these groups are 2-step solvable, i.e. close relatives of
abelian groups.

More precisely, we prove the following theorem:

0.2 Theorem. Let G = 〈a, x | ad = 1, [a, xlax−1] = 1; l = 1, 2, . . .〉 be the
wreath product Z/dZ oZ (we use the commutator convention [x, y] = xyx−1y−1).
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Let k be a commutative ring with unit. Then there is no non-zero divisor s ∈ kG
such that s(a− 1) = t(x− 1) for any t ∈ kG. In particular, kG does not satisfy
the Ore condition.

Proof. For the last statement note that the projection G� Z which maps x to
1 shows that (x− 1) is not a zero divisor in kG since its homomorphic image in
kZ isn’t, either.

The main purpose of this very short note is to prove the first statement.
Recall that any presentation H = 〈S | R〉 of a group H gives rise to an exact
sequence of left kH-modules⊕

r∈R
kH

F−→
⊕
s∈S

kH
α−→ kH

ε−→ k → 0. (0.3)

Here, ε is the augmentation, α maps us ∈
⊕

s∈S kG (with u ∈ kG and s the
canonical basis element corresponding to the generator s ∈ S) to u(s−1) ∈ kH,
and the map F is given by the Fox calculus, i.e. ur (where u ∈ kH and r the
canonical basis element corresponding to the relation r ∈ R) is mapped to∑

s∈S
u
∂r

∂s
s.

If r = sε1i1 . . . s
εn
in

with si ∈ S and εi ∈ {−1, 1}, then the Fox derivative is defined
by

∂r

∂s
:=

n∑
k=1

sε1i1 . . . s
εk−1
ik−1

∂sεkik
∂s

.

Here ∂s/∂s = 1, ∂s−1/∂s = −s−1 and ∂t/∂s = 0 if s 6= t ∈ S.
The above sequence can be considered as the cellular chain complex (with co-

efficients k) of the universal covering of the standard presentation CW-complex
given by 〈S | R〉. Since this space is 2-connected, its first homology vanishes
and its zeroth homology is isomorphic to k (by the augmentation), which implies
that the sequence indeed is exact.

Now we specialize to the lamplighter group G. Assume that u, v ∈ kG
with u(a − 1) = v(x − 1). In other words, ua − vx are mapped to zero un-
der the boundary map α. Exactness implies that there are (zr)r∈R such that
F (
∑
r∈R zrr) = ua− vx. We want to prove that u is a zero divisor. Therefore

we are only concerned with the a component of F (
∑
r∈R zrr). This means we

first must compute ∂r/∂a for all the relators in our presentation of G. This is
easily done:

∂ad

a
= 1 + a+ · · ·+ ad−1 (0.4)

∂[a, xlax−1]
a

=
∂(axlax−la−1xla−1x−l)

a
(0.5)

= 1 + axl − axlax−la−1 − axlax−la−1xla−1, (0.6)
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the latter for l > 0. Using the fact that xlax−l commutes with a for each l, we
can simplify

∂[a, xlax−1]
a

= 1 + axl − xlax−l − xl = xl(x−laxl − 1)− (xlax−l − 1).

Note that a and each of its conjugates xlax−l (l 6= 0) are of order d, therefore
(1 + a+ · · · ad−1)(1− a) = 0 and (xlax−l − 1)xl(1 + a+ · · ·+ ad−1)x−l = 0. It
suffices to show that each finite left kG-linear combination x of 1+a+ · · ·+ad−1

and of xlax−1− 1 (l 6= 0) is a (right) zero divisor. By finiteness, we can assume
that |l| ≤ L for each non-zero multiple of xlax−1 − 1 (l 6= 0) in x. Define
y := (1 − a)

∏
−L≤l≤−1, 1≤l≤L(1 + xlax−l + · · · + xlad−1x−l). The factors in y

all commute with each other. Consequently xy = 0. On the other hand, y is in
the subring k[⊕k∈ZZ/d] of kG, where the different summands of the subgroup
⊕k∈ZZ/d of the wreath product G are generated by the conjugates xlax−l.
This implies that y 6= 0, and concludes the proof. (If the characteristic of k is
different from d, we can use the map induced from the group homomorphism
from ⊕k∈ZZ/d to Z/d which maps tlat−l to the trivial element if l 6= 0 and a to
the generator of Z/d. The image of y is (1 − a)dL 6= 0 ∈ k[Z/d]. The general
case to check that y is non-trivial is not much harder.)

0.7 Corollary. Assume kG of Theorem 0.2 embeds into a ring R such that
(1− x) becomes invertible in R. Then R is not flat over kG.

If k ⊂ C, this applies in particular to the division closure DG of kG in the
ring UG of unbounded operators affiliated to the group von Neumann algebra
NG, and to UG itself.

Proof. Tensor the exact sequence (0.3) over kG with R. Then (a−1)(x−1)−1x−
a is in the kernel of idR⊗α, but the proof of Theorem 0.2 implies that if ux+va
is in the image of idR⊗F , then v is a zero divisor, in particular v 6= −1, therefore
the tensored sequence is not exact.
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