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Abstract

We compute all characteristic classes for real bundles (with Z/2-coefficients)
which don’t change when the underlying real bundle of a complex bundle
is added.

Consider real vector bundles over a CW-complex X. In this note, we address
the question whether there we can define characteristic classes of these bundles
which are unchanged when we add a complex vector bundle (or rather the
underlying real bundle of a complex vector bundle).

This corresponds to the following problem:
We have the fibration U/O → BO → BU , where the map BO → BU is in-

duced from the inclusion and classifies the complexification of the canonical bun-
dle over BO. Looping this fibration gives ΩU/O → ΩBO → ΩBU . Applying
ΩBG = G and using the part of real Bott periodicity which says ΩU/O = BO,
this becomes BO → O → U . An element in KO−1(X) is given by a map
X → O. This element becomes 0 under complexification KO−1(X)→ K−1(X)
if and only if the composition X → O → U is null-homotopic. In the latter
case, a lift X → BO exists, which is well defined only upto the action of ΩU on
the fiber (i.e. for two lifts f, g : X → BO there is a map H : X → ΩU such that
f(x) = H(x) · g(x)). By Bott periodicity, ΩU = BU .

The action BU × BO → BO is the classifying map of the direct sum of
the underlying real bundle for the canonical bundle over BU with the canonical
bundle over BO. (To be honest, this pretty much seems to follow from the
long exact sequence connecting real and complex K-theory, giving K0(X) →
KO0(X) → KO−1(X) → K−1(X) in the relevant region (where complex Bott
periodicity is used at the very left to identify K−2(X) with K0(X)). However,
I haven’t formally checked this assertion).

Any classes in the cohomology of BO which have the property that their
pullback to BU ×BO under the above “addition map” coincides with the pull-
back under the projection give rise to characteristic classes which are unchanged
when a complex bundle is added. On the other hand, such classes define char-
acteristic classes for elements in the kernel of KO−1(X)→ K−1(X), since they
are independent of the lift (this statement also follows directly from the above-
mentioned exact sequence, the map K0(X) → KO0(X) being given by taking
the underlying real bundle of a complex bundle).
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1 Theorem. The classes in H∗(BO;Z/2) = Z/2[w1, w2, w3, . . . ] (the poly-
nomial ring generated by the universal Stiefel Whitney classes) which are un-
changed if a complex bundle is added form a polynomial ring Z/2[q1, q3, qr, . . . ]
generated by classes q2k−1 ∈ H2k−1(BO;Z/2). Here q2k−1 ≡ w2k−1 modulo
decomposable elements. More precisely, we obtain q2k−1 in the following way:

(q1 + q3 + · · · ) = (w1 + w3 + · · · )(1 + w2 + w4 + · · · )−1.

In low degrees, we get

q1 = w1

q3 = w3 + w2w1

q5 = w5 + w4w1 + w3w2 + w2
2w1

q7 = w7 + w6w1 + w5w2 + w4w3 + w2
2w3

q9 = w9 + w8w1 + w6w3 + w4w5 + w2w7 + w2
2w5

+ w2
4w1 + w3

2w3 + w2
2w4w1.

Proof. Observe that the product of a class of even degree and a class of odd
degree has odd degree, therefore (q1 + q3 + . . . ) indeed only contains classes of
odd degree. Moreover, we invert

(1 + w2 + w4 + · · · )−1 = (1 + (w2 + w4 + · · · )1 + (w2 + w4 + · · · )2 + · · · ),

such that in each degree the sum is finite, and module decomposable elements
we see that q2k−1 = w2k−1. The explicit formulas are easily derived.

Given a graded polynomial algebra, the generators can be changed by decom-
posable elements of the same degree to give a new set of polynomial generators
(for the convenience of the reader, we give a proof in Lemma 2. In particular,

H∗(BO;Z/2) = Z/2[q1, w2, q3, w4, . . . ]

and therefore the subalgebra generated by q1, q3, . . . is a polynomial algebra on
these generators.

Given an arbitrary complex vector bundle E over BO, the odd Stiefel Whit-
ney classes of the underlying real bundle (also denoted E) vanish: w2k−1(E) = 0.
Let ξ be the canonical real bundle over BO with total Stiefel-Whitney class
w(ξ) = 1 +w1 +w2 + . . . . Then w(ξ+E) = w(ξ)w(X). Consider the total even
Stiefel-Whitney classes wev(ξ) = 1 + w2 + w4 + . . . , wev(E) = w(E). Since the
odd Stiefel-Whitney classes of E vanish,

wev(ξ + E) = wev(ξ)wev(E) = wev(ξ)w(E).

Consequently,

w(ξ + E)wev(ξ + E) = w(ξ)w(E)wev(ξ)w(E) = w(ξ)wev(ξ)−1,

i.e. w(ξ)wev(ξ)−1 is unchanged if a complex bundle is added. Lastly,

w · (wev)−1 = wodd(wev)−1 + wev(wev)−1 = wodd(wev)−1 + 1.

This implies that our class (w1 +w3 + · · · )(1+w2 +w4 + · · · )−1 has the required
property.
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This translates to the assertion about the pullback under the classifying map
for the direct sum bundle over BU ×BO, since

H∗(BU ×BO;Z/2) = H∗(BU ;Z/2)⊗H∗(BO;Z/2),

and the former is the polynomial algebra

H∗(BU ;Z/2) = Z/2[w2(E), w4(E), . . . ],

where E is the underlying real bundle of the canonical complexs bundle over
BU .

The Künneth formula for BU ×BO has the given simple form since we are
using coefficients in a field.

It remains to check that all classes with the required invariance property are
polynomials in q1, q3, . . . . To do this, we write

H∗(BO;Z/2) = Z/2[q1, w2, q3, w4, . . . ]

as introduced above. We have to consider two algebra homomorphism

Z/2[q1, w2, q3, w4, . . . ] = H∗(BO;Z/2)
→ H∗(BO;Z/2)⊗H∗(BU ;Z/2) = Z/2[q1, w2, w2(E), q3, w4, w4(E), . . . ],

the first one sending q2k−1 to q2k−1 and w2k to w2k, the second one sending
q2k−1 to q2k−1, and w2k to the summand of degree 2k in

(1 + w1 + w2 + . . . )(1 + w2(E) + w4(E) + . . . )

(note that we already checked that q2k−1 is send to itself under this homomor-
phism). We have to find the kernel of the difference of these two homomorphism.

We have to check that this kernel is exactly the polynomial ring generated
by the q2k−1. To see this, compose both maps with the projection

Z/2[q1, w2, w2(E), . . . ]→ Z/2[q1, w2(E), q3, we(E), . . . ]

sending q2k−1 to q2k−1, w2k to 0 and w2k(E) to w2k(E).
Then the first map sends q2k−1 to itself and w2k to zero, whereas the second

one sends q2k−1 to itself and w2k to w2k(E), because we have to apply our
projection to (1 + w1 + w2 + . . . )(1 + w2(E) + w4(E) + . . . ), giving

(1 + w3 + w5 + . . . )(1 + w2(E) + w4(E) + . . . ) ≡ 1 + w2(E) + w4(E) + . . .

modulo elements of odd order.
Any monomial containing at least one w2k is send to zero under the first

composition, whereas the second composition is an isomorphism. The kernel
of the difference will therefore only contain polynomials in q1, q3, . . . . This
concludes the proof.

We used the following lemma:

2 Lemma. Given a graded polynomial algebra A = K[x1, x2, x3, . . . ] with xi of
degree φ(i). If v1, v2, . . . are decomposable elements, and degree vi is φ(i), then
A is a polynomial algebra on xi + vi.
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Proof. The map α : A→ A sending xi to xi+vi is an isomorphism. We construct
an inverse β : A→ A by induction on the degree of the generators xi. If xi is of
minimal degree, it is send to xi (in this case, vi = 0, since there are no elements
of lower degree which could give rise to non-trivial products).

If β(xj) is defined for all generators xj with deg(xj) < deg(xi), define
β(xi) := xi − vi + β(vi), β(vi) being already defined since it is of lower or-
der. Then β ◦ α = idA.

It follows that α is injective. But α is also surjective: we prove that all
elements xi are contained in the image, by induction on the degree of xi. For
generators of minimal degree, xi + vi = xi, because there are no decomposable
elements of this degree, so they are in the image. In the induction step, vi is
decomposable, therefore is a product of elements of lower degree, therefore lies
in the image. Since the same is true for xi + vi, also xi lies in the image.


