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Abstract

Let M and N be smooth manifolds and Emd(M,N) the space of
embeddings from M to N. If there exist small embeddings of M into
N (with image contained in suitable coordinate neighborhoods), we show
how elements in the homology of Emd(M,N) can be detected in the
homology of N. We consider examples which show that this way one can
not get much information about “large” embeddings.

1 The space of small embeddings and its homol-
ogy

1.1 Definition. Let N be a compact Riemannian manifold of dimension n, r >
smaller than the injectivity radius of N (i.e. the exponential map exp,: T, N —
N is a diffeomorphism restricted to the ball of radius r).

Let Emb(M, N) be the space of all smooth embeddings from M to N. We
equip it with the weak C'*-topology (C'*-convergence on compact subsets of
M) (compare [2]). All statements are also valid for the weak C”-topology, if
r>1.

Fix p € M. Let Emb,(M,p; N) the subspace consisting of embeddings
i: M — N with image contained in the r-neighborhood of j(p).

Observe that Emb, (M, p; N) is nonempty if and only if M admits an em-
bedding into R™. The case (M, p) = (R",0) will be of particular importance.

1.2 Proposition. The following observations are well known or immediately

verified.

(1) By definition, we have an embedding

Emb, (M, N) — Emb(M, N).
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(2) Fiz an embedding j: My — Ms. By pre-composition, this induces contin-
uous maps

Emb(My, N) = Emb(My, N} Emb,(Ms, N) — Emb,(My, N).

(3) Fizx q € M. Evaluation defines continuous maps
evg: Emb(M,N) — N; i — i(g),

and similarly for Emb, (M, p; N). In particular, the adjoint of the identity
map ges a map

ev: Emb(M,N) x M — N; (4,9) — i(q).

All of this maps are compatible with pre-composition. We get for an em-
bedding j: (M1,p) = (M2, j(p)) e.g. a commutative diagram

Emb,(Ms,j(p); N) ——— Emb,(My,p; N)

JVE’UJ'(Q) le”q

N _— N.

(4) Fir p € M. Assume dim(M) = m. Then we can consider the bun-
dle Vi, (TN) == Iso(T,M,TN) over N, with fiber over x € N the lin-
ear monomorphisms from T,M to T, N. Choosing a basis of T,M in-
duces between isomorphism of V,(T'N) and the bundle of m-frames in

TN. Clearly, this is a principal Gly, (R)-bundle.

The above evaluation maps can be lifted to maps
v, Emb(M, N) — Vi, (TN); i+ (Igi),
and similarly for Emb, (M, N).

(5) Let Map(M, N) be the space of all continuous maps from M to N. Clearly,
evp and ev factor through Map(M, N):

Emb(M, N) — Map(M,N) = N.

The aim of this note is to get some information about the (co)homology of
Emb(M, N) in terms of the (co)homology of N and of its frame bundle V;,, (T'N).
This way, we generalize the results of [4] and give a more algebraic topological
proof of his result.

We will simply consider only the maps

(evp)s: Ho(Emb(M,N)) — H.(N),
(evp)*: H*(N) — H*(Emb(M, N))

induced by evaluation at p € M. In [4], more generally maps H*(N) —
H*(Emb(M, N)) was constructed for every continuous linear functional ¢ on
C*®(M) (using the de Rham point of view). This was done in the following
way:
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To a differential form w € Q"(N) we assign the differential form wy on
Emb(M, N). At tangent vectors vy, -- -, v, in T; Emb(M, N) (i.e. vector field of
N along the embedding i: M — N) wg(v1,...,v,) has the value

d(w(vi, ..., vp)01).

Note that w(vi,...,v,) is a smooth function on i(M).
Obviously, if ¢ is the §-function at p, this map is the same as the one induced
by ev,. We now show that all these maps are essentially the same.

1.3 Lemma. Let ¢1,¢5 € C®°(M)' be two linear functional which represent
the same element in de Rham homology (defined using currents). Then the two
different maps H*(N) — H*(Emb(M, N)) defined using ¢1 or ¢ coincide.

Proof. Composition of ev with the slant product gives a map

HY(N) x Ho(M) <259 B (BEmb(M, N) x M) x Ho(M) 25" (Emb(M, N).

Using de Rham cohomology (with differential forms) and de Rham homology
(with currents), the slant product with a zeroth homology class, represented by
a functional ¢ on C*®(M), is given exactly in the way described above. This
already concludes the proof. O

1.4 Corollary. If M is connected, then in the situation of Lemma 1.3 ¢1(1) =
@2(1) implies that the induced maps H*(N) — H*(Emb(M, N)) coincide, where

1 2s the function with constant value 1.

Proof. If M is connected then Ho(M;R) = R = HO(M;R). Two cycles rep-
resent the same homology class, if they are equal on the generator 1 of the
cohomology group. O

From now on, we will always use the functional given by the delta function
at p. This way, we can avoid using the slant product, and simply look at the
map induced by ewv,. Because of the Lemma 1.3 and its proof, this is no loss of
generality, since the general case is a linear combination of such functionals.

The main result of [4] was, that under suitable conditions the map H'(N) —
H'(Emb(M, N)) is a monomorphism. We will reprove this result and show that
its reason is, that the map €v has a section.

1.5 Theorem. Set M := R*. Then there is a section

f:Vi(TN) — Emb,(M,0; N)
of evg. In particular, the map induced by evy in homology is split surjective,
and in cohomology it is split injective (with arbitrary coefficients).

Proof. Recall that Vi (T'N) in this particular case is equal to k-frame bundle of
TN, since a linear monomorphism of TyR* = R¥ to T, N is the same as a frame
in Tz N. To such a frame we associate the embedding

(R*,0) = (B,(0) CR™,0) = N

given by the exponential map. Our choice of » > 0 implies that this is indeed
an embedding. The exponential map depends smoothly on the basepoint, and
is defined in such a way that this map is a splitting of evg. O
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1.6 Remark. The statement of Theorem 1.5 remains true if N is not compact.
In the proof, one simply has to replace the constant r by a smooth function
r(x) > 0, such that r(z) is smaller than the injectivity radius of N at x. Of
course, the definition of Emb, (M, N) has to be modified accordingly.

Next, we want to get some information about the homology of Vi (T'N), and
in particular compare it with the homology of N. This is done in a standard
way, using the fiber bundle V;(R") — V4(T'N) — N, compare [6, 3]. Since
Vi (R") is n — k — 1-connected, the bundle projection Vi (TN) — N is n — k-
connected. In particular, it induces an isomorphism in H; and H' for i < n—k,
and an epimorphism in H,_j as well as a monomorphism in H” %,

An additional refinement is possible if £ = n and N is an oriented manifold.
In this case we can look at the subspace V,?(T'N) of V,,(T'N) of oriented frames
(corresponding to the subspace Emb?(R™, N) of orientation preserving embed-
dings). The fiber of V,?(T'N) is isomorphic to GI}(R), the group of orienta-
tion preserving linear isomorphisms of R™. This group is homotopy equivalent
to SO(n,R). In particular, it is connected. Consequently, the above argu-
ment implies that the map V.?(TN) — N induces an epimorphism in H; and a
monomorphism in H'.

Combining this information with the information we get from the split of
ev0: Emb, (R¥,0; N) = Vi (T'N), we see that evg: Emb, (R 0; N) — N induces
a epimorphism on H;, and a monomorphismon H* for i <n — k.

In the special case k = n and N orientable, the statement is true for 7 < 1.

The latter result follows from the commutative diagram

€U0

Embg(R™,0; N) — V?(TN) —— N

! ! l-

Emb,(R",0; N) —" V,(TN) — N.

Assume Vi (T'N) — N has a split, i.e. TN has a trivial k-dimensional sub-
bundle. Then, the above considerations imply that evqg: Emb,(R* 0; N) — N
induces a split epimorphism on H?, and a monomorphism on H?, for all i € N.
In particular, this is true for k = n if N is parallelizable.

Assume M is an m-dimensional manifold which admits an embedding j: M —
R*. Fix a basepoint p € M and assume j(p) = 0 (this is no loss of general-
ity). This induces a particular monomorphism 7,,j: T, M — ToR* = R* which
induces by pre-composition a map Vi (T'N) = Vin(T'N) (here it is most conve-
nient, to define Vj using embeddings of R¥, and V},, using embeddings of T, M).
This gives a commutative diagram

Emb, (R*,0; N) —=% Vi(I'N) —— N

! ! l-

Emb, (M,p; N) —2 V,,(TN) —— N.

Note that the splitting of €9y does not provide us with a splitting of €v,. How-
ever, the map immediately implies that ev,: Emb,(M,p; N) — N induces an
epimorphism on H; in the same range where evg: Emb,(R* p; N) does (and
similarly for the dual statement in cohomology).
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Last, observe that ew, factors through Emb(M, N). Therefore, we have
proved the following theorem.

1.7 Theorem. Assume M admits an embedding into R*. Then we have an
epimorphism

H;(Emb(M,N)) — H;(N) fori<mn-—k.

If k = n and N 1s orientable, we get an epimorphism
Hy(Emb(M,N)) — H{(N).

The dual maps in cohomology are monomorphisms in the same range.
If TN has a k-dimensional trivial sub-bundle, the above result holds for all
1 € N. In particular, this 1s the case if k = n and N is parallelizable.

In the same way, we get further information (in the range i < [) if the
restriction of T'N splits of a k-dimensional trivial sub-bundle. This condition
can be replaced by assuming that the restriction of T'N to any l-dimensional
immersed submanifold splits of a k-dimensional trivial bundle, as long as we
work with rational or real coefficients.

1.1 Reverse implications for T'N

We have just seen that N being parallelizable implies that ev, : Emb, (M, p; N) —
N induces a split surjection in homology, and a split injection in cohomology.

On the other hand, note that the pull back of TN to Vi, (T'N) canonically
splits off a trivial m-dimensional sub-bundle Vi (T'N) x T,M, and the same
follows then for (evp)*T'N on Emb(M,p; N). Consequently, if ev, induces an
injection in homology (in a given range of degrees) the characteristic cohomology
classes of TN look (in the given range) like the characteristic classes of a bundle
splitting off a trivial m-dimensional sub-bundle. In particular, the Pontryagin
classes p;(T'N') vanish for 4i > n—m (in the given range), and, if N is orientable,
the Euler class ¢(T'N) vanishes if m > 0 and n is in the given range.

1.8 Remark. Note that we information about H.(Emb(M, N)) all comes from
the subspace of small embeddings Emb, (M, N). In particular, there might be
many components of Emb(M, N) we don’t get any information about. We will
discuss this a little bit in the next section.

1.9 Remark. Let Emb®(M, N) be the space of embeddings with the C°-topology.
The identity map is continuous from Emb(M, N) with the C°°-topology to
Emb®(M, N) and gives a factorization of the evaluation map. Therefore, the
statements of Theorem 1.5 remain true with Emb(M, N) replaced by Emb®(M, N).

It is conceivable that some of the statements remain true with the space of
smooth embeddings replaced by the space of continuous embeddings. However,
the proof given here relies on the smooth structure.

1.10 Remark. We can deal with homology as well as cohomology, and that not
only real, but integer coefficients are allowed, in contrast to the treatment of

[4].
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1.2 Fibrations

1.11 Theorem. The evaluation map
evp: Emb, (M,p; N) > N

is a locally trivial fiber bundle with typical fiber the space Emb(M,R") of em-
beddings of i: M — R” with i(p) = 0.

Proof. Fix 2o € N and ¢ > 0 small enough. Choose a Riemannian trivialization
7 of T'N|p,(z4) (it could e.g. be given by geodesic coordinates at zq).

Now we define a smooth family of diffeomorphisms ¢,: B, (z) — B, (),
where ¢, is the composition of exp,! with the map between T, N and T,, N
given by the trivialization and then with exp,, .

Set Emb, (M, p; N, xq) := {i € Emb,(M,p; N) | i(p) = zo}. We now get a
trivialization

Emb, (M, p; N)|B,(z0) = Br(zo) X Emb, (M, p; N, 20)
i+ (i(p), Pi(p) 0 1)-
O

1.12 Question and Remark. Ts it true that also €, : Emb, (M, p; N) — Vi, (N)
is a locally trivial fiber bundle?

The method of Theorem 1.11 applies to prove this result if we restrict to
the subspaces of “metric” embeddings i: M — B, (i(p)) such that Ti: T,M —
Ti(pyN is an isometric embedding (for a fixed, but arbitrary Riemannian metric
on T, M).

A slight modification implies that Emb, (M, p; N) = Vi, (N) is a local fibra-
tion (i.e. has locally the homotopy lifting property): we have to lift a homo-
topy X x [0,1] = U C Vin(N) to Emb,.(M,p; N). When we try to trivialize
Emb,(M,p; N) — V,,(N) over a neighborhood U of an m-frame aq as in the
proof of Theorem 1.11, we have to use an additional (intermediate) linear iso-
morphism B, : Ty, N — T, N which maps the (image of the) m-frame a € U
we start with to the m-frame ag. If (the image of) « is close to oy we define
this linear map by mapping the I-th vector of a to the I-th vector of «ag, and
doing nothing on the complement of the span of a (if « is close enough to ayg,
this is an isomorphism).

The problem is that this map need not be an isometry, and consequently
that we don’t create a diffeomorphism B, (z) — B, (z).

Let

v(e, B) = sup{|Bngﬂv| |0 #£veT,, N}

be the maximal distortion for the corresponding “linear part” of the map from
the fiber over 8 € U to the fiber over a € U.

To lift the homotopy h: X x [0,1] — U, we use the “trivializations”, but
compose them with (nonlinear) “contractions” of T, N which are the identity
near zero, but counteract the distortion v(h(z),z) which would prevent our lift
from living in Emb, (M, p; N).

Since N and V,,,(N) are paracompact and Hausdorff, any local fibration, in
particular any locally trivial fiber bundle, are fibrations, and we can apply the
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long exact homotopy sequence of the fibration. Consequently, we get long exact
sequences

oo (Emb, (M, p;R")0)) = 7 (Emb, (M, p; N)) = m(N) — - -
= Wk(Embf(M,p;TRn,O)) — i (Emb, (M, p; N)) = 71 (Vi (TN)) = -+

where Embf (M, p;R™,0) is the space of embeddings with prescribed differential
at p which we encountered earlier. Observe that the ev,: Emb,.(M,p; N) —
Vin(N) has a split, such that the second long exact sequence splits into short
exact sequences

0— Wk(Embf(M,p;TRn, 0)) = mi(Emb, (M, p; N)) = (Vi (TN)) — 0.

Note, however, that the space of embeddings into R” is a very complicated
space. But we can see at last that we can split off the homotopy groups of
Vi (T'N), which are closely related to the homotopy groups of N.

2 Non-small embeddings

Here, we want to show that the evaluation map does not give much information
about the homology of components of Emb(M, N) where the embeddings are
not contained in small balls.

We use the simple observation that ewv,: Emb(M, N) — N factors through
the space Map(M,N) of all continuous maps from M to N. Consequently,
if (evy)s: Hy(Map;(M,N)) — H.(M) is not surjective, neither can the map
from H,(Emb;(M, N)) be surjective, where Emb; (M, N) is the component of
i: M — N in Emb(M, N), and similarly for Map;(M, N).

Note that ev,: Map(M,N) — N is always a fibration (as long as the in-
clusion p < M is a cofibration, which is the case for manifolds), compare [5,
2.8.2).

Now, we specialize to M = S' and N a connected orientable surface of
genus > 1. We claim that Map(S', N) has many components which contain
embeddings i: S! — N, such that (ev,).: Hi(Map;(S', N)) — Hi(N) is not
surjective.

To see this, we examine the long exact sequence in homotopy of the fibration
Q.o N — Map(S*, N) — N, where Q, N is the space of loops in N based at zq.
Recall that N is aspherical, which implies that 7 (Q,,N) = 0 for £ > 0, and
70(Qwy N) = m1 (N, o) (the isomorphism is canonical, mapping [y] € m (IV, zo)
t0 [7] € 70(Quy V).

As the relevant part of the long exact sequence of this fibration we obtain
therefore for any basepoint i € QN

0 = m (Map(S, N), i) L2 1 (N, 20) & mi (N, 20) = mo(Map(St, N)) — {%}

(ma(N) consists of a single point since N is connected).

Usually, this sequence is considered when i is the constant loop. However,
it is valid for any loop i, and we want to investigate it when i represents some
interesting elements in m (N, 2o).

Obviously, to understand the map (evp)«, we have to understand the bound-
ary map d. In this situation, § maps o € 71 (N, zo) to a™'[i]a € 71 (N, 20) (this
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follows easily from the definition, where ¢ is induced from the effect of fiber
transport to the basepoint i).

This sequence being exact at the points involving g (which is only a set, not
a group) simply means that the image of (ev, )« is exactly the subgroup which
is mapped to the basepoint [i] under the map J. Our calculation shows that
this is exactly the centralizer of [i].

It is known [1, Section 1 and Theorem 3] that the centralizer of each non-
trivial element of 71(N) is cyclic. If [7] € w1 (V) is primitive (i.e. not a proper
power) it therefore is the cyclic subgroup generated by [4].

In particular, the map induced by ev, is far from being surjective, here.

Passing to the abelianization, we get the map

(evp)s: Hl(Mapi(Sl,N)_) — Hy(N).

Note that we obtain H; of the component of Map(S?, N) containing i. Our
considerations show that the image is contained in the image of a cyclic group
in the abelianization. Therefore, (ev,)s is not surjective.

2.1 Question. When is ev, : Emb(M,N) — N a fibration?
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