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These notes are based on lectures on index theory, topology, and operator algebras at the
“School on High Dimensional Manifold Theory” at the ICTP in Trieste, and at the Seminari di
Geometria 2002 in Bologna. We describe how techniques coming from the theory of operator
algebras, in particular C∗-algebras, can be used to study manifolds. Operator algebras are
extensively studied in their own right. We will focus on the basic definitions and properties,
and on their relevance to the geometry and topology of manifolds. The link between topology
and analysis is provided by index theorems. Starting with the classical Atiyah-Singer index
theorem, we will explain several index theorems in detail.

Our point of view will be in particular, that an index lives in a canonical way in the K-
theory of a certain C∗-algebra. The geometrical context will determine, which C∗-algebra to
use.

A central pillar of work in the theory of C∗-algebras is the Baum-Connes conjecture. Nev-
ertheless, it has important direct applications to the topology of manifolds, it implies e.g. the
Novikov conjecture. We will explain the Baum-Connes conjecture and put it into our context.

Several people contributed to these notes by reading preliminary parts and suggesting im-
provements, in particular Marc Johnson, Roman Sauer, Marco Varisco und Guido Mislin. I
am very indebted to all of them. This is an elaboration of the first chapter of the author’s
contribution to the proceedings of the above mentioned “School on High Dimensional Manifold
Theory” 2001 at the ICTP in Trieste.

1 Index theory

The Atiyah-Singer index theorem is one of the great achievements of modern mathematics. It
gives a formula for the index of a differential operator (the index is by definition the dimension
of the space of its solutions minus the dimension of the solution space for its adjoint operator)
in terms only of topological data associated to the operator and the underlying space. There
are many good treatments of this subject available, apart from the original literature (most
found in [1]). Much more detailed than the present notes can be, because of constraints of
length and time, are e.g. [23, 5, 16].

∗This paper is in final form and no version of it is planned to be submitted for publication
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1.1 Elliptic operators and their index

We quickly review what type of operators we are looking at. This will also fix the notation.

1.1 Definition. Let M be a smooth manifold of dimension m; E,F smooth (complex) vector
bundles on M . A differential operator (of order d) from E to F is a C-linear map from the
space of smooth sections C∞(E) of E to the space of smooth sections of F :

D : C∞(E)→ C∞(F ),

such that in local coordinates and with local trivializations of the bundles it can be written in
the form

D =
∑
|α|≤d

Aα(x)
∂|α|

∂xα
.

Here Aα(x) is a matrix of smooth complex valued functions, α = (α1, . . . , αm) is an m-
tuple of non-negative integers and |α| = α1 + · · · + αm. ∂|α|/∂xα is an abbreviation for
∂|α|/∂xα1

1 · · · ∂xαm
m . We require that Aα(x) 6= 0 for some α with |α| = d (else, the operator is

of order strictly smaller than d).
Let π : T ∗M → M be the bundle projection of the cotangent bundle of M . We get pull-

backs π∗E and π∗F of the bundles E and F , respectively, to T ∗M .
The symbol σ(D) of the differential operator D is the section of the bundle Hom(π∗E, π∗F )

on T ∗M defined as follows:
In the above local coordinates, using ξ = (ξ1, . . . , ξm) as coordinate for the cotangent vectors

in T ∗M , in the fiber of (x, ξ), the symbol σ(D) is given by multiplication with∑
|α|=m

Aα(x)ξα.

Here ξα = ξα1
1 · · · ξαm

m .
The operator D is called elliptic, if σ(D)(x,ξ) : π∗E(x,ξ) → π∗F(x,ξ) is invertible outside the

zero section of T ∗M , i.e. in each fiber over (x, ξ) ∈ T ∗M with ξ 6= 0. Observe that elliptic
operators can only exist if the fiber dimensions of E and F coincide.

In other words, the symbol of an elliptic operator gives us two vector bundles over T ∗M ,
namely π∗E and π∗F , together with a choice of an isomorphism of the fibers of these two
bundles outside the zero section. If M is compact, this gives an element of the relative K-
theory group K0(DT ∗M,ST ∗M), where DT ∗M and ST ∗M are the disc bundle and sphere
bundle of T ∗M , respectively (with respect to some arbitrary Riemannian metric).

Recall the following definition:

1.2 Definition. Let X be a compact topological space. We define the K-theory of X, K0(X),
to be the Grothendieck group of (isomorphism classes of) complex vector bundles over X (with
finite fiber dimension). More precisely, K0(X) consists of equivalence classes of pairs (E,F )
of (isomorphism classes of) vector bundles over X, where (E,F ) ∼ (E′, F ′) if and only if there
exists another vector bundle G on X such that E ⊕ F ′ ⊕ G ∼= E′ ⊕ F ⊕ G. One often writes
[E]− [F ] for the element of K0(X) represented by (E,F ).

Let Y now be a closed subspace of X. The relative K-theory K0(X,Y ) is given by equiv-
alence classes of triples (E,F, φ), where E and F are complex vector bundles over X, and



φ : E|Y → F |Y is a given isomorphism between the restrictions of E and F to Y . Then
(E,F, φ) is isomorphic to (E′, F ′, φ′) if we find isomorphisms α : E → E′ and β : F → F ′ such
that the following diagram commutes.

E|Y
φ−−−−→ F |Yyα yβ

E′|Y
φ′−−−−→ F ′|Y

Two pairs (E,F, φ) and (E′, F ′, φ′) are equivalent, if there is a bundle G on X such that
(E ⊕G,F ⊕G,φ⊕ id) is isomorphic to (E′ ⊕G,F ′ ⊕G,φ′ ⊕ id).

1.3 Example. The element ofK0(DT ∗M,ST ∗M) given by the symbol of an elliptic differential
operator D mentioned above is represented by the restriction of the bundles π∗E and π∗F to
the disc bundle DT ∗M , together with the isomorphism σ(D)(x,ξ) : E(x,ξ) → F(x,ξ) for (x, ξ) ∈
ST ∗M .

1.4 Example. Let M = Rm and D =
∑m
i=1(∂/∂i)

2 be the Laplace operator on functions.
This is an elliptic differential operator, with symbol σ(D) =

∑m
i=1 ξ

2
i .

More generally, a second-order differential operator D : C∞(E)→ C∞(E) on a Riemannian

manifold M is a generalized Laplacian, if σ(D)(x,ξ) = |ξ|2 · idEx (the norm of the cotangent
vector |ξ| is given by the Riemannian metric).

Notice that all generalized Laplacians are elliptic.

1.5 Definition. (Adjoint operator)
Assume that we have a differential operator D : C∞(E) → C∞(F ) between two Hermitian
bundles E and F on a Riemannian manifold (M, g). We define an L2-inner product on C∞(E)
by the formula

〈f, g〉L2(E) :=

∫
M

〈f(x), g(x)〉Ex
dµ(x) ∀f, g ∈ C∞0 (E),

where 〈·, ·〉Ex is the fiber-wise inner product given by the Hermitian metric, and dµ is the
measure on M induced from the Riemannian metric. Here C∞0 is the space of smooth section
with compact support. The Hilbert space completion of C∞0 (E) with respect to this inner
product is called L2(E).

The formal adjoint D∗ of D is then defined by

〈Df, g〉L2(F ) = 〈f,D∗g〉L2(E) ∀f ∈ C∞0 (E), g ∈ C∞0 (F ).

It turns out that exactly one operator with this property exists, which is another differential
operator, and which is elliptic if and only if D is elliptic.

1.6 Remark. The class of differential operators is quite restricted. Many constructions one
would like to carry out with differential operators automatically lead out of this class. There-
fore, one often has to use pseudodifferential operators. Pseudodifferential operators are defined
as a generalization of differential operators. There are many well written sources dealing with
the theory of pseudodifferential operators. Since we will not discuss them in detail here, we



omit even their precise definition and refer e.g. to [23] and [36]. What we have done so far with
elliptic operators can all be extended to pseudodifferential operators. In particular, they have
a symbol, and the concept of ellipticity is defined for them. When studying elliptic differential
operators, pseudodifferential operators naturally appear and play a very important role. An
pseudodifferential operator P (which could e.g. be a differential operator) is elliptic if and only
if a pseudodifferential operator Q exists such that PQ− id and QP − id are so called smoothing
operators, a particularly nice class of pseudodifferential operators. For many purposes, Q can
be considered to act like an inverse of P , and this kind of invertibility is frequently used in
the theory of elliptic operators. However, if P happens to be an elliptic differential operator of
positive order, then Q necessarily is not a differential operator, but only a pseudodifferential
operator.

It should be noted that almost all of the results we present here for differential operators
hold also for pseudodifferential operators, and often the proof is best given using them.

We now want to state several important properties of elliptic operators.

1.7 Theorem. Let M be a smooth manifold, E and F smooth finite dimensional vector bundles
over M . Let P : C∞(E)→ C∞(F ) be an elliptic operator.

Then the following holds.

(1) Elliptic regularity:
If f ∈ L2(E) is weakly in the null space of P , i.e. 〈f, P ∗g〉L2(E) = 0 for all g ∈ C∞0 (F ),
then f ∈ C∞(E).

(2) Decomposition into finite dimensional eigenspaces:
Assume M is compact and P = P ∗ (in particular, E = F ). Then the set s(P ) of
eigenvalues of P (P acting on C∞(E)) is a discrete subset of R, each eigenspace eλ
(λ ∈ s(P )) is finite dimensional, and L2(E) = ⊕λ∈s(P )eλ (here we use the completed
direct sum in the sense of Hilbert spaces, which means by definition that the algebraic
direct sum is dense in L2(E)).

(3) If M is compact, then ker(P ) and ker(P ∗) are finite dimensional, and then we define the
index of P

ind(P ) := dimC ker(P )− dimC ker(P ∗).

(Here, we could replace ker(P ∗) by coker(P ), because these two vector spaces are isomorphic).

1.2 Characteristic classes

For explicit formulas for the index of a differential operator, we will have to use characteristic
classes of certain bundles involved. Therefore, we quickly review the basics about the theory
of characteristic classes.

1.8 Theorem. Given a compact manifold M (or actually any finite CW-complex), there is a
bijection between the isomorphism classes of n-dimensional complex vector bundles on M , and
the set of homotopy classes of maps from M to BU(n), the classifying space for n-dimensional
vector bundles. BU(n) is by definition the space of n-dimensional subspaces of C∞ (with an
appropriate limit topology).



The isomorphism is given as follows: On BU(n) there is the tautological n-plane bundle
E(n), the fiber at each point of BU(n) just being the subspace of C∞ which represents this
point. Any map f : M → BU(n) gives rise to the pull back bundle f∗E(n) on M . The theorem
states that each bundle on M is isomorphic to such a pull back, and that two pull backs are
isomorphic if and only the maps are homotopic.

1.9 Definition. A characteristic class c of vector bundles assigns to each vector bundle E over
M an element c(E) ∈ H∗(M) which is natural, i.e. which satisfies

c(f∗E) = f∗c(E) ∀f : M → N, E vector bundle over N.

It follows that characteristic classes are given by cohomology classes of BU(n).

1.10 Theorem. The integral cohomology ring H∗(BU(n)) is a polynomial ring in generators
c0 ∈ H0(BU(n)), c1 ∈ H2(BU(n)), . . ., cn ∈ H2n(BU(n)). We call these generators the Chern
classes of the tautological bundle E(n) of Theorem 1.8, ci(E(n)) := ci.

1.11 Definition. Write a complex vector bundle E over M as f∗E(n) for f : M → BU(n)
appropriate. Define ci(fE) := f∗(ci) ∈ H2i(M ;Z), this is called the i-th Chern class of the
bundle E = f∗E(n).

If F is a real vector bundle over M , define the Pontryagin classes

pi(F ) := c2i(F ⊗ C) ∈ H4i(M ;Z).

(The odd Chern classes of the complexification of a real vector bundle are two torsion and
therefore are usually ignored).

1.2.1 Splitting principle

1.12 Theorem. Given a manifold M and a vector bundle E over M , there is another man-
ifold N together with a map φ : N → M , which induces a monomorphism φU : H∗(M ;Z) →
H∗(N ;Z), and such that φ∗E = L1 ⊕ . . . Ln is a direct sum of line bundles.

Using Theorem 1.12, every question about characteristic classes of vector bundles can be
reduced to the corresponding question for line bundles, and questions about the behavior under
direct sums.

In particular, the following definitions makes sense:

1.13 Definition. The Chern character is an inhomogeneous characteristic class, assigning to
each complex vector bundle E over a space M a cohomology class ch(E) ∈ H∗(M ;Q). It is
characterized by the following properties:

(1) Normalization: If L is a complex line bundle with first Chern class x, then

ch(L) = exp(x) =

∞∑
n=0

xn

n!
∈ H∗(M ;Q).

Observe that in particular ch(C) = 1.

(2) Additivity: L(E ⊕ F ) = L(E) + L(F ).



1.14 Proposition. The Chern character is not only additive, but also multiplicative in the
following sense: for two vector bundles E, F over M we have

ch(E ⊗ F ) = ch(E) ∪ ch(F ).

1.15 Definition. The Hirzebruch L-class as normalized by Atiyah and Singer is an inho-
mogeneous characteristic class, assigning to each complex vector bundle E over a space M a
cohomology class L(E) ∈ H∗(M ;Q). It is characterized by the following properties:

(1) Normalization: If L is a complex line bundle with first Chern class x, then

L(L) =
x/2

tanh(x/2)
= 1 +

1

12
x2 − 1

720
x4 + · · · ∈ H∗(M ;Q).

Observe that in particular L(C) = 1.

(2) Multiplicativity: L(E ⊕ F ) = L(E)L(F ).

1.16 Definition. The Todd-class is an inhomogeneous characteristic class, assigning to each
complex vector bundle E over a space M a cohomology class Td(E) ∈ H∗(M ;Q). It is
characterized by the following properties:

(1) Normalization: If L is a complex line bundle with first Chern class x, then

Td(L) =
x

1− exp(−x)
∈ H∗(X;Q).

Observe that in particular Td(C) = 1.

(2) Multiplicativity: L(E ⊕ F ) = L(E)L(F ).

Note that ch as well as L and Td take values in the even dimensional part

Hev(M ;Q) := ⊕∞k=0H
2k(M ;Q).

1.2.2 Chern-Weyl theory

Chern-Weyl theory can be used to explicitly compute characteristic classes of finite dimensional
vector spaces. For a short description compare [25]. To carry out the Chern-Weyl procedure,
one has to choose a connection on the given vector bundle E. This connection has a curvature
Ω, which is a two form with values in the endomorphism bundle of the given vector bundle.

There are well defined homomorphisms

σr : Ω2(M ; End(E))→ Ω2r(M ;C),

which can be computed in local coordinates.

1.17 Theorem. For any finite dimension vector bundle E (over a smooth manifold M) with
connection with curvature Ω, for the image of the k-th Chern class ck(E) in cohomology with
complex coefficients, we have

ck(E) =
1

(2πi)k
σk(Ω) ∈ H2k(M ;C).

Since all other characteristic classes of complex vector bundles are given in terms of the Chern
classes, this gives an explicit way to calculate arbitrary characteristic classes.



1.2.3 Stable characteristic classes and K-theory

The elements of K0(X) are represented by vector bundles. Therefore, it makes sense to ask
whether a characteristic class of vector bundles can be used to define maps from K0(X) to
H∗(X).

It turns out, that this is not always the case. The obstacle is, that two vector bundles E, F
represent the same element inK0(X) if (and only if) there isN ∈ N such that E⊕CN ∼= F⊕CN .
Therefore, we have to make sure that c(E) = c(F ) in this case. A characteristic class which
satisfies this property is called stable, and evidently induces a map

c : K0(X)→ H∗(X).

We deliberately did not specify the coefficients to be taken for cohomology, because most
stable characteristic classes will take values in H∗(X;Q) instead of H∗(X;Z).

The following proposition is an immediate consequence of the definition:

1.18 Proposition. Assume a characteristic class c is multiplicative, i.e. c(E ⊕ F ) = c(E) ∪
c(F ) ∈ H∗(X), and c(C) = 1. Then c is a stable characteristic class.

Assume a characteristic class c is additive, i.e. c(E ⊕F ) = c(E) + c(F ). Then c is a stable
characteristic class.

It follows in particular that the Chern character, as well as Hirzebruch’s L-class are stable
characteristic classes, i.e. they define maps from the K-theory K0(X)→ H∗(X;Q).

The relevance of the Chern character becomes apparent by the following theorem.

1.19 Theorem. For a finite CW complex X,

ch⊗ idQ : K0(X)⊗Q→ Hev(X;Q)⊗Q = Hev(X;Q)

is an isomorphism.

We have constructed relative K-theory K0(X,A) in terms of pairs of vector bundles on X
with a given isomorphism of the restrictions to A. We can always find representatives such that
one of the bundles is trivialized, and the other one E has in particular a trivialization E|A = Cn
of its restriction to A. Such vector bundles correspond to homotopy classes [(X,A); (BU(n), pt)]
of maps from X to BU(n) which map A to a fixed point pt in BU(n).

For k > 0, we define relative Chern classes ck(E,E|A = Cn) ∈ H2k(X,A;Z) as pull back
of ck ∈ H2k(BU(n), pt) ∼= H2k(BU(n)). The splitting principle also holds for such relative
vector bundles, and therefore all the definitions we have made above go through in this relative
situation. In particular, we can define a Chern character

ch: K0(X,A)→ Hev(X,A;Q).

Given an elliptic differential operator D, we can apply this to our symbol element

σ(D) ∈ K0(DT ∗M,ST ∗M),

to obtain ch(σ(D)).



1.20 Proposition. Given a smooth manifold M of dimension m, there is a homomorphism

π! : H
k+m(DT ∗M,ST ∗M ;R)→ Hk(M),

called integration along the fiber. It is defined as follows: let ω ∈ Ωk+m(DT ∗M) be a closed
differential form representing an element in Hk+m(DT ∗M,ST ∗M) (i.e. with vanishing restric-
tion to the boundary). Locally, one can write ω =

∑
αi ∪βi, where βi are differential forms on

M pulled back to DT ∗M via the projection map π : DT ∗M →M , and αi are pulled back from
the fiber in a local trivialization. Then π!ω is represented by∑

i

(

∫
DT∗xM

α)βi.

For more details about integration along the fiber, consult [8, Section 6]

1.3 Statement of the Atiyah-Singer index theorem

There are different variants of the Atiyah-Singer index theorem. We start with a cohomological
formula for the index.

1.21 Theorem. Let M be a compact oriented manifold of dimension m, and D : C∞(E) →
C∞(F ) an elliptic operator with symbol σ(D). Define the Todd character Td(M) := Td(TM⊗
C) ∈ H∗(M ;Q). Then

ind(D) = (−1)m(m+1)/2〈π! ch(σ(D)) ∪ Td(M), [M ]〉.

The class [M ] ∈ Hm(M ;Q) is the fundamental class of the oriented manifold M , and 〈·, ·〉 is
the usual pairing between homology and cohomology. For the characteristic classes, compare
Subsection 1.2.

If we start with specific operators given by the geometry, explicit calculation usually give
more familiar terms on the right hand side.

For example, for the signature operator we obtain Hirzebruch’s signature formula expressing
the signature in terms of the L-class, for the Euler characteristic operator we obtain the Gauss-
Bonnet formula expressing the Euler characteristic in terms of the Pfaffian, and for the spin
or spinc Dirac operator we obtain an Â-formula. For applications, these formulas prove to be
particularly useful.

We give some more details about the signature operator, which we are going to use later
again. To define the signature operator, fix a Riemannian metric g on M . Assume dimM = 4k
is divisible by four.

The signature operator maps from a certain subspace Ω+ of the space of differential forms
to another subspace Ω−. These subspaces are defined as follows. Define, on p-forms, the
operator τ := ip(p−1)+2k∗, where ∗ is the Hodge-∗ operator given by the Riemannian metric,
and i2 = −1. Since dimM is divisible by 4, an easy calculation shows that τ2 = id. We then
define Ω± to be the ±1 eigenspaces of τ .

The signature operator Dsig is now simply defined to by Dsig := d + d∗, where d is the
exterior derivative on differential forms, and d∗ = ± ∗ d∗ is its formal adjoint. We restrict this
operator to Ω+, and another easy calculation shows that Ω+ is mapped to Ω−. Dsig is elliptic,



and a classical calculation shows that its index is the signature of M given by the intersection
form in middle homology.

The Atiyah-Singer index theorem now specializes to

sign(M) = ind(Dsig) = 〈22kL(TM), [M ]〉,

with dimM = 4k as above.

1.22 Remark. One direction to generalize the Atiyah-Singer index theorem is to give an index
formula for manifolds with boundary. Indeed, this is achieved in the Atiyah-Patodi-Singer
index theorem. However, these results are much less topological than the results for manifolds
without boundary. They are not discussed in these notes.

Next, we explain the K-theoretic version of the Atiyah-Singer index theorem. It starts with
the element of K0(DT ∗M,ST ∗M) given by the symbol of an elliptic operator. Given any
compact manifold M , there is a well defined homomorphism

K0(DT ∗M,ST ∗M)→ K0(∗) = Z,

constructed as follows. Embed M into high dimensional Euclidean space RN . This gives an
embedding of T ∗M into R2N , and further into its one point compatification S2N , with normal
bundle ν. In this situation, ν has a canonical complex structure. The embedding now defines
a transfer map

K0(DT ∗M,ST ∗M)→ K0(S2N ,∞),

by first using the Thom isomorphism to map to the (compactly supported) K-theory of the
normal bundle, and then push forward to the K-theory of the sphere. The latter map is given
by extending a vector bundle on the open subset ν of S2N which is trivialized outside a compact
set (i.e. represents an element in compactly supported K-theory) trivially to all of S2N .

Compose with the Bott periodicity isomorphism to map to K0(pt) = Z. The image of
the symbol element under this homomorphism is denoted the topological index indt(D) ∈
K0(∗) = Z. The reason for the terminology is that it is obtained from the symbol only, using
purely topological constructions. The Atiyah-Singer index theorem states that analytical and
topological index coincide:

1.23 Theorem. indt(D) = ind(D).

1.4 The G-index

1.4.1 The representation ring

Let G be a finite group, or more generally a compact Lie group. The representation ring RG of
G is defined to be the Grothendieck group of all finite dimensional complex representations of G,
i.e. an element of RG is a formal difference [V ]−[W ] of two finite dimensional G-representations
V and W , and we have [V ]−[W ] = [X]−[Y ] if and only if V ⊕Y ∼= W⊕X (strictly speaking, we
have to pass to isomorphism classes of representations to avoid set theoretical problems). The
direct sum of representations induces the structure of an abelian group on RG, and the tensor
product makes it a commutative unital ring (the unit given by the trivial one-dimensional
representation).



Equivalently, we can consider RG as the free abelian group generated by all isomorphism
classes of finite irreducible representations (since every representation decomposes uniquely as
a direct sum of irreducible ones).

To get numerical information about representations, one uses characters: the character of
a representation ρ : G→ Gl(V ) is the complex valued function χV on G with

χV (g) = tr(ρ(g)).

Elements of the representation ring can be recovered from the corresponding characters.
Therefore, equivariant index theorems are often formulated in terms of characters.

More about this representation ring can be found e.g. in [9].

1.4.2 Equivariant analytic index

Assume now that the manifold M is a compact smooth manifold with a smooth (left) G-action,
and let E,F be complex G-vector bundles on M . This means that G acts on E and F by vector
bundle automorphisms (i.e. carries fibers to fibers linearly), and the bundle projection maps
πE : E →M and πF : F →M are G-equivariant, i.e. satisfy

πE(ge) = gπE(e) ∀g ∈ G, e ∈ E.

We assume that the actions preserve a Riemannian metric on M and Hermitian metrics on
E and F . Since G is compact, this can always be achieved by avaraging an arbitrary given
metric, using a Haar measure on G.

The action of G on E and M induces actions on the spaces C∞(M) and C∞(E) of smooth
functions on M , and smooth sections of E, respectively. This is given by the formulas

gf(x) = f(g−1x); f ∈ C∞(M), g ∈ G
gs(x) = gs(g−1x); s ∈ C∞(E), g ∈ G.

Let D : C∞(E)→ C∞(F ) be a G-equivariant elliptic differential operator, i.e.

D(gs) = gD(s).

Because the action of D is assumed to be isometric, the adjoint operator D∗ is G-equivariant,
as well.

Since D is elliptic and M is compact, the kernel and cokernel of D are finite dimensional.
If s ∈ ker(D), D(gs) = gD(s) = 0, i.e. ker(D) is a finite dimensional G-representation. The
same is true for coker(D) = ker(D∗). We define the (analytic) G-index of D to be

indG(D) := [ker(D)]− [coker(D)] ∈ RG.

If G is the trivial group then RG ∼= Z, given by the dimension, and then indG(D) evidently
coincides with the usual index of D.



1.4.3 Equivariant K-theory

Generalizing the construction of the representation ring, assume that X is a compact Hausdorff
space with a G-action.

Then the G-equivariant vector bundles over X form an abelian semigroup under direct
sum, and we define the equivariant K-theory group K0

G(X) as the Grothendieck group of this
semigroup, consisting of formal differences as in the non-equivariant case. Similarly, if A is a
closed subspace of X which is G-invariant (i.e. ga ∈ A for all a ∈ A, g ∈ G), then we can use
the same recipe as in the non-equivariant case, but now with equivariant vector bundles (and
equivariant maps) to define K0

G(X,A).

1.24 Example. If X = {pt} is the one point space with the (necessarily) trivial G-action,
then an equivariant vector bundles is exactly a finite dimensional G-representation. It follows
that

K0
G(pt) = RG.

1.4.4 Equivariant topological index and equivariant index theorem

Now we define a topological equivariant index.
To do this, we proceed exactly in the same way as in the non-equivariant case, but now

G-equivariantly.
First observe that the symbol of an equivariant differential operator

D : Γ(E)→ Γ(F )

is defined by two G-equivariant vector bundles, namely π∗E and π∗F over DT ∗M , together
with the isomorphism (given by the principal symbol of the operator) of the restrictions of π∗E
and π∗F to ST ∗M . G-equivariance of the operator implies immediately, that this isomorphism
is G-equivariant as well. Consequently, in this situation the symbol can be considered to be an
element

σG(D) ∈ K0
G(DT ∗M,ST ∗M).

Next we choose an equivariant embedding of M into a suitable G-representation V . Here,
we have to assume that G is compact to guarantee the existence of such an embedding. Now,
an equivariant version of the Thom isomorphism (to the equivariant K-theory of the normal
bundle) and push forward define a transfer homomorphism

K0
G(DT ∗M,ST ∗M)→ K0

G(V+,∞),

where V+ = V ∪ {∞} is the one point compactification of the G-representation V to a sphere
(where the G-action is extended to V+ by g∞ =∞ for all g ∈ G).

Last, we compose with the G-equivariant Bott periodicity isomorphism

K0
G(V+,∞)

∼=−→ K0
G(pt) = RG

to map to the representation ring.
The image of the equivariant symbol element of K0

G(DT ∗M,ST ∗M) under this composition

is the equivariant topological index indGtop(D). Again, the Atiyah-Singer index theorem says

1.25 Theorem. indG(D) = indGt (D) ∈ K0
G(pt) = RG.



1.5 Families of operators and their index

Another important generalization is given if we don’t look at one operator on one manifold,
but a family of operators on a family of manifolds. More precisely, let X be any compact
topological space, π : Y → X a locally trivial fiber bundle with fibers Yx := π−1(x) ∼= M
smooth compact manifolds (x ∈ X), and structure group the diffeomorphisms of the typical
fiber M . Let E,F be families of smooth vector bundles on Y (i.e. vector bundles which are
smooth for each fiber of the fibration Y → X), and C∞(E), C∞(F ) the continuous sections
which are smooth along the fibers. More precisely, E and F are smooth fiber bundles over X,
the typical fiber is a vector bundle over M , and the structure group consists of diffeomorphisms
of this vector bundle which are fiberwise smooth.

Assume that D : C∞(E) → C∞(F ) is a family {Dx} of elliptic differential operator along
the fiber Yx ∼= M (x ∈ X), i.e., in local coordinates D becomes∑

|α|≤m

Aα(y, x)
∂|α|

∂yα

with y ∈ M and x ∈ X such that Aα(y, x) depends continuously on x, and each Dx is an
elliptic differential operator on Yx.

If dimC ker(Dx) is independent of x ∈ X, then all of these vector spaces patch together to
give a vector bundle called ker(D) on X, and similarly for the (fiber-wise) adjoint D∗. This
then gives a K-theory element [ker(D)]− [ker(D∗)] ∈ K0(X).

Unfortunately, it does sometimes happen that these dimensions jump. However, using
appropriate perturbations or stabilizations, one can always define the K-theory element

ind(D) := [ker(D)]− [ker(D∗)] ∈ K0(X),

the analytic index of the family of elliptic operators D. For details on this and the following
material, consult e.g. [23, Paragraph 15].

We define the symbol ofD (or rather a family of symbols) exactly as in the non-parametrized
case. This gives now rise to an element in K0(DT ∗v Y, ST

∗
v Y ), where T ∗v Y is the cotangent

bundle along the fibers. Note that all relevant spaces here are fiber bundles over X, with
typical fiber T ∗M , DT ∗M or ST ∗M , respectively.

Now we proceed with a family version of the construction of the topological index, copying
the construction in the non-family situation, and using

• a (fiberwise) embedding of Y into RN ×X (which is compatible with the projection maps
to X)

• the Thom isomorphism for families of vector bundles

• the family version of Bott periodicity, namely

K0(S2N ×X, {∞} ×X)
∼=−→ K0(X).

(Instead, one could also use the Künneth theorem together with ordinary Bott periodic-
ity.)

This gives rise to indt(D) ∈ K0(X). The Atiyah-Singer index theorem for families states:



1.26 Theorem. ind(D) = indt(D) ∈ K0(X).

The upshot of the discussion of this and the last section (for the details the reader is
referred to the literature) is that the natural receptacle for the index of differential operators
in various situations are appropriate K-theory groups, and much of todays index theory deals
with investigating these K-theory groups.

2 Survey on C∗-algebras and their K-theory

More detailed references for this section are, among others, [43], [16], and [7].

2.1 C∗-algebras

2.1 Definition. A Banach algebra A is a complex algebra which is a complete normed space,
and such that |ab| ≤ |a| |b| for each a, b ∈ A.

A ∗-algebra A is a complex algebra with an anti-linear involution ∗ : A → A (i.e. (λa)∗ =
λa∗, (ab)∗ = b∗a∗, and (a∗)∗ = a for all a, b ∈ A).

A Banach ∗-algebra A is a Banach algebra which is a ∗-algebra such that |a∗| = |a| for all
a ∈ A.

A C∗-algebra A is a Banach ∗-algebra which satisfies |a∗a| = |a|2 for all a ∈ A.
Alternatively, a C∗-algebra is a Banach ∗-algebra which is isometrically ∗-isomorphic to a

norm-closed subalgebra of the algebra of bounded operators on some Hilbert space H (this is
the Gelfand-Naimark representation theorem, compare e.g. [16, 1.6.2]).

A C∗-algebra A is called separable if there exists a countable dense subset of A.

2.2 Example. If X is a compact topological space, then C(X), the algebra of complex valued
continuous functions on X, is a commutative C∗-algebra (with unit). The adjoint is given by
complex conjugation: f∗(x) = f(x), the norm is the supremum-norm.

Conversely, it is a theorem that every abelian unital C∗-algebra is isomorphic to C(X) for
a suitable compact topological space X [16, Theorem 1.3.12].

Assume X is locally compact, and set

C0(X) := {f : X → C | f continuous, f(x)
x→∞−−−−→ 0}.

Here, we say f(x)→ 0 for x→∞, or f vanishes at infinity, if for all ε > 0 there is a compact
subset K of X with |f(x)| < ε whenever x ∈ X −K. This is again a commutative C∗-algebra
(we use the supremum norm on C0(X)), and it is unital if and only if X is compact (in this
case, C0(X) = C(X)).

2.2 K0 of a ring

Suppose R is an arbitrary ring with 1 (not necessarily commutative). A module M over R is
called finitely generated projective, if there is another R-module N and a number n ≥ 0 such
that

M ⊕N ∼= Rn.

This is equivalent to the assertion that the matrix ring Mn(R) = EndR(Rn) contains an
idempotent e, i.e. with e2 = e, such that M is isomorphic to the image of e, i.e. M ∼= eRn.



2.3 Example. Description of projective modules.

(1) If R is a field, the finitely generated projective R-modules are exactly the finite dimen-
sional vector spaces. (In this case, every module is projective).

(2) If R = Z, the finitely generated projective modules are the free abelian groups of finite
rank

(3) Assume X is a compact topological space and A = C(X). Then, by the Swan-Serre
theorem [39], M is a finitely generated projective A-module if and only if M is isomorphic
to the space Γ(E) of continuous sections of some complex vector bundle E over X.

2.4 Definition. Let R be any ring with unit. K0(R) is defined to be the Grothendieck group
of finitely generated projective modules over R, i.e. the group of equivalence classes [(M,N)]
of pairs of (isomorphism classes of) finitely generated projective R-modules M , N , where
(M,N) ≡ (M ′, N ′) if and only if there is an n ≥ 0 with

M ⊕N ′ ⊕Rn ∼= M ′ ⊕N ⊕Rn.

The group composition is given by

[(M,N)] + [(M ′, N ′)] := [(M ⊕M ′, N ⊕N ′)].

We can think of (M,N) as the formal difference of modules M −N .
Any unital ring homomorphism f : R→ S induces a map

f∗ : K0(R)→ K0(S) : [M ] 7→ [S ⊗RM ],

where S becomes a right R-module via f . We obtain that K0 is a covariant functor from the
category of unital rings to the category of abelian groups.

2.5 Example. Calculation of K0.

• If R is a field, then K0(R) ∼= Z, the isomorphism given by the dimension: dimR(M,N) :=
dimR(M)− dimR(N).

• K0(Z) ∼= Z, given by the rank.

• If X is a compact topological space, then K0(C(X)) ∼= K0(X), the topological K-theory
given in terms of complex vector bundles. To each vector bundle E one associates the
C(X)-module Γ(E) of continuous sections of E.

• Let G be a discrete group. The group algebra CG is a vector space with basis G, and
with multiplication coming from the group structure, i.e. given by g · h = (gh).

If G is a finite group, then K0(CG) is the complex representation ring of G.

2.3 K-Theory of C∗-algebras

2.6 Definition. Let A be a unital C∗-algebra. Then K0(A) is defined as in Definition 2.4,
i.e. by forgetting the topology of A.



2.3.1 K-theory for non-unital C∗-algebras

When studying (the K-theory of) C∗-algebras, one has to understand morphisms f : A → B.
This necessarily involves studying the kernel of f , which is a closed ideal of A, and hence a
non-unital C∗-algebra. Therefore, we proceed by defining the K-theory of C∗-algebras without
unit.

2.7 Definition. To any C∗-algebra A, with or without unit, we assign in a functorial way a
new, unital C∗-algebra A+ as follows. As C-vector space, A+ := A⊕ C, with product

(a, λ)(b, µ) := (ab+ λa+ µb, λµ) for (a, λ), (b, µ) ∈ A⊕ C.

The unit is given by (0, 1). The star-operation is defined as (a, λ)∗ := (a∗, λ), and the new
norm is given by

|(a, λ)| = sup{|ax+ λx| | x ∈ A with |x| = 1}

2.8 Remark. A is a closed ideal of A+, the kernel of the canonical projection A+ � C onto the
second factor. If A itself is unital, the unit of A is of course different from the unit of A+.

2.9 Example. Assume X is a locally compact space, and let X+ := X∪{∞} be the one-point
compactification of X. Then

C0(X)+
∼= C(X+).

The ideal C0(X) of C0(X)+ is identified with the ideal of those functions f ∈ C(X+) such that
f(∞) = 0.

2.10 Definition. For an arbitrary C∗-algebra A (not necessarily unital) define

K0(A) := ker(K0(A+)→ K0(C)).

Any C∗-algebra homomorphisms f : A→ B (not necessarily unital) induces a unital homomor-
phism f+ : A+ → B+. The induced map

(f+)∗ : K0(A+)→ K0(B+)

maps the kernel of the map K0(A+)→ K0(C) to the kernel of K0(B+)→ K0(C). This means
it restricts to a map f∗ : K0(A)→ K0(B). We obtain a covariant functor from the category of
(not necessarily unital) C∗-algebras to abelian groups.

Of course, we need the following result.

2.11 Proposition. If A is a unital C∗-algebra, the new and the old definition of K0(A) are
canonically isomorphic.

2.3.2 Higher topological K-groups

We also want to define higher topological K-theory groups. We have an ad hoc definition using
suspensions (this is similar to the corresponding idea in topological K-theory of spaces). For
this we need the following.



2.12 Definition. Let A be a C∗-algebra. We define the cone CA and the suspension SA as
follows.

CA := {f : [0, 1]→ A | f(0) = 0}
SA := {f : [0, 1]→ A | f(0) = 0 = f(1)}.

These are again C∗-algebras, using pointwise operations and the supremum norm.
Inductively, we define

S0A := A SnA := S(Sn−1A) for n ≥ 1.

2.13 Definition. Assume A is a C∗-algebra. For n ≥ 0, define

Kn(A) := K0(SnA).

These are the topological K-theory groups of A. For each n ≥ 0, we obtain a functor from the
category of C∗-algebras to the category of abelian groups.

For unital C∗-algebras, we can also give a more direct definition of higher K-groups (in
particular useful for K1, which is then defined in terms of (classes of) invertible matrices).
This is done as follows:

2.14 Definition. Let A be a unital C∗-algebra. Then Gln(A) becomes a topological group,
and we have continuous embeddings

Gln(A) ↪→ Gln+1(A) : X 7→
(
X 0
0 1

)
.

We set Gl∞(A) := limn→∞Gln(A), and we equip Gl∞(A) with the direct limit topology.

2.15 Proposition. Let A be a unital C∗-algebra. If k ≥ 1, then

Kk(A) = πk−1(Gl∞(A))(∼= πk(BGl∞(A))).

Observe that any unital morphism f : A→ B of unital C∗-algebras induces a map Gln(A)→
Gln(B) and therefore also between πk(Gl∞(A)) and πk(Gl∞(B)). This map coincides with the
previously defined induced map in topological K-theory.

2.16 Remark. Note that the topology of the C∗-algebra enters the definition of the higher
topological K-theory of A, and in general the topological K-theory of A will be vastly different
from the algebraic K-theory of the algebra underlying A. For connections in special cases,
compare [38].

2.17 Example. It is well known that Gln(C) is connected for each n ∈ N. Therefore

K1(C) = π0(Gl∞(C)) = 0.

A very important result about K-theory of C∗-algebras is the following long exact sequence.
A proof can be found e.g. in [16, Proposition 4.5.9].

2.18 Theorem. Assume I is a closed ideal of a C∗-algebra A. Then, we get a short exact
sequence of C∗-algebras 0 → I → A → A/I → 0, which induces a long exact sequence in
K-theory

→ Kn(I)→ Kn(A)→ Kn(A/I)→ Kn−1(I)→ · · · → K0(A/I).



2.4 Bott periodicity and the cyclic exact sequence

One of the most important and remarkable results about the K-theory of C∗-algebras is Bott
periodicity, which can be stated as follows.

2.19 Theorem. Assume A is a C∗-algebra. There is a natural isomorphism, called the Bott
map

K0(A)→ K0(S2A),

which implies immediately that there are natural isomorphism

Kn(A) ∼= Kn+2(A) ∀n ≥ 0.

2.20 Remark. Bott periodicity allows us to define Kn(A) for each n ∈ Z, or to regard the
K-theory of C∗-algebras as a Z/2-graded theory, i.e. to talk of Kn(A) with n ∈ Z/2. This way,
the long exact sequence of Theorem 2.18 becomes a (six-term) cyclic exact sequence

K0(I) −−−−→ K0(A) −−−−→ K0(A/I)x yµ∗
K1(A/I) ←−−−− K1(A) ←−−−− K1(I).

The connecting homomorphism µ∗ is the composition of the Bott periodicity isomorphism and
the connecting homomorphism of Theorem 2.18.

2.21 Example. Assume A = C(X) is the space of continuous functions on a compact Haus-
dorff space. Particularly interesting is the case where X is the one point space.

Then
S2NA = {f : S2N ×A→ C | f(∗, a) = 0 ∀a ∈ A},

where ∗ is a base point in the two sphere S2N .
To see this, use that C(X,C(Y )) = C(X × Y ); and the fact that

{f : [0, 1]2N → A | f |∂[0,1]2n = 0} = {f : S2N → A | f(∗) = 0}.

It follows that
K0(S2NA) ∼= K0(S2N ×A, {∗} ×A)

is the relative topological K-theory of the pair of spaces (S2N ×A, {∗} ×A).
In particular, we recover the Bott periodicity isomorphism

K0(S2N ,∞)→ K0(pt); K0(S2N ×X, {∞} ×X)→ K0(X)

used in the definition of the topological index and the topological family index, respectively.

2.5 The C∗-algebra of a group

Let Γ be a discrete group. Define l2(Γ) to be the Hilbert space of square summable complex
valued functions on Γ. We can write an element f ∈ l2(Γ) as a sum

∑
g∈Γ λgg with λg ∈ C

and
∑
g∈Γ |λg|

2
<∞.



We defined the complex group algebra (often also called the complex group ring) CΓ to be
the complex vector space with basis the elements of Γ (this can also be considered as the space
of complex valued functions on Γ with finite support, and as such is a subspace of l2(Γ)). The
product in CΓ is induced by the multiplication in Γ, namely, if f =

∑
g∈Γ λgg, u =

∑
g∈Γ µgg ∈

CΓ, then

(
∑
g∈Γ

λgg)(
∑
g∈Γ

µgg) :=
∑
g,h∈Γ

λgµh(gh) =
∑
g∈Γ

(∑
h∈Γ

λhµh−1g

)
g.

This is a convolution product.
We have the left regular representation λΓ of Γ on l2(Γ), given by

λΓ(g) · (
∑
h∈Γ

λhh) :=
∑
h∈Γ

λhgh

for g ∈ Γ and
∑
h∈Γ λhh ∈ l2(Γ).

This unitary representation extends linearly to CΓ.
The reduced C∗-algebra C∗rΓ of Γ is defined to be the norm closure of the image λΓ(CΓ) in

the C∗-algebra of bounded operators on l2(Γ).

2.22 Remark. It’s no surprise that there is also a maximal C∗-algebra C∗maxΓ of a group Γ.
It is defined using not only the left regular representation of Γ, but simultaneously all of its
representations. We will not make use of C∗maxΓ in these notes, and therefore will not define
it here.

Given a topological group G, one can define C∗-algebras C∗rG and C∗maxG which take the
topology of G into account. They actually play an important role in the study of the Baum-
Connes conjecture, which can be defined for (almost arbitrary) topological groups, but again
we will not cover this subject here. Instead, we will throughout stick to discrete groups.

2.23 Example. If Γ is finite, then C∗rΓ = CΓ is the complex group ring of Γ.
In particular, in this case K0(C∗rΓ) ∼= RΓ coincides with the (additive group of) the complex

representation ring of Γ.

3 The Baum-Connes conjecture

The Baum-Connes conjecture relates an object from algebraic topology, namely the K-homology
of the classifying space of a given group Γ, to representation theory and the world of C∗-
algebras, namely to the K-theory of the reduced C∗-algebra of Γ.

Unfortunately, the material is very technical. Because of lack of space and time we can not
go into the details (even of some of the definitions). We recommend the sources [41], [42], [16],
[2], [28] and [7].

3.1 The Baum-Connes conjecture for torsion-free groups

3.1 Definition. Let X be any CW-complex. K∗(X) is the K-homology of X, where K-
homology is the homology theory dual to topological K-theory. If BU is the spectrum of
topological K-theory, and X+ is X with a disjoint basepoint added, then

Kn(X) := πn(X+ ∧BU).



3.2 Definition. Let Γ be a discrete group. A classifying space BΓ for Γ is a CW-complex
with the property that π1(BΓ) ∼= Γ, and πk(BΓ) = 0 if k 6= 1. A classifying space always
exists, and is unique up to homotopy equivalence. Its universal covering EΓ is a contractible
CW-complex with a free cellular Γ-action, the so called universal space for Γ-actions.

3.3 Remark. In the literature about the Baum-Connes conjecture, one will often find the
definition

RKn(X) := lim−→Kn(Y ),

where the limit is taken over all finite subcomplexes Y of X. Note, however, that K-homology
(like any homology theory in algebraic topology) is compatible with direct limits, which im-
plies RKn(X) = Kn(X) as defined above. The confusion comes from the fact that operator
algebraists often use Kasparov’s bivariant KK-theory to define K∗(X), and this coincides with
the homotopy theoretic definition only if X is compact.

Recall that a group Γ is called torsion-free, if gn = 1 for g ∈ Γ and n > 0 implies that g = 1.
We can now formulate the Baum-Connes conjecture for torsion-free discrete groups.

3.4 Conjecture. Assume Γ is a torsion-free discrete group. It is known that there is a par-
ticular homomorphism, the assembly map

µ∗ : K∗(BΓ)→ K∗(C
∗
rΓ) (3.5)

(which will be defined later). The Baum-Connes conjecture says that this map is an isomor-
phism.

3.6 Example. The map µ∗ of Equation (3.5) is also defined if Γ is not torsion-free. However,
in this situation it will in general not be an isomorphism. This can already be seen if Γ = Z/2.
Then C∗rΓ = CΓ ∼= C⊕ C as a C-algebra. Consequently,

K0(C∗rΓ) ∼= K0(C)⊕K0(C) ∼= Z⊕ Z. (3.7)

On the other hand, using the homological Chern character,

K0(BΓ)⊗Z Q ∼= ⊕∞n=0H2n(BΓ;Q) ∼= Q. (3.8)

(Here we use the fact that the rational homology of every finite group is zero in positive degrees,
which follows from the fact that the transfer homomorphism Hk(BΓ;Q)→ Hk({1};Q) is (with
rational coefficients) up to a factor |Γ| a left inverse to the map induced from the inclusion,
and therefore is injective.)

The calculations (3.7) and (3.8) prevent µ0 of (3.5) from being an isomorphism.

3.2 The Baum-Connes conjecture in general

To account for the problem visible in Example 3.6 if we are dealing with groups with torsion,
one replaces the left hand side by a more complicated gadget, the equivariant K-homology of
a certain Γ-space E(Γ, fin), the classifying space for proper actions. We will define all of this
later. Then, the Baum-Connes conjecture says the following.



3.9 Conjecture. Assume Γ is a discrete group. It is known that there is a particular homo-
morphism, the assembly map

µ∗ : KΓ
∗ (E(Γ, fin))→ K∗(C

∗
rΓ) (3.10)

(we will define it later). The conjecture says that this map is an isomorphism.

3.11 Remark. If Γ is torsion-free, then K∗(BΓ) = KΓ
∗ (E(Γ, fin)), and the assembly maps µ of

Conjectures 3.4 and µ of 3.9 coincide (see Proposition 3.30).

Last, we want to mention that there is also a real version of the Baum-Connes conjecture,
where on the left hand side the K-homology is replaced by KO-homology, i.e. the homology
dual to the K-theory of real vector bundles (or an equivariant version hereof), and on the right
hand side C∗rΓ is replaced by the real reduced C∗-algebra C∗r,RΓ.

3.3 Consequences of the Baum-Connes conjecture

3.3.1 Idempotents in C∗rΓ

The connection between the Baum-Connes conjecture and idempotents is best shown via
Atiyah’s L2-index theorem, which we discuss first.

Given a closed manifold M with an elliptic differential operator D : C∞(E) → C∞(F )
between two bundles on M , and a normal covering M̃ → M (with deck transformation group
Γ, normal means that M = M̃/Γ), we can lift E, F and D to M̃ , and get an elliptic Γ-
equivariant differential operator D̃ : C∞(Ẽ) → C∞(F̃ ). If Γ is not finite, we can not use the
equivariant index of Section 1.4. However, because the action is free, it is possible to define an
equivariant analytic index

indΓ(D̃) ∈ KdimM (C∗rΓ).

This is described in Example 3.39.
Atiyah used a certain real valued homomorphism, the Γ-dimension

dimΓ : K0(C∗rΓ)→ R,

to define the L2-index of D̃ (on an even dimensional manifold):

L2- ind(D̃) := dimΓ(indΓ(D̃)).

The L2-index theorem says
L2- ind(D̃) = ind(D),

in particular, it follows that the L2-index is an integer.

3.12 Definition. The Γ-dimension used above can be defined as follows: an element x of
K0(C∗rΓ) is given by a (formal difference of) finitely generated projective modules over C∗rΓ.
Such a module is the image of a projection p ∈ Mn(C∗rΓ), i.e. a matrix (pij) with entries in
C∗rΓ and such that p2 = p = p∗. C∗rΓ is by definition a certain algebra of bounded operators on
l2Γ. On this algebra, we can define a trace trΓ by trΓ(a) = 〈a(e), e〉l2Γ, where e is the function
in l2Γ which has value one at the unit element, and zero everywhere else.

We then define

dimΓ(x = [im(p)− im(q)]) =

n∑
i=1

trΓ(pii)− trΓ(qii).



An alternative description of the left hand side of (3.5) and (3.10) shows that, as long as Γ is
torsion-free, the image of µ0 coincides with the subset of K0(C∗rΓ) consisting of indΓ(D̃), where
D̃ is as above. In particular, if µ0 is surjective (and Γ is torsion-free), for each x ∈ K0(C∗rΓ) we
find a differential operator D such that x = indΓ(D̃). As a consequence, dimΓ(x) ∈ Z, i.e. the
range of dimΓ is contained in Z. This is the statement of the so called trace conjecture.

3.13 Conjecture. Assume Γ is a torsion-free discrete group. Then

dimΓ(K0(C∗rΓ)) ⊂ Z.

On the other hand, if x ∈ K0(C∗rΓ) is represented by a projection p = p2 ∈ C∗rΓ, then
elementary properties of dimΓ (monotonicity and faithfulness) imply that 0 ≤ dimΓ(p) ≤ 1,
and dimΓ(p) /∈ {0, 1} if p 6= 0, 1.

Therefore, we have the following consequence of the Baum-Connes conjecture. If Γ is
torsion-free and the Baum-Connes map µ0 is surjective, then C∗rΓ does not contain any pro-
jection different from 0 or 1.

This is the assertion of the Kadison-Kaplansky conjecture:

3.14 Conjecture. Assume Γ is torsion-free. Then C∗rΓ does not contain any non-trivial
projections.

The following consequence of the Kadison-Kaplansky conjecture deserves to be mentioned:

3.15 Proposition. If the Kadison-Kaplansky conjecture is true for a group Γ, then the spec-
trum s(x) of every self adjoint element x ∈ C∗rΓ is connected. Recall that the spectrum is
defined in the following way:

s(x) := {λ ∈ C | (x− λ · 1) not invertible}.

If Γ is not torsion-free, it is easy to construct non-trivial projections, and it is clear that the
range of indΓ is not contained in Z. Baum and Connes originally conjectured that it is contained
in the abelian subgroup Fin−1(Γ) of Q generated by {1/ |F | | F finite subgroup of Γ}. This
conjecture is not correct, as is shown by an example of Roy [33]. In [24], Lück proves that
the Baum-Connes conjecture implies that the range of dimΓ is contained in the subring of Q
generated by {1/ |F | | F finite subgroup of Γ}.
3.16 Remark. An alternative, topological proof of the fact that the Baum-Connes implies the
Kadison-Kaplansky conjecture is given by Mislin in [6]. Their proof does not use Atiyah’s
L2-index theorem.

3.3.2 Obstructions to positive scalar curvature

The Baum-Connes conjecture implies the so called “stable Gromov-Lawson-Rosenberg” con-
jecture. This implication is a theorem due to Stephan Stolz. The details of this is discussed in
the lectures of Stephan Stolz [37], therefore we can be very brief. We just mention the result.

3.17 Theorem. Fix a group Γ. Assume that µ in the real version of (3.10) discussed in
Section 4 is injective (which follows e.g. if µ in (3.10) is an isomorphism), and assume that M
is a closed spin manifold with π1(M) = Γ. Assume that a certain (index theoretic) invariant
α(M) ∈ KdimM (C∗R,rΓ) vanishes. Then there is an n ≥ 0 such that M × Bn admits a metric
with positive scalar curvature.



Here, B is any simply connected 8-dimensional spin manifold with Â(M) = 1. Such a
manifold is called a Bott manifold.

The converse of Theorem 3.17, i.e. positive scalar curvature implies vanishing of α(M), is
true for arbitrary groups and without knowing anything about the Baum-Connes conjecture.

3.3.3 The Novikov conjecture about higher signatures

Direct approach The original form of the Novikov conjecture states that higher signatures
are homotopy invariant.

More precisely, let M be an (even dimensional) closed oriented manifold with fundamental
group Γ. Let BΓ be a classifying space for Γ. There is a unique (up to homotopy) classifying
map u : M → BΓ which is defined by the property that it induces an isomorphism on π1.
Equivalently, u classifies a universal covering of M .

Let L(M) ∈ H∗(M ;Q) be the Hirzebruch L-class (as normalized by Atiyah and Singer).
Given any cohomology class a ∈ H∗(BΓ,Q), we define the higher signature

σa(M) := 〈L(M) ∪ u∗a, [M ]〉 ∈ Q.

Here [M ] ∈ HdimM (M ;Q) is the fundamental class of the oriented manifold M , and 〈·, ·〉 is
the usual pairing between cohomology and homology.

Recall that the Hirzebruch signature theorem states that σ1(M) is the signature of M ,
which evidently is an oriented homotopy invariant.

The Novikov conjecture generalizes this as follows.

3.18 Conjecture. Assume f : M → M ′ is an oriented homotopy equivalence between two
even dimensional closed oriented manifolds, with (common) fundamental group π. “Oriented”
means that f∗[M ] = [M ′]. Then all higher signatures of M and M ′ are equal, i.e.

σa(M) = σa(M ′) ∀a ∈ H∗(BΓ,Q).

There is an equivalent reformulation of this conjecture in terms of K-homology. To see this,
let D be the signature operator of M . (We assume here that M is smooth, and we choose a
Riemannian metric on M to define this operator. It is an elliptic differential operator on M .)
The operator D defines an element in the K-homology of M , [D] ∈ KdimM (M). Using the
map u, we can push [D] to KdimM (BΓ). We define the higher signature σ(M) := u∗[D] ∈
KdimM (BΓ)⊗Q. It turns out that

2dimM/2σa(M) = 〈a, ch(σ(M))〉 ∀a ∈ H∗(BΓ;Q),

where ch : K∗(BΓ)⊗Q→ H∗(BΓ,Q) is the homological Chern character (an isomorphism).
Therefore, the Novikov conjecture translates to the statement that σ(M) = σ(M ′) if M

and M ′ are oriented homotopy equivalent.
Now one can show directly that

µ(σ(M)) = µ(σ(M ′)) ∈ K∗(C∗rΓ),

if M and M ′ are oriented homotopy equivalent. Consequently, rational injectivity of the Baum-
Connes map µ immediately implies the Novikov conjecture. If Γ is torsion-free, this is part
of the assertion of the Baum-Connes conjecture. Because of this relation, injectivity of the
Baum-Connes map µ is often called the “analytic Novikov conjecture”.



Groups with torsion For an arbitrary group Γ, we have a factorization of µ as follows:

K∗(BΓ)
f−→ KΓ

∗ (E(Γ, fin))
µ−→ K∗(C

∗
rΓ).

One can show that f is rationally injective, so that rational injectivity of the Baum-Connes
map µ implies the Novikov conjecture also in general.

3.4 The universal space for proper actions

3.19 Definition. Let Γ be a discrete group and X a Hausdorff space with an action of Γ.
We say that the action is proper, if for all x, y ∈ X there are open neighborhood Ux 3 x and
Uy 3 y such that gUx ∩ Uy is non-empty only for finitely many g ∈ Γ (the number depending
on x and y).

The action is said to be cocompact, if X/Γ is compact.

3.20 Lemma. If the action of Γ on X is proper, then for each x ∈ X the isotropy group
Γx := {g ∈ Γ | gx = x} is finite.

3.21 Definition. Let Γ be a discrete group. A CW-complex X is a Γ-CW-complex, if X is a
CW-complex with a cellular action of Γ with the additional property that, whenever g(D) ⊂ D
for a cell D of X and some g ∈ Γ, then g|D = idD, i.e. g doesn’t move D at all.

3.22 Remark. There exists also the notion of G-CW-complex for topological groups G (taking
the topology of G into account). These have to be defined in a different way, namely by gluing
together G-equivariant cells Dn ×G/H. In general, such a G-CW-complex is not an ordinary
CW-complex.

3.23 Lemma. The action of a discrete group Γ on a Γ-CW-complex is proper if and only if
every isotropy group is finite.

3.24 Definition. A proper Γ-CW-complex X is called universal, or more precisely universal
for proper actions, if for every proper Γ-CW-complex Y there is a Γ-equivariant map f : Y → X
which is unique up to Γ-equivariant homotopy. Any such space is denoted E(Γ, fin) or EΓ.

3.25 Proposition. A Γ-CW-complex X is universal for proper actions if and only if the fixed
point set

XH := {x ∈ X | hx = x ∀h ∈ H}

is empty whenever H is an infinite subgroup of Γ, and is contractible (and in particular non-
empty) if H is a finite subgroup of Γ.

3.26 Proposition. If Γ is a discrete group, then E(Γ, fin) exists and is unique up to Γ-
homotopy equivalence.

3.27 Remark. The general context for this discussion are actions of a group Γ where the isotropy
belongs to a fixed family of subgroups of Γ (in our case, the family of all finite subgroups). For
more information, compare [40].

3.28 Example.



• If Γ is torsion-free, then E(Γ, fin) = EΓ, the universal covering of the classifying space
BΓ. Indeed, Γ acts freely on EΓ, and EΓ is contractible.

• If Γ is finite, then E(Γ, fin) = {∗}.

• If G is a connected Lie group with maximal compact subgroup K, and Γ is a discrete
subgroup of G, then E(Γ, fin) = G/K [2, Section 2].

3.29 Remark. In the literature (in particular, in [2]), also a slightly different notion of universal
spaces is discussed. One allows X to be any proper metrizable Γ-space, and requires the
universal property for all proper metrizable Γ-spaces Y . For discrete groups (which are the
only groups we are discussing here), a universal space in the sense of Definition 3.24 is universal
in this sense.

However, for some of the proofs of the Baum-Connes conjecture (for special groups) it is
useful to use certain models of E(Γ, fin) (in the broader sense) coming from the geometry of
the group, which are not Γ-CW-complexes.

3.5 Equivariant K-homology

Let Γ be a discrete group. We have seen that, if Γ is not torsion-free, the assembly map (3.5)
is not an isomorphism. To account for that, we replace K∗(BΓ) by the equivariant K-theory
of E(Γ, fin). Let X be any proper Γ-CW complex. The original definition of equivariant
K-homology is due to Kasparov, making ideas of Atiyah precise. In this definition, elements
of KΓ

∗ (X) are equivalence classes of generalized elliptic operators. In [11], a more homotopy
theoretic definition of KΓ

∗ (X) is given, which puts the Baum-Connes conjecture in the context
of other isomorphism conjectures.

3.5.1 Homotopy theoretic definition of equivariant K-homology

The details of this definition are quite technical, using spaces and spectra over the orbit category
of the discrete group Γ. The objects of the orbit category are the orbits Γ/H, H any subgroup
of Γ. The morphisms from Γ/H to Γ/K are simply the Γ-equivariant maps.

In this section, spectra are used in the sense of homotopy theory, they are a generalization
of topological spaces, in particular of CW-complexes. For a basic introduction to this theory,
one may consult e.g. [21, Chapter 3] or [10]. For the (more intricate) constructions mentioned
in here, only the original literature [11] is available.

In this setting, any spectrum over the orbit category gives rise to an equivariant homology
theory. The decisive step is then the construction of a (periodic) topological K-theory spectrum
KΓ over the orbit category of Γ. This gives us then a functor from the category of (arbitrary) Γ-
CW-complexes to the category of (graded) abelian groups, the equivariant K-homology KΓ

∗ (X)
(X any Γ-CW-complex).

The important property (which justifies the name “topological K-theory spectrum) is that

KΓ
k (Γ/H) = πk(KΓ(Γ/H)) ∼= Kk(C∗rH)

for every subgroup H of Γ. In particular,

KΓ
k ({∗}) ∼= Kk(C∗rΓ).

Moreover, we have the following properties:



3.30 Proposition. (1) Assume Γ is the trivial group. Then

KΓ
∗ (X) = K∗(X),

i.e. we get back the ordinary K-homology introduced above.

(2) If H ≤ Γ and X is an H-CW-complex, then there is a natural isomorphism

KH
∗ (X) ∼= KΓ

∗ (Γ×H X).

Here Γ ×H X = Γ × H/ ∼, where we divide out the equivalence relation generated by
(gh, x) ∼ (g, hx) for g ∈ Γ, h ∈ H and x ∈ X. This is in the obvious way a left Γ-space.

(3) Assume X is a free Γ-CW-complex. Then there is a natural isomorphism

K∗(Γ\X)→ KΓ
∗ (X).

In particular, using the canonical Γ-equivariant map EΓ → E(Γ, fin), we get a natural
homomorphism

K∗(BΓ)
∼=−→ KΓ

∗ (EΓ)→ KΓ
∗ (E(Γ, fin)).

3.5.2 Analytic definition of equivariant K-homology

Here we will give the original definition, which embeds into the powerful framework of equiv-
ariant KK-theory, and which is used for almost all proofs of special cases of the Baum-Connes
conjecture. However, to derive some of the consequences of the Baum-Connes conjecture, most
notably about the positive scalar curvature question —this is discussed in one of the lectures
of Stephan Stolz [37]— the homotopy theoretic definition is used.

3.31 Definition. A Hilbert space H is called (Z/2)-graded, if H comes with an orthogonal
sum decomposition H = H0 ⊕H1. Equivalently, a unitary operator ε with ε2 = 1 is given on
H. The subspaces H0 and H1 can be recovered as the +1 and −1 eigenspaces of ε, respectively.

A bounded operator T : H → H is called even (with respect to the given grading), if T
commutes with ε, and odd, if ε and T anti-commute, i.e. if Tε = −εT . An even operator
decomposes as T =

(
T0 0
0 T1

)
, an odd one as T =

(
0 T0

T1 0

)
in the given decomposition H =

H0 ⊕H1.

3.32 Definition. A generalized elliptic Γ-operator on X, or a cycle for Γ-K-homology of the
Γ-space X, simply a cycle for short, is a triple (H,π, F ), where

• H = H0 ⊕H1 is a Z/2-graded Γ-Hilbert space (i.e. the direct sum of two Hilbert spaces
with unitary Γ-action)

• π is a Γ-equivariant ∗-representation of C0(X) on even bounded operators of H (equiv-
ariant means that π(fg−1) = gπ(f)g−1 for all f ∈ C0(X) and all g ∈ Γ.

• F : H → H is a bounded, Γ-equivariant, self adjoint operator such that π(f)(F 2 − 1)
and [π(f), F ] := π(f)F − Fπ(f) are compact operators for all f ∈ C0(X). Moreover, we
require that F is odd, i.e. F =

(
0 D∗

D 0

)
in the decomposition H = H0 ⊕H1.



3.33 Remark. There are many different definitions of cycles, slightly weakening or strengthening
some of the conditions. Of course, this does not effect the equivariant K-homology groups which
are eventually defined using them.

3.34 Definition. We define the direct sum of two cycles in the obvious way.

3.35 Definition. Assume α = (H,π, F ) and α′ = (H ′, π′, F ′) are two cycles.

(1) They are called (isometrically) isomorphic, if there is a Γ-equivariant grading preserving
isometry Ψ: H → H ′ such that Ψ◦π(f) = π′(f)◦Ψ for all f ∈ C0(X) and Ψ◦F = F ′◦Ψ.

(2) They are called homotopic (or operator homotopic) if H = H ′, π = π′, and there is a
norm continuous path (Ft)t∈[0,1] of operators with F0 = F and F1 = F ′ and such that
(H,π, Ft) is a cycle for each t ∈ [0, 1].

(3) (H,π, F ) is called degenerate, if [π(f), F ] = 0 and π(f)(F 2 − 1) = 0 for each f ∈ C0(X).

(4) The two cycles are called equivalent if there are degenerate cycles β and β′ such that
α⊕ β is operator homotopic to a cycle isometrically isomorphic to α′ ⊕ β′.

The set of equivalence classes of cycles is denoted KKΓ
0 (X). (Caution, this is slightly

unusual, mostly one will find the notation KΓ(X) instead of KKΓ(X)).

3.36 Proposition. Direct sum induces the structure of an abelian group on KKΓ
0 (X).

3.37 Proposition. Any proper Γ-equivariant map φ : X → Y between two proper Γ-CW-
complexes induces a homomorphism

KKΓ
0 (X)→ KKΓ

0 (Y )

by (H,π, F ) 7→ (H,π ◦ φ∗, F ), where φ∗ : C0(Y ) → C0(X) : f 7→ f ◦ φ is defined since φ is a
proper map (else f ◦ φ does not necessarily vanish at infinity).

Recall that a continuous map φ : X → Y is called proper if the inverse image of every
compact subset of Y is compact .

It turns out that the analytic definition of equivariant K-homology is quite flexible. It is
designed to make it easy to construct elements of these groups —in many geometric situations
they automatically show up. We give one of the most typical examples of such a situation,
which we will have used in Section 3.3.1..

We need the following definition:

3.38 Definition. Let M be a (not necessarily compact) Riemannian manifold without bound-
ary, which is complete as a metric space. Define

L2Ωp(M) := {ω measurable p-form on M |
∫
M

|ω(x)|2x dµ(x) <∞}.

Here, |ω(x)|x is the pointwise norm (at x ∈ M) of ω(x), which is given by the Riemannian
metric, and dµ(x) is the measure induced by the Riemannian metric.

L2Ωp(M) can be considered as the Hilbert space completion of the space of compactly
supported p-forms on M . The inner product is given by integrating the pointwise inner product,
i.e.

〈ω, η〉L2 :=

∫
M

〈ω(x), η(x)〉x dµ(x).



3.39 Example. Assume that M is a compact even dimensional Riemannian manifold. Let
X = M be a normal covering of M with deck transformation group Γ (normal means that
X/Γ = M). Of course, the action is free, in particular, proper. Let E = E0 ⊕ E1 be a graded
Hermitian vector bundle on M , and

D : C∞(E)→ C∞(E)

an odd elliptic self adjoint differential operator (odd means that D maps the subspace C∞(E0)
to C∞(E1), and vice versa). If M is oriented, the signature operator on M is such an operator,
if M is a spin-manifold, the same is true for its Dirac operator.

Now we can pull back E to a bundle E on M , and lift D to an operator D on E. The
assumptions imply that D extends to an unbounded self adjoint operator on L2(E), the space
of square integrable sections of E. This space is the completion of C∞c (E) with respect to
the canonical inner product (compare Definition 3.38). (The subscript c denotes sections with
compact support). Using the functional calculus, we can replace D by

F := (D
2

+ 1)−1/2D : L2(E)→ L2(E).

Observe that

L2(E) = L2(E0)⊕ L2(E1)

is a Z/2-graded Hilbert space with a unitary Γ-action, which admits an (equivariant) action π
of C0(M) = C0(X) by fiber-wise multiplication. This action preserves the grading. Moreover,
D as well as F are odd, Γ-equivariant, self adjoint operators on L2(E) and F is a bounded
operator. From ellipticity it follows that

π(f)(F 2 − 1) = −π(f)(D
2

+ 1)−1

is compact for each f ∈ C0(M) (observe that this is not true for (D
2

+ 1)−1 itself, if M is
not compact). Consequently, (L2(E), π, F ) defines an (even) cycle for Γ-K-homology, i.e. it
represents an element in KKΓ

0 (X).
One can slightly reformulate the construction as follows: M is a principal Γ-bundle over M ,

and l2(Γ) has a (unitary) left Γ-action. We therefore can construct the associated flat bundle

L := l2(Γ)×Γ M

on M with fiber l2(Γ). Now we can twist D with this bundle L, i.e. define

D := ∇L ⊗ id + id⊗D : C∞(L⊗ E)→ C∞(L⊗ E),

using the given flat connection ∇L on L. Again, we can complete to L2(L⊗ E) and define

F := (D
2

+ 1)−1/2D.

The left action of Γ on l2Γ induces an action of Γ on L and then a unitary action on L2(L⊗E).
Since ∇L preserves the Γ-action, D is Γ-equivariant. There is a canonical Γ-isometry between
L2(L⊗ E) and L2(E) which identifies the two versions of D and F . The action of C0(M) on



L2(L ⊗ E) can be described by identifying C0(M) with the continuous sections of M on the
associated bundle

C0(Γ)×Γ M,

where C0(Γ) is the C∗-algebra of functions on Γ vanishing at infinity, and then using the
obvious action of C0(Γ) on l2(Γ).

It is easy to see how this examples generalizes to Γ-equivariant elliptic differential operators
on manifolds with a proper, but not necessarily free, Γ-action (with the exception of the last
part, of course).

Work in progress of Baum, Higson and Schick [3] suggests the (somewhat surprising) fact
that, given any proper Γ-CW-complex Y , we can, for each element y ∈ KKΓ

0 (Y ), find such a
proper Γ-manifold X, together with a Γ-equivariant map f : X → Y and an elliptic differential
operator on X giving an element x ∈ KKΓ

0 (X) as in the example, such that y = f∗(x).

Analytic K-homology is homotopy invariant, a proof can be found in [7].

3.40 Theorem. If φ1, φ2 : X → Y are proper Γ-equivariant maps which are homotopic through
proper Γ-equivariant maps, then

(φ1)∗ = (φ2)∗ : KKΓ
∗ (X)→ KKΓ

∗ (Y ).

3.41 Theorem. If Γ acts freely on X, then

KKΓ
∗ (X) ∼= K∗(Γ\X),

where the right hand side is the ordinary K-homology of Γ\X.

3.42 Definition. Assume Y is an arbitrary proper Γ-CW-complex. Set

RKΓ
∗ (Y ) := lim−→KKΓ

∗ (X),

where we take the direct limit over the direct system of Γ-invariant subcomplexes of Y with
compact quotient (by the action of Γ).

3.43 Definition. To define higher (analytic) equivariant K-homology, there are two ways. The
short one only works for complex K-homology. One considers cycles and an equivalence relation
exactly as above — with the notable exception that one does not require any grading! This
way, one defines KKΓ

1 (X). Because of Bott periodicity (which has period 2), this is enough to
define all K-homology groups (KKΓ

n (X) = KKΓ
n+2k(X) for any k ∈ Z).

A perhaps more conceptual approach is the following. Here, one generalizes the notion of
a graded Hilbert space by the notion of a p-multigraded Hilbert space (p ≥ 0). This means
that the graded Hilbert space comes with p unitary operators ε1, . . . , εp which are odd with
respect to the grading, which satisfy ε2i = −1 and εiεj + εjεi = 0 for all i and j with i 6= j.
An operator T : H → H on a p-multigraded Hilbert space is called multigraded if it commutes
with ε1, . . . , εp. Such operators can (in addition) be even or odd.

This definition can be reformulated as saying that a multigraded Hilbert space is a (right)
module over the Clifford algebra Clp, and a multigraded operator is a module map.

We now define KKΓ
p (X) using cycles as above, with the additional assumption that the

Hilbert space is p-graded, that the representation π takes values in π-multigraded even opera-
tors, and that the operator F is an odd p-multigraded operator. Isomorphism and equivalence
of these multigraded cycles is defined as above, requiring that the multigradings are preserved
throughout.



This definition gives an equivariant homology theory if we restrict to proper maps. More-
over, it satisfies Bott periodicity. The period is two for the (complex) K-homology we have
considered so far. All results mentioned in this section generalize to higher equivariant K-
homology.

If X is a proper Γ-CW-complex, the analytically defined representable equivariant K-
homology groups RKΓ

p (X) are canonically isomorphic to the equivariant K-homology groups

KΓ
p (X) defined by Davis and Lück in [11] as described in Section 3.5.1.

3.6 The assembly map

Here, we will use the homotopy theoretic description of equivariant K-homology due to Davis
and Lück [11] described in Section 3.5.1. The assembly map then becomes particularly conve-
nient to describe. From the present point of view, the main virtue is that they define a functor
from arbitrary, not necessarily proper, Γ-CW-complexes to abelian groups.

The Baum-Connes assembly map is now simply defined using the equivariant collapse
E(Γ, fin)→ ∗:

µ : KΓ
k (E(Γ, fin))→ KΓ

k (∗) = Kk(C∗rΓ). (3.44)

If Γ is torsion-free, then EΓ = E(Γ, fin), and the assembly map of (3.5) is defined as the
composition of (3.44) with the appropriate isomorphism in Proposition 3.30.

3.7 Survey of KK-theory

The analytic definition of Γ-equivariant K-homology can be extended to a bivariant functor
on Γ-C∗-algebras. Here, a Γ-C∗-algebra is a C∗-algebra A with an action (by C∗-algebra
automorphisms) of Γ. If X is a proper Γ-space, C0(X) is such a Γ-C∗-algebra.

Given two Γ-C∗-algebras A and B, Kasparov defines the bivariant KK-groups KKΓ
∗ (A,B).

The most important property of this bivariant KK-theory is that it comes with a (composition)
product, the Kasparov product. This can be stated most conveniently as follows:

Given a discrete group Γ, we have a category KKΓ whose objects are Γ-C∗-algebras
(we restrict here to separable C∗-algebras). The morphisms in this category between two
Γ-C∗-algebras A and B are called KKΓ

∗ (A,B). They are Z/2-graded abelian groups, and
the composition preserves the grading, i.e. if φ ∈ KKΓ

i (A,B) and ψ ∈ KKΓ
j (B,C) then

ψφ ∈ KKΓ
i+j(A,C).

There is a functor from the category of separable Γ-C∗-algebras (where morphisms are Γ-
equivariant ∗-homomorphisms) to the category KKΓ

∗ which maps an object A to A, and such
that the image of a morphism φ : A→ B is contained in KKΓ

0 (A,B).
If X is a proper cocompact Γ-CW-complex then (by definition)

KKΓ
p (C0(X),C) = KKΓ

−p(X).

Here, C has the trivial Γ-action.
On the other hand, for any C∗-algebra A without a group action (i.e. with trivial action of

hte trivial group {1}), KK{1}∗ (C, A) = K∗(A).
There is a functor from KKΓ to KK{1}, called descent, which assigns to every Γ-C∗-

algebra A the reduced crossed product C∗r (Γ, A). The crossed product has the property that
C∗r (Γ,C) = C∗rΓ.



3.8 KK assembly

We now want to give an account of the analytic definition of the assembly map, which was the
original definition. The basic idea is that the assembly map is given by taking an index. To
start with, assume that we have an even generalized elliptic Γ-operator (H,π, F ), representing
an element in KΓ

0 (X), where X is a proper Γ-space such that Γ\X is compact. The index
of this operator should give us an element in K0(C∗rΓ). Since the cycle is even, H split as
H = H0 ⊕ H1, and F =

(
0 P
P∗ 0

)
with respect to this splitting. Indeed, now, the kernel and

cokernel of P are modules over CΓ, and should, in most cases, give modules over C∗rΓ.
If Γ is finite, the latter is indeed the case (since C∗rΓ = CΓ). Moreover, since Γ\X is compact

and Γ is finite, X is compact, which implies that C0(X) is unital. We may then assume that
π is unital (switching to an equivalent cycle with Hilbert space π(1)H, if necessary). But
then the axioms for a cycle imply that F 2 − 1 is compact, i.e. that F is invertible modulo
compact operators, or that F is Fredholm, which means that ker(P ) and ker(P ∗) are finite
dimensional. Since Γ acts on them, [ker(P )]−[ker(P ∗)] defines an element of the representation
ring RΓ = K0(C∗rΓ) for the finite group Γ. It remains to show that this map respects the
equivalence relation defining KΓ

0 (X).
However, if Γ is not finite, the modules ker(P ) and ker(P ∗), even if they are C∗rΓ-modules,

are in general not finitely generated projective.
To grasp the difficulty, consider Example 3.39. Using the description where F acts on a

bundle over the base space M with infinite dimensional fiber L⊗E, we see that loosely speaking,
the null space of F should rather “contain” certain copies of l2Γ than copies of C∗rΓ (for finite
groups, “accidentally” these two are the same!). However, in general l2Γ is not projective over
C∗rΓ (although it is a module over this algebra). To be specific, assume that M is a point,
E0 = C and E1 = 0, and D = 0. Here we obtain, L2(E0) = l2Γ, L2(E1) = 0, F = 0, and
indeed, ker(P ) = l2Γ.

In the situation of our example, there is a way around this problem: Instead of twisting the
operator D with the flat bundle l2(Γ)×ΓM , we twist with C∗r (Γ)×ΓM , to obtain an operator
D′ acting on a bundle with fiber C∗rΓ⊗ CdimE . This way, we replace l2Γ by C∗rΓ throughout.
Still, it is not true in general that the kernels we get in this way are finitely generated projective
modules over C∗rΓ. However, it is a fact that one can always add to the new F ′ an appropriate
compact operator such that this is the case. Then the obvious definition gives an element

ind(D′) ∈ K0(C∗rΓ).

This is the Mishchenko-Fomenko index of D′ which does not depend on the chosen compact
perturbation. Mishchenko and Fomenko give a formula for this index extending the Atiyah-
Singer index formula, compare e.g. [27, Section 1] or [31, Section 1] and [32, Section 3]. .

One way to get around the difficulty in the general situation (not necessarily studying a
lifted differential operator) is to deform (H,π, F ) to an equivalent (H,π, F ′) which is better
behaved (reminiscent to the compact perturbation above). This allows to proceeds with a rather
elaborate generalization of the Mishchenko-Fomenko example we just considered, essentially
replacing l2(Γ) by C∗rΓ again. In this way, one defines an index as an element of K∗(C

∗
rΓ).

This gives a homomorphism µΓ : KKΓ
∗ (C0(X))→ K∗(C

∗
rΓ) for each proper Γ-CW-complex

X where Γ\X is compact. This passes to direct limits and defines, in particular,

µ∗ : RKΓ
∗ (E(Γ, fin))→ K∗(C

∗
rΓ).



Next, we proceed with an alternative definition of the Baum-Connes map using KK-theory
and the Kasparov product. The basic observation here is that, given any proper Γ-CW-space X,
there is a specific projection p ∈ C∗r (Γ, C0(X)) (unique up to an appropriate type of homotopy)
which gives rise to a canonical element [LX ] ∈ K0(C∗r (Γ, C0(X))) = KK0(C, C∗r (Γ, C0(X))).
This defines by composition the homomorphism

KKΓ
∗ (X) = KKΓ

∗ (C0(X),C)
descent−−−−→ KK∗(C

∗
r (Γ, C0(X)), C∗rΓ)

[LX ]◦·−−−−→ KK∗(C, C∗rΓ) = K∗(C
∗
rΓ).

Again, this passes to direct limits and defines as a special case the Baum-Connes assembly map

µ : RKΓ
∗ (E(Γ, fin))→ K∗(C

∗
rΓ).

3.45 Remark. It is a non-trivial fact (due to Hambleton and Pedersen [12]) that this assembly
map coincides with the map µ of (3.10).

Almost all positive results about the Baum-Connes have been obtained using the powerful
methods of KK-theory, in particular the so called Dirac-dual Dirac method, compare e.g. [41].

3.9 The status of the conjecture

The Baum-Connes conjecture is known to be true for the following classes of groups.

(1) discrete subgroups of SO(n, 1) and SU(n, 1) [17]

(2) Groups with the Haagerup property, sometimes called a-T-menable groups, i.e. which
admit an isometric action on some affine Hilbert H space which is proper, i.e. such that
gnv

n→∞−−−−→∞ for every v ∈ H whenever gn
n→∞−−−−→∞ in G [13]. Examples of groups with

the Haagerup property are amenable groups, Coxeter groups, groups acting properly on
trees, and groups acting properly on simply connected CAT(0) cubical complexes

(3) One-relator groups, i.e. groups with a presentation G = 〈g1, . . . , gn | r〉 with only one
defining relation r [4].

(4) Cocompact lattices in Sl3(R), Sl3(C) and Sl3(Qp) (Qp denotes the p-adic numbers) [22]

(5) Word hyperbolic groups in the sense of Gromov [26].

(6) Artin’s full braid groups Bn [34].

Since we will encounter amenability later on, we recall the definition here.

3.46 Definition. A finitely generated discrete group Γ is called amenable, if for any given
finite set of generators S (where we require 1 ∈ S and require that s ∈ S implies s−1 ∈ S)
there exists a sequence of finite subsets Xk of Γ such that

|SXk := {sx | s ∈ S, x ∈ Xk}|
|Xk|

k→∞−−−−→ 1.

|Y | denotes the number of elements of the set Y .



An arbitrary discrete group is called amenable, if each finitely generated subgroup is
amenable.

Examples of amenable groups are all finite groups, all abelian, nilpotent and solvable groups.
Moreover, the class of amenable groups is closed under taking subgroups, quotients, extensions,
and directed unions.

The free group on two generators is not amenable. “Most” examples of non-amenable
groups do contain a non-abelian free group.

There is a certain stronger variant of the Baum-Connes conjecture, the Baum-Connes con-
jecture with coefficients. It has the following stability properties:

(1) If a group Γ acts on a tree such that the stabilizer of every edge and every vertex satisfies
the Baum-Connes conjecture with coefficients, the same is true for Γ [29].

(2) If a group Γ satisfies the Baum-Connes conjecture with coefficients, then so does every
subgroup of Γ [29]

(3) If we have an extension 1→ Γ1 → Γ2 → Γ3 → 1, Γ3 is torsion-free and Γ1 as well as Γ3

satisfy the Baum-Connes conjecture with coefficients, then so does Γ2.

It should be remarked that in the above list, all groups except for word hyperbolic groups,
and cocompact subgroups of Sl3 actually satisfy the Baum-Connes conjecture with coefficients.

The Baum-Connes assembly map µ of (3.10) is known to be rationally injective for consid-
erably larger classes of groups, in particular the following.

(1) Discrete subgroups of connected Lie groups [18]

(2) Discrete subgroups of p-adic groups [19]

(3) Bolic groups (a certain generalization of word hyperbolic groups) [20].

(4) Groups which admit an amenable action on some compact space [15].

Last, it should be mentioned that recent constructions of Gromov show that certain variants
of the Baum-Connes conjecture, among them the Baum-Connes conjecture with coefficients,
and an extension called the Baum-Connes conjecture for groupoids, are false [14]. At the
moment, no counterexample to the Baum-Connes conjecture 3.9 seems to be known. However,
there are many experts in the field who think that such a counterexample eventually will be
constructed [14].

4 Real C∗-algebras and K-theory

4.1 Real C∗-algebras

The applications of the theory of C∗-algebras to geometry and topology we present here require
at some point that we work with real C∗-algebras. Most of the theory is parallel to the theory
of complex C∗-algebras. For more details on real C∗-algebras and their K-theory, including
the role this plays in index theory, compare [35].



4.1 Definition. A unital real C∗-algebra is a Banach-algebra A with unit over the real num-
bers, with an isometric involution ∗ : A→ A, such that

|x|2 = |x∗x| and 1 + x∗x is invertible ∀x ∈ A.

It turns out that this is equivalent to the existence of a ∗-isometric embedding of A as a
closed subalgebra into BHR, the bounded operators on a suitable real Hilbert space (compare
[30]).

4.2 Example. If X is a compact topological space, then C(X;R), the algebra of real valued
continuous function on X, is a real C∗-algebra with unit (and with trivial involution).

More generally, if X comes with an involution τ : X → X (i.e. τ2 = idX), then Cτ (X) :=
{f : X → C | f(τx) = f(x)} is a real C∗-algebra with involution f∗(x) = f(τx).

Conversely, every commutative unital real C∗-algebra is isomorphic to some Cτ (X).
If X is only locally compact, we can produce examples of non-unital real C∗-algebras as in

Example 2.2.

Essentially everything we have done for (complex) C∗-algebras carries over to real C∗-
algebras, substituting R for C throughout. In particular, the definition of the K-theory of
real C∗-algebras is literally the same as for complex C∗-algebras (actually, the definitions make
sense for even more general topological algebras), and a short exact sequence of real C∗-algebras
gives rise to a long exact K-theory sequence.

The notable exception is Bott periodicity. We don’t get the period 2, but the period 8.

4.3 Theorem. Assume that A is a real C∗-algebra. Then we have a Bott periodicity isomor-
phism

K0(A) ∼= K0(S8A).

This implies

Kn(A) ∼= Kn+8(A) for n ≥ 0.

4.4 Remark. Again, we can use Bott periodicity to define Kn(A) for arbitrary n ∈ Z, or we
may view Kn(A) as an 8-periodic theory, i.e. with n ∈ Z/8.

The long exact sequence of Theorem 2.18 becomes a 24-term cyclic exact sequence.

The real reduced C∗-algebra of a group Γ, denoted C∗R,rΓ, is the norm closure of RΓ in the

bounded operators on l2Γ.

4.2 Real K-homology and Baum-Connes

More details about the contents of this subsection can be found in [32, Section 2].
A variant of the cohomology theory given by complex vector bundles is KO-theory, which

is given by real vector bundles. The homology theory dual to this is KO-homology. If KO is
the spectrum of topological KO-theory, then KOn(X) = πn(X+ ∧KO).

The homotopy theoretic definition of equivariant K-homology can be varied easily to define
equivariant KO-homology. The analytic definition can also be adapted easily, replacing C by R
throughout, using in particular real Hilbert spaces. However, we have to stick to n-multigraded
cycles to define KKΓ

n (X), it is not sufficient to consider only even and odd cycles.



All the constructions and properties translate appropriately from the complex to the real
situation, again with the notable exception that Bott periodicity does not give the period 2,
but 8. The upshot of all of this is that we get a real version of the Baum-Connes conjecture,
namely

4.5 Conjecture. The real Baum-Connes assembly map

µn : KOΓ
n(E(Γ, fin))→ KOn(C∗R,rΓ),

is an isomorphism.

It should be remarked that all known results about injectivity or surjectivity of the Baum-
Connes map can be proved for the real version as well as for the complex version, since each
proof translates without too much difficulty. Moreover, it is known that the complex version
of the Baum-Connes conjecture for a group Γ implies the real version (for this abstract result,
the isomorphism is needed as input, since this is based on the use of the five-lemma at a certain
point).
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[5] Nicole Berline, Ezra Getzler, and Michèle Vergne. Heat kernels and Dirac operators.
Springer-Verlag, Berlin, 1992.

[6] A.J. Berrick, I. Chatterji, and G. Mislin. From acyclic groups to the bass conjecture for
amenable groups. preprint 2001, submitted for publication.

[7] Bruce Blackadar. K-theory for operator algebras. Cambridge University Press, Cambridge,
second edition, 1998.

[8] Raoul Bott and Loring W. Tu. Differential forms in algebraic topology. Springer-Verlag,
New York, 1982.
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