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Abstract. Let G = Z/2Z o Z be the so called lamplighter group and k a
commutative ring. We show that kG does not have a classical ring of quotients

(i.e. does not satisfy the Ore condition). This answers a Kourovka notebook

problem. Assume that kG is contained in a ring R in which the element 1− x
is invertible, with x a generator of Z ⊂ G. Then R is not flat over kG. If

k = C, this applies in particular to the algebra UG of unbounded operators
affiliated to the group von Neumann algebra of G.

We present two proofs of these results. The second one is due to Warren

Dicks, who, having seen our argument, found a much simpler and more el-
ementary proof, which at the same time yielded a more general result than
we had originally proved. Nevertheless, we present both proofs here, in the
hope that the original arguments might be of use in some other context not
yet known to us.

1. Notation and Terminology

Let A be a group. Then A o Z indicates the Wreath product with base group
B =

⊕∞
i=−∞Ai, where Ai = A for all i. Thus A o Z is isomorphic to the split

extension BoZ where if x is a generator for Z, then xiA0x
−i = Ai. Also we identify

A with A0. In the case A = Z/2Z above, A oZ is often called the lamplighter group.
Let kG denote the group algebra of the group G over the field k, and let α ∈ kG.

Write α =
∑
g∈G agg where ag ∈ k. Then the support of α is {g ∈ G | ag 6= 0}, a

finite subset of G.
The augmentation ideal of a group algebra will denoted by the small German

letter corresponding to the capital Latin letter used to name the group. Thus if k is
a field and G is a group, then g is the ideal of kG which has k-basis {g−1 | g ∈ G\1}.
For the purposes of this paper, it will always be clear over which field we are working
when considering augmentation ideals.

1. Definition. A ring R satisfies the Ore condition if for any s, t ∈ R with s
a non-zerodivisor, there are x, y ∈ R with x a non-zerodivisor such that sy =
tx. Formally, this means that s−1t = yx−1, and the condition makes sure that a
classical ring of quotients, inverting all non-zerodivisors of R, can be constructed.

Then R is an Ore ring means that R satisfies the Ore condition. Equivalently
this means that if S is the set of non-zerodivisors of R, then given r ∈ R and s ∈ S,
we can find r1 ∈ R and s1 ∈ S such that rs1 = sr1. In this situation we can form
the Ore localization RS−1, which consists of elements rs−1 where r ∈ R and s ∈ S.
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The above definition is really the right Ore condition, though for group rings the
right and left Ore conditions are equivalent.

In this note, we study, which group rings satisfy the Ore condition. It is well
known that this fails for a non-abelian free group.

On the other hand, abelian groups evidently satisfy the Ore condition. In this
note we show that the lamplighter groups (and relatives) do not satisfy it. Note,
however, that these groups are 2-step solvable, i.e. close relatives of abelian groups.

Let G be a group, let N (G) denote the group von Neumann algebra of G, let
U(G) denote the algebra of unbounded linear operators affiliated to N (G), and let
D(G) denote the division closure of CG in U(G). For more information on these
notions, see [5, §8 and §9] and [6, §8 and §10]. In particular we have the inclusion
of C-algebras

CG ⊆ D(G) ⊆ U(G)

and it is natural to ask whether D(G) and U(G) are flat over CG.
We use the following well-known and easily verified statement without further

comment in this paper. If k is a field and g ∈ G has infinite order, then 1− g is a
non-zerodivisor in kG, and in the case k = C we also have that 1 − g is invertible
in D(G).

If H is the nonabelian free group of rank 2, then we have an exact sequence of
CH-modules 0 → CH2 → CH → C → 0. It was shown in [4, Theorem 1.3] (see
also [5, Theorem 10.2] and [6, Theorem 10.19 and Lemma 10.39]) that D(H) is a
division ring, so when we apply ⊗CHD(H) to this sequence, it becomes D(H)2 →
D(H) → 0 → 0, since (1 − x) is invertible in D(H) for every element 1 6= x ∈ H,
but (1 − x) acts as the zero operator on C. By counting dimension, we get from
this (adding the kernel) a short exact sequence 0→ D(H)→ D(H)2 → D(H)→ 0.
Suppose Q is a ring containing D(H) which is flat over CH. Then applying ⊗D(H)Q

to the previous sequence, we obtain the exact sequence 0 → Q → Q2 → Q → 0
which contradicts the hypothesis that Q is flat over CH (in the latter case we would
have obtained 0→ Q2 → Q→ 0→ 0). In particular if G is a group containing H,
then neither D(G) nor U(G) is flat over CH. Since CG is a free CH-module, we
conclude that neither D(G) nor U(G) is flat over CG.

To sum up the previous paragraph, neither D(G) nor U(G) is flat over CG when
G contains a nonabelian free group. On the other hand it was proven in [8, Theorem
9.1] (see also [6, Theorem 10.84]) that if G is an elementary amenable group which
has a bound on the orders of its finite subgroups, then D(G) and U(G) are flat over
CG. Furthermore it follows from [6, Theorems 6.37 and 8.29] that if G is amenable
(in particular if G is the lamplighter group), then at least U(G) is “dimension flat”
over CG.

2. Original results and proof

We shall prove

2. Theorem. Let H 6= 1 be a finite group and let G be a group containing H o Z.
Then neither D(G) nor U(G) is flat over CG.

Closely related to this question is the problem of when the group algebra kG of
the group G over the field k is an Ore ring (in other words does kG have a classical
ring of quotients; see Definition 1). Our next result answers a Kourovka Notebook
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problem [7, 12.47], which was proposed by the first author. The problem there asks
if kG has a classical quotient ring in the case G = Zp o Z where p is a prime.

3. Theorem. Let H 6= 1 be a finite group, let k be a field and let G be a group
containing H o Z. Then kG is not an Ore ring.

4. Lemma. Let R be a subring of the ring S and let P be a projective R-module.
If P ⊗R S is finitely generated as an S-module, then P is finitely generated.

Proof. Since P is projective, there are R-modules Q,F with F free such that P ⊕
Q = F . Let E be a basis for F . Now P ⊗R S⊕Q⊗R S = F ⊗R S and since P ⊗R S
is finitely generated, there exist e1, . . . , en ∈ E such that P ⊗R S ⊆ e1S+ · · ·+ enS.
We now see that every element p of P is

(i) An R-linear combination of elements in E ( =⇒ p⊗ 1 =
∑
e∈E e⊗ re).

(ii) An S-linear combination of e1, . . . , en (p⊗ 1 =
∑
ei ⊗ si).

Set E = e1R+ · · ·+ enR. Comparing coefficients, the above shows that P ⊆ E and
it follows that we have the equation P ⊕ (Q ∩ E) = E. Therefore P is a finitely
generated R-module as required. �

5. Lemma. Let H be a nontrivial finite group, let k be a field with characteristic
which does not divide |H|, and let G = H o Z. If Q is a ring containing kG such
that k ⊗kG Q = 0, then TorkG(k,Q) 6= 0.

Proof. Let d denote the minimum number of elements required to generate G. Then
we have exact sequences

0 −→ g −→ kG −→ k −→ 0

0 −→ P −→ kGd −→ g −→ 0.

Suppose to the contrary TorkG(k,Q) = 0. Then the following sequence is exact:

0 −→ g⊗kG Q −→ kG⊗kG Q −→ k ⊗kG Q = 0.

Since kG has homological dimension one [1, p. 70 and Proposition 4.12], we also
have 0 = TorkG2 (k,Q) = TorkG1 (g, Q). Hence we have another exact sequence

(6) 0 −→ P ⊗kG Q −→ kGd ⊗kG Q −→ g⊗kG Q −→ 0.

We rewrite this to get the exact sequence

0 −→ P ⊗kG Q −→ Qd −→ Q −→ 0

and we conclude that P ⊗kGQ is a finitely generated Q-module, which is projective
since the sequence (6) splits. Now kG has cohomological dimension ≤ 2 [1, p. 70
and Theorem 4.6 and Proposition 4.12], hence P is a projective kG-module. (To
see this, let P ′ → P be a map from a projective kG-module P ′ onto P . Because
Ext2

kG(k,Q) = 0, this extends to a map P ′ → kGd → P . Since the image of the
first arrow is P , this gives a split of the injection P → kGd, i.e. P is projective.)
Therefore P is finitely generated by Lemma 4. But it is well known that P ∼=
R/[R,R] ⊗ k as kG-modules, where 1 → R → F → G → 1 is an exact sequence
of groups and F is a free group with d generators (compare the proof of [3, (5.3)
Theorem]). Consequently, G is almost finitely presented over k as defined in [2] if P
is a finitely generated kG-module. But this is a contradiction to [2, Theorem A or
Theorem C] (here we use H 6= 1), where the structure of almost finitely presented
groups such as G is determined. �
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7. Corollary. Let H be a nontrivial finite group, let k be a field with characteristic
which does not divide |H|, and let G be a group containing H o Z. Let x be a
generator for Z in G. If Q is a ring containing kG and 1 − x is invertible in Q,
then Q is not flat over kG.

Proof. Set L = H o Z. Since 1 − x is invertible in Q, we have C ⊗CL Q = 0, so
from Lemma 5 we deduce that TorkL(k,Q) 6= 0. Furthermore kG is flat over kL,
consequently TorkG(k ⊗kL kG,Q) 6= 0 by [1, p. 2], in particular Q is not flat over
kG as required. �

Proof of Theorem 2. Set L = H oZ and let x be a generator for Z in L. Then 1−x
is a non-zerodivisor in N (G) and therefore is invertible in U(G), and hence also
invertible in D(G). The result now follows from Corollary 7. �

8. Lemma. Let p be a prime, let k be a field of characteristic p, let A be a group
of order p, let G = A o Z with base group B, let a be a generator for A, and let
x ∈ G be a generator for Z. Then there does not exist α, σ ∈ kG with σ /∈ bkG
such that (1− a)σ = (1− x)α.

Proof. Suppose there does exist α and σ as above. Observe that α ∈ bkG, since
bkG is the kernel of the map kG → kZ induced from the obvious projection G =
A o Z→ Z mapping x to x, and since 1− x is not a zerodivisor in kZ.

Thus we may write σ = τ +
∑
i six

i where si ∈ k, τ ∈ bkG and not all the si
are zero, and α =

∑
i x

iαi where αi ∈ b. Then the equation (1 − a)σ = (1 − x)α
taken mod b2kG yields ∑

i

(1− a)sixi =
∑
i

(1− x)xiαi.

Set bi = 1− x−iaxi. By equating the coefficients of xi, we obtain sibi = αi − αi−1

mod b2kG for all i. Since αi 6= 0 for only finitely many i, we deduce that
∑
sibi = 0

mod b2. Also b/b2 ∼= B⊗k as k-vector spaces via the map induced by b−1 7→ b⊗1
and the elements x−iaxi ⊗ 1 are linearly independent in B ⊗ k, consequently the
bi are linearly independent over k mod b2. We now have a contradiction and the
result follows. �

9. Lemma. Let k be a field, let H be a locally finite subgroup of the group G, and
let α1, . . . , αn ∈ hkG. Then there exists β ∈ kH \ 0 such that βαi = 0 for all i.

Proof. Let T be a right transversal for H in G, so G is the disjoint union of {Ht | t ∈
T}. For each i, we may write αi =

∑
t∈T βitt where βit ∈ h. Let B be the subgroup

generated by the supports of the βit. Then B is a finitely generated subgroup of
H and thus B is a finite p-group. Also βit ∈ b for all i, t. Set β =

∑
b∈B b. Then

βb = 0 and the result follows. �

10. Lemma. Let p be a prime, let k be a field of characteristic p, let A be a group
of order p, and let G be a group containing A o Z. Then kG does not satisfy the
Ore condition.

Proof. Let H = A oZ, which we may regard as a subgroup of G, with x ∈ H ⊂ G a
generator of Z. Let B be the base group of H and let T be a right transversal for H
in G, so G is the disjoint union of {Ht | t ∈ T}. Note that 1−x is a non-zerodivisor
in kG. Let a be a generator for A. Suppose (1−a)σ = (1−x)α where α, σ ∈ kG and
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σ is a non-zerodivisor in kG. Then we may write α =
∑
t∈T αtt and σ =

∑
t∈T σtt

with αt, σt ∈ kH, and then we have

(1− a)σt = (1− x)αt
for all t ∈ T . If σt ∈ bkH for all t ∈ T , then by Lemma 9 we see that there exists
β ∈ kB \ 0 such that βσt = 0 for all t. This yields βσ = 0 which contradicts the
hypothesis that σ is a non-zerodivisor. Therefore we may assume that there exists
s ∈ T such that σs /∈ bkH. But now the equation

(1− a)σs = (1− x)αs
contradicts Lemma 8, and the result follows. �

Proof of Theorem 3. If the characteristic of k is p and divides |H|, then the result
follows from Lemma 10. On the other hand if p does not divide |H|, we suppose
that kG satisfies the Ore condition. Then kG has a classical ring of quotients Q.
It is a well known fact that such a classical ring of quotients is always flat over its
base (compare [9, p. 57]). In particular, Q is flat over kG. Let x be a generator for
Z in G. Since 1− x is a non-zerodivisor in kG, we see that 1− x is invertible in Q.
We now have a contradiction by Lemma 5 and the result follows. �

3. Warren Dicks’ proof

In this section, we give our account of Warren Dicks’ proof and generalization
of the results presented in Section 2. All credit has to go to him, all mistakes are
ours. More precisely, we prove the following theorem (for elements x, y in a group,
we use the commutator convention [x, y] = xyx−1y−1):

11. Theorem. Let 2 ≤ d ∈ Z, let G = 〈a, x | ad = 1, [a, xlax−l] = 1; l = 1, 2, . . .〉
be the wreath product Z/dZ oZ, and let k be a nonzero commutative ring with unit.
If u, v ∈ kG are such that u(a − 1) = v(x − 1), then u is a left zerodivisor in kG.
In particular, kG does not satisfy the Ore condition.

Proof. For the last statement, note that (x− 1) is a non-zerodivisor in kG because
x has infinite order.

Recall that any presentation H = 〈S | R〉 of a group H gives rise to an exact
sequence of left kH-modules

(12)
⊕
r∈R

kH
F−→
⊕
s∈S

kH
α−→ kH

ε−→ k → 0.

Here, ε is the augmentation map defined by ε(h) = 1 for all h ∈ H, α maps
us ∈

⊕
s∈S kH (with u ∈ kH and s the canonical basis element corresponding to

the generator s ∈ S) to u(s−1) ∈ kH, and the map F is given by the Fox calculus,
i.e. ur (where u ∈ kH and r is the canonical basis element corresponding to the
relator r ∈ R) is mapped to ∑

s∈S
u
∂r

∂s
s.

If r = sε1i1 . . . s
εn
in

with si ∈ S and εi ∈ {−1, 1}, then the Fox derivative is defined by

∂r

∂s
:=

n∑
k=1

sε1i1 . . . s
εk−1
ik−1

∂sεkik
∂s

.

Here ∂s/∂s = 1, ∂s−1/∂s = −s−1 and ∂tε/∂s = 0 if s 6= t ∈ S and ε = ±1.
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The above sequence can be considered as the cellular chain complex (with coeffi-
cients k) of the universal covering of the standard presentation CW-complex given
by 〈S | R〉. Since this space is 2-connected, its first homology vanishes and its
zeroth homology is isomorphic to k (by the augmentation), which implies that the
sequence is indeed exact. An outline of the proof can be found in [3, II.5 Exercise
3] or in [3, IV.2, Exercises]

Now we specialize to the group G. Let us write r0 = ad and rl = [a, xlax−l] for
l ≥ 1. Suppose u, v ∈ kG with u(a−1) = v(x−1). Then α(ua−vx) = 0. Exactness
implies that there exists a positive integer N and zl ∈ kG (0 ≤ l ≤ N) such that
F (
∑
l zlrl) = ua− vx. We want to prove that u is a zerodivisor. Therefore we are

concerned only with the a component of F (
∑

0≤l≤N zlrl). This means we first must
compute ∂r/∂a for all the relators in our presentation of G. This is easily done:

∂ad

∂a
= 1 + a+ · · ·+ ad−1(13)

∂[a, xlax−l]
∂a

=
∂(axlax−la−1xla−1x−l)

∂a
(14)

= 1 + axl − axlax−la−1 − axlax−la−1xla−1,(15)

the latter for l > 0. Using the fact that xlax−l commutes with a for each l, we can
simplify:

∂[a, xlax−1]
∂a

= 1 + axl − xlax−l − xl = xl(x−laxl − 1)− (xlax−l − 1).

Since u is the coefficient of a in F (
∑

0≤l≤N zlrl) we see that

u = z0(1 + a+ · · ·+ ad−1) +
N∑
n=1

znx
n(x−naxn − 1)− zn(xnax−n − 1).

Now let C = 〈xnax−n | 1 ≤ |n| ≤ N〉, a finite subgroup of the base group⊕∞
i=−∞ Z/dZ. Then C〈a〉 = C × 〈a〉. Set γ = (1 − a)

∑
c∈C c. Then γ 6= 0 and

βγ = 0. We conclude that u is a left zerodivisor in kG and the result follows. �

16. Corollary. Let 2 ≤ d ∈ Z and let G be a group containing Z/dZ o Z, and let
x ∈ G be a generator for Z. Let k be a nonzero commutative ring with unit and let
Q be a ring containing kG such that 1− x becomes invertible in Q. Then Q is not
flat over kG.

Proof. Since kG is free, hence flat, as left k[Z/dZ o Z]-module, by [1, p. 2] we may
assume that G = Z/dZ o Z. Now tensor the exact sequence (12) over kG with Q.
Then the resulting sequence will also be exact and a − (a − 1)(x − 1)−1x will be
in the kernel of idQ⊗α. Therefore a − (a − 1)(x − 1)−1x will be in the image of
idQ⊗F . However the proof of Theorem 11 shows that if ua − vx is in the image
of idQ⊗F , then u is a zerodivisor; the only change is that we want zl ∈ Q rather
than zl ∈ kG. Since u = 1 in this situation, which is not a zerodivisor, the tensored
sequence is not exact. �

In the case k is a subfield of C and Q = D(G) or U(G), Corollary 16 tells us that
if G contains Z/dZ o Z, then D(G) and U(G) are not flat over kG.
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