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Abstract

Every elliptic (pseudo)-differential operator D on a closed manifold
gives rise to a Fredholm operator acting on L2-sections of the bundle in
question. It therefore has an index ind(D) = dim(ker(D))−dim(coker(D)).
This index depends only on the symbol of D. The Atiyah-Singer index
theorem expresses this index by means of a topological expression in terms
of this symbol.

Using a Chern character and applied to special operators coming from
geometry, there is a very explicit cohomological formula for this index.

It turns out that, in more general contexts, the suitable definition
of index is not given in terms of the difference of kernel and cokernel,
but more precisely as an element of a K-theory group (where this group
depends on the geometric situation in question). One instance where this
can be observed is the index theorem for families, where the index is an
element in the (topological) K-theory of the parameter space. Again, the
index theorem gives a topological expression for this index.

In the version we are studying, the index takes values in the K-theory
of a C∗-algebra associated to the index problem. In this context, one can
make use of the fact that positivity implies invertibility to conclude that
the index of a positive operator vanishes.

Geometric conditions sometimes imply positivity; the most prominent
example is the Dirac operator on a spin manifold, which by the Lich-
nerowicz formula is positive if the manifold has a metric with positive
scalar curvature. Consequently, the index of the Dirac operator is an
obstruction to the existence of a metric with positive scalar curvature
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(as long as the index is independent of the chosen metric; which follows
e.g. from the index theorems).

A convenient modern way to describe the K-theory of C∗-algebras and
the index element of a pseudo-differential operator is given by Kasparov’s
bivariant KK-theory. This theory also allows connections between the
index of these operators, and topological invariants constructed from this
operators and living in the K-homology of the underlying spaces. In this
context, we will also introduce the Mishchenko-Fomenko index. This index
can be used to define the Baum-Connes assembly map.

The Baum-Connes conjecture expresses the K-theory of C∗-algebras
in terms of the K-homology of topological spaces; in those cases where
it holds (and so far, no counterexamples are known) this provides new
views on the index obstructions to positive scalar curvature; it allows for
instance to prove the stable Gromov-Lawson-Rosenberg conjecture which
gives a precise description of those spin manifolds which admit a metric
with positive scalar curvature -upto a certain stabilization procedure.

A special invariant which can be read off from the Mishchenko-Fomenko
index is the L2-index of Atiyah; which also has an interpretation as a dif-
ference of (regularized) dimensions of kernel and cokernel, but now of
an operator acting on a (typically non-compact) covering space of the
manifold one started with. Atiyah proves that this index coincides with
the classical finite dimensional index of the underlying operator. This
allows the use of secondary L2-invariants to classify e.g. different metrics
of positive scalar curvature on a given manifold. For this, one uses re-
lated L2-invariants, namely L2-rho invariants (eta- and rho-invariants are
introduced in the series of lectures of Paolo Piazza).

Further related L2-invariants are the L2-Betti numbers, which measure
the dimension of the kernel of the Laplacian (on forms) of the universal
covering. These have interesting properties; one of the most remarkable
is that these numbers (a priori arbitrary positive reals) are always inte-
gers for large classes of torsion-free fundamental groups; this is related
to the existence of zero divisors in the complex group ring. The Atiyah
conjecture predicts that this integrality result always holds.

Some (optional) more refined invariants will round off the presentation,
compare the list below.

1 Organisation of the talks

(1) First lecture: classical constructions

• Ellipticity of (pseudo)differential operators and index

• classical Atiyah-Singer index theorem; cohomological formula and K-
theoretic approach

(2) Second lecture: toward a more modern approach

• Family index theory

• Topological and geometric applications of index theory
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• C∗-algebras and their K-theory

• Basics about Kasparov’s KK-theory

(3) Third lecture: Kasparov;s KK-theory and Index theory and L2-invariants

• Kasparov’s KK-theory

• index in KK-theory

• K-homology; the Baum-Connes conjecture

• The Mishchenko-Fomenko index

• The Gromov-Lawson-Rosenberg conjecture about positive scalar cur-
vature

• Atiyah’s L2-index theorem

• Vanishing results for L2-rho invariants (for the concept of rho- and
eta-invariants, compare Paolo Piazza’s talks)

• L2-Betti numbers and how they behave (a survey); integrality of L2-
Betti numbers and approximation results for L2-Betti numbers (not
covered).

(4) Fourth lecture: Miscellaneous and left over subjects (depending on time
used up)

• The index obstruction to positive scalar curvature coming from en-
largeability (following Gromov-Lawson), and its relation to the Mishchenko-
Fomenko index (not covered)

• The Novikov conjecture for low dimensional cohomology classes; us-
ing a canonically associated twisting C∗-algebra (not covered)

• Codimension 2 index obstructions to positive scalar curvature (a rein-
terpretation of another result of Gromov-Lawson in the context of
higher index theory) (not covered)

• The signature operator and homotopy invariance of (higher) signa-
tures (not covered)

2 Talk 1: Classical index theory

The Atiyah-Singer index theorem is one of the great achievements of modern
mathematics. It gives a formula for the index of a differential operator (the index
is by definition the dimension of the space of its solutions minus the dimension
of the solution space for its adjoint operator) in terms only of topological data
associated to the operator and the underlying space. There are many good
treatments of this subject available, apart from the original literature (most
found in [1]). Much more detailed than the present notes can be, because of
constraints of length and time, are e.g. [15, 3, 9].
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2.1 Abstract Fredholm index theory

Given a bounded operator T : H+ → H− between two Hilbert space, it is called
Fredholm if it is invertible modulo compact operators. Recall that one possible
way to define the compact operators K(H+,H−) is as norm closure of the linear
span of operators of the form x 7→ b〈a, x〉 for a ∈ H+, b ∈ H−.

A Fredholm operator has a finite dimensional kernel and cokernel, and there-
fore a well defined index

ind(T ) := dim(ker(T ))− dim(coker(T )) ∈ Z,

where coker(T ) = H−/ im(T ) ∼= ker(T ∗).
This index is very stable: it is unchanged under norm-small perturbations

of the operator T , and also under arbitrary compact perturbations. Therefore,
it defines a homomorphism

π0(Gl1(B(H+,H−)/K(H+,H−)))

2.1 Remark. Using polar decomposition, one can replace T by another oper-
ator T ′ of the same index, but such that T ′ is even unitary modulo compact
operators.

For a more compact notation, we can use the graded Hilbert space H :=

H+ ⊕ H− and the odd operator T̃ :=
(

0 T ∗

T 0

)
which contains exactly the

same information.

2.2 Elliptic operators and their index

We quickly review what type of operators we are looking at. This will also fix
the notation.

2.2 Definition. Let M be a smooth manifold of dimension m; E,F smooth
(complex) vector bundles on M . A differential operator (of order d) from E to
F is a C-linear map from the space of smooth sections C∞(E) of E to the space
of smooth sections of F :

D : C∞(E)→ C∞(F ),

such that in local coordinates and with local trivializations of the bundles it can
be written in the form

D =
∑
|α|≤d

Aα(x)
∂|α|

∂xα
.

Here Aα(x) is a matrix of smooth complex valued functions, α = (α1, . . . , αm)
is an m-tuple of non-negative integers and |α| = α1 + · · · + αm. ∂|α|/∂xα is
an abbreviation for ∂|α|/∂xα1

1 · · · ∂xαm
m . We require that Aα(x) 6= 0 for some α

with |α| = d (else, the operator is of order strictly smaller than d).
Let π : T ∗M → M be the bundle projection of the cotangent bundle of M .

We get pull-backs π∗E and π∗F of the bundles E and F , respectively, to T ∗M .
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The symbol σ(D) of the differential operator D is the section of the bundle
Hom(π∗E, π∗F ) on T ∗M defined as follows:

In the above local coordinates, using ξ = (ξ1, . . . , ξm) as coordinate for the
cotangent vectors in T ∗M , in the fiber of (x, ξ), the symbol σ(D) is given by
multiplication with ∑

|α|=m

Aα(x)ξα.

Here ξα = ξα1
1 · · · ξαm

m .
The operator D is called elliptic, if σ(D)(x,ξ) : π∗E(x,ξ) → π∗F(x,ξ) is invert-

ible outside the zero section of T ∗M , i.e. in each fiber over (x, ξ) ∈ T ∗M with
ξ 6= 0. Observe that elliptic operators can only exist if the fiber dimensions of
E and F coincide.

2.3 Example. Let M = Rm and D =
∑m

i=1(∂/∂i)2 be the Laplace operator on
functions. This is an elliptic differential operator of second order, with symbol
σ(D)(x,ξ) =

∑m
i=1 ξ2

i .
Similarly, the Laplacian d∗d on functions of a Riemannian manifold M is

elliptic with symbol σ(d∗d)x,ξ = |ξ|2T∗
x M .

This operators are essentially self adjoint, therefore there index is zero.
More interesting are e.g.:

(1) On a Riemannian manifold the Euler characteristic operator d+d∗ : Ωev(M)→
Ωodd(M) from differential forms of even degree to differential forms of
odd degree. By the Hodge-de Rham theorem, its index is the Euler
characteristic χ(M). Its square is the Laplacian (on forms) ∆, with
σ(∆)x,xi = |ξ|2T∗

x M idΛ∗
xM . Since the principal symbols is an algebra map,

also the symbol of d+d∗ is invertible on S∗M , i.e. the Euler characteristic
operator is elliptic.

(2) If M is an oriented Riemannian manifold, the operator d+ d∗ : Ω+(M)→
Ω−(M) from even to odd forms with respect to the signature grading
operator τ := ip(p−1)+2k∗, where ∗ is the Hodge-∗ operator given by the
Riemannian metric, and i2 = −1 on a 4k-dimensional manifold is elliptic
by the same argument as the Euler characteristic operator. Its index is
the signature of the symmetric cohomology pairing H2k(M)×H2k(M) ∪−→
H4k(M)

R
−→ R (where the interation uses the orientation). Since dim M

is divisible by 4, an easy calculation shows that τ2 = id. We then define
Ω± to be the ±1 eigenspaces of τ .

(3) On a Riemannian spin manifold, the Dirac operator D : Γ(S+) → Γ(S−)
is another elliptic operator.

Given any Hermitean bundle E on M with connection, we can define the
twisted Dirac operator DE : Cinfty(S+⊗E)→ C∞(S−⊗E). It is also an
elliptic differential operator. As a matter of fact, locally all geometrically
relevant operators are of this type. Therefore it usually suffices to study
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them. More details about (generalized) Dirac operators are given in Paolo
Piazzas talks.

We want to mention one key identity, the Bochner-Weitzenböck formula

D2
E = ∇∗∇+

scal
4

+ KE .

This is important because ∇∗∇ is a non-negative operator, which as a
(total) covariant derivate has particularly nice properties. scal

4 stands for
the multiplication operator with the function scal /4, and KE is another
fiberwise operator (smooth section of the bundle Hom(S+ ⊗E,S− ⊗E)),
given in terms of the curvatrure of the connection on E.

The proof of the analytic properties of elliptic operators of Theorem 2.5
for Dirac type operators can be based on the Weitzenböck formula.

2.4 Remark. The class of differential operators is quite restricted. Many con-
structions one would like to carry out with differential operators automatically
lead out of this class. Therefore, one often has to use pseudodifferential opera-
tors. Pseudodifferential operators are defined as a generalization of differential
operators. There are many well written sources dealing with the theory of pseu-
dodifferential operators. Since we will not discuss them in detail here, we omit
even their precise definition and refer e.g. to [15] and [20].

We now want to state several important properties of elliptic operators.

2.5 Theorem. Let M be a smooth manifold, E and F smooth finite dimensional
vector bundles over M . Let P : C∞(E)→ C∞(F ) be an elliptic operator.

Then the following holds.

(1) Elliptic regularity:
If f ∈ L2(E) is weakly in the null space of P , i.e. 〈f, P ∗g〉L2(E) = 0 for
all g ∈ C∞

0 (F ), then f ∈ C∞(E).

(2) The operator D∗D is essentially self adjoint (i.e. its closure is an un-
bounded self adjoint operator). Consequently, functional calculus for un-
bounded operators is available for it.

(3) A generalization of elliptic regularity holds: the operator D(1+D∗D)−1/2

is bounded and, on a closed manifold, Fredholm (even unitary modulo
compact operators).

We define ind(D) := ind(D(1+D∗D)−1/2. Actually, by elliptic regularity,
the index can also be calculated from the kernel and cokernel of D, acting
on smooth sectons.

2.3 Index and K-theory

Recall the following definition:
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2.6 Definition. Let X be a compact topological space. We define the K-
theory of X, K0(X), to be the Grothendieck group of (isomorphism classes of)
complex vector bundles over X (with finite fiber dimension). More precisely,
K0(X) consists of equivalence classes of pairs (E,F ) of (isomorphism classes
of) vector bundles over X, where (E,F ) ∼ (E′, F ′) if and only if there exists
another vector bundle G on X such that E ⊕ F ′ ⊕G ∼= E′ ⊕ F ⊕G. One often
writes [E]− [F ] for the element of K0(X) represented by (E,F ).

Let Y now be a closed subspace of X. The relative K-theory K0(X, Y ) is
given by equivalence classes of triples (E,F, φ), where E and F are complex
vector bundles over X, and φ : E|Y → F |Y is a given isomorphism between the
restrictions of E and F to Y . Then (E,F, φ) is isomorphic to (E′, F ′, φ′) if we
find isomorphisms α : E → E′ and β : F → F ′ such that the following diagram
commutes.

E|Y
φ−−−−→ F |Yyα

yβ

E′|Y
φ′−−−−→ F ′|Y

Two pairs (E,F, φ) and (E′, F ′, φ′) are equivalent, if there is a bundle G on X
such that (E ⊕G, F ⊕G, φ⊕ id) is isomorphic to (E′ ⊕G, F ′ ⊕G, φ′ ⊕ id).

2.7 Example. The symbol of an elliptic operator gives us two vector bundles
over T ∗M , namely π∗E and π∗F , together with a choice of an isomorphism
σ(D)(x,ξ) : E(x,ξ) → F(x,ξ) for (x, ξ) ∈ ST ∗M of the fibers of these two bundles
outside the zero section. If M is compact, this gives an element of the relative
K-theory group K0(DT ∗M,ST ∗M), where DT ∗M and ST ∗M are the disc
bundle and sphere bundle of T ∗M , respectively (with respect to some arbitrary
Riemannian metric).

It turns out that the index of the elliptic operator D does only depend on
the corresponding K-theory class [σ(D)] ∈ K0(D∗M,SM ). Since (at least when
one also allows to use pseudodifferential operators) every such K-theory class
occurs as a symbol class, this defines a homomorphism

inda : K0(D∗M,S∗M)→ Z,

the analytic index.
Using Bott preriodicity and the Thom homomorphism in vector bundle K-

theory, Atiyah and Singer define, in a purely topological way, another homo-
morphism

indt : K0(D∗M,S∗M)→ K0(∗) = Z.

This is done as follows: Take the element of K0(DT ∗M,ST ∗M) given by
the symbol of an elliptic operator. Embed M into high dimensional Euclidean
space RN . This gives an embedding of T ∗M into R2N , and further into its one
point compatification S2N , with normal bundle ν. In this situation, ν has a
canonical complex structure. The embedding now defines a transfer map

K0(DT ∗M,ST ∗M)→ K0(S2N ,∞),
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by first using the Thom isomorphism to map to the (compactly supported)
K-theory of the normal bundle, and then push forward to the K-theory of the
sphere. The latter map is given by extending a vector bundle on the open subset
ν of S2N which is trivialized outside a compact set (i.e. represents an element
in compactly supported K-theory) trivially to all of S2N .

Compose with the Bott periodicity isomorphism to map to K0(pt) = Z.
The image of the symbol element under this homomorphism is denoted the
topological index indt(D) ∈ K0(∗) = Z. The reason for the terminology is
that it is obtained from the symbol only, using purely topological constructions.
The Atiyah-Singer index theorem states that analytical and topological index
coincide:

2.8 Theorem. indt(D) = inda(D).

To prove this, one can show that the topological index is uniquely character-
ized by a couple of properties it has more or less by definition. Then, one shows
with a lot of effort; relying on general properties of the analytic index and a very
small number of index calculations, that inda also satisfies these properties.

2.4 Characteristic classes

For explicit formulas for the index of a differential operator —which can be
derived from the topological index— we will have to use characteristic classes
of certain bundles involved. Therefore, we quickly review the basics about the
theory of characteristic classes.

2.9 Theorem. Given a compact manifold M (or actually any finite CW-
complex), there is a bijection between the isomorphism classes of n-dimensional
complex vector bundles on M , and the set of homotopy classes of maps from
M to BU(n), the classifying space for n-dimensional vector bundles. BU(n) is
by definition the space of n-dimensional subspaces of C∞ (with an appropriate
limit topology).

The isomorphism is given as follows: On BU(n) there is the tautological
n-plane bundle E(n), the fiber at each point of BU(n) just being the subspace
of C∞ which represents this point. Any map f : M → BU(n) gives rise to the
pull back bundle f∗E(n) on M . The theorem states that each bundle on M is
isomorphic to such a pull back, and that two pull backs are isomorphic if and
only the maps are homotopic.

2.10 Definition. A characteristic class c of vector bundles assigns to each
vector bundle E over M an element c(E) ∈ H∗(M) which is natural, i.e. which
satisfies

c(f∗E) = f∗c(E) ∀f : M → N, E vector bundle over N.

It follows that characteristic classes are given by cohomology classes of BU(n).
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2.11 Theorem. The integral cohomology ring H∗(BU(n)) is a polynomial ring
in generators c0 ∈ H0(BU(n)), c1 ∈ H2(BU(n)), . . ., cn ∈ H2n(BU(n)). We
call these generators the Chern classes of the tautological bundle E(n) of Theo-
rem 2.9, ci(E(n)) := ci.

2.12 Definition. Write a complex vector bundle E over M as f∗E(n) for
f : M → BU(n) appropriate. Define ci(fE) := f∗(ci) ∈ H2i(M ; Z), this is
called the i-th Chern class of the bundle E = f∗E(n).

If F is a real vector bundle over M , define the Pontryagin classes

pi(F ) := c2i(F ⊗ C) ∈ H4i(M ; Z).

(The odd Chern classes of the complexification of a real vector bundle are two
torsion and therefore are usually ignored).

2.4.1 Splitting principle

2.13 Theorem. Given a manifold M and a vector bundle E over M , there is
another manifold N together with a map φ : N →M , which induces a monomor-
phism φU : H∗(M ; Z)→ H∗(N ; Z), and such that φ∗E = L1 ⊕ . . . Ln is a direct
sum of line bundles.

Using Theorem 2.13, every question about characteristic classes of vector
bundles can be reduced to the corresponding question for line bundles, and
questions about the behavior under direct sums.

In particular, the following definitions makes sense:

2.14 Definition. The Chern character is an inhomogeneous characteristic class,
assigning to each complex vector bundle E over a space M a cohomology class
ch(E) ∈ H∗(M ; Q). It is characterized by the following properties:

(1) Normalization: If L is a complex line bundle with first Chern class x, then

ch(L) = exp(x) =
∞∑

n=0

xn

n!
∈ H∗(M ; Q).

Observe that in particular ch(C) = 1.

(2) Additivity: L(E ⊕ F ) = L(E) + L(F ).

2.15 Proposition. The Chern character is not only additive, but also multi-
plicative in the following sense: for two vector bundles E, F over M we have

ch(E ⊗ F ) = ch(E) ∪ ch(F ).

2.16 Definition. The Hirzebruch L-class as normalized by Atiyah and Singer is
an inhomogeneous characteristic class, assigning to each complex vector bundle
E over a space M a cohomology class L(E) ∈ H∗(M ; Q). It is characterized by
the following properties:
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(1) Normalization: If L is a complex line bundle with first Chern class x, then

L(L) =
x/2

tanh(x/2)
= 1 +

1
12

x2 − 1
720

x4 + · · · ∈ H∗(M ; Q).

Observe that in particular L(C) = 1.

(2) Multiplicativity: L(E ⊕ F ) = L(E)L(F ).

2.17 Definition. The Todd-class is an inhomogeneous characteristic class, as-
signing to each complex vector bundle E over a space M a cohomology class
Td(E) ∈ H∗(M ; Q). It is characterized by the following properties:

(1) Normalization: If L is a complex line bundle with first Chern class x, then

Td(L) =
x

1− exp(−x)
∈ H∗(X; Q).

Observe that in particular Td(C) = 1.

(2) Multiplicativity: L(E ⊕ F ) = L(E)L(F ).

Note that ch as well as L and Td take values in the even dimensional part

Hev(M ; Q) := ⊕∞k=0H
2k(M ; Q).

2.4.2 Chern-Weyl theory

Chern-Weyl theory can be used to explicitly compute characteristic classes of
finite dimensional vector spaces. For a short description compare [16]. To carry
out the Chern-Weyl procedure, one has to choose a connection on the given
vector bundle E. This connection has a curvature Ω, which is a two form with
values in the endomorphism bundle of the given vector bundle. Using the cup
product of differential forms and the composition of Endomorphisms, we can
also form the powers Ωk, forms of degree 2k with values in the endomorphism
bundle of E. Applying the ordinary trace of Endomorphisms, we get from this
an ordinary differential form tr(Ωk) of degree 2k (with complex coefficients).

2.18 Theorem. For any finite dimension vector bundle E (over a smooth man-
ifold M) with connection with curvature Ω, its Chern character is given by

ch(E) =
∑

k

1
(2πi)k

tr(Ωk)
k!

∈ H2k(M ; C).

Since all other (complex valued) characteristic classes of complex vector bundles
are given in terms of the Chern character, this gives an explicit way to calculate
arbitrary characteristic classes.
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2.4.3 Stable characteristic classes and K-theory

The elements of K0(X) are represented by vector bundles. Therefore, it makes
sense to ask whether a characteristic class of vector bundles can be used to
define maps from K0(X) to H∗(X).

It turns out, that this is not always the case. The obstacle is, that two
vector bundles E, F represent the same element in K0(X) if (and only if) there
is N ∈ N such that E ⊕ CN ∼= F ⊕ CN . Therefore, we have to make sure that
c(E) = c(F ) in this case. A characteristic class which satisfies this property is
called stable, and evidently induces a map

c : K0(X)→ H∗(X).

We deliberately did not specify the coefficients to be taken for cohomology,
because most stable characteristic classes will take values in H∗(X; Q) instead
of H∗(X; Z).

The following proposition is an immediate consequence of the definition:

2.19 Proposition. Assume a characteristic class c is multiplicative, i.e. c(E⊕
F ) = c(E) ∪ c(F ) ∈ H∗(X), and c(C) = 1. Then c is a stable characteristic
class.

Assume a characteristic class c is additive, i.e. c(E ⊕ F ) = c(E) + c(F ).
Then c is a stable characteristic class.

It follows in particular that the Chern character, as well as Hirzebruch’s
L-class are stable characteristic classes, i.e. they define maps from the K-theory
K0(X)→ H∗(X; Q).

The relevance of the Chern character becomes apparent by the following
theorem.

2.20 Theorem. For a finite CW complex X,

ch⊗ idQ : K0(X)⊗Q→ Hev(X; Q)⊗Q = Hev(X; Q)

is an isomorphism.

We have constructed relative K-theory K0(X, A) in terms of pairs of vector
bundles on X with a given isomorphism of the restrictions to A. We can always
find representatives such that one of the bundles is trivialized, and the other one
E has in particular a trivialization E|A = Cn of its restriction to A. Such vector
bundles correspond to homotopy classes [(X, A); (BU(n), pt)] of maps from X
to BU(n) which map A to a fixed point pt in BU(n).

For k > 0, we define relative Chern classes ck(E,E|A = Cn) ∈ H2k(X, A; Z)
as pull back of ck ∈ H2k(BU(n), pt) ∼= H2k(BU(n)). The splitting principle
also holds for such relative vector bundles, and therefore all the definitions we
have made above go through in this relative situation. In particular, we can
define a Chern character

ch: K0(X, A)→ Hev(X, A; Q).
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Given an elliptic differential operator D, we can apply this to our symbol
element

σ(D) ∈ K0(DT ∗M,ST ∗M),

to obtain ch(σ(D)).

2.21 Proposition. Given a smooth manifold M of dimension m, there is a
homomorphism

π! : Hk+m(DT ∗M,ST ∗M ; R)→ Hk(M),

called integration along the fiber. It is defined as follows: let ω ∈ Ωk+m(DT ∗M)
be a closed differential form representing an element in Hk+m(DT ∗M,ST ∗M)
(i.e. with vanishing restriction to the boundary). Locally, one can write ω =∑

αi ∪ βi, where βi are differential forms on M pulled back to DT ∗M via the
projection map π : DT ∗M →M , and αi are pulled back from the fiber in a local
trivialization. Then π!ω is represented by∑

i

(
∫

DT∗
x M

α)βi.

For more details about integration along the fiber, consult [5, Section 6]

2.5 Cohomological version of the Atiyah-Singer index the-
orem

There are different variants of the Atiyah-Singer index theorem. We start with
a cohomological formula for the index.

2.22 Theorem. Let M be a compact oriented manifold of dimension m, and
D : C∞(E) → C∞(F ) an elliptic operator with symbol σ(D). Define the Todd
character Td(M) := Td(TM ⊗ C) ∈ H∗(M ; Q). Then

ind(D) = (−1)m(m+1)/2

∫
M

π! ch(σ(D)) ∪ Td(M).

For the characteristic classes, compare Subsection 2.4.

This formula is obtained from the topological index by observing that∫
M

π! : H∗(D∗M,S∗M ; Q)→ H∗(∗; Q) = Q

is a close relative of the topological index map in K-theory, but that the evident
map involving the Chern character which connects this map and indt is not
commutative; the defect is given precisely by multiplication with the Todd class
of the complexified tangent bundle.

If we start with specific operators given by the geometry, explicit calculation
usually give more familiar terms on the right hand side.
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For example, for the signature operator we obtain Hirzebruch’s signature for-
mula expressing the signature in terms of the L-class, for the Euler characteristic
operator we obtain the Gauss-Bonnet formula expressing the Euler characteris-
tic in terms of the Pfaffian, and for the spin or spinc Dirac operator we obtain
an Â-formula. For applications, these formulas prove to be particularly useful.

The Atiyah-Singer index theorem now specializes to

sign(M) = ind(Dsig) = 〈22kL(TM), [M ]〉,

with dim M = 4k as above.

2.23 Remark. One direction to generalize the Atiyah-Singer index theorem is
to give an index formula for manifolds with boundary. Indeed, this is achieved
in the Atiyah-Patodi-Singer index theorem. However, these results are much
less topological than the results for manifolds without boundary. They are not
discussed in these notes, but by the talks of Paolo Piazza.

2.6 Families of operators and their index

Another important generalization is given if we don’t look at one operator on
one manifold, but a family of operators on a family of manifolds.

This is an interesting topic in its own right, and has useful applications (we
will mention one application to positive scalar curvature later). Moreover, it
turns out that the true nature of a mathematical question often becomes much
more transparent when one is studying deformations/families of the objects in
question.

Therefore, let X be any compact topological space, π : Y → X a locally
trivial fiber bundle with fibers Yx := π−1(x) ∼= M smooth compact manifolds
(x ∈ X), and structure group the diffeomorphisms of the typical fiber M . Let
E,F be families of smooth vector bundles on Y (i.e. vector bundles which are
smooth for each fiber of the fibration Y → X), and C∞(E), C∞(F ) the contin-
uous sections which are smooth along the fibers. More precisely, E and F are
smooth fiber bundles over X, the typical fiber is a vector bundle over M , and
the structure group consists of diffeomorphisms of this vector bundle which are
fiberwise smooth.

Assume that D : C∞(E) → C∞(F ) is a family {Dx} of elliptic differential
operator along the fiber Yx

∼= M (x ∈ X), i.e., in local coordinates D becomes

∑
|α|≤m

Aα(y, x)
∂|α|

∂yα

with y ∈M and x ∈ X such that Aα(y, x) depends continuously on x, and each
Dx is an elliptic differential operator on Yx.

If dimC ker(Dx) is independent of x ∈ X, then all of these vector spaces patch
together to give a vector bundle called ker(D) on X, and similarly for the (fiber-
wise) adjoint D∗. This then gives a K-theory element [ker(D)] − [ker(D∗)] ∈
K0(X).
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Unfortunately, it does sometimes happen that these dimensions jump. How-
ever, using appropriate perturbations or stabilizations, one can always define
the K-theory element

ind(D) := [ker(D)]− [ker(D∗)] ∈ K0(X),

the analytic index of the family of elliptic operators D. For details on this and
the following material, consult e.g. [15, Paragraph 15].

We define the symbol of D (or rather a family of symbols) exactly as in the
non-parametrized case. This gives now rise to an element in K0(DT ∗v Y, ST ∗v Y ),
where T ∗v Y is the cotangent bundle along the fibers. Note that all relevant
spaces here are fiber bundles over X, with typical fiber T ∗M , DT ∗M or ST ∗M ,
respectively.

Now we proceed with a family version of the construction of the topological
index, copying the construction in the non-family situation, and using

• a (fiberwise) embedding of Y into RN ×X (which is compatible with the
projection maps to X)

• the Thom isomorphism for families of vector bundles

• the family version of Bott periodicity, namely

K0(S2N ×X, {∞} ×X)
∼=−→ K0(X).

(Instead, one could also use the Künneth theorem together with ordinary
Bott periodicity.)

This gives rise to indt(D) ∈ K0(X). The Atiyah-Singer index theorem for
families states:

2.24 Theorem. ind(D) = indt(D) ∈ K0(X).

The upshot of the discussion of this and the last section (for the details the
reader is referred to the literature) is that the natural receptacle for the index of
differential operators in various situations are appropriate K-theory groups, and
much of todays index theory deals with investigating these K-theory groups.

Moreover, we have seen a particular problem occur: the index bundle is
not always defined (because of the dimension jumps). I suggest the following
solution of this problem: find a different, more flexible definition of K-theory
where this (and other) indices are automatically contained. Actually, the idea
is to define the group as group of equivalence classes of index problems —this
will be done via KK-theory. Of course, the big taks then is to calculate these
KK-groups, in particular to show that (in special cases) they give the K-groups
we know. It turns out that KK-theory is particularly powerful because it allows
efficient calculations using the Kasparov product.
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2.7 Geometric and Topological consequence of the index
theorem

The index theorem has many powerful applications. We only lift a few of those.

(1) If we apply the theorem to the signature operator or the Euler charac-
teristic operator, we get interesting formulas for the signature and Euler
characteristic, respectively, in terms of characteristic classes of the tangent
bundle. From this, we can e.g. derive immediately, that both invariants
vanish for manifolds with a flat unitary connection on the tangent bundle,
because then the corresponding characteristic classes vanish by Chern-
Weyl theory.

(2) Since the index of an operator is by definition an integer, the same is true
for the cohomological expression of the index, a priori a rational number.
E.g., if M is a closed spin manifold,

∫
M

Â(M) ∈ Z. It turns out that this
integrality does not hold for non-spin manifolds in general. It was one
of the motivations for Atiyah-Singer to explain such integrality results,
which let them develop the index theorem.

(3) The Weitzenböck formula D2 = ∇∗∇+scal /4 for the Dirac operator on a
spin manifold M implies the following: if scal > 0 then the operator D2 is
positive, therefore invertible, therefore the index of D+ vanishes (because
both the kernel of D+ and of (D+)∗ = D− are trivial). Consequenly,
under this assumption,

∫
M

Â(M) = 0.

In other words, if
∫

M
Â(M) 6= 0 for a spin manifold M , like the K3-

surface, then this manifolds does not admit a Riemannian metric with
positive scalar curvature.

The spin condition is essential, as shows CP 2, which has a metric of posi-
tive sectional curvature, but non-trivial Â-genus (and which does not have
a spin structure).

This simple method does not apply to flat manifolds like Tn because by
Chern-Weyl theory

∫
TnÂ(Tn) = 0. However, using the family index

theorem, one can show that Tn does not admit a metric of positive scalar
curvature, either.

3 Survey on C∗-algebras and their K-theory

More detailed references for this section are, among others, [23], [9], and [4].

3.1 C∗-algebras

3.1 Definition. A Banach algebra A is a complex algebra which is a complete
normed space, and such that |ab| ≤ |a| |b| for each a, b ∈ A.

A ∗-algebra A is a complex algebra with an anti-linear involution ∗ : A→ A
(i.e. (λa)∗ = λa∗, (ab)∗ = b∗a∗, and (a∗)∗ = a for all a, b ∈ A).
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A Banach ∗-algebra A is a Banach algebra which is a ∗-algebra such that
|a∗| = |a| for all a ∈ A.

A C∗-algebra A is a Banach ∗-algebra which satisfies |a∗a| = |a|2 for all
a ∈ A.

Alternatively, a C∗-algebra is a Banach ∗-algebra which is isometrically ∗-
isomorphic to a norm-closed subalgebra of the algebra of bounded operators
on some Hilbert space H (this is the Gelfand-Naimark representation theorem,
compare e.g. [9, 1.6.2]).

A C∗-algebra A is called separable if there exists a countable dense subset
of A.

3.2 Example. If X is a compact topological space, then C(X), the algebra of
complex valued continuous functions on X, is a commutative C∗-algebra (with
unit). The adjoint is given by complex conjugation: f∗(x) = f(x), the norm is
the supremum-norm.

Conversely, it is a theorem that every abelian unital C∗-algebra is isomorphic
to C(X) for a suitable compact topological space X [9, Theorem 1.3.12].

Assume X is locally compact, and set

C0(X) := {f : X → C | f continuous, f(x) x→∞−−−−→ 0}.

Here, we say f(x) → 0 for x → ∞, or f vanishes at infinity, if for all ε > 0
there is a compact subset K of X with |f(x)| < ε whenever x ∈ X −K. This is
again a commutative C∗-algebra (we use the supremum norm on C0(X)), and
it is unital if and only if X is compact (in this case, C0(X) = C(X)).

3.2 K0 of a ring

Suppose R is an arbitrary ring with 1 (not necessarily commutative). A module
M over R is called finitely generated projective, if there is another R-module
N and a number n ≥ 0 such that

M ⊕N ∼= Rn.

This is equivalent to the assertion that the matrix ring Mn(R) = EndR(Rn)
contains an idempotent e, i.e. with e2 = e, such that M is isomorphic to the
image of e, i.e. M ∼= eRn.

3.3 Example. Description of projective modules.

(1) If R is a field, the finitely generated projective R-modules are exactly the
finite dimensional vector spaces. (In this case, every module is projective).

(2) If R = Z, the finitely generated projective modules are the free abelian
groups of finite rank

(3) Assume X is a compact topological space and A = C(X). Then, by the
Swan-Serre theorem [22], M is a finitely generated projective A-module if
and only if M is isomorphic to the space Γ(E) of continuous sections of
some complex vector bundle E over X.

16



3.4 Definition. Let R be any ring with unit. K0(R) is defined to be the
Grothendieck group of finitely generated projective modules over R, i.e. the
group of equivalence classes [(M,N)] of pairs of (isomorphism classes of) finitely
generated projective R-modules M , N , where (M,N) ≡ (M ′, N ′) if and only if
there is an n ≥ 0 with

M ⊕N ′ ⊕Rn ∼= M ′ ⊕N ⊕Rn.

The group composition is given by

[(M,N)] + [(M ′, N ′)] := [(M ⊕M ′, N ⊕N ′)].

We can think of (M,N) as the formal difference of modules M −N .
Any unital ring homomorphism f : R→ S induces a map

f∗ : K0(R)→ K0(S) : [M ] 7→ [S ⊗R M ],

where S becomes a right R-module via f . We obtain that K0 is a covariant
functor from the category of unital rings to the category of abelian groups.

3.5 Example. Calculation of K0.

• If R is a field, then K0(R) ∼= Z, the isomorphism given by the dimension:
dimR(M,N) := dimR(M)− dimR(N).

• K0(Z) ∼= Z, given by the rank.

• If X is a compact topological space, then K0(C(X)) ∼= K0(X), the topo-
logical K-theory given in terms of complex vector bundles. To each vector
bundle E one associates the C(X)-module Γ(E) of continuous sections of
E.

• Let G be a discrete group. The group algebra CG is a vector space with ba-
sis G, and with multiplication coming from the group structure, i.e. given
by g · h = (gh).

If G is a finite group, then K0(CG) is the complex representation ring of
G.

3.3 K-Theory of C∗-algebras

3.6 Definition. Let A be a unital C∗-algebra. Then K0(A) is defined as in
Definition 3.4, i.e. by forgetting the topology of A.

3.3.1 K-theory for non-unital C∗-algebras

When studying (the K-theory of) C∗-algebras, one has to understand morphisms
f : A→ B. This necessarily involves studying the kernel of f , which is a closed
ideal of A, and hence a non-unital C∗-algebra. Therefore, we proceed by defining
the K-theory of C∗-algebras without unit.
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3.7 Definition. To any C∗-algebra A, with or without unit, we assign in a
functorial way a new, unital C∗-algebra A+ as follows. As C-vector space,
A+ := A⊕ C, with product

(a, λ)(b, µ) := (ab + λa + µb, λµ) for (a, λ), (b, µ) ∈ A⊕ C.

The unit is given by (0, 1). The star-operation is defined as (a, λ)∗ := (a∗, λ),
and the new norm is given by

|(a, λ)| = sup{|ax + λx| | x ∈ A with |x| = 1}

3.8 Remark. A is a closed ideal of A+, the kernel of the canonical projection
A+ � C onto the second factor. If A itself is unital, the unit of A is of course
different from the unit of A+.

3.9 Example. Assume X is a locally compact space, and let X+ := X ∪ {∞}
be the one-point compactification of X. Then

C0(X)+ ∼= C(X+).

The ideal C0(X) of C0(X)+ is identified with the ideal of those functions f ∈
C(X+) such that f(∞) = 0.

3.10 Definition. For an arbitrary C∗-algebra A (not necessarily unital) define

K0(A) := ker(K0(A+)→ K0(C)).

Any C∗-algebra homomorphisms f : A → B (not necessarily unital) induces a
unital homomorphism f+ : A+ → B+. The induced map

(f+)∗ : K0(A+)→ K0(B+)

maps the kernel of the map K0(A+)→ K0(C) to the kernel of K0(B+)→ K0(C).
This means it restricts to a map f∗ : K0(A) → K0(B). We obtain a covariant
functor from the category of (not necessarily unital) C∗-algebras to abelian
groups.

Of course, we need the following result.

3.11 Proposition. If A is a unital C∗-algebra, the new and the old definition
of K0(A) are canonically isomorphic.

3.3.2 Higher topological K-groups

3.12 Definition. Let A be a unital C∗-algebra. Then Gln(A) becomes a topo-
logical group, and we have continuous embeddings

Gln(A) ↪→ Gln+1(A) : X 7→
(

X 0
0 1

)
.

We set Gl∞(A) := limn→∞Gln(A), and we equip Gl∞(A) with the direct limit
topology.
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3.13 Proposition. Let A be a unital C∗-algebra. If k ≥ 1, then

Kk(A) = πk−1(Gl∞(A))(∼= πk(BGl∞(A))).

Observe that any unital morphism f : A → B of unital C∗-algebras in-
duces a map Gln(A) → Gln(B) and therefore also between πk(Gl∞(A)) and
πk(Gl∞(B)). This map coincides with the previously defined induced map in
topological K-theory.

3.14 Remark. Note that the topology of the C∗-algebra enters the definition of
the higher topological K-theory of A, and in general the topological K-theory of
A will be vastly different from the algebraic K-theory of the algebra underlying
A. For connections in special cases, compare [21].

3.15 Example. It is well known that Gln(C) is connected for each n ∈ N.
Therefore

K1(C) = π0(Gl∞(C)) = 0.

A very important result about K-theory of C∗-algebras is the following long
exact sequence. A proof can be found e.g. in [9, Proposition 4.5.9].

3.16 Theorem. Assume I is a closed ideal of a C∗-algebra A. Then, we get a
short exact sequence of C∗-algebras 0 → I → A → A/I → 0, which induces a
long exact sequence in K-theory

→ Kn(I)→ Kn(A)→ Kn(A/I)→ Kn−1(I)→ · · · → K0(A/I).

3.4 Bott periodicity and the cyclic exact sequence

One of the most important and remarkable results about the K-theory of C∗-
algebras is Bott periodicity, which can be stated as follows.

3.17 Theorem. Assume A is a C∗-algebra. There is a natural isomorphism,
called the Bott map

K0(A)→ K0(S2A),

which implies immediately that there are natural isomorphism

Kn(A) ∼= Kn+2(A) ∀n ≥ 0.

3.18 Remark. Bott periodicity allows us to define Kn(A) for each n ∈ Z, or to
regard the K-theory of C∗-algebras as a Z/2-graded theory, i.e. to talk of Kn(A)
with n ∈ Z/2. This way, the long exact sequence of Theorem 3.16 becomes a
(six-term) cyclic exact sequence

K0(I) −−−−→ K0(A) −−−−→ K0(A/I)x yµ∗

K1(A/I) ←−−−− K1(A) ←−−−− K1(I).

The connecting homomorphism µ∗ is the composition of the Bott periodicity
isomorphism and the connecting homomorphism of Theorem 3.16.
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3.5 Survey on KK-theory

We now want to give the “natural” construction of K-theory in terms of index
problems. We first have to consider the “spaces” on which these index problems
are given. In the classical case, these are just operators on Hilbert space. How-
ever, if we have a family index problem, we actually have for each point in the
base a Hilbert space (sections of some bundle along the fiber), and these Hilbert
spaces depend contiuously along the fiber; they form indeed a bundle of Hilbert
spaces on the base, and we have to study continuous sections of this bundle.
This is axiomatized and generalized in the notion of a Hilbert A-module, for a
C∗-algebra A.

From now on, for technical reasons we assume that our C∗-algebras are
separable and sigma-unital.

3.19 Definition. Given a C∗-algebra A, a Hilbert A-module H is a right A-
module together with an A-valued innerproduct 〈·, ·〉 : H × H → A with the
following properties:

(1) the inner product is A-linear in the second variable

(2) sesqui-linearity: 〈f, g〉 = 〈g, f〉∗ for all f, g ∈ H, where we use the ∗ of the
C∗-algebra A

(3) Positivity: 〈f, f〉 > 0 for f ∈ 0, where we use the concept of positivity in
the C∗-algebra A.

(4) This implies that f 7→ |〈f, f〉|1/2
A is a norm on H. We require that H is

complete, i.e. a Banach space, with respect to this norm.

3.20 Example. If A = C, Hilbert A-modules are just Hilbert spaces.
For an arbitrary A, define l2(A) := {(ak)k∈N |

∑
k∈N a∗kak converges in A}.

This is a Hilbert A-module with the obvious right A-module structure, and with
inner product 〈(ak), (bk)〉 =

∑
k a∗kbk.

If X is a space and E a bundle of Hilbert spaces on X (e.g. a finite dimen-
sional unitary vector bundle), the the space H of continuous sections (vanishing
at infinity) of this bundle is a Hilbert C0(X)-module. The module structure
is given by pointwise multiplication, and the C0(X)-valued inner product by
pointwise taking the inner product.

3.21 Definition. Given a Hilbert A-module H, B(H) is the space of bounded
A-linear maps T : H → H which admit an adjoint T ∗. B(H) is C∗-algebra,
with ∗ given by the adjoint.

K(H) is defined as the norm closure of the linear span of operators of the
form f 7→ a〈b, f〉 for a, b ∈ H. This is an closed ∗-ideal of B(H).

3.22 Remark. In constrast to the case of Hilbert spaces, adjoints of bounded
operators do not always exist. Neither do orthogonal complements of closed
A-submodules (both phenomena are closely related).
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We now define KK(C, A) as equivalence classes of tuples (H,T ) where H =
H+ ⊕H− is a Z/2-graded Hilbert A-module, and T ∈ B(H) is an odd Hilbert
A-module morphism, such that the following properties are satisfied:

(1) T ∗ = T

(2) T 2 − 1 ∈ K(H).

Such a cycle is called degenerate, if T 2− 1 = 0. We consider unitary isomor-
phism classes of such cycles. Direct sum defines an obvious semigroup structure
on this set. We now define the equivalence relation of stable homotopy, where
two cycles (H1, T1) and (H2, T2) are stably homotopy equivalent, if there are
degenerate cycles (D1, S1), (D2, S2) such that H1⊕D1 is isomorphic to H2⊕D2

and, via this isomorphism, there is a norm continuous homotopy of T1 ⊕ S1 to
T2⊕S2 through odd self adjoint operators which are unitary module compacts.

3.23 Definition. The set of such equivalence classes is actually a group, the
group KK(C, A).

3.24 Example. Let T : H+ → H− be a Fredholm operator, made unitary
module the compact operators. Then (H = H+⊕H−, 0 T∗

T 0 ) defines an element
in KK(C, C).

More generally, if we have a family Db of graded self adjoint elliptic op-
erators parametrized by a space B (H,Db(1 + D2

b )−1/2) defines an element in
KK(C, C0(B)). Here H is the space of continuous sections (vanishing at infin-
ity) of the bundle of Hilbert spaces L2(Sb), Sb the fiberwise define bundle on
which Db acts.

3.25 Theorem. There is an map K0(A) → KK(C, A). If A is unital, given
a finitely generated projective module P , realizing P as direct summand of An

provides P by restriction with an A-valued inner product, and this way P be-
comes a Hilbert A-module. The class [P ]−[Q] is then sent to [(H = H+⊕H− =
P ⊕Q, 0)].

This map is an isomorphism (and the result extends to non-unital A).

3.26 Remark. The definition of KK-theory and Theorem 3.25 does not make
index theory trivial. Calculating indices now means that one to find an inverse
of the isomorphism of Theorem 3.25, i.e. find the canonical simple form (the
index) of the KK-element represented by the operator.

3.27 Remark. There are versions odd KK-groups which are not more compli-
cated than the even ones, such that Theorem 3.25 extends, and it is very impor-
tant to have the complete picture (e.g. for the long exact sequence in K-theory
and for Bott periodicity). However, for reasons of brevity we concentrate here
on the even case.

KK-theory is very powerful because the groups are actually calculable. Most
important is the Kasparov product. To introduce this, and to make more ef-
ficient use of the KK-groups, we have to extend the definition to the bivariant
theory.
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Given two C∗-algebras B,A, cycles for KK(B,A) are tuples (φ,H, T ) where
H is a graded Hilbert A-module as before, but now additionally equipped with
an even C∗-algebra homomorphism φ : B → B(H) (i.e. φ(b) is even for each
b ∈ B). In particular, H is a B-A bimodule. T ∈ B(H) is an odd self-adjoint
Hilbert A-module operator which has the following additional property:

(1) φ(b)(T 2 − 1) ∈ K(H) for each b ∈ B.

(2) φ(b)[T, φ(a)] ∈ K(H) for each a, b ∈ B.

The first condition is, if B is non-unital, a weakening of the corresponding
condition for KK(C, A). It means that T is only locally required to be unitary
modulo compacts. If B and phi are unital, it is equivalent to T 2 − 1 ∈ K(H),
since K(H) is an ideal.

A cycle (phi,H, T ) is called degenerate, if the above conditions are satisfied
not modulo K(H), but on the nose.

As before, we define the equivalence relation “stable homotopy”.

3.28 Definition. KK(B,A) is the set of such equivalence classes.

3.29 Example. Assume that M is a, not necessarily compact Riemannian spin
manifold.

Then (L2(S), T = D(1+D2)−1/2) defines a cycle for KK(C0(M), C), where
φ is given by pointwise multiplication. The trick is that T 2 − 1 might not be
compact, but it is so after multiplication with a compactly supported function
(or one which vanihes at infinity). Similarly, the fact that D is a differential
operator of order 1 implies that T is a pseudodifferential operator of order zero.
Its commutator with a multiplication operator has degree −1 and consequently
is locally compact, again.

3.30 Remark. It is somewhat inconvenient to always have to transform the
differential operators to bounded operators, as seen in the examples. Baaj-
Julg have developed a variant of KK-theory which directly allows to work with
unbounded operators. A technical difficulty consists in explaining what exactly
are the appropriate unbounded operators in general, and to develop the correct
tools to manipulate them.

The most powerful part of KK-theory is the Kasparov product. This is a
homomorphism

KK(A,B)⊗KK(B,C)→ KK(A,C),

more generally

KK(A,B1 ⊗B2)⊗KK(B2 ⊗B3, C)→ KK(A⊗B3, C ⊗B2)

with many very nice properties (and technically very hard to construct in gen-
eral).

3.31 Example. We have just seen that, given a (compact) spin manifold M of
even dimension, the Dirac operator defines a class [D] ∈ KK(C(M), C). On the
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other hand, we have also seen that a vector E →M bundle defines a class [E] =
(Γ(E), 0) ∈ KK(C, C(M)). The Kasparov product [E]⊗C(M) [D] ∈ KK(C, C)
is represented by (L2(S ⊗E), DE(1 + D2

E)−1/2) and is exactly the index of the
Dirac operator D+ twisted by E.

Mpre generally, if A is any other C∗-algebra, a bundle E of finitely generated
projective A-modules over M defines a class [E] = (Γ(E), 0) ∈ KK(C, C(M,A) =
C(M)⊗A) (and every class is represented by a difference of two such cycles).

We “define”

ind(D+
E) := [E]⊗C(M) [D] ∈ KK(C, A) = K0(A).

It is represented by a cycle similar as in the case of finite dimensional fibers.
Mishchenko-Fomenko give a direct definition of this index, and prove an

index theorem in this case (using a reduction to classical Atiyah-Singer index
theorem).

We now consider a special example of such a bundle for a suitable C∗-algebra,
which canonically exists on every manifold M .

3.5.1 The C∗-algebra of a group

Let Γ be a discrete group, which you can think of as being the fundamental
group of the manifold M in question. Define l2(Γ) to be the Hilbert space of
square summable complex valued functions on Γ. We can write an element
f ∈ l2(Γ) as a sum

∑
g∈Γ λgg with λg ∈ C and

∑
g∈Γ |λg|2 <∞.

We defined the complex group algebra (often also called the complex group
ring) CΓ to be the complex vector space with basis the elements of Γ (this can
also be considered as the space of complex valued functions on Γ with finite
support, and as such is a subspace of l2(Γ)). The product in CΓ is induced by
the multiplication in Γ, namely, if f =

∑
g∈Γ λgg, u =

∑
g∈Γ µgg ∈ CΓ, then

(
∑
g∈Γ

λgg)(
∑
g∈Γ

µgg) :=
∑

g,h∈Γ

λgµh(gh) =
∑
g∈Γ

(∑
h∈Γ

λhµh−1g

)
g.

This is a convolution product.
We have the left regular representation λΓ of Γ on l2(Γ), given by

λΓ(g) · (
∑
h∈Γ

λhh) :=
∑
h∈Γ

λhgh

for g ∈ Γ and
∑

h∈Γ λhh ∈ l2(Γ).
This unitary representation extends linearly to CΓ.
The reduced C∗-algebra C∗

r Γ of Γ is defined to be the norm closure of the
image λΓ(CΓ) in the C∗-algebra of bounded operators on l2(Γ).
3.32 Remark. It’s no surprise that there is also a maximal C∗-algebra C∗

maxΓ
of a group Γ. It is defined using not only the left regular representation of Γ,
but simultaneously all of its representations. We will not make use of C∗

maxΓ in
these notes, and therefore will not define it here.
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3.33 Example. If Γ is finite, then C∗
r Γ = CΓ is the complex group ring of Γ.

In particular, in this case K0(C∗
r Γ) ∼= RΓ coincides with the (additive group

of) the complex representation ring of Γ.

3.34 Definition. There is a canonical trace on the group ring CΓ, sending∑
λgg to τ(

∑
λgg) = λe, the coefficient of the identity. An easy calculation

shows that this is indeed a trace. In terms of the left regular representation,
τ(x) = 〈xe, e〉l2Γ, which shows that this trace extends to a continuous trace on
C∗

r Γ.

3.35 Definition. Given a manifold M with fundamental group Γ, we can form
the bundle M̃ ×Γ C∗

r Γ (using the left multiplicaton of Γ on C∗
r Γ). This is a

canonically defined flat bundle of free C∗
r Γ of rank 1 for the right action of C∗

r Γ
on itself.

This bundle is called the Mishchenko line bundle L. Given any elliptic
differential operator D on an even dimensional manifold M , we can then form
as above the index ind(DL) ∈ K0(C∗

r Γ).

Our goal is to get more information about this index, and about its appli-
cations. One first observation:

3.36 Remark. The Weitzenböck formula, being a local calculation, still holds,
with no extra term because the Mishchenko line bundle is flat:

D2
L = ∇∗∇+ scal /4.

Moreover, because we are working in a C∗-algebra, positivity of scal implies
that D2

L, and therefore also DL, is invertible. Using continuous functional calcu-
lus, we can therefore homotop DL(1+D2

L)−1/2 to a unitary operator (preserving
all the KK-conditions), simply replacing DL by ht(DL), with h0(λ) = λ, and
h1(λ) = sgn(λ) for λ in the sectrum of DL (which does not contain zero). By
definition of KK, this means that ind(DL) = 0 ∈ KK(C∗

r Γ). In other words,
this index is an obstructio to the existence of a metric with positive scalar
curvature.

3.37 Remark. In fact, the index of the Dirac operator on a torus twisted with
the Mishchenko line bundle can be shown to be non-zero (it is equivalent to
a certain family index which can be computed), so this is one way to see that
there is no metric with positive scalar curvature on Tn.

3.5.2 A degree zero index theorem

We next want to get some numerical invariants for operators of the form DL,
which are computable.

We will study very simply invariants, among them the L2-index, and derive
a very simple index formula for them, by reducing to the Atiyah-Singer index
theorem.
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3.38 Definition. Given a trace τ : A→ R on an algebra A, it induces a homo-
morphism

τ : K0(A)→ R

as follows: let p = (pij) ∈ Mn(A) be a projection (whose image is a finitely
generated projective module and therefore represents an element of K0(A)).
Set τ([im(p)]) :=

∑
i τ(pii).

3.39 Definition. Given a (smooth) bundle L of finitely generated projective
Hilbert A-modules, choose a structure preserving connection ∇ on L. This
connection then has a curvature Ω, a 2-form on M with values in the bundle of
endomorphisms of L. Given a trace τ : A→ C on A, we can now, as in the case
of finite dimensional vector bundles, take the trace of the powers of Ω and that
way define a Chern character form

chτ (L,∇) :=
∑

τ(− Ωk

(2πi)kk!
) ∈ Ωev(M).

The de Rham cohomology class of this form does not depend on the chosen
connection, but only on L.

3.40 Theorem. If D is the Dirac operator on M , L is a bundle of finitely
generated projective A-modules, and τ : A→ C a trace then

τ(ind(DL)) =
∫

M

Â(M) ∪ chτ (L).

If D is an other elliptic operator on M , one has to replace Â(M) by the corre-
sponding Atiyah-Singer integrand and the formula remains correct.

Proof. We have two maps K0(C(M) ⊗ A) → C. The first one is given by
sending [L] to τ(ind(DL)), the second one by sending [L] to the right hand side∫

M
Â(M) ∪ chτ (L). Some not very hard deformation arguments show that the

second map really is well defined. We want to show that they coincide.
But now observe that we have a Künneth homomorphism

K0(C(M))⊗K0(A)⊕K1(C(M))⊗K1(A)→ K0(C(M)⊗A) (3.41)

which is, because C(M) is commutative, surjective upto torsion. It therefore
suffices to check that the two homomorphisms coincide on the image of the
Künneth homomorphism. For K1(C(M))⊗K1(A), one checks that both maps
vanish (not hard, but requires to look at Bott periodicity a little bit). For
K0(C(M)) ⊗ K0(A), the image of the Künneth homomorphism of [E] ⊗ [P ],
where E is a finite dimensional vector bundle and P a projective module, is
E⊗CP . Because P is a constant “dummy factor” ind(DE⊗P ) = ind(DE)·P , and
therefore chτ ind(EE⊗P ) = ind(DE) · τ(P ). Moreover, we can put a “product”
connection on E ⊗ P which is the trivial connection on the factor P , so that
chτ (E ⊗ P ) = ch(E) · τ(P ).

Using the classical Atiyah-Singer index theorem, the required equality fol-
lows immediately.
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3.42 Remark. The proof of Mishchenko-Fomenko of their index theorem uses
the Künneth homomorphism in a similar way.

The main point of the Chern-Weyl theory employed here is that it gives
some kind of a “partial converse” of the rational Künneth isomorphism, at least
as long as only the τ -information is concerned. Observe that it is not easy in
general to obtain the splitting information, which expresses a general A-bundle
L as image under the Künneth isomorphism.

3.43 Corollary. If L is flat, τ(ind(DL)) contains exactly the same information
as ind(D) (plus the “dimension” of the fiber measured by τ).

For example, if we twist with the Mishchenko line bundle L and apply the
canonical trace τ : C∗

r Γ→ C, because τ([C∗
r Γ]) = 1, τ(ind(DL)) = ind(D) ∈ Z.

This is Atiyah’s L2-index theorem, the L2-index being precisely τ(ind(DL))
(in fact, Atiyah’s definition is different and one has to check equality here, as
well).

3.44 Definition. Given a manifold M with fundamental group Γ, the map

KK(C(M), C)→ KK(C, C∗
r Γ),

sending the class of an elliptic operator [D] on M to ind(DL), where L is the
Mishchenko line bundle, is called the assembly map.

Strictly speaking, one has to allow manifolds with a map f to M with an
operator D, and then looks at ind(Df∗L). It is a theorem of Baum-Douglas that
every element of KK(C(M), C) is obtained that way, and then is even allows
to substitute M be spaces which are not manifolds.

3.45 Definition. Let Γ be a discrete group. A classifying space BΓ for Γ is
a CW-complex with the property that π1(BΓ) ∼= Γ, and πk(BΓ) = 0 if k 6= 1.
A classifying space always exists, and is unique up to homotopy equivalence.
Its universal covering EΓ is a contractible CW-complex with a free cellular
Γ-action, the so called universal space for Γ-actions.

Recall that a group Γ is called torsion-free, if gn = 1 for g ∈ Γ and n > 0
implies that g = 1.

We can now formulate the Baum-Connes conjecture for torsion-free discrete
groups.

3.46 Conjecture. Assume Γ is a dicsrete group such that BΓ is a finite CW-
complexs (this implies that it is torsion-free. Then the assembly map

µ∗ : K∗(BΓ)→ K∗(C∗
r Γ) (3.47)

is predicted to be an isomorphism.

3.48 Example. The map µ∗ of Equation (3.47) is also defined if Γ is not
torsion-free. However, in this situation it will in general not be an isomorphism.
This can already be seen if Γ = Z/2. Then C∗

r Γ = CΓ ∼= C⊕ C as a C-algebra.
Consequently,

K0(C∗
r Γ) ∼= K0(C)⊕K0(C) ∼= Z⊕ Z. (3.49)
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On the other hand, using the homological Chern character,

K0(BΓ)⊗Z Q ∼= ⊕∞n=0H2n(BΓ; Q) ∼= Q. (3.50)

(Here we use the fact that the rational homology of every finite group is zero in
positive degrees, which follows from the fact that the transfer homomorphism
Hk(BΓ; Q)→ Hk({1}; Q) is (with rational coefficients) up to a factor |Γ| a left
inverse to the map induced from the inclusion, and therefore is injective.)

The calculations (3.49) and (3.50) prevent µ0 of (3.47) from being an iso-
morphism.

There is a variant of the Baum-Connes conjecture (where the left hand side
is modified appropriately), which can be formuated for all groups and for which
no counterexample is known.

3.5.3 Obstructions to positive scalar curvature

The Baum-Connes conjecture implies the so called “stable Gromov-Lawson-
Rosenberg” conjecture. This implication is a theorem due to Stephan Stolz.

3.51 Theorem. Fix a group Γ. Assume that µ in the real version of the Baum-
Connes conjecture is injective (which follows e.g. if the Baum-Connes map above
is an isomorphism), and assume that M is a closed spin manifold with π1(M) =
Γ. Assume that a certain (index theoretic) invariant α(M) ∈ Kdim M (C∗

R,rΓ)
vanishes. Then there is an n ≥ 0 such that M×Bn admits a metric with positive
scalar curvature.

Here, B is any simply connected 8-dimensional spin manifold with Â(M) =
1. Such a manifold is called a Bott manifold.

The converse of Theorem 3.51, i.e. positive scalar curvature implies vanishing
of α(M), is true for arbitrary groups and without knowing anything about the
Baum-Connes conjecture.

3.6 The status of the Baum-Connes conjecture

The Baum-Connes conjecture is known to be true for the following classes of
groups.

(1) discrete subgroups of SO(n, 1) and SU(n, 1) [10]

(2) Groups with the Haagerup property, sometimes called a-T-menable groups,
i.e. which admit an isometric action on some affine Hilbert H space which
is proper, i.e. such that gnv

n→∞−−−−→∞ for every v ∈ H whenever gn
n→∞−−−−→

∞ in G [6]. Examples of groups with the Haagerup property are amenable
groups, Coxeter groups, groups acting properly on trees, and groups acting
properly on simply connected CAT(0) cubical complexes

(3) One-relator groups, i.e. groups with a presentation G = 〈g1, . . . , gn | r〉
with only one defining relation r [2].
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(4) Cocompact lattices in Sl3(R), Sl3(C) and Sl3(Qp) (Qp denotes the p-adic
numbers) [14]

(5) Word hyperbolic groups in the sense of Gromov [17].

(6) Artin’s full braid groups Bn [19].

3.52 Definition. A finitely generated discrete group Γ is called amenable, if
for any given finite set of generators S (where we require 1 ∈ S and require that
s ∈ S implies s−1 ∈ S) there exists a sequence of finite subsets Xk of Γ such
that

|SXk := {sx | s ∈ S, x ∈ Xk}|
|Xk|

k→∞−−−−→ 1.

|Y | denotes the number of elements of the set Y .
An arbitrary discrete group is called amenable, if each finitely generated

subgroup is amenable.
Examples of amenable groups are all finite groups, all abelian, nilpotent and

solvable groups. Moreover, the class of amenable groups is closed under taking
subgroups, quotients, extensions, and directed unions.

The free group on two generators is not amenable. “Most” examples of
non-amenable groups do contain a non-abelian free group.

There is a certain stronger variant of the Baum-Connes conjecture, the
Baum-Connes conjecture with coefficients. It has the following stability proper-
ties:

(1) If a group Γ acts on a tree such that the stabilizer of every edge and every
vertex satisfies the Baum-Connes conjecture with coefficients, the same is
true for Γ [18].

(2) If a group Γ satisfies the Baum-Connes conjecture with coefficients, then
so does every subgroup of Γ [18]

(3) If we have an extension 1→ Γ1 → Γ2 → Γ3 → 1, Γ3 is torsion-free and Γ1

as well as Γ3 satisfy the Baum-Connes conjecture with coefficients, then
so does Γ2.

It should be remarked that in the above list, all groups except for word
hyperbolic groups, and cocompact subgroups of Sl3 actually satisfy the Baum-
Connes conjecture with coefficients.

The Baum-Connes assembly map µ is known to be rationally injective for
considerably larger classes of groups, in particular the following.

(1) Discrete subgroups of connected Lie groups [11]

(2) Discrete subgroups of p-adic groups [12]

(3) Bolic groups (a certain generalization of word hyperbolic groups) [13].

(4) Groups which admit an amenable action on some compact space [8].
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Last, it should be mentioned that recent constructions of Gromov show
that certain variants of the Baum-Connes conjecture, among them the Baum-
Connes conjecture with coefficients, and an extension called the Baum-Connes
conjecture for groupoids, are false [7]. At the moment, no counterexample to the
Baum-Connes conjecture seems to be known. However, there are many experts
in the field who think that such a counterexample eventually will be constructed
[7].

4 Some newer results

To finish, we want to indicate a couple of somewhat newer results, partially
obtained by the author (with coauthors).

We want to have a closer look at the L2-index. So far, we have only seen
that by Atiyah’s L2-index theorem it does not contain any new information.

However, we want to remark that it is also possible to define an L2-index
for Atiyah-Patodi-Singer type index problems for manifolds with boundary, and
then the story again becomes interesting. In this situation, an index theorem
for this L2-index exists (due to Ramachandran). It has the usual form, with a
correction eta-invariant term.

4.1 Definition. For an elliptic differential operator D twisted with a C∗
r Γ-

module bundle L, we define the L2-eta invariant

η(2)(DL) :=
1√
π

∫ ∞

0

τ(DLe−(tD)2) dt.

We extend τ to the operator in question using an integral over the diagonal of
the integral kernel. It is a non-trivial fact that the eta-integral always converges,
which relies in part also on the fact that τ is not an arbitrary trace, but has the
rather strong continuity property of being “normal”.

4.2 Theorem. Given a APS-boundary value problem for the twisted Dirac op-
erator DL as above, assume that the boundary operator is invertible. Then

ind(2)(DL) =
∫

M

AS(D) ∪ chτ (L)−
η(2)(D∂

L)
2

.

The theorem even extends to the case of non-invertible boundary operator (with
an additional contribution from the kernel of this operator). This indeed only
works because the trace τ is normal, so that it extends to the von Neumann
closure of C∗

r Γ and therefore can (via measurable functional calculus) be used to
measure the size of any kernel as trace of the projection onto it.

Using this result and topological considerations about K-homology, Paolo
Piazza and the author prove the following

4.3 Theorem. Assume that M is a closed spin manifold of positive scalar
curvature such that the fundamental group Γ is torsion-free and satisfies the
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Baum-Connes conjecture for the maximal C∗-algebra. This is the case e.g. if Γ
is amenable. Then

η(D) = η(2)(DL).

Here L is the Mishchenko line bundle.

Proof. By injectivity of the Baum-Connes map, and since DL is invertible be-
cause of positive scalar curvature, the class of [D] ∈ KK(C(BΓ), C) is zero.
This means (by topology) essentially that M is spin bordant (with fixed funda-
mental group Γ) to a manifold N of a very simple structure (and with positive
scalar curvature), for which by a direct calculation η(D(N)) = η(2)(DL(N)).

Now this bordism W is a manifold with boundary and its boundary Dirac
operator is invertible. Consequently, we can apply the two APS-index theorem;
they have the same local term (because L is flat and τ([L]) = 1).

Consequently: ind(D(W ))− ind(2)(D(W )L) = − 1
2 (η(D(M))−η(2)(DL(M)).

Now, because the boundary operators are invertible, the operator D(W ) ac-
tually represents a class in KK(C(W ), C) and we get an index in K(C∗

maxΓ).
The two numbers we want to compute are the images of this index class un-
der two homomorphisms defined on K(C∗

maxΓ). By the Atiyah-Singer index
theorem, these homomorphisms coincide on the subgroup generated by indexes
of closed manifold. But because we assumed surjectivity of the Baum-Connes
map, this is all of KK(C∗

maqxΓ). This finishes the proof.
If we only know the Baum-Connes isomorphism for the reduced C∗-algebra,

this doesn’t suffice, because from the index element in KK(C∗
r Γ) one can not

a priori read off the ordinary integer valued index (this is tied to the trivial
representation of the group).

The result is enlighting in view of the fact that for groups with torsion, the
same invariant η − η(2) is quite efficient to distinguish different metrics with
positive scalar curvature, in particular is not identically zero.

This is the content of a second theorem of Piazza and the author:

4.4 Theorem. Assume that Γ contains an element of finite order. Assume that
M is a spin manifold of positive scalar curvature of dimension 4k + 3, k > 0,
with fundamental group Γ.

Then there are infinitely many different metric with positive scalar curvature
on M , such that the L2-rho invariant on all of these are pairwise different.
Between no pair of such metrics, there is a spin bordism of metrics of positive
scalar curvature (and with fundamental group Γ). In particular, this metrics
lie in different components of the space of metrics of positive scalar curvature
(even upto the action of the diffeomorphism group by pullback).

Here, a bordism between metrics with positive scalar curvature (possibly on
different manifolds M1,M2) is a manifold W with boundary M1∪−M2, together
with a metric of positive scalar curvature on W which is of product type near the
boundary, and restricts to the given metrics on the two boundary components.
A special bordism is the cylinder M × [0, 1], and a path of metrics of positive
scalar curvature can be used to put a corresponding bordism metric on M×[0, 1].
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Proof. Given a bordism W as above, the Dirac operator with APS-boundary
conditions (also twisted with the Mishchenko line bundle L) is invertible, so that
the index vanishes. Since the local integrands in the two APS-index theorems
coincide, the differences of eta-invariants of the two sides also have to coincide
(taking the inverse orientiation on one side into account).

It follows that we can use the L2-rho invariants to distinguish bordism classes
of metrics of positive scalar curvature.

Now, there are examples of Botvinnik-Gilkey for finite cyclic fundamental
groups, and on very special manifolds, with different metrics of positive scalar
curvature where these rho-invariants differ.

We can then use “induction” and Gromov-Lawson-Schoen-Yau surgery ar-
guments, to transport these examples to any manifold with the right dimension
and the right kind of fundamental group.

4.5 Remark. For quite restricted classes of fundamental groups (e.g. such which
contain a central element of odd order), the method in a modified way can be
used in dimensions 4k+1 as well. To our knowledge, this gives ther first examples
in such dimensions, where we know that the moduli space of metrics of positive
scalar curvature is not connected, but even has infinitely many components (in
dimensions 4k + 3 this is know to be always the case, if the space is not empty,
of course).

Similar methods and results can be applied to the signature operator. The
relative of the vanishing result for torsion free fundamental groups there is a
homotopy invariance result; a result originially due to Keswani for the same kind
of assumptions. We give a new (and from our point of view more conceptual)
proof, relying heavily on the work of Hilsum-Skandalis about the homotopy
invariance of the index of the signature operator twisted with an flat A-module
bundle.

Relatives of the non-triviality of the space of metrics of positive scalar cur-
vature have also been obtained in this context. The original results are due to
Chang-Weinberger, they say that under similar assumptions as above, for a the
given manifold there always exist infinitely many non-diffeomorphic (or even
homeomorphic) manifold which are homotopy equivalent.
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