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Abstract

Let T be a group together with a sequence of normal subgroups I'" D
I't DT D ... of finite index [I" : T'x] such that (), T'x = {1}. Let (X,Y)
be a (compact) 4n-dimensional Poincaré pair and p : (X,Y) — (X,Y) be
a I'-covering, i.e. normal covering with I" as deck transformation group.
We get associated I'/T'y-coverings (X, Yx) — (X,Y). We prove that

— sign(X, Y;
sign® (X,Y) = lim ﬂg[r;(: ;k] k)

where sign or sign® is the signature or L2-signature, respectively, and
the convergence of the right side for any such sequence (I'x)r>1 is part of
the statement.
If I is amenable, we prove in a similar way an approximation theorem
for sign<2)(7, Y) in terms of the signatures of a regular exhaustion of X.
Our results are extensions of Liick’s approximation results for L2-Betti
numbers [0, Theorem 0.1].
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0 Introduction

Throughout most of this paper we will use the following conventions. We fix
a group I'; together with a sequence of normal subgroups I' D T'; D T, D ...
of finite index [I' : T'x] such that (), I'y = {1}. (Provided that I' is countable,
I is residually finite if and only if such a sequence (I'y)r>1 exists.) Moreover,
given a I'-covering p : X — X, i.e. a normal covering with I" as group of
deck transformations, we will denote the associated I'/T'y-coverings by X} :=
Y/Fk — X and for a subspace Y € X let Y ¢ X and Y}, C X}, be the obvious
pre-images of Y.
One of the main results of the paper is

0.1 Theorem. Let (X,Y) be a 4n-dimensional Poincaré pair. Then the se-
quence (sign(Xy, Yi)/[I': T'])>, converges and

lim sign(Xg, Yz)

=sign® (X,Y).
k—o0 [F : Fk] Sien ( ’ )

Some explanations are in order. An [-dimensional Poincaré pair (X,Y) is a
pair of finite CW-complexes (X,Y") with connected X together with a so called
fundamental class [X,Y] € H;(X;Q) such that for the universal covering, and
hence for any I'-covering p : X — X, the Poincaré QI'-chain map induced by
the cap product with (a representative of) the fundamental class

NX,Y]:C*(X,Y) — C.(X)

is a QI'-chain homotopy equivalence. Because we are working with free finitely
generated left QI'-chain complexes, this is the same as saying that the induced
map in homology is an isomorphism. One usually also requires that Y itself
is a [-dimensional Poincaré space (using the corresponding definition where the
second space is empty) with J[X, Y] = [Y], although this is not really necessary
for our applications. Here C,(X) is the cellular (left) QI-chain complex and
C'=*(X,Y) is the dual QI'-chain complex homgr(C;_.(X,Y),QI'). This is
canonically a right QI'-chain complex. Throughout the paper, we deal with
left modules. We turn any right QI'-module into a left QI'-module using the
involution of QI' induced by I' 3 g +— g~ 1.

Examples for Poincaré pairs are given by a compact connected topologi-
cal oriented manifold X with boundary Y or merely by a rational homology
manifold.

The Poincaré duality chain map of a 4n-dimensional Poincaré pair (X,Y) in-
duces an isomorphism H?(X,Y;C) — Hyp—p(X;C). If we compose the inverse
with the map induced in cohomology by the inclusion X — (X,Y) and with
the natural isomorphism H?(X;C) = H,(X;C)* to the dual space H,(X;C)*
of H,(X;C), we get in the middle dimension 2n a homomorphism

A: Hoy(X;C) — Hop(X;C)*

which is selfadjoint. The signature of the (oriented) pair (X,Y) is by definition
the signature of the (in general indefinite) form A, i.e. the difference of the
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number of positive and negative eigenvalues of the matrix representing A (after
choosing a basis for Ha, (X, C) and the dual basis for Ha, (X)*).

The L2-signature on (X,Y) is defined similarly, but one has to replace ho-
mology by L?-homology. L?-homology and L2-cohomology groups in this paper
are always reduced, i.e. we divide by the closure of the image of the differen-
tial to remain in the category of Hilbert modules. We get then an operator
A HQ(? (X) — HQ(Z) (X) (using the natural isomorphism of a Hilbert space
with its dual space). The L2-homology is a Hilbert module over the von Neu-
mann algebra NT and A is a selfadjoint bounded I'-equivariant operator. Hence
Hz(i) (X) splits orthogonally into the positive part of A, the negative part of A
and the kernel of A. The difference of the NT-dimensions of the positive part
and the negative part is by definition the L2-signature.

All this can also be reformulated in terms of cohomology instead of homology,
which is convenient e.g. when dealing with de Rham cohomology.

An analogue of Theorem D.1] for L?-Betti numbers has been proved by Liick
[0, Theorem 0.1].

If X is a smooth closed manifold, Atiyah’s L2-index theorem [, (1.1)% shows
that the signature is multiplicative under finite coverings and that sign(2 (X) =
sign(Xy) /[T : T'k] holds for k > 1.

There are Poincaré spaces X = (X, () for which the signature is not multi-
plicative under coverings by [, Example 22.28], [74, Corollary 5.4.1]). There
are also compact smooth manifolds with boundary with the same property, see
[3, Proposition 2.12] together with the Atiyah-Patodi-Singer index theorem [2,
Theorem 4.14]. This shows that Atiyah’s L2-signature theorem does not gener-
alize to these situations.

Our result says for these cases that the signature is multiplicative at least
approximately. For closed topological manifolds, it is known that the signature
is multiplicative under finite coverings [I8, Theorem 8]. In a companion [IZ,
Theorem 0.2] to this paper, we prove the following theorem, this way apparently
filling a gap in the literature:

0.2 Theorem. Let M be a closed topological manifold with normal covering
M — M. Then L
sign® (M) = sign(M).

There, we also discuss to what extend Theorem P-4 can be true for Poincaré
duality spaces X = (X, 0). We show [TZ] that Theorem [.7 for Poincaré duality
spaces X = (X;0) is implied by the L-theory isomorphism conjecture or by (a
strong form of) the Baum-Connes conjecture provided that T is torsion-free.

Dodziuk-Mathai [8, Theorem 0.1] give an analog of Liick’s approximation
theorem [I0, Theorem 0.1] for L2-Betti numbers to Fglner exhaustions of amenable
covering spaces.

Along the same lines, we compute the L2-signature using a Fglner exhaustion
in Theorem [-4, proved in Section PI. The relevant definition is the following:

0.3 Definition. Let X be a connected compact smooth Riemannian manifold
possibly with boundary 0X and X — X be a I'-covering for some amenable
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group I'. We lift the metric on X to X and use this metric to measure the
volume of submanifolds (open as well as of codimension 1) of X.

Let X1 C X C ... X with ey Xk = X be an exhaustion of (X,0X)
by smooth submanifolds with boundary (where we don’t make any assumptions
about the intersection of X}, and 9X). Set Yy, := 0X;, —(0X,.N0X) (i.e. 0X) =
Vi U (0X) N 0X)). The exhaustion is called regular if it has the following
properties:

(1) area(Y:)/ vol(Xy) 222 0;

(2) The second fundamental forms of X}, in X and each of their covariant
derivatives are uniformly bounded (independent of k);

(3) The boundaries X} are uniformly collared and the injectivity radius of
0X, is uniformly bounded from below (always uniformly in k).

Regular exhaustions were introduced in [&, p. 152]. The existence of such an
exhaustion is equivalent to amenability of I' provided that the total space X is
connected.

0.4 Theorem. In the situation of Definition (in particular we require that
X is connected) we get

lim sign(Xy,0Xy) sign® (X,Y)
k—oo  vol(Xg) - vol(X)

where the convergence of the left hand side is part of the assertion.

The assumption that the base space X is connected is necessary.

For smooth manifolds with boundary, the L2-signature of course is defined
in terms of the intersection pairing on L?-homology.

On the other hand, there is the L2-index of the signature operator with
Atiyah-Patodi-Singer boundary conditions. The latter is computed in [I3, The-
orem 1.1] in terms of the L?-n-invariant and a local integral. It is a non-
trivial assertion that the L2-index of the signature operator really gives the
(co)homologically defined L?-signature. This is proved in [I2, Theorem 3.2],
using [23].

In Theorem P48 we give a combinatorial version of Theorem [-4. For this
we need the following definition:

0.5 Definition. For a simplicial complex Y let |Y| be the total number of
simplices of Y. Similarly, for any subset W of a simplicial complex which is a
union of open simplices, |W| is the number of open simplices in W.

A sequence X; C X5 C ... X of finite subcomplexes of a simplicial complex
X is called an amenable ezhaustion if | J,cy Xp = X and if for each R > 0

[Ur(Xk)| k—oo

1.
| Xk
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It is called a balanced exhaustion, if for each orbit I'g of simplices in X

| Xt NTT| kooo 1
| Xk x|

0.6 Theorem. Assume that X is a compact simplicial complex triangulating
a rational homology manifold with boundary the subcompler 0X. Assume X
18 a mormal covering of X with amenable covering group I'. Let X7 C X5 C

. be subcomplexes forming a balanced amenable exhaustion of X by rational
homology manifolds (with boundaries Yy ). If X is a homology manifold, such
an erhaustion does always exist. Then

lim sign(Xg, Yi)

— sien®@(X. 6X
Jim X | X| = sign*¥ (X, 0X).

Acknowledgements: We thank the referee for valuable comments con-
cerning the exposition of the paper. We thank Steve Ferry who explained to us
how one can obtain homology submanifolds (of codimension zero) of a homology
manifold by thickening subcomplexes.

Organization of the paper: We will prove convergence of the signature
for coverings in Section [l, and in Section P the statement about amenable ex-
haustions.

1 Residual convergence of signatures

This section is devoted to the proof of Theorem [-1I.

1.0.1 Abstract QI'-chain complexes
Let C, be a finitely generated based free 4n-dimensional left QI'-chain complex.

1.1 Definition. C, being finitely generated based free means that each chain
module C), is of the shape QI'" = ®]_; QI" for some integer r > 0.

We define its dual QT'-chain complex C4"~* as follows. It has by definition as
p-th chain module Cy,,_,, and its p-th differential ¢**~7 : C4"—P — C4n==1) ig
given by the adjoint (CQdf(pfl) 1 Coq—(p—1) — ng,p)*. The adjoint f* : QI'* —
QI" of a QI-map f : QI'" — QTI'* is given by (right multiplication with) the
matrix A* € M(s,r,QT) if f is given by right multiplication with the matrix
(Aij) € M(r,s,QT) and Af; = Aj; for Y5 cp Aw - w =3 cp A -w™'. Note
that by this definition f* is a left QI'-module map.

Identify homgr(QI'",QI') (homomorphisms which commute with the left
Qr-module structure) with QI'" using the canonical basis on QI'" by sending ¢
to the vector (¢(e;))i=1,... This is an isomorphism of left QI'-modules using
our convention for the left QI'-module structure on homgr. Then f* corresponds
to homgr(f,idor).

Given a QI'-chain map f. : C*"~* — C., define its adjoint QI'-chain map
fin— . 04 = (O, as given by left multiplication with the adjoint of the
matrix representing fi.
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1.2 Definition. Define the finitely generated 4n-dimensional Hilbert A'T-chain
complex c® by I?(T")®grC; and the finitely generated based free 4n-dimensional
Q[I'/Tk]-chain complex C.[k] by Q[I'/T'x] ®gr C«. Notice that (CiQ))‘*”** is the
same as (C4"~*)2) and will be denoted by 04" * and similarly for C.[k].

If f.: C*"—* — C, is a QI'-chain map, deﬁne f,gz): Cg;** — Ciz) as given
by left multiplication with the matrix representing f,, i.e. f£2) =idpz(r) @fs. In
a similar way we define f.[k]: CY"~*[k] — C.,[k].

Let f. : C** — C, be a QI'-chain map such that f, and its dual f4"—*
are QI'-chain homotopic. Then both H(z)( iz)) and Ho, (f«[k]) are selfadjoint.
We want to define the signature of such a chain complex.

1.3 Definition. Given a selfadjoint map g : V — V of Hilbert AT-modules
and an interval I C R, let xs;(g) be the map obtained from g by functional
calculus for the characteristic function xy : R — R of I. Define

bf) (9) := trar(X(0,00)(9)); b(,z)( ) = AT (X(~00,0)(9));
b(z)(g) _dlmj\/l‘( r(g)) = trar(Xo3(9));
sign® (g) := b(f)(g) 2)(9)

If h: W — W is a selfadjoint endomorphism of a finite-dimensional Hermi-
tian complex vector space, define analogously

by (h) == tre(X(0,00) (R)); b_(h) := tre(X(—oc,0)(h));

(
b(h) —dlmc(ker(h)) = tre(xqoy(h));
sign(h) = b () — b_(h).

Of course, sign(h) is the difference of the number of positive and of negative
eigenvalues of h (counted with multiplicity).

1.4 Definition. Let f, : C**~* — C, be a QI'-chain map such that f, and its
dual f4"~* are QI'-chain homotopic. Then both H(Z)(f,gz)) and Ha, (f«[k]) of
Definition [[-2 are selfadjoint. Using Definition [ define

b (f2) = b (HD (f.) bont (fulk]) == b (Hon (f[K]));
b5 (£7) = 0 (HE (f.) bon (fo[K]) := b(Han(f.[K]));

£));
£)); [
sign® (f)) == sign® (HS (£.));  sign(f.[k]) := sign(Ho, (f.[K])).

The QI'-chain complex of a Poincaré pair

A classical result proved e.g. in [12], or (with much more information) in [I5, 1]
says that, given a 4n-dimensional Poincaré pair (X, Y) with '-covering X — X,
the composition of the Poincaré QI'-chain map — N [X,Y]: C4"*(X,Y;Q) —
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C.(X;Q) with the QI'-chain map induced by the inclusion yields a QI'-chain
map
fu: C"H(X,Y;Q) — Cu(X,Y;Q)
of finitely generated based free 4n-dimensional QI'-chain complexes such that
f+ is QI'-chain homotopic to f4m*.
The normal subgroups 'y, C I' correspond to I'/T';-coverings (X, Yy) of

(X,Y) as explained in the introduction.
Use Definition 2 and Definition 4 to define

bonis (X, V) 1= b3 (£27); bans (X, Yi) = bans (. [K]);
b(2)(X Y):= b(2)( (2))' ban (Xk, Yi) := ban(fu[k]);
sign®(X,Y) := 51gn(2)(f(2)) sign(Xg, Yy) := sign(f.[k]).

Note that C*"~*[k] and C.[k] are the cellular Q[I'/T'y]-cochain and chain
complexes of (X, Yy), and f[k] its Poincaré duality map. Therefore the defini-
tions above coincide with the usual definitions of Betti numbers and signature
for the compact Poincaré duality pairs (Xp, Y).

Theorem [-1 is an immediate consequence of

1.5 Theorem. Let f,.: C*"*(X,Y;Q) — C.(X,Y;Q) be the QI'-chain map
introduced above. Then

bont (fulk
40 (1) = i P2z,

The proof of Theorem [[[F is split into a sequence of lemmas.

1.6 Lemma. Let A : [>(T)" — I2(I)" be a selfadjoint Hilbert NT-module
morphism. Let g; : R — R be a sequence of measurable functions converging
pointwise to the function q such that |q;j(z)| < C on the spectrum of A, where
C' does not depend on j. Then

trar(g;(A)) 2225 trar(g(A)).

Proof. By the spectral theorem, ¢;(A) converges strongly to g(A). Moreover,
llg;(A)|| < C for j € Z. By [@, p. 34] g;(A) converges ultra-strongly and
therefore ultra-weakly to g(A). Since [?(I')" is a finite Hilbert-A'T-module
1:3()" — [2(I)" is of I'-trace class. Normality of the I'-trace implies the
conclusion (compare [, Proposition 2 on p. 82] or [20, Theorem 2.3(4)]). O

Let Ay :=cpr10¢,1 + c;‘, ocp : Cp — C)p be the combinatorial Laplacian on
X, where we abbreviate C,, := C,,(X, A; Q). Using a cellular basis of C}, coming

from C,(X,Y;Z) this is given by a matrix over ZI'. Then A(2 1(02_3162(7_21 +

01(7 )*01(72) : Cl(yz) — 01(72) is the Laplacian of C!? and Ap[k] = cppr[klepti k] +
cplk])*cplk] is the Laplacian on C,[k], i.e. the cellular Laplacian of Xj. Let
fi : C4=* — C, be homotopic to its adjoint as introduced in the beginning of
this section. The next lemma follows from [0, Lemma 2.5].
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1.7 Lemma. There is K > 1 such that for all k > 1
2 2
HAS N A K] LD fon K] < K.

1.8 Definition. In the sequel we write

dimQ

_ signg
[[:Ty)

sS1gn;, 1= m,

trg |
[F : Fk]7

try = dimy, :=
and denote by prgi) : Céi) — C’Q(i) and pry,, [k] : Caplk] — Cap[k] the orthogonal
projection onto the kernel of Aéi) and Ag,[k], respectively.

1.9 Definition. For each € > 0 fix a polynomial p¢(x) € R[z] with real coefli-
cients satisfying p¢(0) = 1, 0 < p(x) < 1+ € for 2] < e and 0 < p(x) < € for
€ < |z| < K (where K is the constant of Lemma [7). Such polynomials exist
by the Weierstrass approximation theorem [I'7, Theorem 7.26].

1.10 Lemma. For each p and k we have
dimy, Cp[k] = dimpr C{2(X),
and hence in particular

Jim dimy, C,[k] = dimyr A (X).
Proof. For every k, dimy Cp(X%) is equal to the number of p-cells in X, and the
same is true for dimpr C$2 (X). O

1.11 Lemma. For QI'-linear maps h,...,hq : QI'" — QI'" and a polynomial
p(x1,...,24) in non-commuting variables x1,...,xq we have

tovr(p(hi? . hG)) = T try (p(ha[K], .. halk)))

Proof. By linearity it suffices to prove this for monomials p = x;, ... x;,, and
since the h; are not assumed to be different, without loss of generality we can
assume p = xy ...2x4. The proof of [Il], Lemma 2.6] applies and shows that there

is L > 0 such that tryp(h\? o0 h() = trg(h[k] 0 - - 0 hy[k]) for k> L. O

The lemma is formulated in a way that it can be applied if the assignment
h — h[k] is not a homomorphism. This is unnecessary here, but will be needed
in Section B.

1.12 Lemma. There is a constant C1 > 0 (independent of k) such that for
O<e<landk>1

tI‘k (X(Oﬁ](Agn[kj])) S (1.13)

—1In(e)’

Proof. This is part of the conclusion of[i0, Lemma 2.8]. O
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1.14 Lemma. There is a constant C > 0 (independent of k) such that for all
k>1and0<e<1

0 < try, (|p*(Agn[k]) = pry, [K]]) < C- e + —li( )

Recall that p© was fized in Definition [I.9, and pr[k] is defined in Definition [I.§.

Moreover we have
) = 0.

Proof. First observe that by our construction p®(As, [k])—prs, [k] is non-negative
since 0 < p® —x {0} on the spectrum of Ay, [k]. We also have p°—x o1 < €+X(0,q
on the spectrum of the operators. Since the trace is positive, we get

0 < try(p(Azn[k]) — proy[k]) < etrg(idey, k) + tra(X(0,q (D2n[k]))-

Now the first inequality follows from Lemma [[LT0 and Lemma [[LT2. The second
one follows from

trar (pE(Agn)) pr éi)) < etrar (idcgij) + trar (X(O,e](Agi)))

€ 2 2
(A2 - prl?)

lim tra ( P
e—0

and the fact that because of Lemma @ lime_.o trar (X(o,e](Aéi)D =0. d

We also cite the following result [IT, Theorem 2.3]:

1.15 Theorem. The normalized sequence of Betti numbers converges, i.e. for
each p
Jim dimy (ker(A, [k])) = dimyr ker(A{).
For the proof of Theorem [§ eventually we want to approximate X (4,5 by
polynomials. Next we check that for a fixed polynomial we can replace prs,, [k]
in the argument by p(As,[k]).

1.16 Lemma. Fiz a polynomial ¢ € R[z]. Then we find a constant D > 0
(independent of k) such that for allk > 1 and 0 < e < 1

| tri, (q (p°(A2nlk]) © fon[k] 0 p*(A2nk]))) —

try, (¢ (pray K] o fan[k] 0 pra, [K])) | < D - € +

—1In(e)’

Moreover, we have
2ij>Ig)ter (q ( (A ) f271 (A (i)))) = tryr ( (pr2n Ofgn OPYQn))) .

Proof. By linearity it suffices to prove the statement for all monomials ¢(z) =
™. Obviously it suffices to consider n > 1. In the sequel we abbreviate x =
P (Azn[k]), f = fan[k] and y = pry,[k]. Notice that ||z| < (1 +¢), [If[| < K

and |ly|| < 1 holds for the constant K appearing in Lemma [[.7. We estimate
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using the trace property tr(AB) = tr(BA) and the trace estimate |[tr(AB)| <
I|A] - tr(]B]) (which also holds for the normalized traces trj and for tryr by [7,
p. 106] since all the traces we are considering are normal),

[tri ((p°(A2nlk]) © fan[k] 0 p(A2n[k])")
=tk (Pron (k] © fon[k] o pryy, [K])")
= |try (vfaxfr...afe —yfyyfy...yfy)l
[trg ((x —y)faxfo...afe+yf(e—y)zfe... xfz
+ yfylz —y)frzfr.. fe+...+yfyyfy...yf(z—y))|
2n - (14 )" 1 K™ tr(|lz — y|)
= 2n- (14> K™ - try (Ip°(Aan[k]) — pro, [K]]) -

IN

Exactly the same reasoning applies if Ag,[k] and prs,, [k] is replaced by A(Qi)

and prgn), respectively, to give the corresponding estimate in this case.

The assertion of the lemma now follows from Lemma [T4. O
1.17 Lemma. Fiz a polynomial q(z) € R[z]. Then

im s (q (pra, (k] © fonlk] 0 proy K])) = tewr (g (b)) of83) o b)) ).

Proof. Fix 6 > 0. By Lemma [[.Ig we find € > 0 such that for all £k > 1

|trk ((] (pE(A2n[k]) © f2n[k] Ope(A2n [k]))) -
trk (¢ (Pran[k] © fan[k] © Proy, [K]))| < 6/3;

[trar (g (p(A5) 0 5 0 (A5) ) -
e (o (2 o2 o 2 ) < 075
Hence it suffices to show for each fixed e
Jim try (a(p(cpralklepalk] +
cplk]"eplk]) © fon[k] 0 p*(cpra[klepa [k]" + cp[K]" cp[K])))
— b (a2l 4 2l o 59 o L + e ).

*

Since ¢ and p° are fixed, we deal with a fixed polynomial expression in ¢, ¢

p’
Cp+1, Cpr1, and fon. Therefore the last claim follows from Lemma [[T]. This
finishes the proof of Lemma [[.T7. O

1.18 Lemma. We have for a,b € R with a <b

trwr (X (HP ) < timind tre (xa (Hp(fo[RD)) -
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Proof. We approximate x(,5) by polynomials. Namely, for 0 < € < (b — a)/2
and K as above let ¢° € R[z] be a polynomial with

—1 < q¢°(z) < X(ap)(2) for |z| < K;
q°(2) > X(ap)(x) — € for x € [-K,a]U[a+¢€b— € UIb, K].

Under the identification of im(pry,, [k]) and H,(C.[k]) coming from the (combi-
natorial) Hodge decomposition the operator pry,[k] o fon[k] 0 pry, [k] restricted
to im(pry, [k]) becomes H,(f.[k]) which is selfadjoint because of f. ~ fin=*.

Hence pry,,[k] o fon[k] o pry, [k] and also the operator ¢°(pry,, [k] © fon [k] 0 pry,, [K])
are selfadjoint. Exactly the same is true on the L2-level and we conclude

trr (X(ap) (Pron (K] © fan[k] 0 proy[K])) = tra (X(ap) (Hp(f<[K])));  (1.19)
traT (X(a,b) (prQn) ofs2) Opféi))) = trnr (X(a,b) (H]gz)( 9))) .(1.20)

Positivity of the trace and ¢°(x) < x(q,p) () for all 2 in the spectrum of pry,, [k]o
fon[k] o pry, [k] implies

£y, (° (Pran k] © fan[k] 0 Pray[K])) < trk (X(a,b) (Pran[k] © fonlk] © pray, [k])) -

Note that for fixed ¢ the left hand side converges for k¥ — oo by Lemma [LT7.
For the right hand side this is not clear, but in any case we get

trar (q (prgi) o 2(721) o pr(2)>)
< liminf tr (X(ap) (Do K] © fonlk] 0 pra,[K])) . (1.21)

On the spectrum of the operator in question, the functions ¢¢ are uniformly
bounded and converge pointwise to X(q,p) if € — 0. By Lemma [[[§

. 2 2
llli% trNF (q (pr(Qn) © 2(71) © prgn))> = trNF (X(a,b) (pr2n Of?n © pr;n))) .
Since inequality ([221]) holds for arbitrary € > 0, we conclude
(2)
trNF X(ab prQn of2n Opr2n
< hknlgéf trg (X(a,b) (pr2n [k] © fQH[k] O Proy [k])) .

Now the claim follows from ([.I9) and ([[:20). O

1.22 Lemma. Let f, : Cy — D, be a QU-chain map of finitely generated based
free QI'-chain complexes. Then we get for all p

lim dimy, (ker (H,(f,[k]))) = dimyr (ker (Hf,?)(fi?)))).

k—oo
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Proof. We can assume without loss of generality that C, and D, are (p + 1)-
dimensional. Consider the long exact sequence of left QI'-chain complexes 0 —
D, — cone(f.), — XC, — 0, where cone(f,), is the mapping cone of f, and
>.C, the suspension of C,. It is a split exact sequence in each dimension and
thus remains exact after applying I?(T') ®gr —. The weakly exact long homology
sequence yields a weakly exact sequence of Hilbert A/(I")-modules

(2) (2)
2 2 2 2), Hpp1(£7) 2 2
0 — HZ,(cone(f.)?) — HZ, (c?) =222 g2 (D)

— H{Y, (cone(£.))) — ker(H,(£)) — 0.

p+1
This implies

dimr (ker(Hp( 9)))
= dinur (B (cone(£))) = dimyr (H, (D))
+ dimpr (H;(j-)l (C,&Z))) — dimpr (Héi)Q(cone(f*)iz))) . (1.23)
Analogously we get

dimy, (ker(H, (f.[K])))
— dimy (Hypor(cone(f. [K]).)) — dimy, (Hy 41 (D.[R]))
+ditny (Hpor (C.[K])) — dimy, (Hpo(cone(£[k]).)) . (1.24)

We conclude from Theorem T3

dimr (HyJy(cone(£))) = lim dimy, (Hyir (cone(f.[K]).); (1.25)
dimyr (HE(DP)) = lim dimg (Hpa (DK (1.26)

dimyr (HZL(CP)) =l dimy (Hy (CLH)); (1.27)

dimyr (2 (cone(£.)2)) = lim dimy. (Hyya(cone(f.[k]).)) - (1.28)
Now the claim follows from equations ([:23)—(I[28). O

Now we are ready to prove Theorem [[F.

Proof of Theorem [U-1. We get from Lemma [[LT§ and Lemma [22

@) (@ < imming 22nt (2 [F]) @) (@ < i g P2n(9:[K])

o (9:7) < ImnE=om s B (927 < Bminf =e v
2) (2) . by(g[k])

bl(,)(g* )= lim 2=
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Since
B2 (0% + 62 (o) 42 (o) = dimyr (02
bant (g«[k]) | ban—(g«[k])  b2n(g«[k]) .
+ = dimg(Co,lk]);
ISR T/ VY R v (Oanli])
. O\ _ dimg(Can[k])
dimpp (C%) = klir{.lo dimy (Can[k]) = TIT
Theorem 3 and thus Theorem [T follow from Lemma [T, O

1.29 Remark. Theorem [ can be applied to a 4n-dimensional Riemannian
manifold X with boundary Y. In this case, the Atiyah-Patodi-Singer theorem
[2, Theorem 4.14] and [5, (0.9)] and the L?-signature theorem of [[2] imply

sign(Xk,an) o 1 ) n(an) 1 )

vol(Xz)  vol(Xy) /XkL(Xk)+vol(Xk) vol(Xy) /é)XkHL(aX’“)’
sign?(X,0X) 1 n?(9X) 1

vol(X)  vol(X) /XL(X vol(X) ' vol(X) /BXHL(‘?X)'

Here L(X}) and L(X) denote the Hirzebruch L-polynomial, and 11y (0X}) and
I (0X) are a local correction terms which arises because the metric is not a
product near the boundary. Being local expressions, the first and the third
summand does not depend on k. It follows that the sequence of n-invariants
converges. In fact, even without the assumption that Y4?~! is a boundary of a
suitable manifold X, in [Z3, Theorem 3.12] it is proved

s [?%i} =n?®).

Key ingredients are on the one hand the analysis of Cheeger-Gromov in [&,
Section 7] of the formulas (B:29) and (B-29) (which holds for operators different
from the signature operator). We present similar considerations in Section E1I.
The second key ingredient is Liick’s approximation result for L?-Betti numbers
[0, Theorem 0.1] (which is special to the Laplacian, the square of the signature
operator).

1.30 Remark. The normalized signatures Sigrr(i(ir’:lm are the L2-signatures sign® (X, Y3)

of the I'/T',-coverings (X, Y:) — (X,Y). With this reformulation, one may ask
whether Theorem []] holds if T'/T, is not necessarily finite.

This is indeed the case if the groups I'/T';, belong to a large class of groups
G defined in [[9, Definition 1.11].

The corresponding question for L2-Betti numbers is answered affirmatively in
[9, Theorem 6.9] whenever I'/T';, € G. As just mentioned, Theorem D.]] extends
to this situation as well, and the proof we have given is formally unchanged,
using the generalization of Lemma [[.1] and Lemma [.T]] given in [I9, Lemma 5.5
and 5.6]. It only remains to establish Lemma [.19, which is not done in [T9].
We do this in the following Lemma [.37], which applies because of [19, 6.9] and
because of Lemma 4.
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1.31 Lemma. If |A[X;]|| < K and

In det) (A[Xy]) == /Oio n(\) dFa[x,](A) >0 (1.32)
then —
tri (X0, (A[Xk])) < %((6)) (1.33)

Here Fajx,](A) = trr(x(o,x (Alk])) is the spectral density function of the oper-
ator Alk| computed using try instead of dimc, and d = Fap(K) is the number
of rows (and columns) of the matriz A.

Proof. We argue as follows (with F':= Fap):
oo e ALK
/ In(A\) dF(\) = / In(\) dF(N) +/ In(X) dF(N)
0+ 0+ €
<In(e) (F(e) = F(0)) +In([|AK][[)E([A[K]])-
—_——
=trg (X (0,] (A[K]))

For 0 < e < 1, using the bound [|A[k]|| < K of the generalization of Lemma [[.7,
Inequality ([:33) immediately gives ([233). O

2 Amenable convergence of signatures

2.1 Analytic version

In this subsection we want to prove Theorem [:4. We will use the following
notion of manifold with bounded geometry (compare e.g. [0, Definition 2.24]).

2.1 Definition. A Riemannian manifold (M, g) (the boundary may or may
not be empty) is called a manifold of bounded geometry if bounded geometry
constants Cy for ¢ € N and Ry, Rc > 0 exist, so that the following holds:

(1) The geodesic flow of the unit inward normal field induces a diffeomorphism
of [0,2R¢) x OM onto its image, the geodesic collar;

(2) For x € M with d(x,0M) > Rc/2 the exponential map T,M — M is a
diffeomorphism on Bp, (0);

(3) The injectivity radius of OM is bigger than Ry;

(4) For every q € N we have |ViR| < C} and |Vgl} < () for 0 < i < q, where
R is the curvature tensor of M, [ the second fundamental form tensor of
OM, and V' and Via are the covariant derivatives of M and M.

By [23, Theorem 2.4] this is equivalent to [, Definition 2.24].

Every compact manifold, or more generally every covering of a compact
manifold, is a manifold with bounded geometry.

We now repeat a few well known facts about manifolds of bounded geometry.
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2.2 Proposition. Let M be a compact smooth Riemannian manifold. There is
a constant A > 0, depending only on the bounded geometry constants and the
dimension of M, such that

|exp(—tA,(M))(z,z)] < A fort>1x € M,
by(M) < Avol(M);
by(M,0M) < Avol(M),

where the Laplacian can be taken with either relative or absolute boundary con-
ditions.

Proof. The first inequality is proved in [Id, Theorem 2.35]. The claim for the
Betti numbers is a consequence of the fact that the Betti number b,(M) or
bp(M,0M) can be written as limy_.o [, try exp(—tA,(M))(x,z) dx for the
Laplacian with absolute or relative boundary conditions, respectively. O

2.3 Theorem. Let M, N be Riemannian manifolds without boundary which are
of bounded geometry and with a fized set of bounded geometry constants. Let U
be an open subset of M which is isometric to a subset of N (which we identify

with U). For R >0 set
Ugp:={x€U|dlx,M—-U) >R and d(x,N —U) > R}.

Let D[M] and D|N] be the (tangential) signature operators on M and N, re-
spectively; and similarly A[M] and A[N] the Laplacian (on differential forms).
Let e7*A(2,y) and De=tP*(x,y) be the integral kernels (which are smooth) of
the operators et and De *P*. Then there are constants C1,Cy > 0 which

depend only on the dimension and the given bounded geometry constants such
that fort >0, z € Ur

e~ BM (g, z) — e AN (g, 1‘)‘ <CpeenHOM (24
D[M]e_tD[M]Z(a:,w) - D[N]e_tD[N]Q(x,l‘)‘ <Cy-e RO/ (2.5)

Proof. This follows by a standard argument of Cheeger-Gromov-Taylor [G] from
unit propagation speed and local elliptic estimates (here the bounded geometry
constants come in). A detailed account is given in the proof of [, Theorem
2.26] which yields immediately (24). Replacing v/A by D (which is possible
since we are looking for manifolds without boundary, so that we do not have
to worry about the non-locality of boundary conditions and therefore have unit
propagation speed for D, too0), the proof also applies to the tangential signature
operator to give (BF). O

2.6 Proposition. Let M™ be a manifold of bounded geometry with fixed bounded
geometry constants and with OM = (). Let D be the (tangential) signature op-
erator on M. Then there is a function A : [0,00) — (0,00) which depends only
on the bounded geometry constants and the dimension m, such that for T >0

try, (DeitD2(J;,a:)>‘ < A(T) - t'/? foro<t<T,xe M.
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Proof. One can use the proof of [[3, Lemma 3.1.1 on p. 324] (where a slightly
different statement is proved). The proposition is also implicit in [H, Proof of
Theorem 0.1 on p. 140]. The proof uses the cancellation of the coefficients of
negative powers of ¢ in the local asymptotic expansion due to Bismut and Freed
[@, Theorem 2.4] and a localization argument based on elliptic estimates (here
the local geometry comes in), together with the finite propagation speed method
of Cheeger-Gromov-Taylor [6]. O

We fix the following notation.
2.7 Notation. In the situation of Definition D=3 put for » > 0

U, (Yy) = {z € X; d(z,Y3) <7},

where two points 3,2z € X have distance d(y,z) = d if there is a geodesic of
length d in X joining y and z and d = oo if there is no such geodesic. In
particular d(y, z) < oo implies that y and z lie in the same path component of
X. Let F be a (compact) connected simplicial fundamental domain for X in
X such that F N 90X is a fundamental domain for X. (We can construct F
as a union of lifts of the top-dimensional simplices in a smooth triangulation of
X and achieve F to be connected, since X is connected by assumption.) For
r > 0 let Ni(r) be the number of translates of F contained in Xj, — U, (Y}) and
ng(r) the number of translates of F which have a non-trivial intersection with
UT(Yk) Set Nk = Nk(O), ng ‘= nk(O)

The next lemma shows that our Definition 0.3 of a regular exhaustion co-
incides with the one given by Dodziuk and Mathai [8], with one exception: we
require a lower bound on the injectivity radius of the boundaries X} and con-
trol of the covariant derivatives of the second fundamental form, what they seem
to have forgotten (but also use).

2.8 Lemma. If (X})>1 is a reqular exhaustion of X as in Definition [0.3, then
for each r >0
vol(U, (Yz))

e S 15 O R

Proof. To obtain this we discretize: Choose € > 0 such that 4e is smaller than
the injectivity radius, and choose sets of points Py C Yj such that the balls of
radius € around x € Py are mutually disjoint, but the balls of radius 4¢ are a
covering of Yj. Because of bounded geometry (compare the proof of [22, Lemma
1.2 in Appendix 1]), we find ¢1,c2 > 0 independent of k such that

C1 |Pk‘ S area(Yk) S Co |Pk| .
The triangle inequality implies U, (Y%) C Uy, Br+4e(r). Therefore
vol(U, (Y1) < Cryac |Pr| < Crpgecy tarea(Ys),

where C14¢ is a uniform upper bound for the volume of balls of radius r + 4e
in X which exists because of bounded geometry. Since we have by assumption

limg_ o0 ir;a(gf)) = 0, Lemma @ follows. O
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2.9 Lemma. If (X}.).>1 is a reqular ezhaustion of X as in Definition , then

lim area(0X, N0X)  arca(9X)
k—00 vol(Xy) ~ vol(X)

Proof. Obviously vol(F) = vol(X) and area(F N 9X) = area(0X). Recall that
F is connected. Suppose that F N Xy # 0 and F ¢ Xy — U.(Yx). Then, for
each r, F must intersect U,(Y)) because otherwise we can find a path in F
connecting a point in X to a point in X — X and this path must meet Y.
Hence we get for r > 0, using Notation -1
Ni(r) - vol(X) <vol(X%) < (Ng(r) + ng(r)) - vol(X); (2.10)
Ni(r) - area(0X) <area(0X, NOX) < (Ni(r) + ng(r)) - area(0X). (2.11)
If follows that
Ny, - area(0X) < area(0X, NO0X) _ (Ng + ng) - area(9X)
(Ng +nyg) - vol(X) — vol(X%) N vol(X)
Since F N U, (Yy) # 0 implies F C U, giam(F)(Yx), we have ng(r) - vol(X) <
vol(Ur4diam(#)(Yx)). Therefore (B.10) implies

<

(2.12)

nx(r) _ nx(r) vol(X) < YollUrydiam(r) (Ye))
ne(r) + Ni(r)  (nk(r) + Ng(r)) vol(X) — vol(Xy)
From Lemma EZ8 we conclude
ng(r)
Jm Ne(r) = 0. (2.13)
Now Lemma 9 follows from (E:19) and (2:13). O

2.14 Theorem. If (Xy)k>1 is a reqular exhaustion of X as in Definition ,
then, using Notation 2.7,

lim bp(0Xk) _ lim by (0X}) - vol(X)

= b2 (9X).
k—oo Nk k—oo VOl(Xk) p (a )

Proof. Let Vj, C 0X;, N 0X be the union of translates gF N 90X for g € T' such
that ¢F C X; — Yi. The number of these translates gF N 90X is just Ni. The
number Nmﬁ of “boundary pieces” appearing in [d] is bounded by Cjs - ny for a
constant Cys which does not depend on k. Because of Inequality (B-13), (Vi)>«
is a regular exhaustion of X in the sense of [d] by (E-IJ). We conclude from
[@, Theorem 0.1]

i bp(vk)

k—oo Ny

— 129V

=P (9X). (2.15)
We can thicken V} inside of X to a regular neighborhood Vi From Proposition
27 we obtain a constant A independent of k such that

bp(0X) —int(V)),0V)) < A-vol(0X}, — int(V}))
< A (vol(Yy) +ny - vol(0X NF)). (2.16)
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We have by excision b,(0Xy,V)) = b,(0X — int(V}),0V}) and by homotopy
invariance b, (Vi) = b,(V}). From (2:16) and the long exact homology sequence
of the pair (0X}, Vi) we conclude

|bp(an) — bp(Vk)‘ <2A- (VO](Yk) + ng - VO](@YQ f)) (2.17)

We get from (B-I0) and (B:I3) (since vol(Yy)/ vol(Xy) E2, 0 by assumption)

that o
2A (VO](Yk) + ng - vol(0X N .7:))

li =0. 2.1
i Ny 0 (2.18)
We conclude from (B-15) and (E:17) and (E:I8) that
Jim 5p(0Xi) _ b2 (0X). (2.19)
—00 k

Now Theorem B.14 follows from (E.10), (B-13) and (B-19). -

Remember that the Atiyah-Patodi-Singer index theorem [2, Theorem 4.14]
and [8, (0.9)] and its L2-version (compare e.g. [I?]) imply for manifolds as in
Definition 33

sign(Xk,an) . 1 ) n(an) 1 '

vol(Xy)  vol(Xyg) /)(k L(Xy) + vol(Xy) + vol(Xp) /axk I (0X%),
sign?(X,0X) 1 1 (5X) 1

vol(X)  vol(X) /X B+ Saix) T vl /E)X M (9X).

Here L(X}) and L(X) denote the Hirzebruch L-polynomial, and I (0X}) and
I (0X) are local correction terms which arises because the metric is not a prod-
uct near the boundary. We want to show that each of the individual summands
converges for k — 0o to the corresponding term for X.

The L-polynomial is given in terms of the curvature, I} in terms of the
second fundamental form, therefore both are uniformly bounded independent
of k by some constant C.

Moreover, because these are local expressions, the integral over each translate
of the connected fundamental domain F which is contained in X} — Y} coincides
with the corresponding integral on X or 0X. Then by splitting the domain of
integration appropriately (as done in the proofs above), and using Notation 27,

‘/Xk L(Xy) —Nk./XL(X)‘ <y -vol(X) - Cy (2.20)

/ HL(GXk)—Nk-/ HL(GX)’ < area(Yy)-C
Xy X

+ny - area(0X) - C. (2.21)
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We conclude from (2.10) and (2.20)
L - )
S (vol(le) Ne - V101( )> / LX)

v 0 o

1
VOl(Xk) Nk VOl( )

We conclude from (E:10), (B-I1), (E:21)) and Lemma .9
1

1
wol(X0) /axk ML OXe) ~ gy 200

- (vol(le) - NkV(l)l(X)) ' /m I1.(0Xk)

1
+ N vol(X) . /BXk L (0X5) = Ni /ax HL(aX)’

(2.22)

EZ0)

< v
vol(Xy) - C 4 =& N Nehariel Nk

(@) L -area(0Xy) - C
VOl(Xk) Nk VOI(X)
area Yy n, C-area(0X)
Ni vol(X) . Ny vol(X)
1 1

< (nk + Ny) - vol(X) Nk -vol(X) | (area(Yy) + area(9X, N 0X))

area(Yy) C-(Np+ng) ngp C-area(0X)
vol(Xy) N Np  vol(X)
(@) ny
= 7 Ni - (nk 4 Ni) - vol(X)
area(Yy) C'- (Ng + nk) L C - area(0X)
VOl(Xk) Nk Nk VOI(X)
(m) ny; area(Yy) 1 ny area(0X)
= Ny vol(Xy) . vol(X) ' Ny vol(X)
area(Yy) C - (Ny + nk) LI C - area(0X)
VOl(Xk) Nk Nk VOI(X)

- (area(Yy) + (ng + Ny) - area(0X))

(2.23)

Since limy_ o0 ir;la(‘g’“)) = 0 by assumption, from (2:13), (B:23) and (2:23) follows

. 1 1

e e A I
. 1 1
O |l (K)o, O T i) /BX HL(aX)‘ =0
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It remains to consider the eta-invariants. Because of their non-local nature
this is the most difficult task. The strategy of the proof of the next proposition
is similar to the proof of Remark [-29.

We first recall a few facts about the n-invariant. Let D be the tangential
signature operator of a 4n — l1-dimensional Riemannian manifold M, and M a
I'-covering with lifted signature operator D. Then

_ ; - ~1/2 41 (De—tD?
n(M) = F(1/2)/0 =172 tr(De=tP?) gt (2.24)
and ) - 7
n® (M) := m/o t=2 trpp(De ") dt, (2.25)

where (with a fundamental domain F of the covering M — M)
trNF(Ee_tBZ) = / try, ((Ee_tBZ)(a:, x)) dx; (2.26)
f
tr(De_tDZ) = / try, ((De_tDz)(aj,w)) dx. (2.27)
M

Following Cheeger and Gromov [G, Section 7] we give an a priori estimate
for the large time part of the integrand defining the n-invariant. First observe
that for  # 0 we have the following inequality of functions:

T

* 1/2 —ta? Tz? oo 1/2 —z2(t—T
/xt_/e_xdt:e_”“/ x|t~/ 2e=2 (=T) gy
T

Making the substitution ¢ = (u|z| ™ + T') we obtain

> —1/2 —ta? —1a2 [T —u -2 —1/2 .2
/ xt™ e dt| =e / |x| e ™ (ulz| "+ T) |z| ™" du
T 0
= ¢ T2 / e (u+T|z[*)~? du
0

—_ T2
SeT _X{O}\/Ea

where we used [ u~1/2e~" du = /7 and for the last inequality that T |z|* > 0.
For = = 0 obviously f;o xt~1/2e=t" gt = 0. Hence we get for all x € R

/T ot~ 1/2p—te? dt’ < <€—Tx2 _ X{o}(@) /T,

where X (o} is the characteristic function of the set {0}. Applying the functional
calculus with = D we get

/ 12 ter(ﬁe*t52) dt’ < V7 trar(e” ™ = prx)s (2.28)
T
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and analogously with x = D

o0
/ 172 tr(Demt P dt| < /7 - tr(e” TS = prig, )- (2:29)
T

2.30 Proposition. If (Xy)k>1 is a regular ezhaustion of X as in Definition
then _

L 0X) _ pPX)

k—oo vol(X3)  vol(X)

Proof. In the sequel D[k] or D is the (tangential) signature operator and Alk]
or A is the differential form Laplacian on 90X} or 0X, respectively. Fix ¢ > 0.
Choose T such that

I'(1/2) -vol(X) - €

—-TA
_prkerZ) S 8ﬁ

trar(e (2.31)

Put 0XF = Uge st. Un(ercx, (9F N 0X). By Theorem E for the given
T > 0 and ¢ > 0 we find R > 0 independent of k£ such that for 0 < ¢ < T and
T € 8X,f.

‘trz(D[k]e_tD[’f]Q(x,x))—trm(ﬁe_tBQ(x,x))‘ < Fil/\/;).'vvg((;gg)‘; (2.32)
tro(e™ 4 Mz, 2)) — tra (e~ B )| < Fg\//?.‘vvjll(gg)‘e. (2.33)

Notice that Ur(gF) C Xy <= F C X) — Ug(Yx). Hence OXF consists of
Ni(R) translates of 7N dX. This implies vol(0X{) = Ni.(R) - vol(0X). From
Proposition .2 and (2:33)) we get for a constant A; independent of k (using the
fact that A and its kernel are I'-equivariant)

tr(efTA[k])
Ni(R)

- ter(eTZ)‘

1 / —TA[K] / —TA
= try (e r,r)) dr — try (e xr,)) dr
S e e e [ e T
1

ro (e TAF (2, 2)) — tr e_TZm:U X
< ‘Wm e ) = (TR

1 / —TAK]
F =" try (e (z,z)) dz
Ni(R) Jox,—oxr

['(1/2) - vol(X) - €-vol(0XE)  Ap-vol(0Xy — OXE)

Ni(R) - 8/ - vol(0X) Ni(R)
I'(1/2) - vol(X) - € n Ay - vol(0Xy — 0X})
- 8T Ni(R)

(2.34)
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2

We conclude from (2:28), (2:29), (E-31)) and (2:34) (using D~ = A and D[k]? =
Alk])

L v [T Digle—tDR?
N T, P

= Nu(R) : m : - prkerA[k])
+F(\1//%2) e (e = b, 5)
< F2(1//7_T2) ' trNF(eiTZ - prkerZ)
+F(1/2) : Nk(R) (e_TA[k]) - trNF(e_TZ)
+F(\1//E2) AT (Pl &) — ﬁl%) T (Pricer AfK])
2vol(X)-e  vol(X)-e +/m-Ap-vol(0X) — OX}[)
= R (B Al
+ ﬁ : trNF(prkerZ) - ; tr(prkerA[k:]) . (235)
I'(1/2) Ni(R)

From (2:26), (B:21), (2:32), and Proposition P.§ we obtain a constant A
independent of k such that the following holds:

T
: / /2 ¢r(D[k]e L) dt
0

2

1 T — .=
| / 1=1/2 tr g p (D=0

T(1/2) J,

T
_ ‘mﬁ/o 12 /M tro(DIkle™ P (2, 2)) da dt

1 /T —1/2/ ,—tD>
- t try(De x,x)) dx dt
T Jo U S P )

1 1 (2.36)
N T '
Ry Kle~tPW (2, 2)) — try(De D (2, 2)) do dt
é)XR

+

/ =12 / tr, (D[k]e P (2, 2)) da dt
0 OX,—OXE
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T o) e e

Az 4172 _ R
R 1 vel0X - o] )) dt.
vol(X)-e Ax-T vol(dX) — 0XF)
< . . .
= g TR No(R) (2:38)

We conclude from (B:29), (B:29), (B:35) and (2:38)
1
Ni(R)
vol(X)-e Ay-T ~vol(0Xy —0XE)  3vol(X)-e
= 5 T2 N:(R) = 8 *
ﬁ . Al 'VOl(an — 8X,§)

I'(1/2) - Ny

+

n (0X) - -n(0Xy,)

1

i
VT traT (Prye, x) — m : tr(Prkem[k])

)

(2.39)

We get from (B-10)
‘77(2)(37) n(0Xx)

vol(X) vol(Xy)
Ni(R)
VO](Xk)

ﬁ n?(0X) - ﬁﬁ(a){k)

We conclude from (2:39) and (2:40)
N 0X) _ n(0Xy)
vol(X)  vol(Xy)
€ Ay T vol(0Xy — OX[)  3e
8Tl T2 NuR) 3
Ve Ay ~vol(9X), — 0XF)

X)-T(1/2) Ny

VT 1
Fea(X) 1172 | Phers) = 3y gy P )

1
Ni(R)

Ne(R) 1 _
1030+ (i~ i) 70T
JOOX) n(R)
VOI(X) Nk(R) '

. ’n@)(aX) —

+

(2.40)

n . . (2.41)

Recall that X} consists of Ny (R) translates of F N JX. The same arguments
as above (using (-13)) imply

. Vol(an - (9le) i
kh—>nolo N, = 0. (2.42)
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We get from Theorem B.14

i TPk aw) ( X)

(with the convention b, := 3> - bp). From (213), (B:41), (B:42) and (2.43) we

get the existence of a Constant K (€) such that for all k > K (e)

=2 (0X) = trar(pry, x)  (243)

n?(0X)  n(0Xx)
wl(X)  vol(xy)| = €© (244)

Now Proposition B.30 follows. This finishes the proof of Theorem [J.4. O

2.45 Remark. In the proof of Proposition B-30, we were using general properties
of the traces and of generalized Dirac operators, which apply not only to the
tangential signature operator together with one additional ingredient, the con-
vergence result for the kernel of the tangential signature operator of Theorem
214,

Using the symmetry of the tangential signature operator one can restrict
to (2n — 1)-forms on the boundary, as explained in [3, Proposition 4.20]. In
particular, (B-4J) has to hold only for by,,_1, and we still could prove Proposition
230 (compare also [B, 23].

2.2 Combinatorial version

In this subsection, we prove a combinatorial version of Theorem [.4. It uses
the more algebraic techniques employed in Section [] rather than the heat kernel
analysis of Subsection -1 This way, the result applies to triangulated rational
homology manifolds (with boundary).

Throughout this subsection, let X be a compact triangulated rational ho-
mology manifold with boundary L, and of dimension 4n. Let X be a regular
covering of X with finitely generated amenable covering group I'.

We start by describing the type of exhaustion we are going to use.

2.46 Definition. Let F be a fundamental domain for the covering X — X,
i.e. F contains exactly one lift of each top-dimensional simplex of X. For each
simplex ¢ in X choose a lift 7 in F. Let S be a finite system of generators of
I'. It gives rise to a left invariant word metric on I'. For a subcomplex Z C X
and R > 0, define

Ur(Z2) =
U {yg | v €T and Fy; € T'with d(y — 1,7) < R,y1a N Z # 0}.

osimplex of X

This depends on the choice of S as well as the lifts &. For each g € T', Ur(gZ) =
9UR(Z).
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2.47 Definition. For a simplicial complex Y let |Y| be the total number of
simplices of Y. Similarly, for any subset W of a simplicial complex which is a
union of open simplices, |W| is the number of open simplices in W.

A sequence X; C X5 C ... X of finite subcomplexes is called an amenable
ezhaustion if |J,cn Xk = X and if for each R >0

Ur(Xk)| k—oo
-

1.
| Xk |

It is called a balanced exhaustion, if for each orbit I'g of simplices in X

‘Xk ﬂr5| kooo 1

| X | X

Denote .
dim¢

¢ tre
-
g | X

= —|X]|; dimy, :=
|Xk|‘ | k

| XT.

2.48 Theorem. Assume that X is a compact simplicial complex triangulating

a rational homology manifold with boundary the subcompler 0X. Assume X

s a mormal covering of X with amenable covering group I'. Let X3 C X5 C
. be subcomplezes forming a balanced amenable exhaustion of X by rational

homology manifolds (with boundaries Yy ). If X is a homology manifold, such

an erhaustion does always exist. Then

lim sign(Xk s Yk)

X| = sign® X,0X).
dm = K= e )

Before proving this, we investigate the relation between the Poincaré duality
maps of one homology manifold being a codimension-zero subcomplex of another
homology manifold. As an illustration we consider the following diagram. Let
U C M be codimension zero submanifold with boundary OU of a compact
manifold M. For the moment assume OM is empty.

H?(M) ——— HP(M,M-U) ——— HP(U,0U)
lm[M] lﬂ[UﬁU]

Hyp(M) Hy—p(U)

Hy_ (M) —— H,_,(M,M —U) «——— H,_,(U,0U).

In this diagram, the maps without labels are induced by inclusions and the
isomorphisms are given by excision. The diagram commutes because the fun-
damental class of M is mapped to the fundamental class of (U, 9U) under the
composition of the maps in the lowest row (for p = 0). A corresponding result
holds if M itself has a boundary.
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Because we have to apply this in the L?-setting, we give a chain-level de-
scription of this diagram. For this, let (X, L) be an n-dimensional pair of simpli-
cial complexes triangulating an oriented rational homology n-manifold X with
boundary L. Let X, L be the lifted triangulation of a normal covering of X (L is
the inverse image of L in X) with covering group I'. Without loss of generality
we assume X and X are connected (we can deal with one component of X at a
time, and then the L2-signature is unchanged if we consider only one component
of X).

We first want to describe the (simplicial) L?-chain- and cochain complexes
of X. Set 7 := m1(X). We have by definition

C*( , L) = homg (C.(X, L), *(T)),
iy (X) = homz (C.(X ) I2(T)), and (2.49)

c<2< X) = 2(T") @z C(X).

Here X is the induced triangulation of the universal covering of X, L is the
inverse image of L in X, and we always use the simplicial (co)chain complexes.

2.50 Convention. There are canonical identifications of the simplicial L?-chain
and L2-cochain complexes C’( )( X), Cp (7) with the spaces of L2-summable

functions on the set of p-dimensional snnphces of X, and of CZ(,Q)(Y, L) and
C&) (X, L) with L2.-summable functions on the set of p-dimensional simplices of

X which do not belong to L, respectively.

These identifications are used in the sequel.

We write L2-functions on the set of simplices of X as formal sums Y \,0.
Then the identification of cochains with L?-functions is the anti-linear isomor-
phism given by a — > 5(1,a(d))o, where 7 is an arbitrary lift of o to the
universal covering. Note that there is a given projection p: X — X since X is a
connected normal covering of X. The identification of chains with L2?-functions

on the set of simplices is given by (der )\gg) R+ der Aggo, where 7 is a
simplex in X (or, for C,(X,L) of X \ L) and o = p(5).

2.51 Remark. Note that this way, in particular we identify the L2-chain- and
cochain groups with each other (via an anti-linear isomorphism). However, this
is nothing but the usual isomorphism of a Hilbert space with its dual. Note
that this is not an isomorphism of chain complexes. Under the identifications,
the chain- and cochain maps induced from the inclusion of X in (X, L) become
the obvious inclusion and orthogonal projection, respectively.

2.52 Lemma. Under the identification of Convention .50 of the chain- and
cochain complexes with spaces of L?-functions on the sets of simplices of X,
cap-product with the fundamental class —defined on the (co)chain level using
the Alexander- Whitney diagonal map— gives a map

g: C5y)(X,I) — ¢ (X)
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which sends an L?-function a on the set of p-simplices in X \ L to

Z fn—p(5)<a’bp(5)>l2(7)'

& n-simplex of X

Here fg, b, are the front- and back-faces of the corresponding dimension, as
usual in the Alexander-Whitney diagonal approximation. To be able to define
this, we choose also a T-invariant local ordering of the vertices of X, e.g. by
lifting such a local ordering from X.

Proof. Using the notation introduced above, C,(X,C) can be identified with
C ®@zx C.(X). For each simplex o of X choose a lift & in X. Then the fun-
damental class of X can be written as ) .y 1® &, where X, denotes the
collection of p-simplices in X.

The Alexander-Whitney cap-product of a € homgz,(Cp(X, L),1?(T)) with
the fundamental class is then given by

> (@bp(8)))" ® fap(). (2.53)
oceX,,
Here -*: [2(I') — [%(T) is the anti-linear isomorphism induced from g +— g~*
and from complex conjugation of the coefficients.
Now observe that the function a = » % az0 is mapped to the cochain

a: 0= E agqp(&)g,
gel’

and Ag—1p(5) = <gilp(&)7a>l2'
By (B:53), capping this cochain o with the fundamental class gives the chain

Z Z (97 1p(by(5)), a)g 't ® fn—p(5).
oceX, gel’
Under our identification, this chain becomes the function
Z (a,bp (7)) frp(@),
TeX,

where we use the fact that the family g 1p() for g €T and o € X, is exactly
the family of all n-simplices of X, and the fact that the front- and back-face
maps commute with the action of = (and T'). O

2.54 Lemma. Composing the cap-product with the fundamental class with the
map induced from the inclusion X — (X, L) we get a map

g% : Clyy(X,I) - CP(X,T)
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which under the identifications of C(,) (X,U) as well as C,Ez)(77 U) with the

space of L?-functions on simplices in X \ L maps such a function a (on p-
simplices) to

ST hues @8 (@) by(0)) 2 x)-

T n-simplex of X
Here 67(7) is 1 if @ is not contained in L, and is 0 if & € L.
Proof. This is an immediate consequence of the first lemma. O

2.55 Definition. Assume now that U is a compact subcomplex of X which
has itself a subcomplex V (not necessarily contained in L) such that (U, V)
triangulates an oriented homology n-manifold with boundary (i.e. U is a codi-
mension 0 submanifold with boundary). The above identifications and formulas
apply to the chain- and cochain complexes of U and V' with complex coefficients.
Moreover, observe that these identifications give canonical embeddings Fj; of
Cc*(U,V,C) in CE*Q)(Y, L) and of C,(U,V;C) in C£2)(Y, L). The corresponding
orthogonal projection is the adjoint Py .

2.56 Proposition. In the situation of Definition [2.53, with all the identifica-
tions described,
(2) (2)

gy =Puogy o Pj.

In other words, the Poincaré duality operator on U is obtained from the one
on X by compression onto the chain and cochain complex of U, considered as
subcomplex of the ones of X.

Proof. This is implied by the formula of Lemma P-54. We only have to make
the simple but key observation that a top-dimensional simplex of X which is
not contained in U has no face contained in U \ V (since in the star of an
interior point, any two top-dimensional simplices can be joined by a sequence
of top-dimensional simplices having pairwise a common face of codimension 1.
Therefore the star in X of an interior point of U can not be bigger than the star
inU). O

Now we are ready to prove Theorem P 48. We start with some auxiliary
results we will use. As before, let 7 be a fundamental domain for the covering
X — X. Remember that for each simplex ¢ in X we have chosen a lift & in F.

2.57 Definition. We write 12(X) for the space of L2-functions on the set of
simplices of X (with point measure), each simplex being one element. This way,
we get an identification

Cloy(X) = *(X) = @oexl*(T) - 7.

Assume that we have an exhaustion X; C X3 C --- C X as in Definition R.47.
These define subspaces (?(X}) C [?(X). Let P¢ be the orthogonal projection

P IA(T) -7 — (I3(1)-7) N12(Xy) = (X N T7). (2.58)
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Using the above identification, the orthogonal projection Py, : I2(X) — 12(X3)
splits as P, = diag, ¢ x (P7).

2.59 Definition. Fix an exhaustion X; C X» C --- C X as in Definition B.47.
For a T-equivariant operator A: C*(X) — C*(X) (inducing the operator A(%)
on Cfy)) define Afk] := P, A®) Py, (either considered as operator on 1?(X) or on
12(Xy)).

2.60 Remark. Fix an amenable exhaustion as in Definition -47. Observe that, if
c: C*(X) — C*(X) is the cellular cochain map with adjoint c¢*, then c[k] is the
cochain map of Xj, with adjoint ¢*[k]. Note that the combinatorial Laplacian
A[Xy] = c[k]c*[k] + c*[k]c[k] of X}, in general does not coincide with A[k] where
A = cc* + c¢*c is the Laplacian of X. By Proposition for the Poincaré
duality cochain operator we get gx, = g[k]

From this point, the proof of Theorem 4§ is formally the same as the proof
of Theorem [[.§ in Section [l] (the letter f there is replaced by g here): by Remark
P60 we have a sequence of operators g[k] and Laplacians A[X}] and we have to
prove that

Tk X(a,b) (A[Xk]g[E]A[XR]) LatN AT X (a,b) (AP gA®)

for (a,b) = (—o00,0) and for (a,b) = (0,00), where try is defined in Definition
2=z,

To proceed, we only need the following ingredients, Lemmas Z-61] to 2-64 and
Theorem B.60, which replace Lemma [[LI1, Lemma [[LI0, Lemma [.7, Lemma
12, and Theorem [[LT] in the covering situation, and the proof given in Section
M goes through.

2.61 Lemma. Use the Notation of Definitions 221 and [2-59.

For T-equivariant linear operators hy, ..., hg : C*(X) — C*(X) (inducing
operators h,(f) on Cy, (X)) and a polynomial p(z1,...,xq) in non-commuting
variables x1,...,xrq we have

ter(p(hi? . hG)) = T try (p(ha K], ... halk]))

Proof. Because of linearity of the traces it suffices to study monomials x; ... x4.
The lemma for hy = hy = ... hy and slightly less general projections is due to
Dodziuk-Mathai [, Lemma 2.3]. An account (with yet another slightly different
setting) can be found in [T9, 4.6], and the proof given there carries over with
no more than obvious changes to the more general situation we are considering
here. O

2.62 Lemma. Fiz an amenable exhaustion as in Definition 2-47. For each
simplex 0 € X

k—o0

trk(P,g) — 1,

where P is defined in Definition .57
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Proof. This is just the definition of a balanced exhaustion. O

2.63 Lemma. Fix an amenable exhaustion as in Definition Z4X. There is
K > 1 such that for all k > 1

AP AL 9@, gkl < K.
Proof. Recall from Remark that
A[Xy] = PecP P(®) Py, + Pu(cD)* Ppc® Py; and g[k] = PrgPy.

The assertion follows now from sub-multiplicativity of the operator norm and
the fact that || Pg|| <1 for each k, as these are orthogonal projections. O

2.64 Lemma. Fiz an amenable exhaustion as in Definition [Z.L1. There is a
constant Cy > 0 (independent of k) such that for 0 <e <1 and k > 1

Gy

try (X(o,g](AQn[Xk])) = _ 11’1(6).

(2.65)

Proof. This can be proved as in [0, Lemma 2.5]. Alternatively, define

—+

lndet/(2)(A[Xk]) = /000 In(A\) dFa[x,1(A)

with Fajx,1(A) := tre(X[o,x)(A[K])), the spectral density function of the oper-
ator A[k] computed using try instead of dimg. Since A[Xj] is defined over Z,
Indet’ A[X}] > 0 (compare [I0, Theorem 3.4(1)]). Then the inequality follows
from Lemma [.31], Lemma P.63, and Lemma .63 O

2.66 Theorem. Fix an amenable exhaustion as in Definition B-Z1. The nor-
malized sequence of Betti numbers converges, i.e. for each p

klim dimy (ker(A,[X%])) = dimpar ker(Az()Q)).
Proof. This is essentially [0, Theorem 0.1]. Actually, our exhaustion is slightly
more general than the ones considered there. But the proof only requires the
assertions of Lemma E.61], Lemma .63, Lemma .63, and Lemma .64, and so
goes through without changes (compare [9, Section 6]). O

Now the proof of the convergence assertion of Theorem 4§ can be finished
as described above. It only remains to prove the existence of the exhaustion
X1 C Xy C --- with the required properties.
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Existence of balanced amenable exhaustions

Amenability of I' in Theorem P:4Y is equivalent to the existence of Fglner ex-
haustions by subcomplexes without additional structure (used e.g. in [d]). We
will thicken them to get homology manifolds (with boundary), for which the
signature is defined. We thank Steve Ferry who explained to us how to do this
thickening.

We use the following notation:

2.67 Definition. Let K be a simplicial complex with a subcomplex X. We
define star(X), the star of X, to be the union of the stars of all vertices in X,
where the star of a vertex is the union of all closed simplices containing this
vertex.

Denote the barycentric subdivision of K with K, of X with Xj.

We obviously have:
2.68 Lemma. In the situation of Definition 2.7, star(X), = star(star(Xp)).

2.69 Lemma. Let (K, L) be a triangulated homology manifold (not necessarily
compact). Let X' C K be a subcomplex. Then there exists a thickening X D X'
contained in the star of X', such that X is a subcomplex of the barycentric
subdivision of K and such that X is a rational homology manifold with boundary
Y. Here XNL CY, butY is not necessarily contained in L.

Proof. Let f : K — R be a piecewise linear map which is 1 on X’ and 0 on
the complement of the star of X’. Since f~1(0,1) does not contain a vertex,
1/2 is a regular value, and therefore X := f~1([1/2,1]) will do the job. More
specifically, f~1([1/2,1)) is homeomorphic to the product f=1(1/2) x [1/2,1),
since there are no vertices. If x € X — f=1(1/2), then it has a neighborhood
which is open in X as well as in K, so it is a manifold point (and will be a
boundary point whenever it belongs to L). All points z € f~!(1/2) have the
neighborhood U := f~1([1/2,1)) = f~%(1/2) x [1/2,1), and no matter how
f71(1/2) looks like, the inclusion (U — {y}) < U is a homotopy equivalence,
so that (by excision) y is a boundary point of a rational homology manifold. It
remains to observe that each path in X is homotopic to a path in X — f~1(1/2)
such that X — 0X does not have more connected components than X.
Obviously, we can arrange for X to be a subcomplex of the barycentric
subdivision of K. O

Now we go back to X and construct the exhaustions we can use. The covering
group I being amenable means there is a Fglner exhaustion Vi C Vo C ...T with
Uren Vi = T by finite subsets Vy, i.e. limg oo [Ur(OVi)| / [Vk| = 0. Remember
that we have the fundamental domain F for the covering X — X. If we set
X, := Vi F, then X, is an exhaustion of X by finite subcomplexes as considered
in [4]. Tt is standard that X forms a balanced amenable exhaustion of X. Let
X be a thickening of X, as provided by Lemma P.69. Since we want to deal
with (simplicial) subcomplexes only, we replace X (and X) by its barycentric
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subdivision. Our main observation is that X} is contained in the star of X ,’€
Fix R > 0 such that star(star(F)) C Ug(F). By the I'-invariance of the metric
Xy, C Ur(Xj,). Since, on the other hand, X; C X}, the sequence X}, forms a
balanced amenable exhaustion of X, to which Theorem applies.
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