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Abstract

We study a topological version of the-duality relation between pairs consisting of
a principalU (1)-bundle equipped with a degree-three integral cohomology class. We de-
scribe the homotopy type of a classifying space for such pairs and show that it admits a
selfmap which implementsB-duality transformation.

We give a simple derivation of B-duality isomorphism for certain twisted cohomology
theories. We conclude with some explicit computations of twikettheory groups and
discuss an example of iteratédduality for higher-dimensional torus bundles.
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1 Introduction

1.1 Summary

1.1.1 In this paper, we describe a new approach to topolodieduality for U (1)-principal
bundlesE — B (E is the background space time) equipped with degree-three cohomology
classe$ € H3(E,Z) (theH-flux in the language of the physical literature).

1.1.2 We first define ar -duality relation between such pairs using a Thom class on an asso-
ciatedS*-bundle. Then we introduce the funct®r— P(B) which associates to each space the
set of isomorphism classes of pairs. We construct a classifying $pat® and characterize

its homotopy type. It admits a homotopy class of selfm@ipskR — R which implements a
naturalT -duality transformatior® — P of order two. This transformation maps a class of pairs
[E,h] € P(B) to a canonical clasé, h] € P(B) of T-dual pairs.

We conclude in particular that our definition of topologiGatuality essentially coincides with
previous definitions, based on integration of cohomology classes along the fibers.

1.1.3 We describe an axiomatic framework for a twisted generalized cohomology theory
We further introduce the condition df-admissibility. Examples of -admissible theories are
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the usual twisted de Rham cohomology and twisted K-theory. Hoadmissible generalized
twisted cohomology theorli we prove aT -duality isomorphism betweenE, c) andh(E, ¢),
where(E, c) and(E, €) areT-dual pairs.

1.1.4 We compute a number of examples. Iterating the constructidndadal pairs, we can
define duals of certain higher dimensional torus bundles. We show that with our definition
of duality the isomorphism type of the dual of a torus bundle, even if it exists, is not always
uniquely determined.

1.1.5 We thank the referees for their useful comments, in particular with respect to the pre-
sentation and the physical interpretation of our results.

1.2 Description of the results

1.2.1 In this paper we try to explain our understanding of the results of the recent paper [2]
and parts of[[B] and [10] (Sec. 4.1) by means of elementary algebraic topology. The notion
of T-duality originated in string theory. Instead of providing an elaborate historical account
of T-duality here we refer to the two papers above and the literature cited therein. In fact, the
first paper which studie§-duality is in some sense [12]. We will explain the relation with the
present paper later in this introduction.

1.2.2 However, a few motivating words what this paper is about, and more importantly what
it is not about, are in order.

T-duality first came up in physics in the following situation. The spa@ppears as a part of a
“pbackground space-time”. The cohomology classH3(E, Z) describes the Flux for a Neveu-
Schwarz 3-form gauge potentidl. In connection withT -duality, the case wherg admits a

freeU (1)-action and thus has the structure of a princlpél)-bundle, is of particular interest.

The natural generalization is a space with a free action of a higher-dimensional torus. Then
E is aU (1)%-principal bundle. In such a situation, for physical reasons, one expects to find a
dual bundle with a dual flux (i.e. cohomology class) roughly by replacing each fiber by the dual
fiber, the so called -dual. TheT-dual should share many properties with the original bundle.
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In particular one expects that certain twisted cohomology groups are isomorphic.

In the physical situation the spaces come with geometry. When passing to the dual, the metric
on the fiber should be replaced by the dual metric on the dual fiber. A lot of the literature about
T-duality and its relation to mirror symmetry have the geometry as a major ingredient, and they
focus on situations in which the dimension of the fiber and the base coincide. One of the basic
contributions in this context is [13].

1.2.3 In the present paper we will completely disregard the geometry and metrics. This also
explains the title topological T-duality”. We are only interested in the resulting topological
type. Moreover, we adopt a mathematical definition of Théuality relation by simply declar-

ing certain cohomological properties which are expected for physical reasons.

This approach works best far(1)-bundles. So we will concentrate on those for most of the
paper with the exception of Sectipn 4.4, where we study torus bundles by considering them as
iteratedU (1)-bundles.

1.2.4 In the present paper we studyduality for principalU (1)-bundles equipped with an
integral cohomology class of degree 3. We will call such dgtaia(Definition[2.]). We first
introduceT-duality as arelation between pairs (Definition 2.9) (in particular, a given pair can
have several -dual pairs). The paper/[2] works almost exactly in the same setting: it also starts
with a pair and defines what a dual pair is (via a construction which involves some choices,
S0 again is not unique). This definition unfortunately is not very precise, since torsion in the
cohomology is neglected. In Section}4.3 we show by an example that it is necessary to take the
torsion into account if one studies e.g. theluality isomorphism for twisted K-theory.

1.2.5 At a first glance our definition of -duality, which is based on a Thom class on an
auxiliary 3-sphere bundle, looks quite different from the definition givenlin [2], which relied
on integration over the fiber. The link between the two definitions is provided by an explicit
universal example over a universal base sfRder our definition of T-duality. Using some
non-trivial calculations in this universal example we will obtain a complete characterization of
the T-dual (according to our definition) by topological invariants, which contains in particular
the same kind of integration over the fibre as in the older notiofsadality. We will show that,

up to passing to real cohomology, tieduality of [2] is characterized by the same topological
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invariants. Therefore, we can eventually conclude that our definition is essentially equivalent to

the one used there (See 2|2.6, 3.2.7).

Later in the present paper we will understahdluality as a map which associates to an iso-
morphism class of pairs a canonical dual isomorphism class of pairs in a two-periodic manner.
This in particular reproves the result of [2] that each pair admitscual.

1.2.6 A third definition of T-duality is given in [12] (compare also [10], 4.1) or in [2]. In
[12], the main object is a continuous trace algeRAraith anR-action such that its spectrum
X(A) is a freeU (1) = R/Z-space. ToA we can associate a paiK(A),h(A)) consisting of

theU (1)-bundleX (A) — X(A) /U (1) and the Dixmier-Douady clasgA) € H3(X(A),Z). Vice

versa each pair can be realized in this way. With an appropriate notion of Morita equivalence
we have a bijection of equivalence classes of such algebras and isomorphism classes of pairs.

In [12] it is shown that the cross produét:z A xR is again a continuous trace algebra with
R-action (the latteR is in fact the dual group oR) of the same type as above. It follows
from the comparison of the topological invariants of the p&itgA), h(A)) and the dual pair
(X/(K), k@)) and the naturality of the constructions with respect to the change of the base spaces
that our notion ofT -duality of pairs indeed corresponds to the cross product in [12].

It is well known thatA is Morita equivalent toA. This fact is reflected in our picture by the
result thafT -duality is two-periodic.

1.2.7 Given a base spad we study the se®(B) of isomorphism classes of paifg, h) over

B, whereE — B is of aU(1)-principal bundle and a classh € H3(E,Z). It turns out that
the contravariant set-valued func®r— P(B) can be represented by a sp&tehe classifying
space of pairs. Th&-duality can then be considered as a natural transformatioR — P of

functors, and it is represented by a homotopy class of mag® — R.

1.2.8 Our first main result (Theoren 2]17) is the characterization of the homotopy tyRe of
as the homotopy fibration

K(Z,3) » R— K(Z,2) x K(Z,2)
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which is classified by
pricUpric e HY(K(Z,2) xK(Z,2),Z).

HereK(Z,n) is the Eilenberg-MacLane space, i.e. characterized by the property{laZ,n)) =
0if k# nandm,(K(Z,n)) = Z =H"(K(Z,n),Z). In particular, we can choos€(Z, 2) = CP”.

The class € H?(K(Z,2),Z) is the canonical generator. How fibrations are classified is recalled
in2.3.2.

1.2.9 The spacdR carries a universal pair, and the mapill of course have the property to
represent the universal dual pair (Definitjon 2.27).

The classifying spack in fact already appears in [12] (proof of Theorem. 4.12). Itis used there
in order to simplify the verification of the relation of topological invariants which corresponds
to the assertion of Lemnia 2133.

1.2.10 As observed in many place$-duality comes with isomorphisms in certain twisted
generalized cohomology theories. In fact, the calculation of such twisted generalized cohomol-
ogy groups in terms of the (perhaps easier to understand) generalized cohomology groups of
the dual is one (topological) motivation for the studyTetiuality. If (E,h) and(E, Fl) are pairs
overM, and in particulaE andE are principalJ (1)-bundles oveM, which are dual to each

other, than (as shown e.g. in [2]) there is an isomorphism (of degfigen twisted complex
K-theoryK, (E,h) = K,_1(E, h) or of real twisted cohomologh (E, R, h) = H(E, R, ). These
isomorphisms are implemented by expli€itduality transformations (Definition 3.]L2) which

are constructed out of the diagram

EXBE
P/ P\
E ql E (1.1)
LN n/
B

using standard operations in twisted cohomology (like pull-back and integration over tr@ fiber)

1in theC*-algebraic context of [12][[10] th&-duality isomorphism is given by Connes’ Thom isomorphism
for crossed products witR.
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1.2.11 We say that a twisted generalized cohomology theoify-&missible if theT -duality
transformation is an isomorphism in the special case of thegéilr) — *,0). Our second main

result is the observation (Theorém 3.13) that Thduality transformation for & -admissible
twisted generalized cohomology theory is an isomorphism, and that this fact is an easy conse-
quence of the Mayer-Vietoris principle.

1.2.12 In order to produce a precise statement we fix the axioms for a twisted generalized co-
homology theory in Subsecti¢n B.1. In doing so we add some precision to the statements in [2],
in particular to the observation that the Chern character preservé@sdhality transformation

(2], 1.14).

The main point is that the cohomology cldss H3(E,Z) only determines thésomorphism
classof a twist and so the isomorphism classKafe, h) or H(E, R, h) as an abstract group. In
order to be able to say that the Chern character is a transformation between twisted cohomol-
ogy theories one must use the same explicit objects to Kvikieory as one uses to twist real
cohomology. In order to twist complék-theory one usually considers a princifdl-bundle

(but not a three-form as inl[2]). More details on twisted K-theory can be fourid in [1]. On the
other hand, three-forms are usually used to twist real (de Rham) cohomology. We do not know
any natural way to relate these two kinds of twists (but look at [7], proof of Prop. 3.5, which
perhaps solves this problem). In a previous paper [5] we have constructed versions of twisted
K-theory and twisted real cohomology where the twists in both cases are Hitchin gerbes. For
these versions of twisted cohomology theories the Chern character is indeed a natural transfor-
mation and preserved Bly-duality. Since this gives a framework to work simultaneously with
twisted K-theory and twisted cohomology, we propose to use Hitchin gerbes in this context. In
the paper, however, we simply assume that the twistsnd the twisted generalized cohomol-

ogy theoryh satisfies certain natural axioms, and then we go on to prove a natutadlity
isomorphismh(E, H) =R h(E, 5A{) for any theory which satisfies these axioms and for dual pairs
(E, %) and(E, #).

1.2.13 For the purpose of illustration we perform some calculations of twiktekeory. For
three-manifolds we obtain a complete answer in Subsection 4.1 (compare with the partial results
of [11]). We demonstrate th€-duality isomorphism in twisted-theory forU (1)-principal
bundles over surfaces by explicit calculation.
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1.2.14 ltis a natural question iT -duality can be generalized to princigd{1)*-bundles for

k> 1. As observed iri|3] and [10] not eveld/ 1)k-principal bundle has &-dual in the classical
sense. Note the remarkable observatiori in [10] Theorem 4.4.2, that in genefabtred of

a U (1)%-principal bundle equipped with a three-dimensional integral conomology class is a
bundle of non-commutative tori. In the present paper we discuss the approach of defining a
T-dual of a higher-dimensional principal torus bundle as an iteratedal ofU (1)-principal
bundles. We demonstrate by an example that this approach does not lead to a unique result.

1.2.15 A U(1)-principal bundleE — B is essentially the same object as the ft5d)-space

E. In a continuation [6] of the present paper we discuss a generalizatibmodlity to the case

of U(1)-spaces wherd (1) acts with at most finite stabilizers. For applications to physics, this
seems to be of relevance.

2 The classifying space of pairs

2.1 Pairs and the classifying space

2.1.1 LetBbe atopological space.

Definition 2.1 A pair (E, h) over B consists of a (1)-principal bundlert: E — B and a class
hec H3(E,Z).

2.1.2 If f: A— Bis a continuous map, then we can form the functorial pull-b&clE, h) =
(f*E,F*h), whereF is defined by the pull-back

f*E — E
! Lo
A LB
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2.1.3 We say that two pairs are isomorphic (written(&g, hp) = (Ej1, hy)) if there exists an
isomorphism ofJ (1)-principal bundles

such thaF*hy = hy.

2.1.4 Let(E,hi),i=0,1Dbe pairs oveB. We say that they are homotopic (written(&s, hg) ~
(E1,hy)), if there exists a paitE,h) over| x B such thatf*(E,h) = (E;,h;), i = 0,1, where
fi: B— 1 x Bis given byb — (i,b). Note that we insist here in equality, it is not sufficient for
later purposes to only have an isomorphism.

2.1.5

Lemma 2.2 On pairs, the relations “homotopy equivalence’” and “isomorphism”= coin-
cide.

Proof. Let (Eg,hg) and(Ey,h;) be homotopic vigE, h). Then there is an isomorphisk—
Eo x [0,1]. Using this, we immediately get an isomorphigm f3(E, h) = 5 (E,h).

Conversely, if(Eg, hg) and(Ej, hy) are isomorphic via an isomorphidgf) we construct the ho-
motopyE = Eg x [0,1/2)] UF xid(y/2) E1 X [1/2,1], with h obtained (uniquely) using the Mayer-
Vietoris sequence for the cohomologytefWe take the freedom to usanonicalisomorphisms
betweerEy x {k} andEy, k=0, 1. O

2.1.6

Definition 2.3 By K(Z,n) we denote the Eilenberg-Mac Lane space characterized (upto homo-
topy equivalence) by its homotopy groupgK(Z,n)) = 0 if k # n, T\(K(Z,n)) = Z. Recall

that for an arbitrary space X the cohomology withcoefficients M(X,Z) can be identified
with homotopy classes of maps from X tZKn) (denoted byX,K(Z,n)]), a fact we are going

to use frequently.
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As a model forK(Z,1) we choosdJ (1). As a model forK(Z,2) we can choos€P”. Let
q:U — K(Z,2) be the universdl (1)-principal bundle. If we choosk(Z,2) = CP*, we can
choosel := §(C*), the unit sphere i€* = [J,nyC", and p factors out the canonicél (1)-
action onC”. Furthermore, leLK(Z,3) be the free loop space &f(Z,3). This space admits
an action ol (1) by uy(t) := y(u™'t) for y € LK(Z, 3) andu,t € U (1).

Definition 2.4 We define the space R as the total space of the associated bundle

c: (Ri=U xy(1) LK(%Z,3)) — K(Z,2) .

Note thatR is well defined up to homotopy equivalence. We consaiso as a cohomology
classc € H2(R, 7Z).

2.1.7 OverR we have thdJ(1)-principal bundlert: (E := c*U) — R with first Chern class
¢ € H2(R,Z). Furthermore, we have a canonical map

h:E— K(Z,3); h(u,[v,y]) :=y(t),

whereu,v e U, y € LK(Z,3) andt € U(1) satisfyq(u) = q(v) = c([v,y]), andtv = u. Note that
this is well-defined, independent of the choice of the representative of the[eiss R. We
consider this map also as a cohomology clagsH3(E,Z). In this way we get a paifE, h)

overR.

Definition 2.5 We call this pair(E, h) the universal pair.

2.1.8 We define the contravariant functerfrom the category of topological spaces to the
category of sets which associates to the sgatee setP(B) of isomorphism classes of pairs
and to the mag : A — Bthe pull-backf*: P(B) — P(A).

Proposition 2.6 The space R is a classifying space for P. In fact, we have an isomorphism of
functorsW_ :[...,R] — P(...) given by\Wg([f]) := [f*(E,h)] for each homotopy class of maps
[f] € [B,R] and each CW-complex B.
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Proof. It follows immediately from Lemma 2] 2 that the func®is homotopy invariant. There-
fore W is a well-defined natural transformation.

Let [E, h] € P(B) be given. Up to isomorphism, we can assume that we have a pull-back diagram
of U (1)-principal bundles

E S U
| |
B 5 K(Z,2)

We represent the clabdy a maph: E — K(Z, 3). We construct a lifff : B— Rof c as follows.
Forb € B choosee € E,. Then we set

f(b) :=[C(e),y] € R withy(t) =h(te) vt e U(1).

Observe thaff (b) is independent of the choice ef If F: E — E is theU(1)-bundle map
coveringf, thenF(e) = (C(e),[C(e),y]) with e andy as above. Therefordyo F = h and we
havef*(E,h) = (E,h). This shows that is surjective.

Let now Wg([fo]) = Wg([f1]). Using Lemmg 2]2, we choose a homotdpyover B x [0, 1]
betweenf;(E,h) andf;(E,h). The construction used for the surjectivity part provides us with
amapf: Bx [0,1] — Rsuch thaff (E,h) = (E,h). To achieve equality, we have to cho&n
such a way thaE = ¢*U for an appropriate map: B x [0,1] — K(Z,2) (without changing the
bundle at the boundary, i.e. such tiéat= co fy). This is possible sincK(Z, 2) is a classifying
space for principdl (1)-bundles.

The construction has the property tHat= fi, thereforef is a homotopy betweefy and fi,
proving thatWg is injective.

2.2 Duality of pairs

2.2.1 LetT:E — Bandft: E — B be twoU (1)-principal bundles. Let
T (L:=ExypC)—B
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andft: (L:=E xu(1)C) — Bbe the associated complex hermitian line bundles. We can consider
E andE as unit sphere bundles inandL. We form the complex vector bundie (V := (L&

L)) — Band letr : V) — B be the unit sphere bundle, the fibers consisting of 3-dimensional
spheres.V being a complex vector bundle, the mas oriented. In particular, we have an
integration map, : H3(S(V),Z) — H°(B,Z) (in de Rham cohomology the corresponding map
is really given by integration over the fiber). Laj denote the unit in the ringl (B, Z).

Definition 2.7 A Thom class for &) is a classTh € H3(S(V), Z) such that r(Th) = 1z.

If S(V) admits a Thom class, then by the Leray-Hirsch theorem its cohomology is a free
H(B,Z)-module generated bys};y andTh. Thom classes in general are not unique. In fact,
Th'is a second Thom class if and onlyTih — Th’ = p*d for somed € H3(B, 7Z).

2.2.2 Letc,ée H?(B,Z) denote the Chern classes®fndE. The product(V) :=cUé e
H*4(B,Z) is the Euler class of .

Lemma 2.8 The bundle 8/) admits a Thom class if and onlyyfV) = 0.

Proof. This follows from the Gysin sequence f8(V). For this question the important segment
IS

— H3(B,2) 5 H3(S(V),Z) & HOB,2) Y HAB.Z) — .

2.2.3 We now consider two pairE, h) and(E, h). Leti : E — V) andi : E — V) denote
the inclusions of th&!-bundles into the3-bundle.

Definition 2.9 We say thatE, h) and (E, h) are dual to each other if there exists a Thom class
Th for S\V) such that h=i*Th andh = {*Th.
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2.2.4 Letm:E — Bandft: E — B be givenU (1)-principal bundles with first Chern classes
andc. Then 2.8 has the following consequence.

Corollary 2.10 There exists ke H3(E, Z) andh € H3(E, Z) such tha{E, h) and(E, h) is a dual
pair, if and only if cJ €= 0. If such a dual pair exist, then any other has the fdinh+ 1t*b)
and (E, h+ ft‘b) for some be H3(B,Z).

A A

2.2.5 Let(E,h)and(E,h) be dual pairs. We consider the following part of the Gysin sequence
for E
~HYB,Z) S H3B,Z) & H3(E,Z) — .

We observe the following consequencé of 2.10.

Corollary 2.11 If (E,h) is dual to(E,h) and also to(E, ), then we havél —h = ft*(cUa)
for some ac HY(B,Z).

Lemma 2.12 If (E,h) is dual to(E, h), then c= —f(h) andé = —i (h).

Proof. We defer the proof tp 2.33. It follows from the calculation of the cohomology in the
universal situation. O

Lemma 2.13 Let (E, h) be dual to(E, h). Consider the fiber product

EXBE
P/ P\
E ql E . (2.14)
LN ./
B

Then ph= p*h.
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Proof. This is the parameterized version of the situation considered lafer i} 3.2.1. In partic-
ular, we have a homotogy: | x E xy E — S(V) fromioptoiof, wherei: E — V) and
I: E — S(V) are the canonical inclusions into the sphere bundle of the complex vector bundle
V associated t& andE, thenp*h = p*i*Th = p*i*Th = p*h. O

2.2.6 We are now in the situation to compare our definitionTefluality with the definition

used in [2], Section 3.1. When interpreted in cohomological terms instead of using the lan-
guage of differential forms|[2] constructs to a given g&rhg) (wherehg € im(H3(E,Z) —
H3(E,R)) is an real cohomology class with integral periods) another (ﬁifm), again with

hg € H3(E,R).

Let c be the first Chern class & and use the notation df (2]14). By we denote the image of
cin H2(B,R).

The construction in ]2] depends on a few choices, in particular the choices of connections.
An integral lift h € H3(E,Z) of hg uniquely determines the isomorphism class of th@)-
principal bundleE with Chern class *= 1 (h). The cohomology classg is then determined

up to addition of a class of the forii (cg Ub) with someb € HY(B,R).

In [2], 3.1 it is shown thatt, (hg) = Cr andft, (hg) = cg. These formulas differ from those of
Lemma[ 2.1 by some signs. The reason is thatlin [2] the dual bundle is considered with the
oppositel (1)-action. In [2] it is also shown thai*hg = p*hi.

We will now prove that up to addition of classes of the fafticg Ub) for b € H'(B,R) the

classhg € H3(I§,R) is uniquely determined by these properties. Sinceleduality pairs share

these properties, we conclude that (upon passing to real cohomology) they are dual in the sense
of [2]. It then follows also thabr can be chosen with integral periods and with an integral lift

h such thatit.h = ¢, since we construct an integral lift of some representative. This assertion is
also implicit in [2], but without a detailed proof. Note also that the ambiguity in the dual class
his exactly parallel to the ambiguity in the construction(df [2].

2.2.7 To prove that is determined by the propertiéshg = cg and p*hg = p*hg we con-
sider the following web of Gysin sequences for thel)-principal bundleg, p, mandft Every
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row and every column is exact, and by the naturality of the Gysin sequence every square com-
mutes. We use cohomology with real coefficients throughout, but the diagram is of course also
correct with integral coefficients.

B) — .  H3E) " H2B) —L. H4®B) (2.15)

Assume thah, i € H3(I§) both satisfy the above equations, anddet h— . It follows that

fid = 0 € H2(B), and thatp*d = 0. The second property implies that there is allét H(E)

with d = | Uft‘c. Setn:= fil € HO(B). Without loss of generality we can assume tBas
connected (else we work one component at a time). Now, only two possibilities remain (since
[2] uses real coefficients, where no torsion phenomena occur).

(1) Eithern =0, thenl = f‘a for a suitablea € H1(B), and consequentlt— i = d =
t"(cUa), which is exactly what we want to prove.

(2) If n#£0, thencg = 0, sincencg = Ttd = 0. In this casejt‘cg = 0 and therefore also
h—fF=d=Ilufrcg =0.

2.2.8 Letusfix(E,h).
Theorem 2.16 The equivalence class of pairs which are dua{fEoh) is uniquely determined.

Proof. By Lemmd 2.1P the isomorphism class of the underlyir(@)-bundleE of a pair dual
to (E, h) is determined by the first Chern class="ti (h). If (E,h) and(E, /) are both dual to

(E,h), then by Corollary 2.1 —h= f*(cUa) for somea € HY(B,Z). It remains to show that
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there exists an automorphismf1)-principal bundles

= E
!

such that) *h =f. Any automorphisnJ is given by multiplication by a suitablg: B — U (1).
Then we can factdd as the composition
Mg gy xEME,

wheremis given by the principal bundle structure. Observe that we have the pull-back diagram

UL xE & E
pry | T .
E 5 B

UsingH3(U (1) x E) = prsH3(E) @ oy (1) x pr3H3(E) whereoy 1) € HY(U (a)) is the canonical
generator, naturality of integration over the fiber, and the spiitrof we obtain

m*(h) = pry(h) & oy 1) x TEfu(h) .
Note that[B,U (1)] = HY(B, Z) via [g] — g*oy (1) =: a(g) € H(B,Z).

Now we return to the construction &f (and thereforeg) with U*h = . To achieve this,
chooseg corresponding ta € H1(B,Z) such thah — i = fi(cUa). Using i (h) = —c we get

A A~ A A~

(gxid)*m*(h) = —ax w'c+pri(h). FinallyU*(h) = h—T1t*(cUa). O

2.3 The topology ofR

2.3.1 Itis atopological fact that the universal bundle with filbgZ, 3) is
K(Z,3) — PK(Z,4) — K(Z,4) ,

wherePK(Z,4) is the path space df(Z,4), i.e. the space of all path iK(Z,4) starting in
the base point. The map ¥(Z,4) is given by evaluation at the end point. The fiber of this
evaluation over the base point is the based loop spCEZ,4), which serves here as a model
for the homotopy typ&(Z, 3).
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2.3.2 If Bis a space, then bundles ov@mwith (“oriented”) fiberK(Z,3) are classified by
homotopy classes of maf,K(Z,4)], i.e. by cohomology classes (B, Z). The homotopy
type of such a bundle is determined by such maps up to self homotopy equivale Bcascbf
K(Z,4), i.e. upto the action of self homotopy equivalence8 aind up to multiplication by-1
onH4(B; 7).

We consider a bundle
K(Z,3) = F —B

which is classified bk € H4(B,Z). For simplicity we assume th&is connected and simply
connected. Ther can be read off from the diﬂ‘erentidﬁ’3 in the Serre spectral sequence for
the bundle. By the Hurewicz theorem, the relevant part oBhipage looks like

3|Z|0|H?B,Z) |H3B,Z) | H*(B,Z)
2100 0 0 0
1(0/|0 0 0
0|Z|0|H?%B,Z) | H3(B,Z) | H*(B,Z)
X|0|1 2 3 4

The differentiald2’3 : Z — H4(B, Z) is multiplication withk.

2.3.3 The mainresult of the present subsection is the determination of the homotopy &pe of
Let z€ H2(K(Z,2),Z) be the canonical generator. By thémheth theorem, the cohomology
of K(Z,2) x K(Z,2) is the polynomial ring in two generators= pr;z and ¢:= pr5z, i.e.
H(K(Z,2) xK(Z,2),7) = Z]c,¢|.

Theorem 2.17 R is the total space of a bundle

K(Z,3) — R— K(Z,2) x K(Z,2) (2.18)
which is classified by o ¢ € H4(K(Z,2) x K(Z,2),7).
2.3.4 To prove Theorer 2.17, we first compute the homotopy grag(#®). Observe thag’

andSt admit only one isomorphism class of pairs. This implies Rt connected and simply
connected. This observation also frees us from basepoint considerations.
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Lemma 2.19 The homotopy groups of R are given by

0 i¢{23}
R ={ Z®Z i=2
Z i=3

Proof. We first observe that there is exactly one isomorphism class of pairsSofari > 4,
namely(U (1) x S — S,0). This implies thatg (R) = 0 fori > 4. It remains to determinex(R)
andmg(R).

If (E,h) is a pair overS®, then we havé& = St x S* andh = n(E, h)1q x og for a well-defined
integern(E, h) € Z, whereogs € H3(S*,Z) is the canonical generator. The bijecti®(s®) = 7
given by(E,h) — n(E, h) induces the isomorphisms(R) — Z in view of[2.6.

Let us now consider a paiiE,h) over &. Note thatE is canonically oriented, in particular
H3(E,Z) = [E]-Z. Letc e H?(S,7Z) be its first Chern class. Then we define the tuple of
integers

(k(E,h),n(E,h)) = (< ¢,[S] > <h][E] >) € ZDZ.

The bijectionP(S?) = Z @ Z given by (E,h) — (k(E,h),n(E,h)) defines the isomorphism
To(R) = Z @ Z in view of[2.67 O

2.3.5 The computation of the homotopy groupskRimplies by the Hurewicz theorem that
Ho(RZ) = Z, Hi(R,Z) = 0 andHx(R,Z) = Z & Z. By the universal coefficient theorem
H?(RZ) = Z @ 7. Recall thatc € H2(R,Z) is the class of the projection: R — K(Z,2).
Let t: E — R be the universal bundle amde H3(E,Z) be the universal class.

Definition 2.20 We definé& := —1i(h) € H3(R Z).

Lemma 2.21 We have H(R,Z) = ¢Z @ &Z.

2We leave it to the interested reader to check that these bijections are in fact homomorphisms.
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Proof. Using the canonical isomorphistig (R, Z) = Hom(Hz(R, Z), Z) = Hom(T(R), Z), where
x € H2(RZ) and[f: & — R] is mapped to< f*x,[$?] >. The identificationn(R) = Z & Z
above giveH?(R Z) = Z ® Z. An inspection shows that this isomorphism magst b¢ to
(a,—b). ThereforeH?(R,Z) is freely generated by andg. O

2.3.6 LetcCbe classified by a map: R— K(Z,2). We will now determine the homotopy fiber
F of the map
(c,6): R—K(Z,2) xK(Z,2) .

Lemma 2.22 The homotopy fiber @k, ¢) is K(Z, 3).

Proof. We consider the long exact sequence of homotopy groups
= TE(F) - m(R) — (K(Z,2) x K(Z,2)) - T_1(F) — ... .

We immediately conclude that(F) =0 if i ¢ {1,2,3}. Furthermore we see tha(F) =
w(R) X Z.

Therefore the relevant part is now

T[l(c76)
s

0— Tu(F) — TB(R) (K (Z,2) x K(Z,2)) — T (F) — 0.

Now we observe thatc,c) induces an isomorphism in integral conomology of degree?.
Therefore it induces an isomorphism 1, (R) = 1, (K(Z, 2) x K(Z,2)). It follows thattg (F) =
0 fori € {1,2}. O

2.3.7 We now have seen th&kis the total space of a bundle

(c)

K(z,3) — R“YK(2,2) xK(Z,2) .

It remains to determine the invariakt H4(K(Z,2) x K(Z,2),Z) which determines this bun-
dle. To do this we compute the cohomologyR®iip to degree 4 and then we determine the
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differential in the Serre spectral sequence of the bundle. We already know that

H"(R,Z)

/

0

N|F—,|O|>S

CZ D CZ

20

2.3.8 We start with recalling the low-dimensional integral cohomologyLKf(Z,3). Note
thatK(Z, 3) has the structure of adf-space (because one possible mod€lk§Z,4)), so that
LK(Z,3) is homotopy equivalent t(Z, 3) x QK(Z, 3). Further note tha®K(Z, 3) ~ K(Z, 2).

We use that
n| H(K(Z,2),Z) | H(K(Z,3),Z)
0 Z 7
1 0 0
2 Z, 0
3 0 Z
4 Z 0
5 0 0

We now conclude by the nhneth formula that

2.3.9 We compute the cohomolody®(R,Z) using the Gysin sequence of

Observe that

H(LK(Z,3),Z)

Z

gl WD, |O|>S

N NNN O

U(1) = U x LK(Z,3) = R.

U x LK(Z,3)

— U

(2.23)
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is a pull-back ofJ (1)-principal bundles. Therefore the first Chern class ofuli&)-principal
bundleU x LK (Z,3) — R (with the diagonal U(1)-action) is ¢ € H?(R Z). We further use the
fact thatU is contractible. The relevant part of the Gysin sequence is

0— H3(R Z) — H3(LK(Z,3),Z) — H3 (R Z) > H*(R Z) — H*(LK(Z,3),Z) — H3(R Z) .

Sincec is the first Chern class af: E — R, the above principal bundle is isomorphicBEand
we can use the Gysin sequencetorE — R

—H3(E,Z) S HYR Z) SHYRZ) —

to conclude thatU& = —cum(h) = 0. Thereforec: H?(R Z) — H*(R Z) is not injective.
SinceH3(LK(Z,3),Z) = Z andH?(R, Z) is free abelian this implies that

H3(R,Z)=0.

2.3.10 The mapc: R — K(Z,2) admits a natural spliK(Z,2) — R. It mapsx € K(Z,2) to
the clasgu,y|, wherey is the constant loop angle Uy is any point. The split classifies the pair
(U,0) overK(Z,2). The existence of the split implies thagenerates a polynomial ririg[c]|

as direct summand insid¢*(R,Z).

2.3.11 In particular,c?® # 0. Therefore the kernel af: H(R,Z) — H*(R,Z) is generated by
C. The Gysin sequence fdr (2]23) now gives

2 4
0—-Z->H RZ) —7Z—0,
where the last cop¥ is H4(LK(Z, 3), Z). This implies that

HYRZ) = PZBZ .

We now show that? andé? generatéd4(R, Z) as aZ-module. We consider the pair ou€(Z, 2)
consisting of the trivial bundl€l : U(1) x K(Z,2) — K(Z,2) and the clasi = oy x z€
H3(U(1) x K(Z,2),Z), wherez € H?(K(Z,2),7Z) is a generator. This pair is classified by a
mapf : K(Z,2) — R LetF :U(1) x K(Z,2) — E be defined by the pull-back diagram

UL xK(Z,2) & E
ni m .

K(z2 & R
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Then we havd*c =0 and
f*¢=—f*r(h)=-MF*(h)=M(h)=-z.

This shows that € H?(R Z) generates a polynomial ring isomorphicZ] insideH*(R; Z).
Furthermore, we see thdt (¢?) = 7 is primitive so thatt® must be primitive, too. Thus
H4(R Z) = c?Z. & &7Z. Let us collect the results of our computations:

Lemma 2.24 We have

H(R Z)
Z
0
CL DL
0
27 ® 7

AIW|IN|FL| O|>S

2.3.12 We now finish the proof of Theorem 2]17. We considerigage of the Serre spec-
tral sequence of the fibration (2]18).

4/0/0/ 0 |0 0
3lz|o] = |0 %
2/0/0 0 |Z 0
1/0/0/| 0 |0 0
0/Z|0|cZ®¢Z|0|PZ&(cUSZGEL
«|0[1] 2 |3 4

We read off that

03

0—-Z 2% L@ (CUGZBEL — PROEZ — 0.

The last map is the edge homomorphism and therefore induced by th&mapi (Z,2) x
K(Z,2). Since under this mapis mapped t@ andcto ¢, d2’3 is multiplication by+cU¢. This
finishes the proof of Theorem 2]17 O

2.4 TheT-transformation



2 THE CLASSIFYING SPACE OF PAIRS 23

2.4.1 We have already observed tliaandU x LK(Z,3) are isomorphitJ (1)-principal bun-
dles overR, both having first Chern clags SinceU is contractible, we know the low dimen-
sional cohomology oE by Section 2.3]8. Using the Gysin sequenca dE — R, we determine
the generators in terms of characteristic classds ¢irom

0—HYRZ)SHYRZ)— HXE,Z) -0
we conclude thatl?(E, Z) = 1*¢Z. Finally, we get
0— H3E,Z) B H3R Z) S HYRZ) — HYE,Z) — 0.

This shows thaH®(E,Z) = Z andH*(E,Z) = 1*¢?Z. Sincet = —m(h) generates the kernel
of c: H?(R Z) — H4(R Z) we haveH3(E,Z) = hZ.

Lemma 2.25

hZ
w27

A WINIFL| O|D>S
=
o
N

2.4.2 The clasg classifies &) (1)-principal bundléft: E — R. SincecU&=0andH3(R,Z) =
0 there exist unique classks H3(E,Z) andh € H3(E, Z) such thatE, h) and(E, h) are dual
to each other, where we use Corollary 2.10.

Lemma 2.26 We have h= h.

Proof. Letr : V — Rdenote the two-dimensional complex vector bundle giveN by L © L,
whereL andL are the hermitian line bundles associatedEtandE. Then we can factor the
associated unit sphere bundle as

V) 2 P(V) LR,

whereP(V) is the projective bundle o¥. Let ¢ € H2(P(V),Z) be the first Chern class of the
U (1)-principal bundles: S(V) — P(V). By the Leray-Hirsch theored*(P(V),Z) is a free
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module overH*(R,Z) generated by gy € HO(P(V),Z) and¢ The line bundled andL
induce two sectionki: R— P(V) such that we have the following pull-back diagrams

E L ogv) &
] s| T .
R L Pv) & R

m»

Note thatl*& = c andi*& = €. Sincet)(¢) = 1=t 0s(Th) we haves (Th) = &+t*b for some
b € H?(R Z). This implies thatr (h) = 15 0i*(Th) = 1* 0 5(Th) = ¢+ b. Analogously, we get
fiy(h) = &+ b. Furthermore, we deduce from the projection formula that

cu(c+b)=cuUm(h)=m(mcuh)=0, €u(€+b)=0.

Using the information about the ring structure l8f (R Z) it follows that c+ b = m¢ and
¢+ b = nc for somem,n € Z. SinceH?(R,Z) is freely generated by and& we conclude that
m=n=—1,i.e.b=—(&+c) so thatrg (h) = —&. By Lemmd 2.2F each classie H3(E,Z)
is a multiple ofh. Sincert (h) = 1w (h) we see thah = h. O

2.4.3 We also see that;(h) = —c. This shows thalh := h € H3(E, Z) is a generator.

Definition 2.27 We define the dual universal pair to b, h).

As in[2.4.1 we have

Corollary 2.28

Mw|N|k|o|S
=
O,
N
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2.4.4 LetT:R— Rbe the classifying map of the dual péit, h), covered by thél (1)-bundle
mapTe: E — E.

Lemma 2.29 ToT classifieE,h). In particular, T? ~ idg.

A

Proof. We haveT*c =&. Furthermore,T*¢ = T*1i(—h) = fu(—Tg¢h) = fu(—h) = c. Thus
(ToT)*c=cand(ToT)*¢ =& The underlying bundle of the pair classifiedb§ism: E — R.
Sincert(h) = —€= —(T o T)*c we must havéT o T)*(E, h) = (E, h). O

2.4.5 Recall fron]2.1.B thaP(B) denotes the set of isomorphism classes of pairs Bvand
that we have a natural transformation of functétg : [B,R] — P(B). The mapT : R— R
induces an involutio, : [...,R — [...,R].

Definition 2.30 We define the natural transformation of set-valued functors
T :P(...)—=P(...)

by
Tg:=WgoT.owgl.

We call it the T-duality transformation

2.4.6 The following is a consequence|of 229.

Corollary 2.31 Note that F = id. In particular, the T-duality transformation is an isomor-
phism of functors.

2.4.7 Let(E,h) be a pair oveB andc € H?(B,Z) be the first Chern class &.

Lemma 2.32 Any pair (E, h) admits the dual paifE, h) representing the classsT[E,h]). The
first Chern clas€ € H2(B,Z) of E is given by¢ = —i(h). Furthermore, c= —i (h).
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Proof. Let f : B — R classify the paifE,h). Then we let(E,h) = f*(E,h). The relations
between the Chern classes and the three-dimensional cohomology classes follow from the cor-
responding relations ov& obtained irf 2.4]2. We have compatible pull-back diagrams

E - E E - E SV) — gV)
! Ly Lo ! !
B — R B — R B — R

We obtain the Thom class &V) as a pull-back of the universal Thom classo¥/). Its re-
striction toE andE givesh andh. This shows thatE, h) and(E, h) are in duality. O

2.4.8 We consider pair¢E, h) and(E, ﬁ) over a space. Letc, € denote the first Chern classes
of E andE.

Lemma 2.33 If (E,h) and (E,h) are dual to each other, then we have=c—fi(h) and & =
—T5(h).

Proof. Denote the canonical generators of the polynomial HrigK (Z, 2) x K(Z,2),Z) by z,2
(instead ofc, € - we do this in order to avoid notational conflicts).Recall that we have a bundle

K(Z,3) — R K(Z,2) xK(z,2)

which is classified byU2 € H4(K(Z,2) x K(Z,2),Z). If f:B— K(Z,2) x K(Z,2) satisfies
f*zU fz2=0, then it admits a liftf : B— R. Let f : B— K(Z,2) x K(Z,2) be the classifying
map of the pair(c,¢), i.e f*z=c and f*2= & Then we have a liff : B— R. Pulling back
the universal pairs ove® we get pairgE, ') and(E, ) which are dual to each other. Further-
more, () = —¢& andfu (i) = —c. By we havér = i + b andh = Y + f*b for some

b e H3(B). Hencer (h) = 1 () = —¢ andm (h) = i (F') = —c. O

2.4.9 Note that there is a natural actiontéf(B, Z) on the seP(B) given byB[E,h| := (E,h+
'B), B H3(B).

Lemma 2.34 The T -duality transformation is equivariant with respect to this action Bz ).
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Proof. This is an immediate consequenceg of 2.10. O

2.4.10 By Theoren| 2.16 we already knew that the equivalence class of pairs d(&lHp

is unique, if such dual pairs exist at all. The new information obtained from the study of the
topology of the classifying space is the existence of pairs dud to). More significantly, note

that our proof of the uniqueness parf of 2.16 involves Lerpma 2.33, whose proof also depends
on the knowledge of the topology &

3 T-duality in twisted cohomology theories

3.1 Axioms of twisted cohomology

3.1.1 There may be many explicit models of a twisted cohomology theory which lead to equiv-
alent results, and examples abound in the literature. In particular, this applies to the nature of a
twist. What we will describe here is a picture which should be the common core of the various
concrete realizations.

In any case the twists come as a pre-sheaf of pointed grouBoidsl (B) on the category of
spaces. Let us fix some notation for the main ingredients, which also recalls the concept of a
pre-sheaf we use. First of all(B) is a groupoid with a distinguished trivial obje@s, giving

rise to the trivial twist (i.e. to no twist at all). If : A— B is a map of spaces, then there is a
functor f* : T(B) — T(A) preserving the trivial twists. Furthermore,gf B — C is a second

map, then there exists a natural transformation

Wig: frog"— (gof)*.
If h:C — D is athird map, then we require that

Wt hogo f*Wgh=WgornohWig

3.1.2 The following three requirements provide the coupling to topology.
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(1)

(2)

@)

We require that there is a natural transformatiof (...) — H3(...,Z) (the latter is con-
sidered as a pre-sheaf of categories in a trivial manner, i.e. with only identity morphisms)
which classifies the isomorphism classe3 0B) for eachB.

If #, " € T(B) are equivalent objects, then we require that(#, #’) is aH?(B,Z)-
torsor such that the composition with fixed morphisms gives isomorphisms of torsors.
Furthermore, we require that the torsor structure is compatible with the pull-back. Note
that we have natural bijections: Hom(#, H) — H?(B,Z) which map compositions to
sums.

Let X € T(Z(BUx)), whereX(BU x) := 1| x B/({0} x BU {1} x B) is the (reduced)
suspension. We have a homotdpy! x B — X(BU %) from the constant map : B —

x — X(BU ) to itself given byh(b) = [t,b]. It induces a morphisra(h) : p* X — p* X

as explained if 3.1]5. We require theti(h)) andc(X) correspond to each other under
the suspension isomorphist?(Z(BUx),Z) = H?(B, Z).

3.1.3 Let us list two examples.

(1)

(2)

In our first example the objects @f(B) are Hitchin gerbes. Recall that a Hitchin gerbe
over X is aU(1)-extension{ — G, where G is an étale groupoid which represents
the spaceB. A morphism inT(B) is an equivalence class of equivalences of Hitchin
gerbesu: #H — #H’. The isomorphism classes of Hitchin gerbes are classified by the
characteristic class(#) € H3(B,Z). We refer to[[4] for further details, in particular the
torsor structure on the sets of morphisms.

In the second example the objectd@B) are given by the set of continuous m&psB —
K(Z,3). A morphismu: f — f’is then a homotopy class of homotopies fréno f’.
We setc(f) := [f] € [B,K(Z,3)] = H3(B,Z). Recall thal.K(Z,3) ~ K(Z,2) x K(Z,3).
Letu: LK(Z,3) — K(Z,2) be the first projection. The second projection is given by the
evaluation magvo. An automorphism of is a homotopy clasg] € [B,LK(Z,3)] with
evpoy= f. Therefore, automorphisms are classifiedioyy] € [B,K(Z,2)] = H?(B,Z).

3.1.4 In the following we fix some framework of twists and formulate the axioms of a twisted

cohomology theory in this framework. We fix a cohomology thelorfpr which we want to

define a twisted extension.
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Definition 3.1 A twisted cohomology theory h extending h associates to each space X and each
twist H € T(X) aZ-graded group (X, #). Toamap f Y — X it associates a homomorphism

£ h(X, ) — h(Y, %) .

To a morphism u # — %’ of twists it associates an isomorphism, natural with respect to
pullbacks,
u*:h(X,#H) — h(X,#") .

Finally, we require an integration map
prh(Y, p* ) — h(X, )

of degreedim(Y) — dim(X) for a proper h-oriented map pY — X. Integration shall be natural
with respect to morphisms in(X).

These structures must satisfy the axioms described below.

Axiom 3.2 (Extension) Let Bx € T(X) denote the trivial twist. There exists a canonical iso-
morphism IiX,8x) — h(X) which preserves pull-back and integration over the fiber.

Axiom 3.3 (Functoriality) Ifg:Z —Y is a second map, then we have
Wy t(H) o(fog) =g of”.
If v:H" — #H is another morphism of twists, then we have

VioUu* = (Uov)*.

3.1.5 Assume thah:R xY — X is a homotopy fronfg to fy, i.e. fx = ig(h), wherei,:Y —
R x Y is given byiy(x) = (k,x), k=0,1. DefineF : RxY — R x X; (t,y) — (t,h(t,y)). Observe
that for H € T(X) the twists(idr x fo)*pr3# andF*pr;#H onR x Y are isomorphic, since
we can by assumption read off the isomorphism class from the pullbacks of the corresponding
classifying cohomology class, which are equal by homotopy invariance of cohomology. We
define

u(h) : (idg x fo)*pryH — F prsH
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to be the unique morphism of twists such that

can ip(u(h)) can

uth
foH = igo(idr x fo)*opryH = ijoF* opryH = fiH

is the identity. The morphisma(h) is determined uniquely this way singg H2(R x Y, Z) —
H?(Y,Z) is an isomorphism. The canonical isomorphisms are induced by A@m 3.3. Note that
u(h) is natural with respect to morphismsTi{X).

Finally we define

can i7(u(h)) can
V(F): fgH = ijo(idgr x fo) opr; = ijoF opryH = f{H

Axiom 3.4 (Homotopy invariance) With these conventions we require that

Vo fi =1g.
Axiom 3.5 (Integration)

(1) Functoriality If q:Z —Y is a further proper h-oriented map, then we have
prodyoWpg(#)" = (gop)r - h(Z,(qo p)*(#)) — h(X, H) .

(2) Naturality If g: Z — X is a further map, then we have the Cartesian diagram

ZxxY P9y
gpl pl
z % x

and we require that

(g'P)ro (Wogrp)(H)" o (Wpprg(H)") o (p'g) =g opr .

Axiom 3.6 (Mayer-Vietoris sequence)lf X =U UV is a decomposition by open subsets, then
we can find a functiop: X — R such thatpy\y = 1, @x\v = —1, and the inclusion:i (Y :=
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{@=0}) — X is a proper naturally h-oriented map. LetY - UnNV,g:U — X, h:V — X,
k:UnV—=U,l:UnNnV —=V,andr:UNV — X denote the inclusions, and defihe=1i, o j*ﬁ.
Then we require that the following sequence is exact:

S hUNV ) 2 hx ) T kU, g ) o hv,he e K hunv e —

where some canonical isomorphisms are suppressed in the notation.

3.1.6 Examples of twisted cohomology theories which satisfy these axioms (on the category
of smooth manifolds and smooth maps) are twisted de Rham cohomology and t#stéd
cobordism theory [4] and [5]. In these examples twists are Hitchin gerbes. As indicated in [5]
there should also be a twisted version of competheory. In this case the missing piece in the
literature is a nice description of integration over the fiber and also of the boundary operator in
the Mayer-Vietoris sequence.

3.2 T-admissibility

3.2.1 We consider the unit spheB C2=C&C. LetE := St andE := St. We consider the
embedding$: E — S i(2) = (z0) andi :E — Si(2) = (0,2). LetT:=ExEandp:T - E
andp’: T — E denote the projections. We define the homothpy x T — Sfromioptoiop

by
h(z,2) ;= %2(\/1—t22,t2) :

Let X € T(S) be a twist such that ¢(X), [§ >= 1. We define#{ :=i* K and#{ := I*%. The
homotopyh induces a unique morphism

& oAy u(h) : * ¥pi K)il * =k *
(lop)"K = (iop)X = piIK=pH,

—

" R Wei(XK)
u:p"H =prx =

whereu(h) is defined in Sectiop 3.1.5.

3.2.2 Lethbe atwisted cohomology theory. Note theis tanonicallyh-oriented sincd E is
canonically trivialized by thé&J (1)-action.

SNote thatd is independent of the choice of
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Definition 3.7 We say that the twisted cohomology theory h is T-admissible if

N N

prou(h)*op®:h(E,H) — h(E,H)

is an isomorphism. Note that the map has degréde

3.2.3 Naturality implies thafl -admissibility does not depend on the choice%¢finside its
isomorphism class.

3.2.4 We show now how one can chetkadmissibility in practice.

Let S/(E UE) be the quotient space &wherei(E) andi(E) are identified to one point. We
have a natural identification: S/(EUE) = (T U ) given by the homotopf used in Section
[3.2.1. Note thap*r* : H3(3(T Ux),Z) — H3(S Z) is an isomorphism, whene: S— S/(EUE)

is the projection. Thus, we can choogg:= p*r* X for some twistX € T(Z(T Ux)). Note
thatc(K) € H3(Z(TU*),Z) = Zis a generator. Sinde3(x,Z) = 0= H?(x,Z), the restriction
of X to the base point is the trivial twist. Then we obtain canonical morphights 6z and
H = Bg. The homotopy o h induces now a canonical morphianr o h) : 6t — 6y. By the
third property stated i.2 we know thau(r oh)) € H?(T,Z) = Z is a generator, too. The
determination of this generator involves the precise understanding of the isomoyphisand
of the suspension isomorphism.

Note thatH?(T,Z) acts naturally or(T) via the identificationdd?(T,Z) = Hom(87,07) and
h(T) = h(T,81). Forg € H?(T,Z) we denote this action by*.

Therefore, in order to check that the cohomology thdory T-admissible, it suffices to show
that
frogop*:h(E) — h(E)

is an isomorphism iy € H2(T,Z) is a generator.

3.25

Lemma 3.8 Twisted K-theory is T-admissible.
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Proof. Let| € KO(T) be the class of the line bundle ov&rwith first Chern class equal to
g€ H?(T,Z) = Z. Theng* is induced by the cup product withLet 1< K°(S!) andu € K1(S')
be the generators. One can compute

Pprogop(l) = gB(u)
progop’(u) = 1,

whereB : K1 — K1 is the Bott periodicity transformation. This is indeed an isomorphism if
ge{1,—-1}. 0

3.2.6 We consider the graded rirg:= R[z z 1] where de@z) = —2 and the twisted coho-
mologyHr(X, #), where we usein order to couple the twist.

Lemma 3.9 Twisted cohomology with coefficients in R is T-admissible.

Proof. The action ofg € H3(T,Z) is given by the cup-product with-£ zgz, wheregg, is the
image ofg in Hg(T). By a simple computation

Ppogop’(l) = zgu
Ppogiop’(u) = 1

This is indeed an isomorphismgf+ O. O

3.2.7 T-admissibility is a strong condition dm It implies for example that

prog op opogop’:h(E)— h(E)
is an isomorphism of degree2. This isomorphism induces a two-periodicitylgE). Here is
a non-example.

Lemma 3.10 Twisted Spifrcobordism is not T-admissible.

Proof. MSpin®(S') is not two-periodic since it is concentrated in degreg. O
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3.3 T-duality isomorphisms

3.3.1 We consider two pairéE, h) and(E, h) overB which are dual to each other. We use the
notation of 2.2.[L. LeTh € H3(S(V), Z) be a Thom class. We choose a twigte T(S(V)) such
thatc(%X) = Th. Then we defing{ :=i* X € T(E) and# :={* K € T(E). We havec(#) = h
andc(ﬁ[) — h. We consider the diagram

EXBE
P/ P\
E ql E . (3.11)
LN /
B

This is the parameterized version of the situation considergd in 3.2.1. In particular, we have a
homotopyh: | x E xy E — (V) fromioptoio . Itinduces the morphism

e YY) uth) Woi(K)™t
UWPH=PTEK = (iofp)’X = (lop)K = pirK=pH

—

which is natural under pullback of bundles.

Let h be a twisted cohomology theory.

Definition 3.12 We define the T -duality transformation

T:=piou op*:h(E,H) — h(E,H).

3.3.2 The main theorem of the present section is the following. AssumeBtimhomotopy
equivalent to a finite complex.

Theorem 3.13If h is T -admissible, then the T -duality transformation T is an isomorphism.

Proof. Let f : A— B be a map. Then we use the pull-back%fin order to define the duality
transformatior overA. LetF : f*E — E andF : f*E — E be the induced maps. The statement
of the following Lemma involves various (not explicitly written) canonical isomorphisms.
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Lemma 3.14 We have

ToF*=F*oT:h(E,#) — h(f*E,E* %) .

Assume that we have a decompositi®a- U UV with open subsetd andV and letj :UNV —

B denote the inclusion. By taking pre-images with respeat #nd ft we obtain associated
decomposition€ = Ey UEy andE = Ey UEy. Letf:EyNEy — E andf:EyNnBy — E
denote the inclusions. Finally 18t h(Ey NEy, f*#) — h(E, #) andd: h(Ey N By, f*#) —
h(é, }A[) denote the boundary operators in the Mayer-Vietoris sequences.

Lemma 3.15 We have

To8=00T :h(Ey NEy, f*#) — h(E, #) .

Assuming these lemmas, the proof of the theorem now goes by induction on the number of cells
of B. The induction starts with any contractible base sinég T-admissible, using naturality

and homotopy invariance. In the induction step we adjoin a cell. We use L¢mnja 3.14 and
[3.18 in order to see thatinduces a map of Mayer-Vietoris sequences. The induction step now
follows from the five-lemma. O

3.3.3 We now prove Lemmla 3.14. L&: f*E xa f*E — E xgE be the induced map. The as-
sertion follows from the following computation, omitting a number of canonical isomorphisms.

Fr'oT = Fopiou®op
)
>! O(G*u)*OG*O p*

“pho(G'u)o(F p) oF”
= ToF*.
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3.3.4 We now prove Lemmp 3.15. Lgte C(B) be a function which takes the valuel on

B\V and 1 onB\ U, and such that the inclusion of (Y := {¢ = 0}) — B is canonicallyh-
oriented. Lek:Y —UNV, | :=T1t, | :=ft"i, K := 'k, andK := ft'k denote the corresponding
inclusions. Note that and | have a trivialized normal bundle and thus are canonidally
oriented. We havd = |, oK* andd = I, oK*. Furthermore, we sét= g*i andK = g*k. Finally
letJ:=m*j,J := ft*j, andG := g* j denote the corresponding embeddings Gved NV — B.

The assertion of the Lemma now follows from the following computation, where canonical
isomorphisms are omitted.

A

§oT — MoK o(F*p)io(GU)*o (I p)*
= lro(Fp)ro(u) o (I*p) oK
= pProlio(™u)o(I"p)*oK*

— Prouolio(I"p)* oK*

= piou*op*oloK*

= Tod.

4 Examples

4.1 The computation of twistedK-theory for 3-manifolds

4.1.1 If E is a closed oriented 3-manifold then isomorphism classes of twists E are
classified by the numbet c(# ), [E] >€ Z. We fix an equivalence class of twists corresponding

to n € Z. Representatives can be pulled back fréfusing a map of degree 1. Note that
K(E,#) is independent of the twist in its class up to a non-canonical isomorphism. In the
present subsection we want to compute the isomorphism class of this group which we will
denote byK(E, n). Our computation is based on the Mayer-Vietoris sequence.

4.1.2 We choose aball ¢ E. Then we have a decompositiin=U UV such that) NV ~ .
We identify the twists ot andV with the trivial twist. We can arrange that under the degree
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1 map toS? the setU is mapped to the complement of the south pole rid mapped to the
complement of the north pole.

Using the relation between twists and morphisms in the suspeioh & and naturality,
we see that a twist in the classis given by the transition morphism: 8 — 8 such that
<u(v),[$] >=+n. Letu* : K(S?) — K(S) denote the corresponding automorphism. It acts
by the cup product with the class of the line bundle of degree Then the Mayer-Vietoris
sequence reads

—K(S) 2 K(En) —KU)aKV) ST K -,
wherei : & — U andj : & — V are the inclusions. At this point we have fixed the sign of the
class of the twist.

4.1.3 We identify K(S?) = ZI & Z6, wherel is represented by the trivial one-dimensional
bundle, and is represented by the difference of a line bundle of degree one and a trivial line
bundle. We then have‘l =1 +n6 andu*6 = 6.

4.1.4 The Mayer-Vietoris sequence gives

a=u*oi*

0—KOE,n) - ZaKOWV) X 71 676 & KYE,n) — KLV) - 0.

The restriction ofa to the first summand mapsdZ to | @ +n. If x € KO(V), thenxg =
dim(x)1+ < c1(X) g, [S*] > 6. Now observe thak ci(x) g, [S?] >= 0 sinceS* bounds inV.
Therefore we hava(k,x) = (k—dim(x))l +knB. We conclude that fon # 0O

2

KO(E,n) = RO(V) =K(E)
whereK%(E) := ker(dim) is the reduced group. Furthermoke'(E, n) fits into a sequence

0— Z/nZ — KY(E,n) — K}(V)—0.

Note thatk!(V) is free abelian and satisfieank K!(V) = rank K!(E) — 1. In particular we
get
KL(E,n) = zr2xK E) -1 g7 /n7, |
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4.1.5 Let M be a closed oriented surface of gergusThe U (1)-principal bundles oveM

are classified by the first Chern class. IretEx — M be the bundle with first Chern class

< ¢(Ex), [M] >=k. We use the Gysin sequence in order to compute the integral conomology of
Ex. We get

i |H(Ex,Z),k#0| H(Ep,Z)
0 Z Z

1 ZZg Z29+1
2| 7Z¥e7/k7 | 729!
3 Z Z

4.1.6 We now compute th&-theory of Ex using the Atiyah-Hirzebruch spectral sequence.
The second page in the cdse 0 looks like (vertically periodic)

22|78 | 7280 Z/KZ | 7
1/0] 0 0 0
0|Z|78 |28 Z/KL | 7|
0| 1 2 3

The only possibly non-trivial differential id§’3. But since the spectral sequence degenerates
rationally, the differential is trivial. We get

i | K(Ex),k#0 | K(Eo)
0|22 7Z/KZ | 729+2 |.
1 ZZg-I—l ZZQ-I—Z

4.1.7 We now use this result in order to compitéEy, n). We get forn 0

i | K(Ex,n),k#0|  K(Eo,n)
ZZQ@Z/kZ Z29+1
1| z¥ez/nz |78 e7/nZ

4.1.8 Let us now verify that this computation confirmisduality. In fact, the unique dual pair
of (Ex,nog, ) is (En, —kog,). ThusT-duality predicts an isomorphism

K (Ex.n) 2 K (E_p, —k)

of degree—1. This is in fact compatible with the results above.
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4.2 Line bundles overCP"

4.2.1 Letpn:Enr — CP" be theU (1)-principal bundle with first Chern clasgz, wherez e
H?(CP',Z) is the canonical generator. We first compHit¢E,,, Z) using the Gysin sequence for

pn. We get
k H¥(Enr,Z),n# 0 | H(Eo,Z)
0 7 A
2.1<I<r Z/0Z 7
2+1,1<I<r-1 0 A
2r+1 Z 7

Note thatr = « is permitted in the construction and calculation, and fat is a model for
BZ/NZ.

4.2.2 We compute th&-theory of E,, using the Atiyah-Hirzebruch spectral sequence. We
observe that this sequence degenerates. We get

(Enr) n;éo K(EO,I')
Z@Anl’ ZZH—l ,
1 7, ZZH—l

whereAy is an abelian group with" elements and with composition series with subquotients
Z/nZ. Using Atiyah’s completion theorem I|K1°(En r) = R(G) we get extra information about

these groups, e.g. that the limit is torS|on free. In the particularly simplercas2 we have

FT(E) = Z(2), which implies thatdxr = Z/2'7, is cyclic. For othen, in particular ifnis a prime
numberAy can also be computed explicitly by looking at the completion theorem and suitable
Leray-Serre spectral sequences; we leave this as an exercise to the reader. A precise answer can
be found e.g. in the book of Gilkey|[9], Thm. 4.6.7.

4.2.3 The computation of the cohomology shows thatifas 1 only Eg admits non-trivial
twists (the case = 1 is covered by Secti.l). Let us fix the generatarH3(Ep) such that
(po)i1(g) =z Then twistsH overEy are classified by an integkie Z such that(#) = kg. Let
K (Eo, k) be the isomorphism class of the twistéetheory for the twists in the clasgse Z. We
can now applyT -duality in order to compute this group. In fact, the unique dual pajEgfk)
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is (E_k,0). Thus we get

K (Eg, k)
V/
1| Z& Ay

Note that the calculations of this section, using the results of the present paper, rely on the fact
that twisted K-theory is a twisted cohomology theory in the sense of our axioms. As explained
earlier, no complete account of such a theory seems to be available in the literature .

4.3 An example where torsion plays a role

4.3.1 As the base space we consider the total space of the bppdE, — M as in Section
for a prime numbek > 1 and forr > 1, i.e. we seB:= Ey. We fix a class ¢ c € H%(B, Z)
and letF. denote the correspondikly 1)-principal bundle oveB. Sincec generatesi*(B,Z) as

a ring, except for the top degree, the Gysin sequenég siiows that its cohomology vanishes
in degrees ki < 2r +1, andH(F, Z) ¢ Z.

Choose therefore 8 h e H3(F,Z). SinceH3(B,Z) = 0, there is a unique dual pdifs, h) with
Chernclasg = —1(h) =0 andh ¢ H3(F@, 7). Sincec’= 0, Fe is the trivial bundle, therefore its
cohomology isH' (Fe, Z) = H' (B, Z) & H'~ (B, Z), e.g.H3(Fe, Z) = HZ(B, Z) =~ Z/KZ. Now h

is the unique class witfi (h) = —c, i.e. corresponds te-c under the isomorphisti3(Fs, Z) =
H2(B,Z). Clearly, if we only worked with differential forms as is done fin [2], then we could
not distinguish this torsion twist from the trivial one.

4.3.2 The Atiyah-Hirzebruch spectral sequencel@F.) degenerates. This shows tha{ F;) =
72 = K1 (F;), whereaKo(Fp) =2 Ko(B) @ K1(B) 2 Z D Z & A¢ = K1(Fp). The T-duality iso-
morphism identifiesk (F¢) with K (Fo,h) for the torsion twisth. In particular we see that
K (Fo) 2 K (Fo, h) which shows that the torsion part of the twist is important.
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4.4 Iterated T-duality

4.4.1 LetT denote the group (1) x U(1).

Definition 4.1 Two principal T-bundles F~ B and F — B are isomorphic if there exists an
isomorphism of fiber bundles

«—
o «—

such that U is T -equivariant.

4.4.2 The group of automorphisms df is GL(2,Z). If we identify T = R?/Z?, then the
action of this group off is induced by the linear action ®?. Let@ e GL(2,Z).

Definition 4.2 Two principal T-bundles F~ B and F — B are ¢@-twisted isomorphic if there
exists an isomorphism of fiber bundles

FYF
| |
B —

such that U igp-twisted T-equivariant, i.e. o-t) =U(p)-@(t)forallpe F,tcT.

Assume thaB is connected. We say that twieprincipal bundles oveB are twisted isomorphic
if they are@-twisted isomorphic for some (then uniguely determingd)

4.4.3 We consider & -principal bundlat: F — B. We need the subgrous:=U (1) x {1} C
T andS; ;= {1} xU(1) C T. We defineEg := F /S andE; := F/S;. All these spaces fit into
a diagram

Eo T E1 , 4.3)
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wherep; andTg areU (1)-principal bundles in a natural way. We consider a ctasdH3(F, Z).

Definition 4.4 We say that the pai(F,h) is dualizable, if h= py(hg) + p;(h1) for some he
H3(E;,Z).

4.4.4 We can now try to construct B-dual of (F, h) by iteratedT -duality. We first form the
dual (oF, oh) of the pair(F — Ey,h). Note that we have the pull-back diagram

F P Eo
PL=TTo | | -
E % B

Let (Eo, ho) be a dual of Eg, ho). Then we gepF by the pull-back diagram

g
oP1=T4To | | -
E % B

Furthermore we get

Now we form the dualF,h) of the pair(oF — Eg,0h). Let (Ey,h1) be the dual of Ex, hy).
Then we gef by the pull-back

F R g
Pl ) o |
E, % B
and
h = p5(ho) + Pa(ha) - (4.5)

4.4.5 Note that this construction of the iterated dual involves the choice of a representation
h = pj(ho) + p;(h1). The goal of the following discussion is to show that the burigles
B may depend on this choice even if we consider it up to twisted equivalence. It should be
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remarked that our examples with a non-unique dual do not depend on the existence of torsion in
cohomology and therefore would also show up if we only worked with de Rham cohomology.

Our example should be contrasted with the constructions| of [3], were a very similar definition
of T-duality for torus bundles is used, but in which case (at least according to the authdrs) the
dual (which exists under conditions similar to ours) is uniquely determined (up to isomorphism).
In [10], a different approach t®-duality for torus bundles is used, based on continuous trace
algebras over the initial bundle and actionsRdfon the continuous trace algebra. Under our
existence assumption, the construction_of [10] also gives rise to a classical dual torus bundle,
which is claimed to be uniquely determined. The relationship to our construction is not quite
clear, we plan to investigate this, and to give more information about the higher dimensional
case in a subsequent paper.

4.4.6 A T-principal bundlee — B gives rise to Chern classeg c; € H2(B,Z) of the bundles
Eo,E1. The pair(co,c1) determines the isomorphism classfby the proof of Corollary
[4.7. We consider this pair of Chern classes as a @éB$ ¢ H2(B,Z?) in the natural way.
Then the Chern classes of the dual ai€1o) (ho), (T )i1(h1)). Note thatGL(2,Z) acts on the
cohomology with coefficients iz?.

4.4.7 Choose nowp € GL(2,Z). Then we can define a nelvprincipal bundl€’F. It has the

same underlying fiber bundfe — B, but we redefine the action @f such that
oF X F

! L

is a@-twisted isomorphism. Let : GL(2,7Z) — GL(2,7Z) be the bijection (of order two)
b —
2 — (ad—bc) R
c d -b d

Lemma 4.6 We have (°F) = ¢°c(F).
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a
Proof. Let p= (
o

for the generator§ ! 9), (9 4), (2 ) of GL(2,Z)) we see thatEo = (EZ ® E; ©)?(® and

b
). Then by an easy computation (which has only to be carried out

9E; = (Ey P @ EJ)99). Thereforec(?F) = det() ( _ab _dc ) (o, C1)- H

Corollary 4.7 The twisted isomorphism class of the T-principal bundle F is determined pre-
cisely by the orbit G[2,Z)c(F) c H?(B,Z?).

Proof. If F andF’ are isomorphid -principal bundles oveB, thenc(F) = c(F') € H2(B,Z?).
If F andF’ are ®-twisted isomorphic, thelf and ®F’ are isomorphic, and by Lemnja 4.6
c(F) € GI(2,Z)c(F').

Finally, if F andF’ are two bundles witle(F) = c(F’), then theJ (1)-principal bundle€, and
Ej as well asE; andE; are isomorphic. It follows thé, as the pullback oE; alongEy, is iso-
morphic to the pullback oE] alongE, i.e. toF’. If ¢(F) € GL(2,Z)c(F’) thenc(F) = ¢(®F)
for a suitable® € GL(2,Z) and thereford= and ®F’ are isomorphicT -principal bundles, so
thatF andF’ are twisted isomorphic. O

4.4.8 LetL; be the line bundles associatedgicandV := Lo® L;. Let furthers: SV) — B be
the unit sphere bundle. Then we have natural embeddinds) — S(V) andiz : E; — S(V).
We have a decomposition

S(V) = D(Lo) xgE1UEQg xB D(Ll) .
The associated Mayer-Vietoris sequence gives the exact sequence

ig®i]

H2(F.Z) — HY(S\V),2) S H3 (B0, 2) & H3(E1,2) " H3(F,Z).  (4.8)

Letr; € H3(E;,Z). Then we havepj(ro) + pi(r1) = 0 if an only if (ro,—r1) € im(i§ @i}). If
this is satisfied we get a (second) splitting c£Q;(0) = p;(0) € H3(F, Z).
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To understand the corresponding dual, we compmtg(r;). The dual of anyl-bundle with
splitting 0= p;(0) + p;(0) has Chern clas0,0). If we can find an example as above with
(o)1 ((i0)*X), (Tu)1((i1)*X)) # O, the latter can not lie in th&L(2, Z)-orbit of (0,0) and there-
fore not even the underlying bundle of the second dual is twisted isomorphic to the first one.

4.4.9 Choose novB = S, ¢y = c; the generator ofi>(S,Z). ThenEy = E; has underlying
spaceS® with the Hopf principal fibration. In this cas@y): H3(S%,Z) — H?(S,Z) is an
isomorphism. Moreovef is aU (1)-bundle overS® and thereforéd?(F,Z) = 0, consequently
ip®ij in (4.9) is injective. The Gysin sequence BV ) gives

H3(B,Z) — H3(S(V),Z) % HO(B,Z) “* H4(B,Z) ,
i.e. H3(S(V),Z) = Z # {0}.

It follows that there is G X € H3(S(V), Z) such that}(X) @i} (X) # 0, and thereforérg); (i (X)) @
(mq)1(i7(X)) # 0 and we are done by the above observation.

References

[1] M. Atiyah and G. Segal. Twistel-theory. arXiv:math.KT/0407054 1.2]12

[2] P. Bouwknegt and J. Evslin and V. Mathal.-Duality : Topology change fronk-flux.
arXiv:hep-th/0306062 1.2.M, 1.2[4, 125, 112.6, 14.10, 1.p.12]2.2.6,[2.2.7, 4.3.1

[3] P. Bouwknegt and K. Hannabuss and V. Math&kDuality for principal torus bundles.
arXiv:hep-th/0312284 1.2.1, 1.2]14, 4]4.5

[4] U. Bunke and Th. Schick. Twiste8Ipirf-cobordism. Preprint 2003. (1), 3.1.6

[5] U. Bunke and Th. Schick. Twisted characteristic classes for twiStidf-cobordism.

Preprint 2004.[ 1.2.12,3.1.6

[6] U. Bunke and Th. Schick.T-duality for non-free circle actions. In preparation, 2004.
[1.2.15



REFERENCES 46

[7] D.S. Freed, M.J. Hopkins and C. Teleman Twisted equivaraitiieory with complex
coefficients. Preprint 2003, arXiv:math.AT//0206257. 1.p.12

[8] P. Gajer. Geometry of Deligne cohomologylnvent. Math, 127(1997), 155-207.
arXiv:alg-geom/9601025

[9] P. B. Gilkey. Invariance theory, the heat equation, and the Atiyah-Singer index theorem
Publish or Perish, Wilmington, 1984. 4.p.2

[10] V. Mathai and J. Rosenberg. T-Duality for torus bundles witfluxes via noncommuta-
tive topology. arXiv:hep-th/0401168 1.2[1,1)2.5] I, T.Pl14, 4.4.5

[11] J. Mickelsson. Twistet-theory invariants. arXiv:math-AT/0401130 1.2.13

[12] I. Raeburn and J. Rosenberg. Crossed Products of ContinuousTtakigebras by
Smooth Actions Transactions of the AMS305(1988), 1-45[ 1.2.[, 1.2[6, 1]4.9, 1

[13] A. Strominger, S.T. Yau, and E. Zaslow. Mirror symmetryligluality. Nuclear Phys. B.
479 (1996), 243-259.

[1.2.2



	Introduction
	Summary
	Description of the results

	The classifying space of pairs
	Pairs and the classifying space
	Duality of pairs
	The topology of R
	The T-transformation

	T-duality in twisted cohomology theories
	Axioms of twisted cohomology
	T-admissibility
	T-duality isomorphisms

	Examples
	The computation of twisted K-theory for 3-manifolds
	Line bundles over CPr
	An example where torsion plays a role
	Iterated T-duality


