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These notes, based on three lectures on operator algebras and topology at
the “School on High Dimensional Manifold Theory” at the ICTP in Trieste,
introduce a new set of tools to high dimensional manifold theory, namely tech-
niques coming from the theory of operator algebras, in particular C∗-algebras.
These are extensively studied in their own right. We will focus on the basic
definitions and properties, and on their relevance to the geometry and topology
of manifolds.

A central pillar of work in the theory of C∗-algebras is the Baum-Connes
conjecture. This is an isomorphism conjecture, as discussed in the talks of
Lück, but with a certain special flavor. Nevertheless, it has important direct
applications to the topology of manifolds, it implies e.g. the Novikov conjecture.
In the first chapter, the Baum-Connes conjecture will be explained and put into
our context.

Another application of the Baum-Connes conjecture is to the positive scalar
curvature question. This will be discussed by Stephan Stolz. It implies the so-
called “stable Gromov-Lawson-Rosenberg conjecture”. The unstable version of
this conjecture said that, given a closed spin manifold M , a certain obstruction,
living in a certain (topological) K-theory group, vanishes if and only M admits
a Riemannian metric with positive scalar curvature. It turns out that this is
wrong, and counterexamples will be presented in the second chapter.

The third chapter introduces another set of invariants, also using operator
algebra techniques, namely L2-cohomology, L2-Betti numbers and other L2-
invariants. These invariants, their basic properties, and the central questions
about them, are introduced in the third chapter.

Several people contributed to these notes by reading preliminary parts and
suggesting improvements, in particular Marc Johnson, Roman Sauer, Marco
Varisco und Guido Mislin. I am very indebted to all of them.



Chapter 1

Index theory and the
Baum-Connes conjecture

1.1 Index theory

The Atiyah-Singer index theorem is one of the great achievements of modern
mathematics. It gives a formula for the index of a differential operator (the index
is by definition the dimension of the space of its solutions minus the dimension
of the solution space for its adjoint operator) in terms only of topological data
associated to the operator and the underlying space. There are many good
treatments of this subject available, apart from the original literature (most
found in [2]). Much more detailed than the present notes can be, because of
constraints of length and time, are e.g. [44, 7, 32].

1.1.1 Elliptic operators and their index

We quickly review what type of operators we are looking at.

1.1.1 Definition. Let M be a smooth manifold of dimension m; E,F smooth
(complex) vector bundles on M . A differential operator (of order d) from E to
F is a C-linear map from the space of smooth sections C∞(E) of E to the space
of smooth sections of F :

D : C∞(E)→ C∞(F ),

such that in local coordinates and with local trivializations of the bundles it can
be written in the form

D =
∑
|α|≤d

Aα(x)
∂|α|

∂xα
.

Here Aα(x) is a matrix of smooth complex valued functions, α = (α1, . . . , αm)
is an m-tuple of non-negative integers and |α| = α1 + · · · + αm. ∂|α|/∂xα is
an abbreviation for ∂|α|/∂xα1

1 · · · ∂xαmm . We require that Aα(x) 6= 0 for some α
with |α| = d (else, the operator is of order strictly smaller than d).

Let π : T ∗M → M be the bundle projection of the cotangent bundle of M .
We get pull-backs π∗E and π∗F of the bundles E and F , respectively, to T ∗M .

3



4 CHAPTER 1. INDEX THEORY AND BAUM-CONNES

The symbol σ(D) of the differential operator D is the section of the bundle
Hom(π∗E, π∗F ) on T ∗M defined as follows:

In the above local coordinates, using ξ = (ξ1, . . . , ξm) as coordinate for the
cotangent vectors in T ∗M , in the fiber of (x, ξ), the symbol σ(D) is given by
multiplication with ∑

|α|=m

Aα(x)ξα.

Here ξα = ξα1
1 · · · ξαmm .

The operator D is called elliptic, if σ(D)(x,ξ) : π∗E(x,ξ) → π∗F(x,ξ) is invert-
ible outside the zero section of T ∗M , i.e. in each fiber over (x, ξ) ∈ T ∗M with
ξ 6= 0. Observe that elliptic operators can only exist if the fiber dimensions of
E and F coincide.

In other words, the symbol of an elliptic operator gives us two vector bundles
over T ∗M , namely π∗E and π∗F , together with a choice of an isomorphism of
the fibers of these two bundles outside the zero section. If M is compact,
this gives an element of the relative K-theory group K0(DT ∗M,ST ∗M), where
DT ∗M and ST ∗M are the disc bundle and sphere bundle of T ∗M , respectively
(with respect to some arbitrary Riemannian metric).

Recall the following definition:

1.1.2 Definition. Let X be a compact topological space. We define the K-
theory of X, K0(X), to be the Grothendieck group of (isomorphism classes of)
complex vector bundles over X (with finite fiber dimension). More precisely,
K0(X) consists of equivalence classes of pairs (E,F ) of (isomorphism classes
of) vector bundles over X, where (E,F ) ∼ (E′, F ′) if and only if there exists
another vector bundle G on X such that E ⊕ F ′ ⊕G ∼= E′ ⊕ F ⊕G. One often
writes [E]− [F ] for the element of K0(X) represented by (E,F ).

Let Y now be a closed subspace of X. The relative K-theory K0(X,Y ) is
given by equivalence classes of triples (E,F, φ), where E and F are complex
vector bundles over X, and φ : E|Y → F |Y is a given isomorphism between the
restrictions of E and F to Y . Then (E,F, φ) is isomorphic to (E′, F ′, φ′) if we
find isomorphisms α : E → E′ and β : F → F ′ such that the following diagram
commutes.

E|Y
φ−−−−→ F |Yyα yβ

E′|Y
φ′−−−−→ F ′|Y

Two pairs (E,F, φ) and (E′, F ′, φ′) are equivalent, if there is a bundle G on X
such that (E ⊕G,F ⊕G,φ⊕ id) is isomorphic to (E′ ⊕G,F ′ ⊕G,φ′ ⊕ id).

1.1.3 Example. The element of K0(DT ∗M,ST ∗M) given by the symbol of an
elliptic differential operator D mentioned above is represented by the restriction
of the bundles π∗E and π∗F to the disc bundle DT ∗M , together with the
isomorphism σ(D)(x,ξ) : E(x,ξ) → F(x,ξ) for (x, ξ) ∈ ST ∗M .

1.1.4 Example. Let M = R
m and D =

∑m
i=1(∂/∂i)2 be the Laplace operator

on functions. This is an elliptic differential operator, with symbol σ(D) =∑m
i=1 ξ

2
i .
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More generally, a second-order differential operator D : C∞(E) → C∞(E)
on a Riemannian manifold M is a generalized Laplacian, if σ(D)(x,ξ) = |ξ|2 · idEx
(the norm of the cotangent vector |ξ| is given by the Riemannian metric).

Notice that all generalized Laplacians are elliptic.

1.1.5 Definition. (Adjoint operator)
Assume that we have a differential operator D : C∞(E)→ C∞(F ) between two
Hermitian bundles E and F on a Riemannian manifold (M, g). We define an
L2-inner product on C∞(E) by the formula

〈f, g〉L2(E) :=
∫
M

〈f(x), g(x)〉Ex dµ(x) ∀f, g ∈ C∞0 (E),

where 〈·, ·〉Ex is the fiber-wise inner product given by the Hermitian metric, and
dµ is the measure on M induced from the Riemannian metric. Here C∞0 is the
space of smooth section with compact support. The Hilbert space completion
of C∞0 (E) with respect to this inner product is called L2(E).

The formal adjoint D∗ of D is then defined by

〈Df, g〉L2(F ) = 〈f,D∗g〉L2(E) ∀f ∈ C∞0 (E), g ∈ C∞0 (F ).

It turns out that exactly one operator with this property exists, which is another
differential operator, and which is elliptic if and only if D is elliptic.

1.1.6 Remark. The class of differential operators is quite restricted. Many con-
structions one would like to carry out with differential operators automatically
lead out of this class. Therefore, one often has to use pseudodifferential opera-
tors. Pseudodifferential operators are defined as a generalization of differential
operators. There are many well written sources dealing with the theory of pseu-
dodifferential operators. Since we will not discuss them in detail here, we omit
even their precise definition and refer e.g. to [44] and [78]. What we have done
so far with elliptic operators can all be extended to pseudodifferential operators.
In particular, they have a symbol, and the concept of ellipticity is defined for
them. When studying elliptic differential operators, pseudodifferential opera-
tors naturally appear and play a very important role. An pseudodifferential
operator P (which could e.g. be a differential operator) is elliptic if and only if
a pseudodifferential operator Q exists such that PQ − id and QP − id are so
called smoothing operators, a particularly nice class of pseudodifferential oper-
ators. For many purposes, Q can be considered to act like an inverse of P , and
this kind of invertibility is frequently used in the theory of elliptic operators.
However, if P happens to be an elliptic differential operator of positive order,
then Q necessarily is not a differential operator, but only a pseudodifferential
operator.

It should be noted that almost all of the results we present here for differential
operators hold also for pseudodifferential operators, and often the proof is best
given using them.

We now want to state several important properties of elliptic operators.

1.1.7 Theorem. Let M be a smooth manifold, E and F smooth finite dimen-
sional vector bundles over M . Let P : C∞(E)→ C∞(F ) be an elliptic operator.

Then the following holds.
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(1) Elliptic regularity:
If f ∈ L2(E) is weakly in the null space of P , i.e. 〈f, P ∗g〉L2(E) = 0 for
all g ∈ C∞0 (F ), then f ∈ C∞(E).

(2) Decomposition into finite dimensional eigenspaces:
Assume M is compact and P = P ∗ (in particular, E = F ). Then the
set s(P ) of eigenvalues of P (P acting on C∞(E)) is a discrete subset
of R, each eigenspace eλ (λ ∈ s(P )) is finite dimensional, and L2(E) =
⊕λ∈s(P )eλ (here we use the completed direct sum in the sense of Hilbert
spaces, which means by definition that the algebraic direct sum is dense in
L2(E)).

(3) If M is compact, then ker(P ) and ker(P ∗) are finite dimensional, and then
we define the index of P

ind(P ) := dimC ker(P )− dimC ker(P ∗).

(Here, we could replace ker(P ∗) by coker(P ), because these two vector spaces
are isomorphic).

1.1.2 Statement of the Atiyah-Singer index theorem

There are different variants of the Atiyah-Singer index theorem. We start with
a cohomological formula for the index.

1.1.8 Theorem. Let M be a compact oriented manifold of dimension m, and
D : C∞(E)→ C∞(F ) an elliptic operator with symbol σ(D). There is a charac-
teristic (inhomogeneous) cohomology class Td(M) ∈ H∗(M ;Q) of the tangent
bundle of M (called the complex Todd class of the complexified tangent bundle).
Moreover, to the symbol is associated a certain (inhomogeneous) cohomology
class π! ch(σ(D)) ∈ H∗(M ;Q) such that

ind(D) = (−1)m(m+1)/2〈π! ch(σ(D)) ∪ Td(M), [M ]〉.

The class [M ] ∈ Hm(M ;Q) is the fundamental class of the oriented manifold
M , and 〈·, ·〉 is the usual pairing between homology and cohomology.

If we start with specific operators given by the geometry, explicit calculation
usually give more familiar terms on the right hand side.

For example, for the signature operator we obtain Hirzebruch’s signature for-
mula expressing the signature in terms of the L-class, for the Euler characteristic
operator we obtain the Gauss-Bonnet formula expressing the Euler characteris-
tic in terms of the Pfaffian, and for the spin or spinc Dirac operator we obtain
an Â-formula. For applications, these formulas prove to be particularly useful.

We give some more details about the signature operator, which we are going
to use later again. To define the signature operator, fix a Riemannian metric g
on M . Assume dimM = 4k is divisible by four.

The signature operator maps from a certain subspace Ω+ of the space of
differential forms to another subspace Ω−. These subspaces are defined as fol-
lows. Define, on p-forms, the operator τ := ip(p−1)+2k∗, where ∗ is the Hodge-∗
operator given by the Riemannian metric, and i2 = −1. Since dimM is divisible
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by 4, an easy calculation shows that τ2 = id. We then define Ω± to be the ±1
eigenspaces of τ .

The signature operator Dsig is now simply defined to by Dsig := d + d∗,
where d is the exterior derivative on differential forms, and d∗ = ± ∗ d∗ is its
formal adjoint. We restrict this operator to Ω+, and another easy calculation
shows that Ω+ is mapped to Ω−. Dsig is elliptic, and a classical calculation
shows that its index is the signature of M given by the intersection form in
middle homology.

1.1.9 Definition. The Hirzebruch L-class as normalized by Atiyah and Singer
is an inhomogeneous characteristic class, assigning to each complex vector bun-
dle E over a space X a cohomology class L(E) ∈ H∗(X;Q). It is characterized
by the following properties:

(1) Naturality: for any map f : Y → X we have L(f∗E) = f∗L(E).

(2) Normalization: If L is a complex line bundle with first Chern class x, then

L(E) =
x/2

tanh(x/2)
= 1 +

1
12
x2 − 1

720
x4 + · · · ∈ H∗(X;Q).

(3) Multiplicativity: L(E ⊕ F ) = L(E)L(F ).

It turns out that L is a stable characteristic class, i.e. L(E) = 1 if E is a
trivial bundle. This implies that L defines a map from the K-theory K0(X)→
H∗(X;Q).

The Atiyah-Singer index theorem now specializes to

sign(M) = ind(Dsig) = 〈22kL(TM), [M ]〉,

with dimM = 4k as above.

1.1.10 Remark. One direction to generalize the Atiyah-Singer index theorem is
to give an index formula for manifolds with boundary. Indeed, this is achieved
in the Atiyah-Patodi-Singer index theorem. However, these results are much
less topological than the results for manifolds without boundary. They are not
discussed in these notes.

Next, we explain the K-theoretic version of the Atiyah-Singer index theo-
rem. It starts with the element of K0(DT ∗M,ST ∗M) given by the symbol of
an elliptic operator. Given any compact manifold M , there is a well defined
homomorphism

K0(DT ∗M,ST ∗M)→ K0(∗) = Z,

constructed by embedding T ∗M into high dimensional Euclidean space, then
using a transfer map and Bott periodicity. The image of the symbol element
under this homomorphism is denoted the topological index indt(D) ∈ K0(∗) =
Z. The reason for the terminology is that it is obtained from the symbol only,
using purely topological constructions. Now, the Atiyah-Singer index theorem
states

1.1.11 Theorem. indt(D) = ind(D).
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1.1.3 The G-index

Let G be a finite group, or more generally a compact Lie group. The repre-
sentation ring RG of G is defined to be the Grothendieck group of all finite
dimensional complex representations of G, i.e. an element of RG is a formal
difference [V ]− [W ] of two finite dimensional G-representations V and W , and
we have [V ]− [W ] = [X]− [Y ] if and only if V ⊕Y ∼= W ⊕X (strictly speaking,
we have to pass to isomorphism classes of representations to avoid set theoret-
ical problems). The direct sum of representations induces the structure of an
abelian group on RG, and the tensor product makes it a commutative unital
ring (the unit given by the trivial one-dimensional representation). More about
this representation ring can be found e.g. in [11].

Assume now that the manifold M is a compact smooth manifold with a
smooth G-action, and let E,F be complex G-vector bundles on M (this means
that G acts on E and F by vector bundle automorphisms (i.e. carries fibers to
fibers linearly), and the bundle projection maps are G-equivariant).

Let D : C∞(E)→ C∞(F ) be a G-equivariant elliptic differential operator.
This implies that ker(D) and coker(D) inherit a G-action by restriction,

i.e. are finite dimensional G-representations. We define the (analytic) G-index
of D to be

indG(D) := [ker(D)]− [coker(D)] ∈ RG.
If G is the trivial group then RG ∼= Z in a canonical way, and then indG(D)

coincides with the usual index of D.
We can also define a topological equivariant index similar to the non-equiva-

riant topological index, using transfer maps and Bott periodicity. This topolog-
ical index lives in the G-equivariant K-theory of a point, which is canonically
isomorphic to the representation ring RG. Again, the Atiyah-Singer index the-
orem says

1.1.12 Theorem. indG(D) = indGt (D) ∈ K0
G(∗) = RG.

1.1.4 Families of operators and their index

Another generalization is given if we don’t look at one operator on one manifold,
but a family of operators on a family of manifolds. More precisely, let X be
any compact topological space, Y → X a locally trivial fiber bundle with fiber
M a smooth compact manifold, and structure group the diffeomorphisms of M .
Let E,F be families of smooth vector bundles on Y (i.e. vector bundles which
are fiber-wise smooth), and C∞(E), C∞(F ) the continuous sections which are
smooth along the fibers. Assume that D : C∞(E) → C∞(F ) is a family {Dx}
of elliptic differential operator along the fiber Yx ∼= M (x ∈ X), i.e., in local
coordinates D becomes ∑

|α|≤m

Aα(y, x)
∂|α|

∂yα

with y ∈M and x ∈ X such that Aα(y, x) depends continuously on x, and each
Dx is an elliptic differential operator on Yx.

If dimC ker(Dx) is independent of x ∈ X, then all of these vector spaces patch
together to give a vector bundle called ker(D) on X, and similarly for the (fiber-
wise) adjoint D∗. This then gives a K-theory element [ker(D)] − [ker(D∗)] ∈
K0(X).
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Unfortunately, it does sometimes happen that these dimensions jump. How-
ever, using appropriate perturbations, one can always define the K-theory ele-
ment

ind(D) := [ker(D)]− [ker(D∗)] ∈ K0(X),

the analytic index of the family of elliptic operators D.
There is also a family version of the construction of the topological index,

giving indt(D) ∈ K0(X). The Atiyah-Singer index theorem for families states:

1.1.13 Theorem. ind(D) = indt(D) ∈ K0(X).

The upshot of the discussion of this and the last section (for the details the
reader is referred to the literature) is that the natural receptacle for the index of
differential operators in various situations are appropriate K-theory groups, and
much of todays index theory deals with investigating these K-theory groups.

1.2 Survey on C∗-algebras and their K-theory

More detailed references for this section are, among others, [88], [32], and [8].

1.2.1 C∗-algebras

1.2.1 Definition. A Banach algebra A is a complex algebra which is a complete
normed space, and such that |ab| ≤ |a| |b| for each a, b ∈ A.

A ∗-algebra A is a complex algebra with an anti-linear involution ∗ : A→ A
(i.e. (λa)∗ = λa∗, (ab)∗ = b∗a∗, and (a∗)∗ = a for all a, b ∈ A).

A Banach ∗-algebra A is a Banach algebra which is a ∗-algebra such that
|a∗| = |a| for all a ∈ A.

A C∗-algebra A is a Banach ∗-algebra which satisfies |a∗a| = |a|2 for all
a ∈ A.

Alternatively, a C∗-algebra is a Banach ∗-algebra which is isometrically ∗-
isomorphic to a norm-closed subalgebra of the algebra of bounded operators
on some Hilbert space H (this is the Gelfand-Naimark representation theorem,
compare e.g. [32, 1.6.2]).

A C∗-algebra A is called separable if there exists a countable dense subset
of A.

1.2.2 Example. If X is a compact topological space, then C(X), the algebra of
complex valued continuous functions on X, is a commutative C∗-algebra (with
unit). The adjoint is given by complex conjugation: f∗(x) = f(x), the norm is
the supremum-norm.

Conversely, it is a theorem that every abelian unital C∗-algebra is isomorphic
to C(X) for a suitable compact topological space X [32, Theorem 1.3.12].

Assume X is locally compact, and set

C0(X) := {f : X → C | f continuous, f(x) x→∞−−−−→ 0}.

Here, we say f(x)→ 0 for x→∞, orf vanishes at infinity, if for all ε > 0 there
is a compact subset K of X with |f(x)| < ε whenever x ∈ X −K. This is again
a commutative C∗-algebra (we use the supremum norm on C0(X)), and it is
unital if and only if X is compact (in this case, C0(X) = C(X)).
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1.2.2 K0 of a ring

Suppose R is an arbitrary ring with 1 (not necessarily commutative). A module
M over R is called finitely generated projective, if there is another R-module
N and a number n ≥ 0 such that

M ⊕N ∼= Rn.

This is equivalent to the assertion that the matrix ring Mn(R) = EndR(Rn)
contains an idempotent e, i.e. with e2 = e, such that M is isomorphic to the
image of e, i.e. M ∼= eRn.

1.2.3 Example. Description of projective modules.

(1) If R is a field, the finitely generated projective R-modules are exactly the
finite dimensional vector spaces. (In this case, every module is projective).

(2) If R = Z, the finitely generated projective modules are the free abelian
groups of finite rank

(3) Assume X is a compact topological space and A = C(X). Then, by the
Swan-Serre theorem [84], M is a finitely generated projective A-module if
and only if M is isomorphic to the space Γ(E) of continuous sections of
some complex vector bundle E over X.

1.2.4 Definition. Let R be any ring with unit. K0(R) is defined to be the
Grothendieck group of finitely generated projective modules over R, i.e. the
group of equivalence classes [(M,N)] of pairs of (isomorphism classes of) finitely
generated projective R-modules M , N , where (M,N) ≡ (M ′, N ′) if and only if
there is an n ≥ 0 with

M ⊕N ′ ⊕Rn ∼= M ′ ⊕N ⊕Rn.

The group composition is given by

[(M,N)] + [(M ′, N ′)] := [(M ⊕M ′, N ⊕N ′)].

We can think of (M,N) as the formal difference of modules M −N .
Any unital ring homomorphism f : R→ S induces a map

f∗ : K0(R)→ K0(S) : [M ] 7→ [S ⊗RM ],

where S becomes a right R-module via f . We obtain that K0 is a covariant
functor from the category of unital rings to the category of abelian groups.

1.2.5 Example. Calculation of K0.

• If R is a field, then K0(R) ∼= Z, the isomorphism given by the dimension:
dimR(M,N) := dimR(M)− dimR(N).

• K0(Z) ∼= Z, given by the rank.

• If X is a compact topological space, then K0(C(X)) ∼= K0(X), the topo-
logical K-theory given in terms of complex vector bundles. To each vector
bundle E one associates the C(X)-module Γ(E) of continuous sections of
E.
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• Let G be a discrete group. The group algebra CG is a vector space with ba-
sis G, and with multiplication coming from the group structure, i.e. given
by g · h = (gh).

If G is a finite group, then K0(CG) is the complex representation ring of
G.

1.2.3 K-Theory of C∗-algebras

1.2.6 Definition. Let A be a unital C∗-algebra. Then K0(A) is defined as in
Definition 1.2.4, i.e. by forgetting the topology of A.

1.2.3.1 K-theory for non-unital C∗-algebras

When studying (the K-theory of) C∗-algebras, one has to understand morphisms
f : A→ B. This necessarily involves studying the kernel of f , which is a closed
ideal of A, and hence a non-unital C∗-algebra. Therefore, we proceed by defining
the K-theory of C∗-algebras without unit.

1.2.7 Definition. To any C∗-algebra A, with or without unit, we assign in
a functorial way a new, unital C∗-algebra A+ as follows. As C-vector space,
A+ := A⊕ C, with product

(a, λ)(b, µ) := (ab+ λa+ µb, λµ) for (a, λ), (b, µ) ∈ A⊕ C.

The unit is given by (0, 1). The star-operation is defined as (a, λ)∗ := (a∗, λ),
and the new norm is given by

|(a, λ)| = sup{|ax+ λx| | x ∈ A with |x| = 1}

1.2.8 Remark. A is a closed ideal of A+, the kernel of the canonical projection
A+ � C onto the second factor. If A itself is unital, the unit of A is of course
different from the unit of A+.

1.2.9 Example. Assume X is a locally compact space, and let X+ := X∪{∞}
be the one-point compactification of X. Then

C0(X)+
∼= C(X+).

The ideal C0(X) of C0(X)+ is identified with the ideal of those functions f ∈
C(X+) such that f(∞) = 0.

1.2.10 Definition. For an arbitrary C∗-algebra A (not necessarily unital) de-
fine

K0(A) := ker(K0(A+)→ K0(C)).

Any C∗-algebra homomorphisms f : A → B (not necessarily unital) induces a
unital homomorphism f+ : A+ → B+. The induced map

(f+)∗ : K0(A+)→ K0(B+)

maps the kernel of the mapK0(A+)→ K0(C) to the kernel ofK0(B+)→ K0(C).
This means it restricts to a map f∗ : K0(A) → K0(B). We obtain a covariant
functor from the category of (not necessarily unital) C∗-algebras to abelian
groups.
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Of course, we need the following result.

1.2.11 Proposition. If A is a unital C∗-algebra, the new and the old definition
of K0(A) are canonically isomorphic.

1.2.3.2 Higher topological K-groups

We also want to define higher topological K-theory groups. We have an ad
hoc definition using suspensions (this is similar to the corresponding idea in
topological K-theory of spaces). For this we need the following.

1.2.12 Definition. Let A be a C∗-algebra. We define the cone CA and the
suspension SA as follows.

CA := {f : [0, 1]→ A | f(0) = 0}
SA := {f : [0, 1]→ A | f(0) = 0 = f(1)}.

These are again C∗-algebras, using pointwise operations and the supremum
norm.

Inductively, we define

S0A := A SnA := S(Sn−1A) for n ≥ 1.

1.2.13 Definition. Assume A is a C∗-algebra. For n ≥ 0, define

Kn(A) := K0(SnA).

These are the topological K-theory groups of A. For each n ≥ 0, we obtain a
functor from the category of C∗-algebras to the category of abelian groups.

For unital C∗-algebras, we can also give a more direct definition of higher
K-groups (in particular useful for K1, which is then defined in terms of (classes
of) invertible matrices). This is done as follows:

1.2.14 Definition. Let A be a unital C∗-algebra. Then Gln(A) becomes a
topological group, and we have continuous embeddings

Gln(A) ↪→ Gln+1(A) : X 7→
(
X 0
0 1

)
.

We set Gl∞(A) := limn→∞Gln(A), and we equip Gl∞(A) with the direct limit
topology.

1.2.15 Proposition. Let A be a unital C∗-algebra. If k ≥ 1, then

Kk(A) = πk−1(Gl∞(A))(∼= πk(BGl∞(A))).

Observe that any unital morphism f : A → B of unital C∗-algebras in-
duces a map Gln(A) → Gln(B) and therefore also between πk(Gl∞(A)) and
πk(Gl∞(B)). This map coincides with the previously defined induced map in
topological K-theory.
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1.2.16 Remark. Note that the topology of the C∗-algebra enters the definition of
the higher topological K-theory of A, and in general the topological K-theory of
A will be vastly different from the algebraic K-theory of the algebra underlying
A. For connections in special cases, compare [83].

1.2.17 Example. It is well known that Gln(C) is connected for each n ∈ N.
Therefore

K1(C) = π0(Gl∞(C)) = 0.

A very important result about K-theory of C∗-algebras is the following long
exact sequence. A proof can be found e.g. in [32, Proposition 4.5.9].

1.2.18 Theorem. Assume I is a closed ideal of a C∗-algebra A. Then, we get
a short exact sequence of C∗-algebras 0→ I → A→ A/I → 0, which induces a
long exact sequence in K-theory

→ Kn(I)→ Kn(A)→ Kn(A/I)→ Kn−1(I)→ · · · → K0(A/I).

1.2.4 Bott periodicity and the cyclic exact sequence

One of the most important and remarkable results about the K-theory of C∗-
algebras is Bott periodicity, which can be stated as follows.

1.2.19 Theorem. Assume A is a C∗-algebra. There is a natural isomorphism,
called the Bott map

K0(A)→ K0(S2A),

which implies immediately that there are natural isomorphism

Kn(A) ∼= Kn+2(A) ∀n ≥ 0.

1.2.20 Remark. Bott periodicity allows us to define Kn(A) for each n ∈ Z, or to
regard the K-theory of C∗-algebras as a Z/2-graded theory, i.e. to talk of Kn(A)
with n ∈ Z/2. This way, the long exact sequence of Theorem 1.2.18 becomes a
(six-term) cyclic exact sequence

K0(I) −−−−→ K0(A) −−−−→ K0(A/I)x yµ∗
K1(A/I) ←−−−− K1(A) ←−−−− K1(I).

The connecting homomorphism µ∗ is the composition of the Bott periodicity
isomorphism and the connecting homomorphism of Theorem 1.2.18.

1.2.5 The C∗-algebra of a group

Let Γ be a discrete group. Define l2(Γ) to be the Hilbert space of square
summable complex valued functions on Γ. We can write an element f ∈ l2(Γ)
as a sum

∑
g∈Γ λgg with λg ∈ C and

∑
g∈Γ |λg|

2
<∞.

We defined the complex group algebra (often also called the complex group
ring) CΓ to be the complex vector space with basis the elements of Γ (this can
also be considered as the space of complex valued functions on Γ with finite
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support, and as such is a subspace of l2(Γ)). The product in CΓ is induced by
the multiplication in Γ, namely, if f =

∑
g∈Γ λgg, u =

∑
g∈Γ µgg ∈ CΓ, then

(
∑
g∈Γ

λgg)(
∑
g∈Γ

µgg) :=
∑
g,h∈Γ

λgµh(gh) =
∑
g∈Γ

(∑
h∈Γ

λhµh−1g

)
g.

This is a convolution product.
We have the left regular representation λΓ of Γ on l2(Γ), given by

λΓ(g) · (
∑
h∈Γ

λhh) :=
∑
h∈Γ

λhgh

for g ∈ Γ and
∑
h∈Γ λhh ∈ l2(Γ).

This unitary representation extends linearly to CΓ.
The reduced C∗-algebra C∗rΓ of Γ is defined to be the norm closure of the

image λΓ(CΓ) in the C∗-algebra of bounded operators on l2(Γ).

1.2.21 Remark. It’s no surprise that there is also a maximal C∗-algebra C∗maxΓ
of a group Γ. It is defined using not only the left regular representation of Γ,
but simultaneously all of its representations. We will not make use of C∗maxΓ in
these notes, and therefore will not define it here.

Given a topological group G, one can define C∗-algebras C∗rG and C∗maxG
which take the topology of G into account. They actually play an important role
in the study of the Baum-Connes conjecture, which can be defined for (almost
arbitrary) topological groups, but again we will not cover this subject here.
Instead, we will throughout stick to discrete groups.

1.2.22 Example. If Γ is finite, then C∗rΓ = CΓ is the complex group ring of Γ.
In particular, in this case K0(C∗rΓ) ∼= R(Γ) coincides with the (additive

group of) the complex representation ring of Γ.

1.3 The Baum-Connes conjecture

The Baum-Connes conjecture relates an object from algebraic topology, namely
the K-homology of the classifying space of a given group Γ, to representation
theory and the world of C∗-algebras, namely to the K-theory of the reduced
C∗-algebra of Γ.

Unfortunately, the material is very technical. Because of lack of space and
time we can not go into the details (even of some of the definitions). We rec-
ommend the sources [86], [87], [32], [4], [58] and [8].

1.3.1 The Baum-Connes conjecture for torsion-free groups

1.3.1 Definition. Let X be any CW-complex. K∗(X) is the K-homology of X,
where K-homology is the homology theory dual to topological K-theory. If BU
is the spectrum of topological K-theory, and X+ is X with a disjoint basepoint
added, then

Kn(X) := πn(X+ ∧BU).
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1.3.2 Definition. Let Γ be a discrete group. A classifying space BΓ for Γ is
a CW-complex with the property that π1(BΓ) ∼= Γ, and πk(BΓ) = 0 if k 6= 1.
A classifying space always exists, and is unique up to homotopy equivalence.
Its universal covering EΓ is a contractible CW-complex with a free cellular
Γ-action, the so called universal space for Γ-actions.

1.3.3 Remark. In the literature about the Baum-Connes conjecture, one will
often find the definition

RKn(X) := lim−→Kn(Y ),

where the limit is taken over all finite subcomplexes Y of X. Note, however, that
K-homology (like any homology theory in algebraic topology) is compatible with
direct limits, which implies RKn(X) = Kn(X) as defined above. The confusion
comes from the fact that operator algebraists often use Kasparov’s bivariant
KK-theory to define K∗(X), and this coincides with the homotopy theoretic
definition only if X is compact.

Recall that a group Γ is called torsion-free, if gn = 1 for g ∈ Γ and n > 0
implies that g = 1.

We can now formulate the Baum-Connes conjecture for torsion-free discrete
groups.

1.3.4 Conjecture. Assume Γ is a torsion-free discrete group. It is known that
there is a particular homomorphism, the assembly map

µ∗ : K∗(BΓ)→ K∗(C∗rΓ) (1.3.5)

(which will be defined later). The Baum-Connes conjecture says that this map
is an isomorphism.

1.3.6 Example. The map µ∗ of Equation (1.3.5) is also defined if Γ is not
torsion-free. However, in this situation it will in general not be an isomorphism.
This can already be seen if Γ = Z/2. Then C∗rΓ = CΓ ∼= C⊕ C as a C-algebra.
Consequently,

K0(C∗rΓ) ∼= K0(C)⊕K0(C) ∼= Z⊕ Z. (1.3.7)

On the other hand, using the homological Chern character,

K0(BΓ)⊗Z Q ∼= ⊕∞n=0H2n(BΓ;Q) ∼= Q. (1.3.8)

(Here we use the fact that the rational homology of every finite group is zero in
positive degrees, which follows from the fact that the transfer homomorphism
Hk(BΓ;Q)→ Hk({1};Q) is (with rational coefficients) up to a factor |Γ| a left
inverse to the map induced from the inclusion, and therefore is injective.)

The calculations (1.3.7) and (1.3.8) prevent µ0 of (1.3.5) from being an
isomorphism.

1.3.2 The Baum-Connes conjecture in general

To account for the problem visible in Example 1.3.6 if we are dealing with groups
with torsion, one replaces the left hand side by a more complicated gadget, the
equivariant K-homology of a certain Γ-space E(Γ, fin), the classifying space
for proper actions. We will define all of this later. Then, the Baum-Connes
conjecture says the following.
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1.3.9 Conjecture. Assume Γ is a discrete group. It is known that there is a
particular homomorphism, the assembly map

µ∗ : KΓ
∗ (E(Γ, fin))→ K∗(C∗rΓ) (1.3.10)

(we will define it later). The conjecture says that this map is an isomorphism.

1.3.11 Remark. If Γ is torsion-free, then K∗(BΓ) = KΓ
∗ (E(Γ, fin)), and the

assembly maps µ of Conjectures 1.3.4 and µ of 1.3.9 coincide (see Proposition
1.3.29).

Last, we want to mention that there is also a real version of the Baum-
Connes conjecture, where on the left hand side the K-homology is replaced by
KO-homology, i.e. the homology dual to the K-theory of real vector spaces (or
an equivariant version hereof), and on the right hand side C∗rΓ is replaced by
the real reduced C∗-algebra C∗r,RΓ.

1.3.3 Consequences of the Baum-Connes conjecture

1.3.3.1 Idempotents in C∗rΓ

The connection between the Baum-Connes conjecture and idempotents is best
shown via Atiyah’s L2-index theorem, which we discuss first.

Given a closed manifoldM with an elliptic differential operatorD : C∞(E)→
C∞(F ) between two bundles on M , and a normal covering M̃ →M (with deck
transformation group Γ, normal means that M = M̃/Γ), we can lift E, F and
D to M̃ , and get an elliptic Γ-equivariant differential operator D̃ : C∞(Ẽ) →
C∞(F̃ ). If Γ is not finite, we can not use the equivariant index of Section
1.1.3. However, because the action is free, it is possible to define an equivariant
analytic index

indΓ(D̃) ∈ KdimM (C∗rΓ).

This is described in Example 1.3.37.
Atiyah used a certain real valued homomorphism, the Γ-dimension

dimΓ : K0(C∗rΓ)→ R,

to define the L2-index of D̃ (on an even dimensional manifold):

L2- ind(D̃) := dimΓ(indΓ(D̃)).

The L2-index theorem says

L2- ind(D̃) = ind(D),

in particular, it follows that the L2-index is an integer. For a different point of
view of the L2-index theorem, compare Section 3.1.

An alternative description of the left hand side of (1.3.5) and (1.3.10) shows
that, as long as Γ is torsion-free, the image of µ0 coincides with the subset of
K0(C∗rΓ) consisting of indΓ(D̃), where D̃ is as above. In particular, if µ0 is
surjective (and Γ is torsion-free), for each x ∈ K0(C∗rΓ) we find a differential
operator D such that x = indΓ(D̃). As a consequence, dimΓ(x) ∈ Z, i.e. the
range of dimΓ is contained in Z. This is the statement of the so called trace
conjecture.
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1.3.12 Conjecture. Assume Γ is a torsion-free discrete group. Then

dimΓ(K0(C∗rΓ)) ⊂ Z.

On the other hand, if x ∈ K0(C∗rΓ) is represented by a projection p = p2 ∈
C∗rΓ, then elementary properties of dimΓ (monotonicity and faithfulness) imply
that 0 ≤ dimΓ(p) ≤ 1, and dimΓ(p) /∈ {0, 1} if p 6= 0, 1.

Therefore, we have the following consequence of the Baum-Connes conjec-
ture. If Γ is torsion-free and the Baum-Connes map µ0 is surjective, then C∗rΓ
does not contain any projection different from 0 or 1.

This is the assertion of the Kadison-Kaplansky conjecture:

1.3.13 Conjecture. Assume Γ is torsion-free. Then C∗rΓ does not contain any
non-trivial projections.

The following consequence of the Kadison-Kaplansky conjecture deserves to
be mentioned:

1.3.14 Proposition. If the Kadison-Kaplansky conjecture is true for a group
Γ, then the spectrum s(x) of every self adjoint element x ∈ C∗rΓ is connected.
Recall that the spectrum is defined in the following way:

s(x) := {λ ∈ C | (x− λ · 1) not invertible}.

If Γ is not torsion-free, it is easy to construct non-trivial projections, and
it is clear that the range of indΓ is not contained in Z. Baum and Connes
originally conjectured that it is contained in the abelian subgroup Fin−1(Γ) of
Q generated by {1/ |F | | F finite subgroup of Γ}. This conjecture is not correct,
as is shown by an example of Roy [67]. In [52], Lück proves that the Baum-
Connes conjecture implies that the range of dimΓ is contained in the subring of
Q generated by {1/ |F | | F finite subgroup of Γ}.

1.3.3.2 Obstructions to positive scalar curvature

The Baum-Connes conjecture implies the so called “stable Gromov-Lawson-
Rosenberg” conjecture. This implication is a theorem due to Stephan Stolz.
The details of this will be discussed in the lectures of Stephan Stolz, therefore
we can be very brief. We just mention the result.

1.3.15 Theorem. Fix a group Γ. Assume that µ in the real version of (1.3.10)
discussed in Section 1.4 is injective (which follows e.g. if µ in (1.3.10) is an
isomorphism), and assume that M is a closed spin manifold with π1(M) =
Γ. Assume that a certain (index theoretic) invariant α(M) ∈ KdimM (C∗

R,rΓ)
vanishes. Then there is an n ≥ 0 such that M×Bn admits a metric with positive
scalar curvature.

Here, B is any simply connected 8-dimensional spin manifold with Â(M) =
1. Such a manifold is called a Bott manifold.

The converse of Theorem 1.3.15, i.e. positive scalar curvature implies vanish-
ing of α(M), is true for arbitrary groups and without knowing anything about
the Baum-Connes conjecture.
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1.3.3.3 The Novikov conjecture about higher signatures

Direct approach The original form of the Novikov conjecture states that
higher signatures are homotopy invariant.

More precisely, let M be an (even dimensional) closed oriented manifold with
fundamental group Γ. Let BΓ be a classifying space for Γ. There is a unique (up
to homotopy) classifying map u : M → BΓ which is defined by the property that
it induces an isomorphism on π1. Equivalently, u classifies a universal covering
of M .

Let L(M) ∈ H∗(M ;Q) be the Hirzebruch L-class (as normalized by Atiyah
and Singer). Given any cohomology class a ∈ H∗(BΓ,Q), we define the higher
signature

σa(M) := 〈L(M) ∪ u∗a, [M ]〉 ∈ Q.

Here [M ] ∈ HdimM (M ;Q) is the fundamental class of the oriented manifold M ,
and 〈·, ·〉 is the usual pairing between cohomology and homology.

Recall that the Hirzebruch signature theorem states that σ1(M) is the sig-
nature of M , which evidently is an oriented homotopy invariant.

The Novikov conjecture generalizes this as follows.

1.3.16 Conjecture. Assume f : M → M ′ is an oriented homotopy equiva-
lence between two even dimensional closed oriented manifolds, with (common)
fundamental group π. “Oriented” means that f∗[M ] = [M ′]. Then all higher
signatures of M and M ′ are equal, i.e.

σa(M) = σa(M ′) ∀a ∈ H∗(BΓ,Q).

There is an equivalent reformulation of this conjecture in terms of K-homolo-
gy. To see this, let D be the signature operator of M . (We assume here that M
is smooth, and we choose a Riemannian metric on M to define this operator. It
is an elliptic differential operator on M .) The operator D defines an element in
the K-homology of M , [D] ∈ KdimM (M). Using the map u, we can push [D] to
KdimM (BΓ). We define the higher signature σ(M) := u∗[D] ∈ KdimM (BΓ)⊗Q.
It turns out that

2dimM/2σa(M) = 〈a, ch(σ(M))〉 ∀a ∈ H∗(BΓ;Q),

where ch : K∗(BΓ) ⊗ Q → H∗(BΓ,Q) is the homological Chern character (an
isomorphism).

Therefore, the Novikov conjecture translates to the statement that σ(M) =
σ(M ′) if M and M ′ are oriented homotopy equivalent.

Now one can show directly that

µ(σ(M)) = µ(σ(M ′)) ∈ K∗(C∗rΓ),

if M and M ′ are oriented homotopy equivalent. Consequently, rational injec-
tivity of the Baum-Connes map µ immediately implies the Novikov conjecture.
If Γ is torsion-free, this is part of the assertion of the Baum-Connes conjecture.
Because of this relation, injectivity of the Baum-Connes map µ is often called
the “analytic Novikov conjecture”.
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L-theory approach There is a more obvious connection between the Baum-
Connes isomorphism conjecture and the L-theory isomorphism conjecture (dis-
cussed in other lectures).

Namely, the L-theory isomorphism conjecture is concerned with a certain
assembly map

AΓ : H∗(BΓ,L•(Z))→ L∗(Z[Γ]).

Here, the left hand side is the homology of BΓ with coefficients the algebraic
surgery spectrum of Z, and the right hand side is the free quadratic L-group of
the ring with involution Z[Γ].

The Novikov conjecture is equivalent to the statement that this map is ra-
tionally injective, i.e. that

AΓ ⊗ idQ : H∗(BΓ,L•(Z))⊗Q→ L∗(Z[Γ])⊗Q

is an injection. This formulation has the advantage that, tensored with Q, all
the different flavors of L-theory are isomorphic (therefore, we don’t have to and
we won’t discuss these distinctions here).

Now, we get a commutative diagram

H∗(BΓ,L•(Z))⊗Q AΓ−−−−→ L∗(Z[Γ])⊗Qy y
H∗(BΓ,L•(C))⊗Q AΓ,C−−−−→ L∗(C[Γ])⊗Qy y

K∗(BΓ)⊗Q µ−−−−→ K∗(C∗rΓ)⊗Q = L∗(C∗rΓ)⊗Q.

(1.3.17)

The maps on the left hand side are given by natural transformations of homology
theories with values in rational vector spaces. These transformations are easily
seen to be injective for the coefficients. Since we deal with rational homology
theories, they are injective in general.

The maps on the right hand side are the maps in L-theory induced by the
obvious ring homomorphisms ZΓ → CΓ → C∗rΓ. Then we use the “folk theo-
rem” that, for C∗-algebras, K-theory and L-theory are canonically isomorphic
(even non-rationally). Of course, it remains to establish commutativity of the
diagram (1.3.17). For more details, we refer to [66]. Using all these facts and
the diagram (1.3.17), we see that for torsion-free groups, rational injectivity of
the Baum-Connes map µ implies rational injectivity of the L-theory assembly
AΓ, i.e. the Novikov conjecture.

Groups with torsion For an arbitrary group Γ, we have a factorization of µ
as follows:

K∗(BΓ)
f−→ KΓ

∗ (E(Γ, fin))
µ−→ K∗(C∗rΓ).

One can show that f is rationally injective, so that rational injectivity of the
Baum-Connes map µ implies the Novikov conjecture also in general.
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1.3.4 The universal space for proper actions

1.3.18 Definition. Let Γ be a discrete group and X a Hausdorff space with
an action of Γ. We say that the action is proper, if for all x, y ∈ X there are
open neighborhood Ux 3 x and Uy 3 y such that gUx ∩ Uy is non-empty only
for finitely many g ∈ Γ (the number depending on x and y).

The action is said to be cocompact, if X/Γ is compact.

1.3.19 Lemma. If the action of Γ on X is proper, then for each x ∈ X the
isotropy group Γx := {g ∈ Γ | gx = x} is finite.

1.3.20 Definition. Let Γ be a discrete group. A CW-complex X is a Γ-CW-
complex, if X is a CW-complex with a cellular action of Γ with the additional
property that, whenever g(D) ⊂ D for a cell D of X and some g ∈ Γ, then
g|D = idD, i.e. g doesn’t move D at all.

1.3.21 Remark. There exists also the notion of G-CW-complex for topological
groups G (taking the topology of G into account). These have to be defined in
a different way, namely by gluing together G-equivariant cells Dn × G/H. In
general, such a G-CW-complex is not an ordinary CW-complex.

1.3.22 Lemma. The action of a discrete group Γ on a Γ-CW-complex is proper
if and only if every isotropy group is finite.

1.3.23 Definition. A proper Γ-CW-complex X is called universal, or more
precisely universal for proper actions, if for every proper Γ-CW-complex Y there
is a Γ-equivariant map f : Y → X which is unique up to Γ-equivariant homotopy.
Any such space is denoted E(Γ, fin) or EΓ.

1.3.24 Proposition. A Γ-CW-complex X is universal for proper actions if and
only if the fixed point set

XH := {x ∈ X | hx = x ∀h ∈ H}

is empty whenever H is an infinite subgroup of Γ, and is contractible (and in
particular non-empty) if H is a finite subgroup of Γ.

1.3.25 Proposition. If Γ is a discrete group, then E(Γ, fin) exists and is
unique up to Γ-homotopy equivalence.

1.3.26 Remark. The general context for this discussion are actions of a group Γ
where the isotropy belongs to a fixed family of subgroups of Γ (in our case, the
family of all finite subgroups). For more information, compare [85].

1.3.27 Example.

• If Γ is torsion-free, then E(Γ, fin) = EΓ, the universal covering of the
classifying space BΓ. Indeed, Γ acts freely on EΓ, and EΓ is contractible.

• If Γ is finite, then E(Γ, fin) = {∗}.
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• If G is a connected Lie group with maximal compact subgroup K, and Γ
is a discrete subgroup of G, then E(Γ, fin) = G/K [4, Section 2].

1.3.28 Remark. In the literature (in particular, in [4]), also a slightly different
notion of universal spaces is discussed. One allowsX to be any proper metrizable
Γ-space, and requires the universal property for all proper metrizable Γ-spaces
Y . For discrete groups (which are the only groups we are discussing here), a
universal space in the sense of Definition 1.3.23 is universal in this sense.

However, for some of the proofs of the Baum-Connes conjecture (for special
groups) it is useful to use certain models of E(Γ, fin) (in the broader sense)
coming from the geometry of the group, which are not Γ-CW-complexes.

1.3.5 Equivariant K-homology

Let Γ be a discrete group. We have seen that, if Γ is not torsion-free, the assem-
bly map (1.3.5) is not an isomorphism. To account for that, we replace K∗(BΓ)
by the equivariant K-theory of E(Γ, fin). Let X be any proper Γ-CW complex.
The original definition of equivariant K-homology is due to Kasparov, making
ideas of Atiyah precise. In this definition, elements of KΓ

∗ (X) are equivalence
classes of generalized elliptic operators. In [14], a more homotopy theoretic
definition of KΓ

∗ (X) is given, which puts the Baum-Connes conjecture in the
context of other isomorphism conjectures.

1.3.5.1 Homotopy theoretic definition of equivariant K-homology

The details of this definition are quite technical, using spaces and spectra over
the orbit category of the discrete group Γ. The objects of the orbit category
are the orbits Γ/H, H any subgroup of Γ. The morphisms from Γ/H to Γ/K
are simply the Γ-equivariant maps. In this setting, any spectrum over the orbit
category gives rise to an equivariant homology theory. The decisive step is
then the construction of a (periodic) topological K-theory spectrum KΓ over
the orbit category of Γ. This gives us then a functor from the category of
(arbitrary) Γ-CW-complexes to the category of (graded) abelian groups, the
equivariant K-homology KΓ

∗ (X) (X any Γ-CW-complex).
The important property (which justifies the name “topological K-theory

spectrum) is that

KΓ
k (Γ/H) = πk(KΓ(Γ/H)) ∼= Kk(C∗rH)

for every subgroup H of Γ. In particular,

KΓ
k ({∗}) ∼= Kk(C∗rΓ).

Moreover, we have the following properties:

1.3.29 Proposition. (1) Assume Γ is the trivial group. Then

KΓ
∗ (X) = K∗(X),

i.e. we get back the ordinary K-homology introduced above.
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(2) If H ≤ Γ and X is an H-CW-complex, then there is a natural isomorphism

KH
∗ (X) ∼= KΓ

∗ (Γ×H X).

Here Γ ×H X = Γ × H/ ∼, where we divide out the equivalence relation
generated by (gh, x) ∼ (g, hx) for g ∈ Γ, h ∈ H and x ∈ X. This is in the
obvious way a left Γ-space.

(3) Assume X is a free Γ-CW-complex. Then there is a natural isomorphism

K∗(Γ\X)→ KΓ
∗ (X).

In particular, using the canonical Γ-equivariant map EΓ→ E(Γ, fin), we
get a natural homomorphism

K∗(BΓ)
∼=−→ KΓ

∗ (EΓ)→ KΓ
∗ (E(Γ, fin)).

1.3.5.2 Analytic definition of equivariant K-homology

Here we will give the original definition, which embeds into the powerful frame-
work of equivariant KK-theory, and which is used for almost all proofs of special
cases of the Baum-Connes conjecture. However, to derive some of the conse-
quences of the Baum-Connes conjecture, most notably about the positive scalar
curvature question —this is discussed in one of the lectures of Stephan Stolz—
the homotopy theoretic definition is used.

1.3.30 Definition. A Hilbert space H is called (Z/2)-graded, if H comes with
an orthogonal sum decomposition H = H0 ⊕H1. Equivalently, a unitary oper-
ator ε with ε2 = 1 is given on H. The subspaces H0 and H1 can be recovered
as the +1 and −1 eigenspaces of ε, respectively.

A bounded operator T : H → H is called even (with respect to the given
grading), if T commutes with ε, and odd, if ε and T anti-commute, i.e. if Tε =
−εT . An even operator decomposes as T =

(
T0 0
0 T1

)
, an odd one as T =

(
0 T0
T1 0

)
in the given decomposition H = H0 ⊕H1.

1.3.31 Definition. A generalized elliptic Γ-operator on X, or a cycle for Γ-
K-homology of the Γ-space X, simply a cycle for short, is a triple (H,π, F ),
where

• H = H0 ⊕H1 is a Z/2-graded Γ-Hilbert space (i.e. the direct sum of two
Hilbert spaces with unitary Γ-action)

• π is a Γ-equivariant ∗-representation of C0(X) on even bounded operators
of H (equivariant means that π(fg−1) = gπ(f)g−1 for all f ∈ C0(X) and
all g ∈ Γ.

• F : H → H is a bounded, Γ-equivariant, self adjoint operator such that
π(f)(F 2 − 1) and [π(f), F ] := π(f)F − Fπ(f) are compact operators for
all f ∈ C0(X). Moreover, we require that F is odd, i.e. F =

(
0 D∗

D 0

)
in

the decomposition H = H0 ⊕H1.

1.3.32 Remark. There are many different definitions of cycles, slightly weakening
or strengthening some of the conditions. Of course, this does not effect the
equivariant K-homology groups which are eventually defined using them.
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1.3.33 Definition. We define the direct sum of two cycles in the obvious way.

1.3.34 Definition. Assume α = (H,π, F ) and α′ = (H ′, π′, F ′) are two cycles.

(1) They are called (isometrically) isomorphic, if there is a Γ-equivariant grad-
ing preserving isometry Ψ: H → H ′ such that Ψ ◦π(f) = π′(f) ◦Ψ for all
f ∈ C0(X) and Ψ ◦ F = F ′ ◦Ψ.

(2) They are called homotopic (or operator homotopic) if H = H ′, π = π′,
and there is a norm continuous path (Ft)t∈[0,1] of operators with F0 = F
and F1 = F ′ and such that (H,π, Ft) is a cycle for each t ∈ [0, 1].

(3) (H,π, F ) is called degenerate, if [π(f), F ] = 0 and π(f)(F 2 − 1) = 0 for
each f ∈ C0(X).

(4) The two cycles are called equivalent if there are degenerate cycles β and β′

such that α⊕ β is operator homotopic to a cycle isometrically isomorphic
to α′ ⊕ β′.

The set of equivalence classes of cycles is denoted KKΓ
0 (X). (Caution, this is

slightly unusual, mostly one will find the notation KΓ(X) instead of KKΓ(X)).

1.3.35 Proposition. Direct sum induces the structure of an abelian group on
KKΓ

0 (X).

1.3.36 Proposition. Any proper Γ-equivariant map φ : X → Y between two
proper Γ-CW-complexes induces a homomorphism

KKΓ
0 (X)→ KKΓ

0 (Y )

by (H,π, F ) 7→ (H,π ◦ φ∗, F ), where φ∗ : C0(Y )→ C0(X) : f 7→ f ◦ φ is defined
since φ is a proper map (else f ◦ φ does not necessarily vanish at infinity).

Recall that a continuous map φ : X → Y is called proper if the inverse image
of every compact subset of Y is compact .

It turns out that the analytic definition of equivariant K-homology is quite
flexible. It is designed to make it easy to construct elements of these groups
—in many geometric situations they automatically show up. We give one of the
most typical examples of such a situation, which we will need later.

1.3.37 Example. Assume that M is a compact even dimensional Riemannian
manifold. Let X = M be a normal covering of M with deck transformation
group Γ (normal means that X/Γ = M). Of course, the action is free, in
particular, proper. Let E = E0 ⊕ E1 be a graded Hermitian vector bundle on
M , and

D : C∞(E)→ C∞(E)

an odd elliptic self adjoint differential operator (odd means that D maps the
subspace C∞(E0) to C∞(E1), and vice versa). If M is oriented, the signature
operator on M is such an operator, if M is a spin-manifold, the same is true for
its Dirac operator.

Now we can pull back E to a bundle E on M , and lift D to an operator
D on E. The assumptions imply that D extends to an unbounded self adjoint
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operator on L2(E), the space of square integrable sections of E. This space is
the completion of C∞c (E) with respect to the canonical inner product (compare
Definition 3.1.1). (The subscript c denotes sections with compact support).
Using the functional calculus, we can replace D by

F := (D
2

+ 1)−1/2D : L2(E)→ L2(E).

Observe that
L2(E) = L2(E0)⊕ L2(E1)

is a Z/2-graded Hilbert space with a unitary Γ-action, which admits an (equiv-
ariant) action π of C0(M) = C0(X) by fiber-wise multiplication. This action
preserves the grading. Moreover, D as well as F are odd, Γ-equivariant, self
adjoint operators on L2(E) and F is a bounded operator. From ellipticity it
follows that

π(f)(F 2 − 1) = −π(f)(D
2

+ 1)−1

is compact for each f ∈ C0(M) (observe that this is not true for (D
2

+ 1)−1

itself, if M is not compact). Consequently, (L2(E), π, F ) defines an (even) cycle
for Γ-K-homology, i.e. it represents an element in KKΓ

0 (X).
One can slightly reformulate the construction as follows: M is a principal

Γ-bundle over M , and l2(Γ) has a (unitary) left Γ-action. We therefore can
construct the associated flat bundle

L := l2(Γ)×Γ M

on M with fiber l2(Γ). Now we can twist D with this bundle L, i.e. define

D := ∇L ⊗ id + id⊗D : C∞(L⊗ E)→ C∞(L⊗ E),

using the given flat connection ∇L on L. Again, we can complete to L2(L⊗E)
and define

F := (D
2

+ 1)−1/2D.

The left action of Γ on l2Γ induces an action of Γ on L and then a unitary action
on L2(L ⊗ E). Since ∇L preserves the Γ-action, D is Γ-equivariant. There is
a canonical Γ-isometry between L2(L⊗ E) and L2(E) which identifies the two
versions of D and F . The action of C0(M) on L2(L ⊗ E) can be described by
identifying C0(M) with the continuous sections of M on the associated bundle

C0(Γ)×Γ M,

where C0(Γ) is the C∗-algebra of functions on Γ vanishing at infinity, and then
using the obvious action of C0(Γ) on l2(Γ).

It is easy to see how this examples generalizes to Γ-equivariant elliptic differ-
ential operators on manifolds with a proper, but not necessarily free, Γ-action
(with the exception of the last part, of course).

Work in progress of Baum and Schick [5] suggests the (somewhat surprising)
fact that, given any proper Γ-CW-complex Y , we can, for each element y ∈
KKΓ

0 (Y ), find such a proper Γ-manifold X, together with a Γ-equivariant map
f : X → Y and an elliptic differential operator on X giving an element x ∈
KKΓ

0 (X) as in the example, such that y = f∗(x).
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Analytic K-homology is homotopy invariant, a proof can be found in [8].

1.3.38 Theorem. If φ1, φ2 : X → Y are proper Γ-equivariant maps which are
homotopic through proper Γ-equivariant maps, then

(φ1)∗ = (φ2)∗ : KKΓ
∗ (X)→ KKΓ

∗ (Y ).

1.3.39 Theorem. If Γ acts freely on X, then

KKΓ
∗ (X) ∼= K∗(Γ\X),

where the right hand side is the ordinary K-homology of Γ\X.

1.3.40 Definition. Assume Y is an arbitrary proper Γ-CW-complex. Set

RKΓ
∗ (Y ) := lim−→KKΓ

∗ (X),

where we take the direct limit over the direct system of Γ-invariant subcomplexes
of Y with compact quotient (by the action of Γ).

1.3.41 Definition. To define higher (analytic) equivariant K-homology, there
are two ways. The short one only works for complex K-homology. One considers
cycles and an equivalence relation exactly as above — with the notable exception
that one does not require any grading! This way, one defines KKΓ

1 (X). Because
of Bott periodicity (which has period 2), this is enough to define all K-homology
groups (KKΓ

n (X) = KKΓ
n+2k(X) for any k ∈ Z).

A perhaps more conceptual approach is the following. Here, one generalizes
the notion of a graded Hilbert space by the notion of a p-multigraded Hilbert
space (p ≥ 0). This means that the graded Hilbert space comes with p unitary
operators ε1, . . . , εp which are odd with respect to the grading, which satisfy
ε2i = −1 and εiεj + εjεi = 0 for all i and j with i 6= j. An operator T : H →
H on a p-multigraded Hilbert space is called multigraded if it commutes with
ε1, . . . , εp. Such operators can (in addition) be even or odd.

This definition can be reformulated as saying that a multigraded Hilbert
space is a (right) module over the Clifford algebra Clp, and a multigraded op-
erator is a module map.

We now define KKΓ
p (X) using cycles as above, with the additional assump-

tion that the Hilbert space is p-graded, that the representation π takes values in
π-multigraded even operators, and that the operator F is an odd p-multigraded
operator. Isomorphism and equivalence of these multigraded cycles is defined
as above, requiring that the multigradings are preserved throughout.

This definition gives an equivariant homology theory if we restrict to proper
maps. Moreover, it satisfies Bott periodicity. The period is two for the (com-
plex) K-homology we have considered so far. All results mentioned in this
section generalize to higher equivariant K-homology.

If X is a proper Γ-CW-complex, the analytically defined representable equiv-
ariant K-homology groups RKΓ

p (X) are canonically isomorphic to the equivari-
ant K-homology groups KΓ

p (X) defined by Davis and Lück in [14] as described
in Section 1.3.5.1.
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1.3.6 The assembly map

Here, we will use the homotopy theoretic description of equivariant K-homology
due to Davis and Lück [14] described in Section 1.3.5.1. The assembly map then
becomes particularly convenient to describe. From the present point of view,
the main virtue is that they define a functor from arbitrary, not necessarily
proper, Γ-CW-complexes to abelian groups.

The Baum-Connes assembly map is now simply defined using the equivariant
collapse E(Γ, fin)→ ∗:

µ : KΓ
k (E(Γ, fin))→ KΓ

k (∗) = Kk(C∗rΓ). (1.3.42)

If Γ is torsion-free, then EΓ = E(Γ, fin), and the assembly map of (1.3.5)
is defined as the composition of (1.3.42) with the appropriate isomorphism in
Proposition 1.3.29.

1.3.7 Survey of KK-theory

The analytic definition of Γ-equivariant K-homology can be extended to a bi-
variant functor on Γ-C∗-algebras. Here, a Γ-C∗-algebra is a C∗-algebra A with
an action (by C∗-algebra automorphisms) of Γ. If X is a proper Γ-space, C0(X)
is such a Γ-C∗-algebra.

Given two Γ-C∗-algebras A and B, Kasparov defines the bivariant KK-
groups KKΓ

∗ (A,B). The most important property of this bivariant KK-theory
is that it comes with a (composition) product, the Kasparov product. This can
be stated most conveniently as follows:

Given a discrete group Γ, we have a category KKΓ whose objects are Γ-
C∗-algebras (we restrict here to separable C∗-algebras). The morphisms in this
category between two Γ-C∗-algebras A and B are called KKΓ

∗ (A,B). They are
Z/2-graded abelian groups, and the composition preserves the grading, i.e. if
φ ∈ KKΓ

i (A,B) and ψ ∈ KKΓ
j (B,C) then ψφ ∈ KKΓ

i+j(A,C).
There is a functor from the category of separable Γ-C∗-algebras (where mor-

phisms are Γ-equivariant ∗-homomorphisms) to the category KKΓ
∗ which maps

an object A to A, and such that the image of a morphism φ : A→ B is contained
in KKΓ

0 (A,B).
If X is a proper cocompact Γ-CW-complex then (by definition)

KKΓ
p (C0(X),C) = KKΓ

−p(X).

Here, C has the trivial Γ-action.
On the other hand, for any C∗-algebra A without a group action (i.e. with

trivial action of hte trivial group {1}), KK{1}∗ (C, A) = K∗(A).
There is a functor from KKΓ to KK{1}, called descent, which assigns to ev-

ery Γ-C∗-algebra A the reduced crossed product C∗r (Γ, A). The crossed product
has the property that C∗r (Γ,C) = C∗rΓ.

1.3.8 KK assembly

We now want to give an account of the analytic definition of the assembly map,
which was the original definition. The basic idea is that the assembly map is
given by taking an index. To start with, assume that we have an even generalized
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elliptic Γ-operator (H,π, F ), representing an element in KΓ
0 (X), where X is a

proper Γ-space such that Γ\X is compact. The index of this operator should give
us an element in K0(C∗rΓ). Since the cycle is even, H split as H = H0⊕H1, and
F =

(
0 P
P∗ 0

)
with respect to this splitting. Indeed, now, the kernel and cokernel

of P are modules over CΓ, and should, in most cases, give modules over C∗rΓ.
If Γ is finite, the latter is indeed the case (since C∗rΓ = CΓ). Moreover, since

Γ\X is compact and Γ is finite, X is compact, which implies that C0(X) is unital.
We may then assume that π is unital (switching to an equivalent cycle with
Hilbert space π(1)H, if necessary). But then the axioms for a cycle imply that
F 2−1 is compact, i.e. that F is invertible modulo compact operators, or that F
is Fredholm, which means that ker(P ) and ker(P ∗) are finite dimensional. Since
Γ acts on them, [ker(P )] − [ker(P ∗)] defines an element of the representation
ring RΓ = K0(C∗rΓ) for the finite group Γ. It remains to show that this map
respects the equivalence relation defining KΓ

0 (X).
However, if Γ is not finite, the modules ker(P ) and ker(P ∗), even if they are

C∗rΓ-modules, are in general not finitely generated projective.
To grasp the difficulty, consider Example 1.3.37. Using the description where

F acts on a bundle over the base space M with infinite dimensional fiber L⊗E,
we see that loosely speaking, the null space of F should rather “contain” certain
copies of l2Γ than copies of C∗rΓ (for finite groups, “accidentally” these two are
the same!). However, in general l2Γ is not projective over C∗rΓ (although it is
a module over this algebra). To be specific, assume that M is a point, E0 = C

and E1 = 0, and D = 0. Here we obtain, L2(E0) = l2Γ, L2(E1) = 0, F = 0,
and indeed, ker(P ) = l2Γ.

In the situation of our example, there is a way around this problem: Instead
of twisting the operator D with the flat bundle l2(Γ) ×Γ M , we twist with
C∗r (Γ)×ΓM , to obtain an operatorD′ acting on a bundle with fiber C∗rΓ⊗CdimE .
This way, we replace l2Γ by C∗rΓ throughout. Still, it is not true in general that
the kernels we get in this way are finitely generated projective modules over
C∗rΓ. However, it is a fact that one can always add to the new F ′ an appropriate
compact operator such that this is the case. Then the obvious definition gives
an element

ind(D′) ∈ K0(C∗rΓ).

This is the Mishchenko-Fomenko index of D′ which does not depend on the
chosen compact perturbation. Mishchenko and Fomenko give a formula for this
index extending the Atiyah-Singer index formula.

One way to get around the difficulty in the general situation (not necessarily
studying a lifted differential operator) is to deform (H,π, F ) to an equivalent
(H,π, F ′) which is better behaved (reminiscent to the compact perturbation
above). This allows to proceeds with a rather elaborate generalization of the
Mishchenko-Fomenko example we just considered, essentially replacing l2(Γ) by
C∗rΓ again. In this way, one defines an index as an element of K∗(C∗rΓ).

This gives a homomorphism µΓ : KKΓ
∗ (C0(X))→ K∗(C∗rΓ) for each proper

Γ-CW-complex X where Γ\X is compact. This passes to direct limits and
defines, in particular,

µ∗ : RKΓ
∗ (E(Γ, fin))→ K∗(C∗rΓ).

Next, we proceed with an alternative definition of the Baum-Connes map
using KK-theory and the Kasparov product. The basic observation here is that,
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given any proper Γ-CW-space X, there is a specific projection p ∈ C∗r (Γ, C0(X))
(unique up to an appropriate type of homotopy) which gives rise to a canonical
element [LX ] ∈ K0(C∗r (Γ, C0(X))) = KK0(C, C∗r (Γ, C0(X))). This defines by
composition the homomorphism

KKΓ
∗ (X) = KKΓ

∗ (C0(X),C) descent−−−−→ KK∗(C∗r (Γ, C0(X)), C∗rΓ)
[LX ]◦·−−−−→ KK∗(C, C∗rΓ) = K∗(C∗rΓ).

Again, this passes to direct limits and defines as a special case the Baum-Connes
assembly map

µ : RKΓ
∗ (E(Γ, fin))→ K∗(C∗rΓ).

1.3.43 Remark. It is a non-trivial fact (due to Hambleton and Pedersen [28])
that this assembly map coincides with the map µ of (1.3.10).

Almost all positive results about the Baum-Connes have been obtained using
the powerful methods of KK-theory, in particular the so called Dirac-dual Dirac
method, compare e.g. [86].

1.3.9 The status of the conjecture

The Baum-Connes conjecture is known to be true for the following classes of
groups.

(1) discrete subgroups of SO(n, 1) and SU(n, 1) [37]

(2) Groups with the Haagerup property, sometimes called a-T-menable groups,
i.e. which admit an isometric action on some affine Hilbert H space which
is proper, i.e. such that gnv

n→∞−−−−→∞ for every v ∈ H whenever gn
n→∞−−−−→

∞ inG [29]. Examples of groups with the Haagerup property are amenable
groups, Coxeter groups, groups acting properly on trees, and groups acting
properly on simply connected CAT(0) cubical complexes

(3) One-relator groups, i.e. groups with a presentation G = 〈g1, . . . , gn | r〉
with only one defining relation r [6].

(4) Cocompact lattices in Sl3(R), Sl3(C) and Sl3(Qp) (Qp denotes the p-adic
numbers) [43]

(5) Word hyperbolic groups in the sense of Gromov [57].

(6) Artin’s full braid groups Bn [73].

Since we will encounter amenability later on, we recall the definition here.

1.3.44 Definition. A finitely generated discrete group Γ is called amenable, if
for any given finite set of generators S (where we require 1 ∈ S and require that
s ∈ S implies s−1 ∈ S) there exists a sequence of finite subsets Xk of Γ such
that

|SXk := {sx | s ∈ S, x ∈ Xk}|
|Xk|

k→∞−−−−→ 1.

|Y | denotes the number of elements of the set Y .



1.4. REAL C∗-ALGEBRAS AND K-THEORY 29

An arbitrary discrete group is called amenable, if each finitely generated
subgroup is amenable.

Examples of amenable groups are all finite groups, all abelian, nilpotent and
solvable groups. Moreover, the class of amenable groups is closed under taking
subgroups, quotients, extensions, and directed unions.

The free group on two generators is not amenable. “Most” examples of
non-amenable groups do contain a non-abelian free group.

There is a certain stronger variant of the Baum-Connes conjecture, the
Baum-Connes conjecture with coefficients. It has the following stability proper-
ties:

(1) If a group Γ acts on a tree such that the stabilizer of every edge and every
vertex satisfies the Baum-Connes conjecture with coefficients, the same is
true for Γ [61].

(2) If a group Γ satisfies the Baum-Connes conjecture with coefficients, then
so does every subgroup of Γ [61]

(3) If we have an extension 1→ Γ1 → Γ2 → Γ3 → 1, Γ3 is torsion-free and Γ1

as well as Γ3 satisfy the Baum-Connes conjecture with coefficients, then
so does Γ2.

It should be remarked that in the above list, all groups except for word
hyperbolic groups, and cocompact subgroups of Sl3 actually satisfy the Baum-
Connes conjecture with coefficients.

The Baum-Connes assembly map µ of (1.3.10) is known to be rationally
injective for considerably larger classes of groups, in particular the following.

(1) Discrete subgroups of connected Lie groups [38]

(2) Discrete subgroups of p-adic groups [39]

(3) Bolic groups (a certain generalization of word hyperbolic groups) [40].

(4) Groups which admit an amenable action on some compact space [31].

Last, it should be mentioned that recent constructions of Gromov show
that certain variants of the Baum-Connes conjecture, among them the Baum-
Connes conjecture with coefficients, and an extension called the Baum-Connes
conjecture for groupoids, are false [30]. At the moment, no counterexample
to the Baum-Connes conjecture 1.3.9 seems to be known. However, there are
many experts in the field who think that such a counterexample eventually will
be constructed [30].

1.4 Real C∗-algebras and K-theory

1.4.1 Real C∗-algebras

The applications of the theory of C∗-algebras to geometry and topology we
present here require at some point that we work with real C∗-algebras. Most of
the theory is parallel to the theory of complex C∗-algebras.
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1.4.1 Definition. A unital real C∗-algebra is a Banach-algebra A with unit
over the real numbers, with an isometric involution ∗ : A→ A, such that

|x|2 = |x∗x| and 1 + x∗x is invertible ∀x ∈ A.

It turns out that this is equivalent to the existence of a ∗-isometric embedding
of A as a closed subalgebra into BHR, the bounded operators on a suitable real
Hilbert space (compare [62]).

1.4.2 Example. If X is a compact topological space, then C(X;R), the algebra
of real valued continuous function on X, is a real C∗-algebra with unit (and with
trivial involution).

More generally, if X comes with an involution τ : X → X (i.e. τ2 = idX),
then Cτ (X) := {f : X → C | f(τx) = f(x)} is a real C∗-algebra with involution
f∗(x) = f(τx).

Conversely, every commutative unital real C∗-algebra is isomorphic to some
Cτ (X).

If X is only locally compact, we can produce examples of non-unital real
C∗-algebras as in Example 1.2.2.

Essentially everything we have done for (complex) C∗-algebras carries over to
real C∗-algebras, substituting R for C throughout. In particular, the definition
of the K-theory of real C∗-algebras is literally the same as for complex C∗-
algebras (actually, the definitions make sense for even more general topological
algebras), and a short exact sequence of real C∗-algebras gives rise to a long
exact K-theory sequence.

The notable exception is Bott periodicity. We don’t get the period 2, but
the period 8.

1.4.3 Theorem. Assume that A is a real C∗-algebra. Then we have a Bott
periodicity isomorphism

K0(A) ∼= K0(S8A).

This implies
Kn(A) ∼= Kn+8(A) for n ≥ 0.

1.4.4 Remark. Again, we can use Bott periodicity to define Kn(A) for arbitrary
n ∈ Z, or we may view Kn(A) as an 8-periodic theory, i.e. with n ∈ Z/8.

The long exact sequence of Theorem 1.2.18 becomes a 24-term cyclic exact
sequence.

The real reduced C∗-algebra of a group Γ, denoted C∗
R,rΓ, is the norm closure

of RΓ in the bounded operators on l2Γ.

1.4.2 Real K-homology and Baum-Connes

A variant of the cohomology theory given by complex vector bundles is KO-
theory, which is given by real vector bundles. The homology theory dual to
this is KO-homology. If KO is the spectrum of topological KO-theory, then
KOn(X) = πn(X+ ∧KO).

The homotopy theoretic definition of equivariant K-homology can be varied
easily to define equivariant KO-homology. The analytic definition can also be
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adapted easily, replacing C by R throughout, using in particular real Hilbert
spaces. However, we have to stick to n-multigraded cycles to define KKΓ

n (X),
it is not sufficient to consider only even and odd cycles.

All the constructions and properties translate appropriately from the com-
plex to the real situation, again with the notable exception that Bott periodicity
does not give the period 2, but 8. The upshot of all of this is that we get a real
version of the Baum-Connes conjecture, namely

1.4.5 Conjecture. The real Baum-Connes assembly map

µn : KOΓ
n(E(Γ, fin))→ KOn(C∗

R,rΓ),

is an isomorphism.

It should be remarked that all known results about injectivity or surjectivity
of the Baum-Connes map can be proved for the real version as well as for
the complex version, since each proof translates without too much difficulty.
Moreover, it is known that the complex version of the Baum-Connes conjecture
for a group Γ implies the real version (for this abstract result, the isomorphism
is needed as input, since this is based on the use of the five-lemma at a certain
point).
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Chapter 2

A counterexample to the
Gromov-Lawson-Rosenberg
conjecture

The Gromov-Lawson-Rosenberg conjecture is discussed in the notes by Stephan
Stolz. As a reminder, we quickly recall the problem:
2.0.1 Question. Given a compact smooth spin-manifold M without boundary,
when does M admit a Riemannian metric with positive scalar curvature?

Recall that a spin-manifold is a manifold for which the first and second
Stiefel-Whitney class of the tangent bundle vanish. The spin condition can be
compared to the condition that a manifold is orientable. Indeed, every spin-
manifold is orientable. But the spin condition is considerably stronger (it is like
orientability “squared”).

The reason that we concentrate on spin-manifolds is that powerful obstruc-
tions to the existence of a metric with positive scalar curvature have been de-
veloped for them.

2.1 Obstructions to positive scalar curvature

2.1.1 Index theoretic obstructions

We start with a discussion of the index obstruction for spin manifolds to admit
a metric with scal > 0, constructed by Lichnerowicz [45], Hitchin [33] and in
the following refined version due to Rosenberg [64].

2.1.1 Theorem. One can construct a homomorphism, called index, from the
singular spin bordism group Ωspin∗ (Bπ) to the (real) KO-theory of the reduced
real C∗-algebra of π:

ind: Ωspin∗ (Bπ)→ KO∗(C∗R,rπ)

(this homomorphism is often called α instead of ind). Assume f : N → Bπ
represents an element of Ωspinm (Bπ). If N admits a metric with positive scalar
curvature, then

ind([f : N → Bπ]) = 0 ∈ KOm(C∗
R,rπ)

33
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The converse of this theorem is the content of the following Gromov-Lawson-
Rosenberg conjecture.

2.1.2 Conjecture. Let M be a compact spin-manifold without boundary, π =
π1(M), and u : M → Bπ be the classifying map for a universal covering of M .
Assume that m = dim(M) ≥ 5.

Then M admits a metric with scal > 0 if and only if

ind[u : M → Bπ] = 0 ∈ KOm(C∗
R,rπ).

This conjecture was developed in [27] and [63].
The restriction to dimensions ≥ 5 comes from the observation that in these

dimensions (and not below) the question of existence of metrics with scal > 0 in
a certain sense is a bordism invariant, which of course fits with the structure of
the obstruction described in Theorem 2.1.1. Failure of this bordism invariance
in dimension 4 is also reflected by the fact that for 4-dimensional manifolds,
the Seiberg-Witten invariants provide additional obstructions to the existence
of a metric with positive scalar curvature, which show in particular that the
conjecture is not true if m = 4.

The conjecture was proved by Stefan Stolz [80] for π = 1, and subsequently
by him and other authors also for some other groups [63, 42, 10, 65, 34].

2.1.2 Minimal surface obstructions

In dimension ≥ 5 there is only one known additional obstruction for positive
scalar curvature metrics, the minimal surface method of Schoen and Yau, which
we will recall now. (In dimension 4, the Seiberg-Witten theory yields additional
obstructions).

The first theorem is the differential geometrical backbone for the application
of minimal surfaces to the positive scalar curvature problem:

2.1.3 Theorem. Let (Mm, g) be a manifold with scal > 0, dimM = m ≥ 3. If
V is a smooth (m−1)-dimensional submanifold of M with trivial normal bundle,
and if V is a local minimum of the volume functional, then V admits a metric
of positive scalar curvature, too. “Local minimum” means that for any small
deformation of the hypersurface, the (m− 1)-volume of the surface increases.

Actually, V can be a “minimal hypersurfaces” in the sense of differential
geometry, defined in terms of curvature and second fundamental form of the
hypersurface. Every local minimum for the (m − 1)-volume is such a minimal
hypersurface; the converse is not true.

Proof. Schoen/Yau: [75, 5.1] for m = 3, [76, proof of Theorem 1] for m > 3.
We outline the proof, following closely [76, Theorem 1].

Given V , since its normal bundle is trivial, any smooth function φ on V
gives rise to a variation (if ν is the unit normal vector field, pushing V in
normal direction φν). Lt Ric ∈ Γ(End(TM)) be the Ricci curvature, considered
as an operator on each fiber of TM . Let l be the second fundamental form of
V . It is well known that minimality implies tr(l) = 0. Moreover, the second
variation of the area is non-negative. It is given by (see [13])

−
∫
V

(
〈Ric(ν), ν〉+ |l|2

)
φ2 +

∫
V

|∇φ|2 ≥ 0. (2.1.4)
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We now use the Gauss curvature equation (the “theorema egregium”) to relate
this to the scalar curvature of the submanifold. Taking appropriate traces of
the Gauss equations, we obtain

scalV = scalM −2〈Ric(ν), ν〉+ (tr l)2 − |l|2 , (2.1.5)

where scalV is the scalar curvature of V with the induced Riemannian metric
and scalM the scalar curvature of M . Putting Equation (2.1.5) into Inequality
(2.1.4), we have∫

V

scalM φ2 −
∫
V

scalV φ2 +
∫
V

|l|2 φ2 ≤ 2
∫
V

|∇φ|2 (2.1.6)

for all smooth functions φ : V → R. We assume that the scalar curvature of M
is everywhere strictly positive. Hence (2.1.6) implies

−
∫
V

scalV φ2 < 2
∫
V

|∇φ|2 ,

as long as φ is not identically zero.
Consider the conformal Laplacian ∆c := ∆ + n−3

4(n−2) scalV on V (where ∆
is the positive Laplacian on functions). Then all eigenvalues of ∆c are strictly
positive. Assume, otherwise, that φ is an eigenfunction to the eigenvalue λ ≤ 0,
i.e.

∆φ = − m− 3
4(m− 2)

scalV φ+ λφ.

Taking the L2-inner product of this equation with φ (and integration by parts)
gives ∫

V

|∇φ|2 = − m− 3
4(m− 2)

∫
V

scalV φ2 + λ

∫
V

φ2 <
m− 3

2(m− 2)

∫
V

|∇φ|2 ,

which is a contradiction. Now it’s a standard fact in conformal geometry that, if
the conformal Laplacian has only positive eigenvalues, then one can conformally
deform the metric to a metric with positive scalar curvature (compare [41]).
This is done in two steps: a generalized maximum principle implies that we can
find an eigenfunction f to the first eigenvalues of ∆c which is strictly positive
everywhere. Then, explicit formulas for the scalar curvature of a conformally
changed metric show that f4/(m−3)g indeed has a metric with scal > 0.

Hence, on V there exists a metric with scal > 0 (observe, however, that it is
not necessarily the metric induced from M , but only conformally equivalent to
this metric).

The next statement due to Simons and Smale (special cases due to Flem-
ing and Almgren) from geometric measure theory implies applicability of the
previous theorem if dim(M) ≤ 8.

2.1.7 Theorem. Suppose M is an orientable Riemannian manifold of dimen-
sion dimM = m ≤ 8. Furthermore let α ∈ H1(M,Z). Then

x := α ∩ [M ] ∈ Hm−1(M,Z)

can be represented by an embedded hypersurface V with trivial normal bundle
which is a local minimum for (m− 1)-volume (if m = 8 with respect to suitable
metrics arbitrarily close in C3 to the metric we started with).
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Proof. For m ≤ 7 this is a classical result of geometric measure theory (cf. [59,
Chapter 8]) and references therein, in particular [23, 5.4.18].

The case m = 8 follows from the following result of Nathan Smale [79]: the
set of Ck-metrics for which the regularity statement holds is open and dense in
the set of all Ck-metrics (k ≥ 3 and with the usual Banach-space topology). We
are only interested in C∞-metrics. But these are dense in the set of Ck-metrics,
which concludes the proof.

Unfortunately, the proofs of the theorems we have cited are very involved
and require a lot of technical work. Therefore, we don’t attempt to indicate the
arguments here.

Recall that if we are given a class α ∈ H1(M,Z) we may represent it by a
map f : M → S1 being transverse to 1 ∈ S1. Then V = f−1(1) ⊂M represents
α ∩ [M ] (and conversely, every hypersurface representing α ∩ [M ] is obtained
in this way). Furthermore, if f ′ : M → S1 is a second map as above and
V ′ = f ′

−1(1) then f and f ′ are homotopic, and a homotopy H : f ' f ′ being
transverse to 1 ∈ S1 provides a bordism W = H−1(1) : V ∼ V ′ embedded in
M × [0, 1]. Since the normal bundle of V ⊂M and W ⊂M × [0, 1],respectively,
is trivial, the manifolds and bordisms we construct this way belong to the spin-
category, if we start with a spin-manifold M .

We want to use these ideas to construct, for an arbitrary space X, a map

∩ : H1(X,Z)× Ωspinm (X)→ Ωspinm−1(X). (2.1.8)

To do this, let φ : M → X be a singular spin manifold for X, representing
an element in Ωspinm (X). If f : X → S1 represents an element α ∈ H1(X,Z),
then f ◦ φ is homotopic to a map ψ : M → S1 which is transverse to 1 ∈ S1.

Restricting φ to V := ψ−1(1) then gives a singular spin manifold φ|V : V →
X, which by definition represents α ∩ [φ : M → X] ∈ Ωspinm−1(X).

We have to check that this is well defined. To do this, let Φ: W → X be a
spin-bordism between φ : M → X and φ′ : M ′ → X. Then f ◦Φ is homotopic to
a map Ψ: W → S1 with Ψ and Ψ|∂W being transverse to 1 ∈ S1; moreover, the
map Ψ|∂W with the corresponding properties may be given in advance. Then
Ψ−1(1) ⊂W is a spin-bordism between the hypersurfaces V = (Ψ)−1(1)∩M ⊂
M and Ψ−1(1) ∩M ′ ⊂ M ′, and restricting Φ to Ψ−1(1) now yields a singular
spin-bordism between singular spin-hypersurfaces into X.
If f ′ : X → S1 is homotopic to f , a similar construction gives a singular spin-
bordism between the resulting singular spin-hypersurfaces into X. Together,
this implies that our map indeed is well defined.

The two theorems above now imply

2.1.9 Theorem. Let X be a space and let 3 ≤ m ≤ 8. Then (2.1.8) restricts
to a homomorphism:

∩ : H1(X,Z)× Ωspin,+m (X)→ Ωspin,+m−1 (X) (2.1.10)

where Ωspin,+∗ (X) ⊂ Ωspin∗ (X) is the subgroup of bordism classes which can be
represented by singular manifolds which admit a metric with scal > 0 (observe,
only one representative with scal > 0 is required).

Proof. Theorem 2.1.7 implies that, given f : M → S1 (dual to a given class in
Hm−1(M,Z)) we find a homotopic map g : M → S1 which is transverse to 1
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and such that the hypersurface V = g−1(1) is minimal for the (m − 1)-volume
(in dimension 8 we replace the given metric by one which is C3-close). In any
case, since the scalar curvature is continuous with respect to the C3-topology
on the space of all Riemannian metrics, V is volume minimizing with respect to
a metric with positive scalar curvature whenever we start with such a metric.
By Theorem 2.1.3, it admits a metric with scal > 0.

To be honest, this does not quite give an obstruction, but rather a method
to produce counterexamples. Namely, if we know Ωspin,+n−1 (Bπ), and also the
cap-product of (2.1.8) well enough, we can get information about Ωspin,+n (Bπ)
(with n ≤ 8).

Obviously, one does need some information to start with. This can be ob-
tained in dimension 2 using the Gauss-Bonnet theorem.

2.1.3 Gauss-Bonnet obstruction in dimension 2

2.1.11 Theorem. Let G be a discrete group. Then

Ωspin,+2 (BG) :=
{

bordism classes [M → BG] ∈ Ωspin2 (BG),
where M admits a metric with scal > 0

}
= 0. (2.1.12)

Proof. By the Gauss-Bonnet theorem there is only one orientable 2-manifold
with positive (scalar) curvature, namely S2. On the other hand, S2 is a spin-
manifold with a unique spin-structure, and is spin-bordant to zero, being the
boundary of D3. Since π2(BG) is trivial, up to homotopy only the trivial map
from S2 to BG exists. Therefore only the trivial element in Ωspin2 (BG) can be
represented by a manifold with positive scalar curvature.

2.2 Construction of the counterexample

2.2.1 Application of the minimal hypersurface obstruction

Now, we will construct a particular example of a manifold which does not ad-
mit a metric with positive scalar curvature, using the minimal hypersurface
obstruction.

Let p : S1 → BZ/3 be a map so that π1(p) is surjective and equip S1 with
the spin structure induced from D2. Consider the singular manifold

f = id×p : T 5 = S1

4︷ ︸︸ ︷
× · · ·×S1 × S1 → S1

4︷ ︸︸ ︷
× · · ·×S1 ×BZ/3 = Bπ,

where π = Z
4 × Z/3. This represents a certain element x ∈ Ωspin5 (Bπ).

We have four distinguished maps from Bπ to S1, given by the projections
pi : Bπ → S1 onto each of the first four factors. Let a1, . . . , a4 ∈ H1(Bπ) be
the corresponding elements in cohomology. Using the description of the cap-
product given before (2.1.8), in our situation it is easy to find a representative
for

z := a1 ∩ (a2 ∩ (a3 ∩ w)) ∈ Ωspin2 (Bπ).

Namely, taking inverse images of the base point, this z is given by

g = ∗×∗×∗×id×p : T 2 = ∗×∗×∗×S1×S1 → S1×S1×S1×S1×BZ/3 = Bπ.
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We want to show that z /∈ Ωspin,+2 (Bπ), because then, by (2.1.10), x /∈
Ωspin,+5 (Bπ), i.e. whenever we find a representative [f : M → Bπ] = x, then M
does not admit a Riemannian metric with scal > 0 (in particular, this follows
then for T 5, which, however, is not the manifold we are interested in here).

Because of Theorem 2.1.11 we only have to show that z is a non-trivial
element of Ωspin2 (Bπ). We have the natural homomorphism Ωspin∗ (Bπ) →
H∗(Bπ,Z), which maps [f : M → Bπ] to f∗[M ], i.e. to the image of the fun-
damental class of M , and the Künneth theorem implies immediately that the
image of z under this homomorphism in H2(Bπ) is non-trivial, therefore the
same is true for z.

2.2.2 Calculation of the index obstruction

We proceed by proving that the index obstruction 2.1.1 does vanish for the
example constructed in Subsection 2.2.1.

This index obstruction is an element of KO5(C∗
R,rπ), where π = Z

4 × Z/3.
First, we compute this K-theory group to the extent needed here. By a Künneth
theorem for the K-theory of C∗-algebras, the K-theory of C∗

R,r(G×Z) can easily
be computed from the K-theory of C∗

R,rG. Namely, by [77, p. 14–15 and 1.5.4]

KOn(C∗
R,r(Z

4 × Z/3)) ∼=
16⊕
i=1

KOn−ni(C
∗
R,r(Z/3)); for suitable ni ∈ N.

For a finite group G, it is well known that KO∗(C∗R,r(G)) is a direct sum of
copies of the (known) KO-theories of R, C and H. In particular, it is a direct
sum of copies of Z and Z/2. Therefore, the same is true for π. This implies the
following Proposition.

2.2.1 Proposition. KO∗(C∗R,rπ) is a direct sum of copies of Z and Z/2. In
particular, its torsion is only 2-torsion.

Let p : S1 → BZ/3 be the map of Subsection 2.2.1 so that π1(p) is surjective
(and S1 is equipped with the spin structure induced from D2). This represents
a 3-torsion element y in Ωspin1 (BZ/3) since

Ω̃spin1 (BZ/3) ∼= H1(BZ/3,Z) ∼= Z/3

(using e.g. the Atiyah-Hirzebruch spectral sequence).
It follows that

x = [id(S1)4 ×p : T 5 → B(Z4 × Z/3)]

is also 3-torsion (a zero bordism for 3x is obtained as the product of a zero
bordism for 3y with id(S1)4).

Since ind: Ωspin5 (Bπ)→ KO5(C∗
R,rπ) is a group homomorphism,

3 · ind(x) = 0 ∈ KO5(C∗
R,rπ).

But for π = Z
4×Z/3, by Proposition 2.2.1 this implies that ind(x) = 0, i.e. the

index obstruction vanishes.
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2.2.3 Surgery to produce the counterexample

So far, we have found a bordism class x ∈ Ωspin5 (Bπ) (π = Z
4 × Z/3) such that

the index obstruction 2.1.1 vanishes for x, but on the other hand no representa-
tive [f : M → Bπ] can be found such that M has a metric with positive scalar
curvature. To give a counterexample to Conjecture 2.1.2, we have to find a rep-
resentative such that f induces an isomorphism on fundamental groups (i.e. is
the classifying map for the universal covering of M). This is not the case for
the tori we have explicitly constructed so far (and indeed, for tori one can use
the index method to show that they do not admit a metric with positive scalar
curvature).

But adjusting the fundamental group is easy. We only have to perform
surgery on our explicitly given torus T 5. That is, we have to choose an embedded
S1 → T 5 which represents the kernel of π1(f) : π1(T 5)→ π1(Bπ) (observe that
in this situation, the kernel actually is cyclic) and which has a trivial normal
bundle. Then a tubular neighborhood of S1 is diffeomorphic to S1 ×D4, with
boundary S1×S3. We can now cut away this tubular neighborhood and glue in
D2 × S3 (also with boundary S1 × S3) instead. The fundamental group of the
new manifold M ′ is the quotient of the fundamental group of the old manifold by
the (normal) subgroup generated by the loop we started with, i.e. is isomorphic
to π. Let u : M ′ → Bπ be the classifying map for the universal covering. Using
classical “surgery below the middle dimension”, we can arrange all this in such
a way that

[f : T 5 → Bπ] = [u : M ′ → Bπ] ∈ Ωspin5 (Bπ)

(compare [82, Lemma 5.6]). Consequently, M ′ is a counterexample to the
Gromov-Lawson-Rosenberg conjecture 2.1.2.

2.3 Other questions, other examples

The index map of Theorem 2.1.1 admits a factorization

ind: Ωspin∗ (Bπ) D−→ ko∗(Bπ)
p−→ KO∗(Bπ)

µ−→ KO∗(C∗r,Rπ).

Here, ko∗ is connective real K-homology, KO∗ the periodic real K-homology
we have considered so far, D is the ko-theoretic orientation, p the canonical map
between the connective and the periodic theory, and µ the assembly map in topo-
logical K-theory. Note that for torsion free groups, this µ is the Baum-Connes
map, and the Baum-Connes conjecture states that this map is an isomorphism.

The original conjecture of Gromov and Lawson asserted that the vanishing
of the image of [u : M → Bπ1(M)] in KOm(Bπ) decides whether M admits
a metric with positive scalar curvature. Rosenberg observed that there are
manifolds with scal > 0 for which this element does not vanish, and proposed to
modify the conjecture as stated in Conjecture 2.1.2. We adopt the convention
that u : M → Bπ1(M) denotes the classifying map for the universal covering of
M .

However, the following question remains.
2.3.1 Question. Is the stronger vanishing condition that

pD[u : M → Bπ1(M)] = 0

sufficient for the existence of metrics with positive scalar curvature?
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If even D[u : M → Bπ1(M)] = 0, then M admits a metric with positive
scalar curvature by a result of Stephan Stolz [81] (as usual, we have to assume
that dim(M) ≥ 5).

In [34], a counterexample to question 2.3.1 is given. The first step to con-
struct the counterexample is to find a group such that

p : ko∗(Bπ)→ KO∗(Bπ)

has a kernel, and since we want to use the minimal surface method, this kernel
should be given for ∗ = 2. In [34], this is done using explicit K-homology
calculations for finite groups. The remaining proof is very much along the lines
of the proof we have given above.

One of the virtues of the example we have given is that we avoid the calcula-
tion of the index. This is replaced by some (easy) considerations about torsion.
To be able to do this, we used a fundamental group π with torsion. Dwyer
and Stolz (unpublished) have constructed a counterexample to the Gromov-
Lawson-Rosenberg conjecture with torsion-free fundamental group. In [74] a
refinement of this is given where the classifying space Bπ is a manifold with
negative curvature. The first key idea is the same as in the example in [34] just
described, namely to find an element in the kernel of ko2(Bπ) → KO2(Bπ).
To find a π such that Bπ is particularly nice (e.g. finite dimensional, which
implies that π is torsion-free, or even a manifold of negative curvature) one uses
asphericalization procedures of Baumslag, Dyer and Heller, or Charney, Davis,
and Januszkiewicz, which produce nice Bπ with certain prescribed homologi-
cal properties (starting with (worse) spaces which have these same homological
properties). More constructions of this kind are described in the lectures of
Mike Davis.

The positive scalar curvature question makes sense also for manifolds which
are not spin manifolds. There are “twisted” index obstructions as long as the
universal covering is a spin manifold, and one can formulate an appropriate
“twisted Gromov-Lawson-Rosenberg” conjecture. In [34], counterexamples to
this twisted conjecture are given, as well.



Chapter 3

L2-cohomology and the
conjectures of Atiyah,
Singer, and Hopf

L2-cohomology and L2-Betti numbers are certain “higher invariants” of mani-
folds and more general spaces. They were introduced 1976 by Michael Atiyah in
[1], and since then have proved to be useful invariants with connections and ap-
plications in many other mathematical fields, from differential geometry to group
theory and algebra. Apart from the original literature, there exists Lücks infor-
mative survey article [50], and also Eckmann lecture notes [20]. Moreover, at
the time of writing of this article, Lück’s very comprehensive textbook/research
monograph [51] is almost finished, and the current version is available from
the author’s homepage. This chapter is a survey style article which focuses
on the main points of the very extensive subject, leaving out many of the less
illuminating details, which can be found e.g. in [51].

3.1 Analytic L2-Betti numbers

3.1.1 Definition. Let M be a (not necessarily compact) Riemannian manifold
without boundary, which is complete as a metric space. Define

L2Ωp(M) := {ω measurable p-form on M |
∫
M

|ω(x)|2x dµ(x) <∞}.

Here, |ω(x)|x is the pointwise norm (at x ∈ M) of ω(x), which is given by
the Riemannian metric, and dµ(x) is the measure induced by the Riemannian
metric.

L2Ωp(M) can be considered as the Hilbert space completion of the space of
compactly supported p-forms on M . The inner product is given by integrating
the pointwise inner product, i.e.

〈ω, η〉L2 :=
∫
M

〈ω(x), η(x)〉x dµ(x).

41
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3.1.2 Definition. Let M be a smooth compact Riemannian manifold without
boundary, with Riemannian metric g. Let M be a normal covering of M , i.e. if
Γ is the deck transformation group, then M = M/Γ. Lift the metric g to M .
Then Γ acts isometrically on M . Let ∆p be the Laplacian on p-forms on M .
This gives rise to an unbounded operator

∆p : L2Ωp(M)→ L2Ωp(M).

This operator is an elliptic differential operator (but on the not necessarily
compact manifold M) Let

prp : L2Ωp(M)→ L2Ωp(M)

be the orthogonal projection onto ker(∆p). Ellipticity of ∆p implies that prp
has a smooth integral kernel, i.e. that there is a smooth section prp(x, y) over
M ×M (of the bundle with fiber Hom(ΛpT ∗yM,ΛpT ∗xM) over (x, y) ∈M ×M),
such that

prp ω(x) =
∫
M

prp(x, y)ω(y) dµ(y)

for every L2-p-form on M .
We define the L2-cohomology of M by

Hp
(2)(M) := ker(∆

p
) = im(prp).

It is an easy observation that, given a projection P : V → V on a finite
dimensional vector space V , then dim(im(P )) = tr(P ). On the other hand,
the trace of an operator with a smooth integral kernel can be computed by
integration over the diagonal.

We want to use these ideas to define a useful dimension for ker(∆p). Note,
however, that the Laplacian ∆p is defined using the Riemannian metric on
M . It follows that it commutes with the induced action of Γ on L2Ωp(M).
Consequently, ker(∆p) is Γ-invariant, and

trx prp(x, x) = trgx prp(gx, gx) ∀x ∈M, g ∈ Γ.

Observe that prp(x, x) ∈ End(ΛpT ∗xM) is an endomorphism of a finite dimen-
sional vector space for each x ∈M , and trx is the usual trace of such endomor-
phisms. If M is not compact (i.e. if Γ is infinite), it follows that∫

M

trx prp(x, x) dµ(x)

does not converge, and indeed, in general ker(∆p) is not a finite dimensional
C-vector space.

On the other hand, because of the Γ-invariance, the function

x 7→ trx prp(x, x)

“contains the same information many times”, and it doesn’t make sense to try to
compute the integral over all of M . We therefore adopt the notion of “dimension
per (unit) volume”.
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More concretely, because of Γ-invariance, the function x 7→ trx prp(x, x)
descents to a smooth function on the quotient M/Γ = M . We now define the
L2-Betti numbers

bp(2)(M,Γ) := dimΓ ker(∆p) :=
∫
M

trx prp(x, x) dµ(x) ∈ [0,∞).

This number is a non-negative real number. However, a priori no further re-
strictions appear for these values.

Extensions of all these definitions to manifolds with boundary are possible,
compare e.g. [69].

The definition given here is the original definition of L2-Betti numbers as
given by Atiyah. Of course, the same construction can be applied to any elliptic
differential operator D on M . If D is such an elliptic differential operator, and
D∗ its formal adjoint, Atiyah defined in this way the Γ-index of the lift D of D
to M by

indΓ(D) := dimΓ(kerD)− dimΓ(kerD∗).

Atiyah’s celebrated L2-index theorem now states

3.1.3 Theorem.
indΓ(D) = ind(D).

Here, recall that ellipticity of D and compactness of M imply that ker(D)
and ker(D∗) are finite dimensional C-vector spaces, and

ind(D) = dimC(kerD)− dimC(kerD∗).

It should be observed that it is far from true in general that dimΓ(kerD) =
dimC(kerD). In particular, the L2-Betti numbers and the ordinary Betti num-
bers usually are quite different from each other. However, Atiyah’s L2-index
theorem has the following consequence for the L2-Betti numbers:

χ(M) =
dimM∑
p=0

(−1)pbp(2)(M,Γ). (3.1.4)

An extension of Atiyah’s L2-index theorem to manifolds with boundary can
be found in [72], which provides one way to prove a corresponding result for the
Euler characteristic of manifolds with boundary.

3.1.5 Example. Assume Γ is finite. Then M itself is a compact manifold and,
by the above considerations, we get for the ordinary Betti numbers of M :

bp(M) =
∫
M

trx prp(x, x) dµ(x).

Because of Γ-invariance,∫
M

trx prp(x, x) dµ(x) = |Γ| ·
∫
M

trx prp(x, x) dµ(x),

in other words,

bp(2)(M,Γ) =
bp(M)
|Γ|
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3.1.6 Example. Let p = 0, and assume that M is connected. Integration by
parts shows that f ∈ L2Ω0(M) belongs to ker(∆0) if and only if f is constant
(recall that L2Ω0(M) = L2(M) is the space of L2-functions on M). If vol(M) =
∞, or equivalently |Γ| = ∞ then an L2-function f is constant if and only if
it is zero, i.e. ker(∆0) = 0. Therefore, prp(x, y) = 0 for all x, y ∈ M and
b0(2)(M,Γ) = 0.

Note that the 0-th ordinary Betti number never vanishes. Many of the
applications of L2-Betti numbers rely on such vanishing results, which don’t
hold for ordinary Betti numbers.

3.1.7 Theorem. Assume M is orientable. Then, the Hodge-∗ operator is de-
fined and intertwines p-forms and (dimM − p)-forms on M . Since this is an
isometry which commutes with the Laplace operators, it induces an isometry be-
tween Hp

(2)(M) and HdimM−p
(2) (M). Moreover, this isometry is compatible with

the action of Γ and, in particular extends to the integral kernel of prp. As a
consequence, we have Poincaré duality for L2-Betti numbers:

bp(2)(M,Γ) = bdimM−p
(2) (M,Γ).

3.1.1 The conjectures of Hopf and Singer

3.1.8 Example. In general, it will be almost impossible to compute the L2-
Betti numbers using the Riemannian metric and the integral kernel of prp. For
very nice metrics, however, this is can be done, in particular if (M, g) is a
symmetric space. One obtains e.g.

(1) If M = Tn is a flat torus, M = R
n is flat Euclidean space, then

bp(2)(R
n,Zn) = 0 ∀p ∈ Z.

(2) If (M, g) has constant sectional curvature K = −1, Γ = π1(M) and M =
H
m is the hyperbolic m-plane, then

bp(2)(M,Γ) = 0 if p 6= m/2,

and if m is even and p = m/2, then

b
m/2
(2) (M,Γ) > 0.

In particular, we conclude, using (3.1.4), that in this situation

(−1)m/2χ(M) > 0.

(3) If, more generally, (M, g) is a connected, locally symmetric space with
strictly negative sectional curvature, M is its universal covering (a sym-
metric space) and Γ = π1(M), then

bp(2)(M,Γ) = 0 if p 6= dimM/2,

and if dimM/2 is an integer, then

b
dimM/2
(2) (M,Γ) > 0.
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In particular, if dimM is even we have again

(−1)dimM/2χ(M) > 0.

(4) If (M, g) is a connected locally symmetric space with non-positive, but
not strictly negative, sectional curvature, then

bp(2)(M,Γ) = 0 ∀p ∈ Z,

with M and Γ as above. In particular χ(M) = 0.

Proof. These calculations are carried out in [9], another account can be found in
[60], using the “representation theory of symmetric spaces”. A more geometric
proof of the hyperbolic case (i.e. constant curvature −1) is given in [17].

Given any compact Riemannian manifold without boundary, we can compute
the Euler characteristic using the Pfaffian and the Gauss-Bonnet formula in
higher dimensions. This gives rise to another argument for the inequality

(−1)dimM/2χ(M) > 0,

if M is an even dimensional manifold with constant negative sectional curvature,
and this has been known for a long time. It has lead to the following conjecture,
which is attributed to Hopf.

3.1.9 Conjecture. Assume (M, g) is a compact Riemannian 2n-dimensional
manifold without boundary, and with strictly negative sectional curvature. Then

(−1)nχ(M) > 0.

If the sectional curvature is non-positive, then

(−1)nχ(M) ≥ 0.

3.1.10 Remark. The flat torus, or the product of any negatively curved manifold
with a flat torus, shows that χ(M) = 0 is possible if M is a manifold with non-
positive sectional curvature.

In view of Atiyah’s formula (3.1.4), and because of the calculations of Jozef
Dodziuk and the others in Example 3.1.8, Singer proposed to use the L2-Betti
numbers to prove the Hopf conjecture 3.1.9. More precisely, he made the fol-
lowing stronger conjecture.

3.1.11 Conjecture. If (M, g) is a compact Riemannian manifold without bound-
ary and with non-positive sectional curvature, then

bp(2)(M̃, π1(M)) = 0, if p 6= dimM/2.

If dimM = 2n is even and the sectional curvature is strictly negative, then

b
dimM/2
(2) (M̃, π1(M)) > 0.
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Because of (3.1.4), the Singer conjecture 3.1.11 implies the Hopf conjecture
3.1.9.

Using estimates for the Laplacians and their spectrum, Ballmann and Brü-
ning [3] prove (improving earlier results of Donnelly and Xavier [19] and Jost
and Xin [35]) part of the Singer conjecture for very negative sectional curvatures:

3.1.12 Theorem. If (M, g) is a closed Riemannian manifold of even dimension
2n, such that its sectional curvature K satisfies −1 ≤ K ≤ −(an)2, with 1 ≥
an > 1− 1/n, then

bp(2)(M̃, π1(M)) = 0; if p 6= dimM/2.

Therefore
(−1)dimM/2χ(M) ≥ 0.

Proof. This result is not explicitly stated in [3]. However, it follows from their
[3, Theorem 5.3] in the same way in which [19, Theorem 3.2] of Donnelly and
Xavier follows from the corresponding [19, Theorem 2.2].

3.1.13 Remark. Classical estimates of the Gauss-Bonnet integrand imply that
(−1)dimM/2χ(M) > 0 if −1 ≤ K ≤ bn with 1 ≥ bn > 1− 3/(dimM + 1).

This gives strict positivity, but the curvature bound of Theorem 3.1.12 is
weaker.

3.1.2 Hodge decomposition

In the classical situation, (de Rham) cohomology is of course not defined as the
kernel of the Laplacian, as is suggested at the beginning of Section 3.1, but as
the cohomology of the de Rham cochain complex. Only afterwards, the Hodge
de Rham theorem shows that these de Rham cohomology groups are canonically
isomorphic to the space of harmonic forms.

The picture is parallel for L2-cohomology. Whenever (M, g) is a complete
Riemannian manifold, we can define the L2-de Rham complex

→ L2Ωp−1(M) d−→ L2Ωp(M) d−→ L2Ωp+1(M)→

where d is the exterior differential considered as an unbounded operator on the
Hilbert space L2Ωp(M). (The fact that (M, g) is complete implies that d has a
unique self adjoint extension. Usually, we work with this self adjoint extension
instead of d itself).

We then define the L2-cohomology as

Hp
(2)(M) := ker(d)/im(d).

Observe that we divide through the closure of the image of d. This way, we
stay in the category of Hilbert spaces. Sometimes, the L2-cohomology groups
obtained this way are called the reduced L2-cohomology groups.

We have to check that this definition coincides with the one given in Defi-
nition 3.1.2. Now, if (M, g) is a complete Riemannian manifold, then we have
the following Hodge decomposition:

L2Ωp(M) = ker(∆p)⊕ im d⊕ im d∗, (3.1.14)
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where d∗ is the formal adjoint of d, and where the sum is an orthogonal direct
sum. This implies that we also have an orthogonal decomposition

ker(d|L2Ωp(M)) = ker(∆p)⊕ im d.

Of course this implies immediately that the inclusion of ker(∆p) into L2Ωp(M)
induces an isomorphism between ker(∆p) and ker(d)/im d.

3.1.3 The Singer conjecture and Kähler manifolds

The use of the Singer conjecture to prove the Hopf conjecture in the examples
presented so far is probably not very impressive. In this section we will discuss
a much more striking result, which makes use of additional structure, namely
the presence of a Kähler metric. The idea to do this is due to Gromov [26].

3.1.15 Definition. A Riemannian manifold (M, g) is called a Kähler manifold,
if the (real) tangent bundle TM comes with the structure of a complex vector
bundle (i.e. M is an almost complex manifold) with a Hermitian metric h : TM×
TM → C (for the given complex structure on TM) such that the following
conditions are satisfied:

• g is the real part of the Hermitian metric h.

• The 2-form ω associated to the Hermitian metric by

ω(v, w) = −1
2
Im(h(v, w)),

the so called Kähler form, is closed, i.e. dω = 0.

3.1.16 Remark. Under these conditions, the almost complex structure on M
is integrable, i.e. M is a complex manifold. Moreover, ω is non-degenerate,
i.e. ωdimM/2 is a nowhere vanishing multiple of the volume form of (M, g).

3.1.17 Definition. A compact Kähler manifoldM is called Kähler hyperbolic, if
we find a 1-form η on the universal covering M̃ such that ω̃ = dη, where ω̃ is the
pullback of the Kähler form ω to M̃ , and such that |η|∞ := supx∈M̃ |η(x)|x <∞.

3.1.18 Example. The following manifolds are Kähler hyperbolic:

(1) closed Kähler manifold which are homotopy equivalent to a Riemannian
manifold with negative sectional curvature.

(2) closed Kähler manifolds with word-hyperbolic fundamental group, pro-
vided the second homotopy group vanishes

(3) Complex submanifolds of Kähler hyperbolic manifolds, or the product of
two Kähler hyperbolic manifolds.

Proof. Compare [26, Example 0.3].

From the point of view of the Hopf conjecture and the Singer conjecture, the
first example is the most relevant: manifolds with negative sectional curvature,
which also admit a Kähler structure, are covered by the results of this section.

Gromov proved the Singer conjecture for Kähler hyperbolic manifolds. More
precisely, he proved in [26] the following.
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3.1.19 Theorem. Let M be a closed Kähler hyperbolic manifold of real dimen-
sion 2n. Then

bp(2)(M̃, π1(M)) = 0 if p 6= n

bn(2)(M̃, π1(M)) > 0.

In particular, because of (3.1.4), (−1)nχ(M) > 0.

Proof. The proof splits into two rather different parts. On one side, we have to
show vanishing outside the middle dimension. This is done using a Lefschetz
theorem, which in particular implies that the cup-product with the lift of the
Kähler form ω̃ induces a bounded injective map

L : ker(∆̃r)→ ker(∆̃r+2) for r < n.

This is a classical fact from complex geometry in the compact case, and it
extends rather easily to our non-compact situation.

But, by assumption, ω̃ = dη where η is an L∞-bounded one form. The cup
product of a closed form f with a boundary dη is always a boundary, which
shows that (on a compact manifold) cup product with a boundary dη induces
the zero map on de Rham cohomology.

The extra boundedness condition on η allows us to deduce the same for the
L2-de Rham cohomology groups, i.e. cup product with ω̃ induces the zero map
on Hp

(2)(M̃) if M is Kähler hyperbolic. Since the Lefschetz theorem implies that

this map is also injective, as long as p < n, Hp
(2)(M̃) = 0 for p < n. Because of

the Poincaré duality theorem 3.1.7, the same holds for p > n, thus establishing
the vanishing part of the theorem.

The first step to prove the non-vanishing of the L2-cohomology in the middle
dimension is the following result: Using similar, but more delicate, arguments
as the one above, one shows that ∆̃r : L2Ωr(M̃)→ L2Ωr(M̃) is invertible with a
bounded inverse when restricted to the orthogonal complement of its null space.
(If r 6= n, this kernel is 0, but we later have to prove that ∆̃n has a non-trivial
null space.)

The key point now is that one can construct a continuous family of twisted
L2-de Rham complexes, indexed by λ ∈ R, such that for λ = 0 we obtain the
original L2-de Rham complex we are interested in. An extension of Atiyah’s
L2-index theorem 3.1.3 (a proof can be found e.g. in [56, Theorem 3.6]) implies
that the L2-Euler characteristics of these twisted complexes are a non-trivial
polynomial p(λ). Here, the twisted L2-Euler characteristic is defined as the
alternating sum of the L2-dimension of ker(∆p(λ)), where the twisted Laplacian
∆p(λ) is obtained from the twisted de Rham complex. Of course, ∆p(0) = ∆̃0,
and p(0) = χ(M).

On the other hand, if ker(∆̃n) was zero, then all the operators ∆r would be
invertible, with bounded inverse. Because of the properties of the perturbation,
the twisted Laplacian ∆r(λ) would also be invertible for λ sufficiently close to
zero, which would imply that p(λ) = 0 for λ sufficiently close to 0. This is a
contradiction to the result that p(λ) is a non-trivial polynomial.

3.1.20 Remark. The vanishing part of Theorem 3.1.19 definitely is the easier
part. To obtain the corresponding statement, the assumptions on the Kähler
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form can be weakened a little bit, namely, it suffices that the lift ω̃ satisfies ω̃ =
dη for a one form η which has at most linear growth (such manifolds are called
Kähler non-elliptic). This is carried out independently in [36] and [12]. The
most important example of Kähler non-elliptic manifolds are closed Riemannian
manifolds with non-positive sectional curvature which admit a Kähler structure.
In particular, for such a manifold the assertions of the Singer conjecture and of
the Hopf conjecture are true.

3.2 Combinatorial L2-Betti numbers

So far, we have defined L2-cohomology and L2-Betti numbers only for coverings
of Riemannian manifolds, and we have not even shown that they do not depend
on the chosen Riemannian metric. Here, we will extend the definition to cover-
ings of arbitrary CW-complexes. Moreover, we will show that L2-cohomology
is an equivariant homotopy invariant.

From now on, therefore, assume that X is a compact CW-complex, and that
X is a regular covering of X, with deck transformation group Γ (in particular,
Γ acts freely on X, and X = X/Γ). We use the induced structure of a CW-
complex on X, and Γ acts by cellular homeomorphisms.

Then, the cellular chain complex of X is a chain complex of finitely generated
free ZΓ-modules, with ZΓ-basis given by lifts of cells of X . This way, the basis
is unique up to permutation and multiplication with ±g ∈ ZΓ for g ∈ Γ.

The cellular L2-cochain complex is defined by

C∗(2)(X,Γ) := HomZΓ(Ccell∗ (X), l2(Γ)).

We assume that Γ acts on X from the right, and therefore consider homo-
morphisms of right ZΓ-modules. Γ still acts on C∗(2)(Γ) by isometries, with

(fg)(x) := g−1 · (f(x)) for ∈ Γ, f ∈ C∗(2)(X) and x ∈ Ccell∗ (X).

The choice of a cellular ZΓ-basis for Ccell∗ (X) identifies Cp(2)(X) with (l2Γ)n (n
being the number of p-cells in X), which induces in particular the structure of
a Hilbert space on the cochain groups (which does not depend on the particular
cellular basis).

The L2-cochain maps

dp : Cp(2)(X,Γ)→ Cp+1
(2) (X,Γ)

are bounded equivariant linear maps. Let d∗p be the adjoint operator, and set

∆p := d∗pdp + dp−1d
∗
p−1.

This is the cellular Laplacian, a bounded self adjoint equivariant operator on
Cp(2)(X).

3.2.1 Remark. We can also define the cellular L2-chain complex by

C
(2)
∗ (X) := Ccell∗ (X)⊗ZΓ l

2(Γ).

The self duality of the Hilbert space l2(Γ) induces a duality between C
(2)
∗ and

C∗(2) which gives a chain isometry between the L2-cochain and the L2-chain
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complex. In particular, in all the definitions we are going to make, there will be
a canonical isomorphism between the cohomological and homological version.
Because for manifolds de Rham cohomology seems to be more natural to use,
we will stick to the cohomological version throughout.

3.2.1 Hilbert modules

3.2.2 Definition. A (finitely generated) Hilbert NΓ-module is a Hilbert space
V with a right Γ-action which admits an equivariant isometric embedding into
l2(Γ)n for some n.

3.2.3 Remark. To explain this notation, we remark that an isometric action of
Γ on a (complex) Hilbert space by linearity extends to an “action” of the inte-
gral group ring Z[Γ] and the complex group ring C[Γ] (recall that, given a ring
R, the group ring RΓ is defined to consist of finite formal linear combination∑
g∈G rgg with rg ∈ R, with component-wise addition, and multiplication de-

fined by (rgg)(rhh) = (rgrh)(gh)). We can embed CΓ into a certain completion,
the reduced C∗-algebra C∗rΓ.

3.2.4 Definition. The group von Neumann algebra NΓ is an even bigger com-
pletion of CΓ. It can be defined to consists of those bounded operators on l2Γ
which commute with the right action of Γ on l2Γ, i.e.

NΓ := B(l2Γ)Γ.

The right action is given by

(
∑
g∈Γ

λgg) · v :=
∑
g∈Γ

λg(gv) for v ∈ G and
∑
g∈Γ

λgg ∈ l2Γ.

Then NΓ is a ring which acts on the left on l2Γ, and CΓ (actually C∗rΓ) is
contained in NΓ.

Equivalently, one can define NΓ to be the closure of CΓ (with the left ac-
tion) in BΓ with respect to the weak topology. This is a consequence of von
Neumann’s bicommutant theorem.

The action of Γ on a Hilbert NΓ-module V extends to CΓ and then to
NΓ, making V indeed a module over NΓ. Observe, however, that we don’t
get arbitrary algebraic modules, but modules with a topology and of a rather
special kind. This additional NΓ-module structure is underlying many of the
definitions and proofs in L2-cohomology. However, in the sequel we will omit
explicitly using this, and instead work with the (for our purposes equivalent)
unitary action of Γ and existence of the embedding into (l2Γ)n.

Given a Hilbert NΓ-module V , let pr : l2(Γ)n → l2(Γ)n be the orthogonal
projection onto the image of any such embedding. We define the Γ-dimension
of V by

dimΓ(V ) := trΓ(pr) :=
n∑
i=1

〈pr(ei), ei〉l2(Γ)n . (3.2.5)

Here, ei = (0, . . . , δ1, . . . , 0) is the standard basis vector of l2(Γ)n with i-th
entry being the characteristic function of the unit of Γ, and all other entries
being zero.
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Observe that Γ-invariance of V implies that pr is Γ-equivariant, i.e.

〈pr(eig), eig〉 = 〈pr(ei), ei〉

for all g ∈ Γ. If we would like to compute the C-dimension of V , and therefore
take the ordinary trace of pr (as endomorphism of C-vector spaces) we would
have to sum over 〈pr(eig), eig〉 for all g ∈ Γ. Of course, in general this doesn’t
make sense since pr is not of trace class. As in the Definition 3.1.2, we pick the
relevant part of this trace in (3.2.5), summing over a “fundamental domain” for
the Γ-action on l2(Γ)n.

It is not hard to check that the above definition is independent of the choice
of the embedding of V into l2(Γ)n.

3.2.6 Example. If Γ is finite, then every finitely generated Hilbert NΓ-module
V is a finite dimensional vector space over C, and

dimΓ(V ) =
1
|Γ|

dimC(V ).

3.2.7 Example. A more interesting example is given by free abelian groups.
Assume that Γ = Z. Then Fourier transform provides an isometric isomor-
phism between l2(Γ) and L2(S1). Under this isomorphism, the subspace C[Γ]
corresponds to the space of trigonometric polynomials in L2(S1), which act by
pointwise multiplication. The reduced C∗-algebra C∗rZ becomes C(S1), and the
von Neumann algebra NZ becomes L∞(S1), also acting by pointwise multipli-
cation. A projection P of L2(Γ) which commutes with all these trigonometric
polynomials is itself given by multiplication with a measurable function f , and
being a projection translates to the fact that f only takes the values 0 and 1
(up to a set of measure zero).

The image of P is the set of functions in L2(S1) which vanish on the zero
set of f . The Γ-trace of P is the constant term in the Fourier expansion of f ,
which can be computed by integration over S1, i.e.

trΓ(P ) =
∫
S1
f = vol(supp(f)),

which here is of course just the volume of the support of f , i.e. the set of all
x ∈ S1 with f(x) = 1 We use the standard measure on S1, normalized in such
a way that vol(S1) = 1.

It should be observed that one can obtain any real number between 0 and 1
in this way.

The Γ-dimension has the following useful properties, which in particular
justify the term “dimension”.

3.2.8 Proposition. Let U, V,W be finitely generated Hilbert NΓ-modules.

(1) Faithfulness: dimΓ(U) = 0 if and only if U = 0.

(2) Additivity: If we have a weakly exact sequence of Hilbert NΓ-modules

0→ U →W → V → 0
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then
dimΓ(W ) = dimΓ(U) + dimΓ(V ).

Weakly exact means that the kernel of the outgoing map coincides with the
closure of the image of the incoming map, i.e.

· · · φ1−→ X
φ2−→ · · ·

is weakly exact at X if and only if ker(φ2) = im(φ1).

(3) Monotonicity: If U ⊂ V then dimΓ(U) ≤ dimΓ(V ), and dimΓ(U) =
dimΓ(V ) if and only if U = V .

(4) Normalization: dimΓ(l2(Γ)) = 1.

(5) If H is a subgroup of finite index d in Γ, then every finitely generated
Hilbert NΓ-module V becomes by restriction of the action a finitely gen-
erated Hilbert NH-module. Then

dimH(V ) = d · dimΓ(V ).

(Note that Γ finite and H trivial is a special case of this situation.)

3.2.2 Cellular L2-cohomology

3.2.9 Definition. We define the cellular L2-cohomology by

Hp
(2)(X,Γ) := ker(dp)/im(dp−1).

We have a Hodge decomposition

Cp(2)(M,Γ) = ker(∆p)⊕ im d⊕ im d∗.

This is similar to Hodge decomposition for differential forms on Riemannian
manifolds, but, since all operators involved here are bounded, is a much more
elementary result. From this it follows that we have an isometric Γ-isomorphism

Hp
(2)(X,Γ) ∼= ker(∆p)

We define the L2-Betti numbers

bp(2)(X,Γ) := dimΓ(ker(∆p)).

Observe again the important fact that we divide by the closure of the image
of the differential, such as to remain in the category of Hilbert spaces. This is the
decisive difference to the equivariant cohomology with values in the ZΓ-module
l2Γ. However, in [54, 55], Lück generalized the concept of L2-Betti numbers
from normal coverings of finite CW-complexes to arbitrary spaces with group
action, using the usual twisted cohomology (with coefficients the group von
Neumann algebra NΓ). The starting point, however, is also in this treatment
the theory of Hilbert NΓ-modules.
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3.2.2.1 Matrices over the group ring

Given a compact CW-complex, we can explicitly compute it’s cohomology us-
ing a cellular basis and solving certain systems of linear equations. A similar
approach is possible here (leading to more complicated, “non-commutative”,
equations in this situation).

In the compact case, the choice of an orientation for each cell identifies
Ccellp (X) with Zcp , where cp is the number of p-cells of X, and this identi-
fication is well defined up to permutation of the basis, and multiplication of
basis elements with ±1. The boundary map, in this representation, is given by
multiplication with an appropriate matrix with integral entries.

To proceed in the L2-case, observe that each cell of the finitely many cells of
X has as inverse image a free Γ-orbit of cells in X̃. We can choose one cell in each
orbit. Together with the choice of an orientation, this identifies the ZΓ-module
Ccellp (X) with (ZΓ)cp , and this identification is unique up to multiplication of
the basis elements with ±g (g ∈ Γ) and permutation. In this realization, the
boundary maps of Ccellp (X) are given by multiplication with matrices Ap over
the integral group ring.

The chosen ZΓ-module isomorphism of Ccellp (X) with (ZΓ)cp induces an
isomorphism of C∗(2)(X,Γ) with (l2Γ)cp . An easy calculation shows that the
coboundary maps are given by multiplication with the adjoint matrices A∗p (ex-
tending the multiplication of elements of CΓ with elements of l2Γ used before).
Here, if

u =
∑
g∈Γ

λgg ∈ CΓ then u∗ :=
∑
g∈Γ

λgg
−1,

and obviously u∗ ∈ ZΓ if u ∈ ZΓ. If A = (Aij) ∈M(d1 × d2,CΓ), then

A∗ := (A∗ji) ∈M(d2 × d1,CΓ),

and again this restricts to an operation on matrices over ZΓ.
To finish the picture, the combinatorial Laplacian ∆p = d∗pdp + dp−1d

∗
p−1 is

given by the matrix

∆ := A∗pAp +A∗p−1Ap−1 ∈M(cp × cp,ZΓ).

To understand the L2-cohomology we therefore have to understand the kernel
of such matrices, acting on (l2Γ)cp .

This gives an algebraic way of studying questions about L2-cohomology —
they translate to questions about matrices over ZΓ.

Actually, if Γ is finitely presented (i.e. has a presentation with finitely many
generators and finitely many relations), given any matrix A ∈ M(d× d,ZΓ), a
standard construction provides us with a compact CW-complexX with π1(X) =
Γ such that the kernel of the combinatorial Laplacian ∆3 becomes the kernel of
A, acting on l2(Γ)d. Therefore, we can also translate questions about matrices
over ZΓ to questions in L2-cohomology.

3.2.2.2 Properties of L2-Betti numbers

3.2.10 Theorem. L2-cohomology and in particular L2-Betti numbers have the
following basic properties. Here, let X be a normal covering of a finite CW-
complex X with covering group Γ.
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(1) Let (M, g) be a closed Riemannian manifold, and equip it with the CW-
structure coming from a smooth triangulation. Let (M, g) be a normal
covering of M with covering group Γ. Then integration of forms over
simplices (the de Rham map) defines a Γ-isomorphism

ker(∆p(g))→ Hp
(2),cell(M,Γ).

In particular, the L2-Betti numbers defined using the Riemannian metric
and using the Γ-CW-structure coincide.

(2) Let Y be another finite CW-complexes and f : Y → X a homotopy equiv-
alence. Let Y be the pullback of X along f (this means that the deck
transformation group for Y is also Γ). Then

bp(2)(X,Γ) = bp(2)(Y ,Γ) ∀p ≥ 0.

(3) For the Euler characteristic of X, we get

χ(X) =
∞∑
p=0

(−1)pbp(2)(X,Γ). (3.2.11)

(4) Assume Γ is finite. Then X is itself a finite CW-complex, and its (ordi-
nary) Betti number bp(X) are defined. They satisfy

bp(2)(X,Γ) =
1
|Γ|
bp(X).

(5) If Γ is infinite, then for the zeroth L2-Betti number we get

b0(2)(X,Γ) = 0.

(6) Let H ≤ Γ be a subgroup of finite index d, and set X1 := X/H. This is
a finite d-sheeted covering of X, and X can be considered to be a normal
covering of X1 with covering group H. Then

bp(2)(X,H) = d · bp(2)(X,Γ) ∀p ≥ 0.

Note that the Euler characteristic is multiplicative under finite covering, in
the situation of (6) this means that χ(X1) = d · χ(X). In view of (6) and
the Euler characteristic formula (3), the L2-Betti numbers are the appropriate
refinement of the Euler characteristic which (unlike the ordinary Betti numbers)
remain multiplicative under finite coverings.

Proof of Theorem 3.2.10. We only indicate reference and the main points.

(1) This was a classical question of Atiyah, proved by Dodziuk in [16].

(2) f is covered by a Γ-homotopy equivalence f : Y → X. One easily checks
that such a map induces a map on L2-cohomology, and that two Γ-
homotopic maps induce the same map. The claim follows.
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(3) The Euler characteristic formula follows exactly as in the classical situa-
tion, using additivity of the Γ-dimension and the normalization

dimΓ(l2Γ) = 1.

(4) If Γ is finite, all the Hilbert spaces in question are finite dimensional. Con-
sequently, im(d) is automatically closed, and there is no difference between
L2-cohomology and ordinary cohomology with complex coefficients of X.
In particular,

bp(X) = dimCH
p
(2)(X,Γ) = |Γ| · dimΓ(Hp

(2)(X,Γ)) = |Γ| · bp(2)(X,Γ).

(6) This follows immediately from the corresponding formula in Proposition
3.2.8.

3.3 Approximating L2-Betti numbers

As mentioned in Section 3.1, there are almost no relations between the ordinary
Betti numbers of a space X and the L2-Betti numbers of a covering X̃ of X.
However, if we have a whole sequence of nested coverings X ← X1 ← X2 ← · · · ,
“converging” to X̃, in many cases we can approximate the L2-Betti numbers
of X̃ in terms of this sequence. More precisely, let X̃ be a Γ-covering of X.
Assume that there is a nested sequence of normal subgroups Γ ≥ Γ1 ≥ Γ2 ≥ · · ·
(each Γk normal in Γ) such that

⋂
k≥1 Γk = {1}. Then Xk := Γk\X̃ is a normal

covering of X, with covering group Γ/Γk.

3.3.1 Conjecture. In this situation,

bp(2)(X̃,Γ) = lim
k→∞

bp(2)(Xk,Γ/Γk). (3.3.2)

Observe that convergence is not clear, but part of the statement.

This question was first asked by Gromov if all the groups Γ/Γk are finite.
In this case, the conjecture is true, as proved by Lück:

3.3.3 Theorem. Equation (3.3.2) is correct if Γ/Γk is finite for each k ∈ N.
Observe that, in this setting, Xk is a finite covering of X. Consequently,

we can express the L2-Betti numbers in terms of ordinary Betti numbers and
obtain, in the setting of Conjecture 3.3.1,

bp(2)(X̃,Γ) = lim
k→∞

bp(Xk)
|Γ/Γk|

.

In general, Conjecture 3.3.1 is still open. However, in [71] (with an im-
provement in [18]) a quite large class G of groups is constructed for which the
conjecture is true. G contains all amenable and all free groups, and is closed
under taking subgroups, extensions with amenable quotients, directed unions,
and inverse limits (therefore, it contains e.g. all residually finite groups).

More precisely
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3.3.4 Definition. Let G be the smallest class of groups which contains the
trivial group and is closed under the following processes:

• If H ∈ G and G is a generalized amenable extension of H, then G ∈ G.

• If G = limi∈I Gi is the direct or inverse limit of a directed system of groups
Gi ∈ G, then G ∈ G.

• If H ∈ G and U ≤ H, then U ∈ G.

Here, the notion of generalized amenable extension is defined as follows:

3.3.5 Definition. Assume that G is a finitely generated discrete group with
a finite symmetric set of generators S (i.e. s ∈ S implies s−1 ∈ S), and let
H be an arbitrary discrete group. We say that G is a generalized amenable
extension of H, if there is a set X with a free G-action (from the left) and a
commuting free H-action (from the right), such that a sequence of H-subsets
X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ X exists with

⋃
k∈NXk = X, and with |Xk/H| <∞ for

every k ∈ N, and such that

|(S ·Xk −Xk)/H|
|Xk/H|

k→∞−−−−→ 0.

In [71] and [18], the following theorem is proved.

3.3.6 Theorem. Equation (3.3.2) is correct if Γ/Γk belongs to G for each k ∈ N.

In particular, we obtain the following corollary which we will use later.

3.3.7 Corollary. Equation (3.3.2) is true if Γ/Γk is amenable, e.g. solvable
or nilpotent, or virtually solvable, for each k ∈ N. Recall that a group G has
virtually a certain property P , if it contains a subgroup of finite index which has
property P .

3.3.8 Remark. There are generalizations of the above approximation results to
other L2-invariants, in particular to the L2-signature, compare [53].

3.4 The Atiyah conjecture

Fix a discrete group Γ. The L2-Betti numbers bp(2)(X,Γ) of a Γ-covering of a
finite CW-complex X are the Γ-dimensions of certain Hilbert NΓ-modules. In
Example 3.2.7 we have seen that a priori arbitrary non-negative real numbers
could occur, even for groups as nice as Z. However, the Euler characteristic
formula (3.2.11) shows that certain combinations ofL2-Betti numbers are always
integers.

The Atiyah conjecture predicts a certain amount of integrality for the indi-
vidual L2-Betti numbers.

3.4.1 Conjecture. Fix a discrete group Γ. Let Fin−1(Γ) be the additive sub-
group of Q generated by

{ 1
|F |
| F finite subgroup of Γ}.

Let X be a finite CW-complex or a compact manifold, X a Γ-covering of X.
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(1) If Γ is torsion-free, then
bp(2)(X,Γ) ∈ Z.

(2) Assume there is a bound on the finite subgroups of Γ (observe that this is
equivalent to Fin−1(Γ) being a discrete subset of R). Then

bp(2)(X,Γ) ∈ Fin−1(Γ).

(3) Without any assumption on Γ,

bp(2)(X,Γ) ∈ Q.

For a while, also the following conjecture was around:

3.4.2 Conjecture. Without any assumption on Γ, bp(2)(X,Γ) ∈ Fin−1(Γ).

This last conjecture is singled out here because it is wrong. In [24], a smooth
7-dimensional Riemannian manifold M is constructed such that every finite
subgroup of π1(M) is an elementary abelian 2-group, but b3(2)(M̃, π1(M)) = 1

3 .
This example is based on the explicit calculation of the eigenspaces and their L2-
dimensions of a certain operator in [25], using in particular the methods of the
proof of Theorem 3.3.3. A more direct and slightly more general computation
for such eigenspaces is carried out in [15].

It should be remarked that none of the above conjectures were formulated
by Atiyah as stated here, although he makes some remarks which show that he
was interested in the question of the possible values of L2-Betti numbers.

Statement (3) of Conjecture 3.4.1, which is the oldest version of the Atiyah
conjecture, is also quite unlikely to hold in general. In [15], for each r, s ∈ N
with r, s ≥ 2, a manifold Mr,s is constructed such that

b3(2)(M̃, π1(M)) = αr,s := (r − 1)2(s− 1)2 ·
∞∑
n=2

φ(n)
(rn − 1)(sn − 1)

,

where φ(n) is Euler’s phi-function, i.e. the number of primitive n-th roots of
unity. At the moment, it is unknown whether any of the numbers αr,s is irra-
tional. However, the use of computer algebra shows e.g. that, if α2,2 is rational,
both the numerator and denominator exceed 10100. It seems reasonable to assert
that α2,2 is not obviously rational.

3.4.1 Combinatorial reformulation of the Atiyah Conjec-
ture

The following assertion is equivalent to Conjecture 3.4.1.

3.4.3 Conjecture. Let Γ be a discrete group, and assume that A ∈ M(d ×
d,ZΓ). Consider A to be a bounded operator on l2(Γ)d, as in Section 3.2.2.1.

(1) If Γ is torsion-free, then dimΓ(ker(A)) ∈ Z.

(2) If Fin−1(Γ) is a discrete subset of R, then

dimΓ(ker(A)) ∈ Fin−1(Γ).

Without any assumption on Γ, dimΓ(ker(A)) ∈ Q.
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3.4.4 Remark. It is equivalent to require the assertions of Conjecture 3.4.3 for all
matrices over ZΓ, or for all square matrices, or for all self-adjoint matrices (these
are automatically square matrices), or for all matrices of the form A = B∗B
(these are automatically self-adjoint). This is the case since ker(A) = ker(A∗A).
Moreover, we have the weakly exact sequence

0→ ker(A) ↪→ l2(Γ)d A−→ imA→ 0.

Because of additivity and normalization of the Γ-dimension (Proposition 3.2.8),
we could replace the kernel of A by the closure of the image, throughout.

The equivalence of Conjecture 3.4.1 and Conjecture 3.4.3 follows immedi-
ately from the principle described at the end of Section 3.2.2.1.

3.4.2 Atiyah conjecture and non-commutative algebraic
geometry — Generalizations

As an illustration, we now want to study the Atiyah conjecture for the group
Γ = Z, which we understand particularly well because of Example 3.2.7.We look
at the algebraic reformulation. For simplicity, assume first that d = 1. Then
A ∈ Z[Z] = Z[z, z−1] is a Laurent polynomial with Z-coefficients. Under Fourier
transform we get the commutative diagram

l2(Z) A−−−−→ l2(Z)y∼= y∼=
L2(S1)

A(z)−−−−→ L2(S1),

i.e. the action of A translates to multiplication with the function A(z), (z ∈
S1 ⊂ C). Now,

dimZ(ker(A)) = µ({z ∈ S1 | A(z) = 0})

is the volume of the set of zeros of the Laurant polynomial A(z) on S1. But
the Laurant polynomial A(z) has, if it is not identically zero, only finitely many
zero. Therefore

dimZ(ker(A)) = 0 if A 6= 0,

and of course
dimZ(ker(A)) = 1 if A = 0.

Since Z is commutative, every matrix A can be replaced by a diagonal matrix
without changing the dimension of the kernel, and this way the above calculation
proves the Atiyah conjecture for Z.

Similar considerations for Γ = Z
n show that the Atiyah conjecture here

amounts to understanding the zeros of polynomials in several variables. This cre-
ated the slogan that the Atiyah conjecture (and more generally L2-cohomology)
in a certain sense is non-commutative algebraic geometry.

Exactly the same proof works if we replace the coefficient ring Z by C, or
by any subring of C.

This leads to the following algebraic generalization of the Atiyah conjecture.
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3.4.5 Conjecture. Fix a discrete group Γ. Let K be any subring of C which is
closed under complex conjugation. Let Γ be a discrete group, and assume that
a ∈M(d× d,KΓ).

If Fin−1(Γ) is discrete, then dimΓ(ker(A)) ∈ Fin−1(Γ).

Since we can multiply any matrix with a non-zero constant (e.g. a common
denominator of the finitely many non-zero coefficients), the assertion of Conjec-
ture 3.4.5 for a ring K ⊂ C and its field of fractions is equivalent. In the sequel,
we will therefore usually assume that the subring K is a field.

It is not clear, however, whether Conjecture 3.4.5 is equivalent to the original
geometric Atiyah conjecture 3.4.1 if K 6⊂ Q.

Observe that the proof of the Atiyah conjecture for Z extends from the ring
of Laurent polynomials (with complex coefficients) to the ring of meromorphic
functions C without poles on S1, which is also a subring of L∞(S1) ∼= NZ.
The question arises whether there are reasonable generalizations similar to this
ring for other groups. One possibility would be to look at infinite sums a =∑
g∈Γ λgg, where the coefficients λg very rapidly tend to zero as g → ∞ (with

respect to a suitable word length metric). (Observe that this is the case for the
coefficients of the Laurent expansion of a meromorphic function on C). Under
suitable circumstances, (convolution) multiplication with such an a will indeed
give rise to a (very special) Γ-equivariant operator on l2Γ, and the question arises
whether for the dimension of its kernel the statement of the Atiyah conjecture
holds. This was suggested by Nigel Higson. It is quite distinct from Conjecture
3.4.5 in that it is analytic in flavor, and no longer algebraic.

3.4.3 Atiyah conjecture and zero divisors

Among the most interesting observations about the Atiyah conjecture are its
strong connections to questions in algebra, in particular to group rings.

Here, we address the following conjecture, the so called zero divisor conjec-
ture.

3.4.6 Conjecture. Let Γ be a torsion-free discrete group and K a subring of
the complex numbers. Then, there are no non-trivial zero divisors in the group
ring KΓ, i.e. if a, b ∈ KΓ with ab = 0 then either a = 0 or b = 0.

This is one of the longstanding questions in the theory of group rings (which
of course makes also sense for other coefficients rings K and is studied also in
this broader generality by ring theorists).

Observe that, if g ∈ Γ is a torsion element, i.e. g 6= 1 but gn = 1 for some
n > 0, then a = (1 − g) and b = 1 + g + · · · + gn−1 are two non-zero elements
of ZΓ with ab = 0.

It now turns out that the Atiyah conjecture implies the zero divisor conjec-
ture. More precisely:

3.4.7 Theorem. Assume Γ is a torsion-free discrete group, and K ⊂ C is a
ring (closed under complex conjugation).

If the statement of the algebraic Atiyah conjecture 3.4.5 is true for every
A ∈M(1× 1,KΓ), then there are no non-trivial zero divisors in KΓ.

Proof. Fix a, b ∈ KΓ with ab = 0. We have to show that either a = 0 or b = 0.
Now observe that

a ∈ KΓ = M(1× 1,KΓ)



60 CHAPTER 3. L2-COHOMOLOGY

is a 1-by-1 matrix over KΓ. On the other hand,

b ∈ KΓ ⊂ l2Γ

can be considered to be an element of l2Γ. And 0 = ab is just the result of the
action of the matrix a on the l2-function b. Therefore, b ∈ ker(a). Now we know
that dimΓ(ker(a)) ∈ Z because the Atiyah conjecture is true for the torsion-free
group Γ. Evidently,

{0} ⊂ ker(a) ⊂ l2Γ,

with
0 = dimΓ({0}) and 1 = dimΓ(l2Γ).

Because of monotonicity, either dimΓ(ker(a)) = 0 or dimΓ(ker(a)) = 1. In the
first case, because of faithfulness ker(a) = {0} which implies b = 0. In the second
case, ker(a) = l2Γ (again because of faithfulness) which means that a = 0. This
proves the statement.

Here, we used some of the properties of dimΓ developed in Proposition 3.2.8.

In Theorem 3.4.18, we will see that there is actually an even stronger relation
between the Atiyah conjecture and the zero divisor conjecture for a torsion free
group Γ.

3.4.4 Atiyah conjecture and calculations

A second possible application of the Atiyah conjecture could be the explicit
calculation of L2-Betti numbers.

Here one would use that by now there are several approximation formulas
for L2-Betti numbers. In particular, we have discussed one of these in Section
3.3. Obviously, if we know in advance that the limit has to be an integer, this
can make it much easier to exactly compute the limit, in particular if (as is the
case for some of the approximation results) error bounds are available. Up to
now, however, to the authors knowledge this idea has not been used anywhere.

3.4.5 The status of the Atiyah conjecture

By now, the Atiyah conjecture is known for a reasonably large class of groups.
We use the following definitions.

3.4.8 Definition. The class of elementary amenable groups is the smallest class
of groups which contains all abelian and all finite groups and is closed under
extensions and directed unions. It is denoted Y. Obviously, every elementary
amenable group is amenable. Moreover, every nilpotent and every solvable
group is elementary amenable, as well as every group which is virtually solvable.
(A group has virtually a property P, if it contains a subgroup of finite index
which actually has property P).

3.4.9 Definition. Let D be the smallest non-empty class of groups such that:

(1) If G is torsion-free and A is elementary amenable, and we have a projection
p : G → A such that p−1(E) ∈ D for every finite subgroup E of A, then
G ∈ D.
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(2) D is subgroup closed.

(3) Let Gi ∈ D be a directed system of groups and G its (direct or inverse)
limit. Then G ∈ D.

3.4.10 Definition. A directed system of groups is a system of groups Gi, in-
dexed by an index set I with a partial ordering <, and either with a homo-
morphism φij : Gi → Gj if i < j such that φjk ◦ φij = φik if i < j < k
(then we take the direct limit), or with homomorphisms the other way around,
i.e. φij : Gj → Gi if i < j, with the corresponding compatibility condition (then
we take the inverse limit).

Directed means that to each i, j ∈ I exists k ∈ I with i < k and j < k.
The most obvious examples are systems of groups indexed by N with its usual
ordering.

Observe that D contains only torsion-free groups.

3.4.11 Example. The class D contains all torsion-free elementary amenable
groups. It also contains all free groups and all braid groups (compare Section
3.4.5.4). Moreover, D is closed under direct sums, direct products, and free
products.

To see this, observe that clearly D contains all elementary amenable groups,
as long as they are torsion-free. Moreover, if Γ contains a sequence of normal
subgroups Γ ≥ Γ1 ≥ Γ2 ≥ · · · with

⋂
k∈N Γk = {1} and such that Γ/Γk is

torsion-free elementary amenable, then Γ is a subgroup of the inverse limit of
the sequence of quotients, and consequently belongs to D.

In particular, every free group admits such a sequence in such a way that
the quotients are torsion-free nilpotent, and every braid group admits such a
sequence where the quotients are torsion-free and virtually nilpotent.

The following theorem is proved in [70] and [18].

3.4.12 Theorem. Set K := Q, the field of algebraic numbers (over Q) in C.
If Γ ∈ D, then the Atiyah conjecture 3.4.5 is true for KΓ.

To prove this, one only has to prove that the Atiyah conjecture is pre-
served when passing to subgroups, doing extensions with torsion-free elemen-
tary amenable quotients, and under direct and inverse limits of directed systems
of groups in D. The former (almost) translates to directed unions of groups,
and the latter to the case where a group Γ has the nested sequence of normal
subgroups Γk with trivial intersection we have discussed previously.

We want to start with two rather elementary observations, which are not
very useful without examples of groups for which the Atiyah conjecture is true,
but which give rise to part of the statements of Theorem 3.4.12.

3.4.13 Proposition. If G fulfills the Atiyah conjecture, and if U is a subgroup
of G with Fin−1(U) = Fin−1(G), then U fulfills the Atiyah conjecture.

Proof. This follows from the fact that the U -dimension of the kernel of a matrix
over KU acting on l2(U)n coincides with the G-dimension of the same matrix,
considered as an operator on l2(G)n (compare e.g. [71, 3.1]), which follows from
a simply diagonal decomposition argument.
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3.4.14 Proposition. Let G be the directed union of groups {Gi}i∈I and assume
that each Gi fulfills the Atiyah conjecture. Then G fulfills the Atiyah conjecture.

Proof. A matrix over KG, having only finitely many non-trivial coefficients,
already is a matrix over KGi for some i. The Gi-dimension and the G-dimension
of the kernel of the matrix coincide, as in Proposition 3.4.13, compare e.g. [71,
3.1]. Note that Fin−1(Gi) is contained in Fin−1(G) for each i ∈ I.

Besides of these two results, at the moment three rather different methods
are known to prove the Atiyah conjecture for certain groups.

3.4.5.1 Fredholm modules and the Atiyah conjecture

One of these methods, which one could call the method of the “finite rank
Fredholm module”, was developed by Peter Linnell in [48] to prove the Atiyah
conjecture for free groups. It extends in an ingenious way the method used by
Connes to prove the trace conjecture 1.3.12 (compare e.g. [21]) for the free group,
and therefore is related to the Baum-Connes conjecture. However, whereas
the KK-theory methods for Baum-Connes turn out to be quite flexible and
generalize to many other groups, compare e.g. [73], nobody so far was able to
find a corresponding generalized approach to the Atiyah conjecture. Since the
Atiyah conjecture for free groups follows also from one of the other methods to
be described later, we don’t discuss Linnell’s original approach but refer instead
to the original article [48] and the review article [49]. (Note, however, that the
generalization to products of free groups does not work as described in [49],
since the proof of the basic Lemma [49, Lemma 11.7] has a gap. One has to rely
on a different method for the proof, instead.)

3.4.5.2 Atiyah conjecture and algebra

We have shown in Theorem 3.4.7 that the Atiyah conjecture for a torsion-free
group implies the zero divisor conjecture. The ring KΓ evidently has no zero di-
visors, if it can be embedded into a skew field, i.e. a (not necessary commutative)
ring where every non-zero element has a multiplicative inverse. The optimal so-
lution to the zero divisor question therefore is to construct exactly this. It turns
out that the Atiyah conjecture provides us with such an embedding. We need
the following definitions.

3.4.15 Definition. Given the group von Neumann algebra NΓ, we define UΓ
to be the algebra of all unbounded operators affiliated to NΓ (compare e.g. [49,
Section 8]). That means a densely defined unbounded operator D on l2Γ belongs
to UΓ if and only if all its spectral projections belong to NΓ. It is a classical
fact that the ring UΓ is a (non-commutative) localization of NΓ, which here
means it is obtained from NΓ by inverting all non-zero divisors of NΓ.

Fix a subfield K ⊂ C which is closed under complex conjugation. We have
to consider KΓ ⊂ NΓ ⊂ UΓ. Define DKΓ as the division closure of KΓ in UΓ.
By definition, this is the smallest subring of UΓ which contains KΓ and which
has the property that, whenever x ∈ DKΓ is invertible in UΓ, then x−1 ∈ DKΓ.

3.4.16 Remark. Since the operators which belong to UΓ are only densely defined,
one has to be careful when defining the sum or product of two such operators.
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This is done by first defining these operators on the obvious (common) domain,
but then taking there closure, i.e. to extend the domain of definition as far as
possible. One has to check that this indeed gives a reasonable ring. This is a
classical result which uses the Γ-dimension.

3.4.17 Example. Again, we turn to the example Γ = Z. We have seen that, via
Fourier transform, NΓ becomes L∞(S1) acting on L2(S1) by pointwise multi-
plication. The ring UZ becomes the ring of all measurable functions on S1, still
acting by pointwise multiplication. These operators are in general unbounded
and not defined on all of L2(S1), because the product of an L2-function with an
arbitrary measurable function belongs not necessarily to L2(S1). It is not hard
to show that every measurable function f on S1 is the quotient of two bounded
functions g, h ∈ L∞(S1), f = g/h, where the set of zeros of h has measure zero.
This reflects the fact that UΓ is a localization of NΓ.

If K ⊂ C, then KZ are the Laurent polynomials K[z, z−1] identified with
functions on S1 (by substituting z ∈ S1 for the variable). In the same way,
DKΓ is the field of rational functions K(z), identifies with functions on S1 by
substituting z ∈ S1 for the variable.

The (very strong) connection between the Atiyah conjecture and ring theo-
retic properties of DKΓ is given by the following theorem.

3.4.18 Theorem. Let Γ be a torsion-free group, and let K be a subfield of C
which is closed under complex conjugation.

KΓ fulfills the strong Atiyah conjecture in the sense of Conjecture 3.4.5 if
and only if the division closure DkΓ of KΓ in UΓ is a skew field.

In other words, we have a canonical candidate DKΓ for a skew field, into
which KΓ embeds, and this ring is a skew field if and only if KΓ satisfies the
Atiyah conjecture.

Proof of Theorem 3.4.18. If DKΓ is a skew field, then each matrix A ∈M(d×
d,KΓ) acts on (DKΓ)d, and its kernel is a finite dimensional vector space over
the field DKΓ. In particular, its DKΓ-dimension of course is an integer. Then,
one can establish that the Γ-dimension of ker(A : (l2Γ)d → (l2Γ)d) coincides
with this dimension. Details are given in [70, Lemma 3].

For the converse, given an element 0 6= a ∈ DKΓ one can, using a matrix
trick for division closures due to Cohn, produce a d× d-matrix A over KΓ such
that the Γ-dimension of ker(A) is evidently strictly smaller than 1, and which
is non-zero if and only if a is invertible in UΓ (slogan: “a non-trivial kernel
of a gives rise to a non-trivial kernel of A”). Because dimΓ(ker(A)) ∈ Z by
assumption, dimΓ(ker(A)) = 0, i.e. a is invertible in UΓ. Since DKΓ is division
closed, a is invertible in DKΓ, as well.

This property allows to prove the Atiyah conjecture for the first interesting
class of groups (containing non-abelian groups), namely the class of elementary
amenable groups.

3.4.19 Theorem. Fix a subfield K ⊂ C which is closed under complex conju-
gation.

Let 1 → H → G → A → 1 be an exact sequence of groups. Assume that G
is torsion free and A is elementary amenable. For every finite subgroup E ≤ A
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let HE be the inverse image of E in G. Assume for all finite subgroups E ≤ G
that KHE fulfills the Atiyah conjecture 3.4.5. Then KG fulfills also the Atiyah
conjecture.

Proof. The proof is given in [48] for K = Q. Essentially the same proof works
for arbitrary K, compare [70, Proposition 3.1].

3.4.20 Corollary. Fix a subfield K = K ⊂ C.
Suppose H is torsion-free and KH fulfills the Atiyah conjecture. If G is an

extension of H with elementary amenable torsion-free quotient then KG fulfills
the Atiyah conjecture.

In particular (with H = 1) if G is a torsion-free elementary amenable group
then KG satisfies the Atiyah conjecture.

Proof. By assumption, the only finite subgroup of G/H is the trivial group and
the Atiyah conjecture is true for its inverse image H.

3.4.5.3 Atiyah conjecture and approximation

Here, we describe the last method of proof for the Atiyah conjecture. It is based
on the approximation results of Section 3.3.

3.4.21 Theorem. Assume Γ is a torsion-free discrete group with a nested se-
quence of normal subgroups Γ ≥ Γ1 ≥ Γ2 ≥ · · · such that

⋂
k∈N Γ/Γk = {1}

and such that Γ/Γk ∈ G for each k ∈ N. Moreover, assume that all the quotient
groups Γ/Γk are torsion-free and satisfy the Atiyah conjecture 3.4.1.

For example, all the groups Γ/Γk might be torsion-free elementary amenable.
Then Γ also satisfies the Atiyah conjecture 3.4.1.

Proof. Given any Γ-covering X → X (with a finite CW-complex X), we have
to prove that bp(2)(X,Γ) ∈ Z for each p.

Now, the sequence of normal subgroups Γk provides us with a sequences of
normal coverings Xk := X/Γk of X, with covering group Γ/Γk. Since Γ/Γk ∈ G
for each k ∈ N, by Theorem 3.3.6

bp(2)(X,Γ) = lim
k→∞

bp(2)(Xk,Γ/Γk).

By assumption, each term on the right hand side is an integer, since the Atiyah
conjecture holds for Γ/Γk. Since Z is discrete in R, the same will be true for its
limit, and this is exactly what we have to prove.

As observed above, this translates to a statement about the integral group
ring of Γ. To extend this result from the integral group ring to more general
coefficient rings, which is interesting because of the algebraic consequences, we
have to generalize the approximation results of Section 3.3 to algebraic approx-
imating results for more general coefficient rings. In fact, we have the following
result of [18].

3.4.22 Theorem. Assume Γ is a discrete group with a nested sequence of
normal subgroups Γ ≥ Γ1 ≥ Γ2 ≥ · · · such that

⋂
k∈N Γ/Γk = {1} and such that

Γ/Γk ∈ G for each k ∈ N.
For example, all the groups Γ/Γk might be elementary amenable, e.g. finite.
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Let Q be the field of algebraic numbers (over Q) in C. Assume A ∈ M(d×
d,QΓ).

The projection Γ → Γ/Γk extends canonically to the group rings and to
matrix rings over the group rings. Let Ak ∈ M(d × d,QΓ/Γk) be the image of
A under this induced homomorphism.

Then A acts on (l2Γ)d and Ak acts on (l2Γ/Γk)d.
The following approximation result for the kernels of these operators holds:

dimΓ(ker(A)) = lim
k→∞

dimΓ/Γk(ker(Ak)).

In particular, if all the groups Γ/Γk are torsion-free and Q[Γ/Γk] satisfies
the algebraic Atiyah conjecture 3.4.5, then, using the same argument as above,
QΓ also satisfies the Atiyah conjecture 3.4.5.

3.4.23 Remark. The approximation result 3.3.6 is a special case, since if ∆ is
a matrix representative for a combinatorial Laplacian for X, then ∆k, con-
structed as in Theorem 3.4.22, is a matrix representative for the corresponding
combinatorial Laplacian of Xk.

The proof uses the fact that one is working with algebraic coefficients. So
far, no generalization to CΓ has been obtained.

However, it is a well known fact that, if QΓ has no non-trivial zero divisors,
then the same is true for CΓ (compare e.g. [18]). Therefore, from the point of
view of the zero divisor conjecture 3.4.6, there is no need to generalize Theorem
3.4.22.

3.4.24 Remark. It is not hard to see that D is contained in G. Therefore,
Theorem 3.4.22 provides the last step for the proof of Theorem 3.4.12.

3.4.5.4 Atiyah conjecture for braid groups

3.4.25 Definition. Fix n ∈ N. A braid with n-strings is an embedding

φ : {1, . . . , n} × [0, 1]→ C× [0, 1]

such that φ(p, 0) = (p, 0) and φ(p, 1) ∈ {1, . . . , n} × {1} for p = 1, . . . , n. Two
braid are considered equal if they are isotopic where the isotopy fixes the top
and the bottom.

Isotopy classes of braids from a group by stacking two braids together, the so
called Artin braid group Bn. Note that the p-th string is not necessarily stacked
on the p-th string, since the p-th string might lead from (p, 0) to (σ(p), 1) for
some permutation σ of {1, . . . , n}. We have to account for this when we define
the “stacked” map {1, . . . , n} × [0, 1]→ C× [0, 1].

The braid group Bn contains a normal subgroup Pn, the pure braid group,
where we require φ(p, 1) = (p, 1) for each p ∈ {1, . . . , n}. The quotient Bn/Pn
is the symmetric group Sn of permutations of {1, . . . , n}, where the image per-
mutation is given as above.

In Example 3.4.11, we assert that all the braid groups belong to D. Indeed,
every braid group Bn has a nested sequence of normal subgroups Bn ≥ P1,n ≥
P2,n ≥ · · · with Bn/Pk,n torsion-free elementary amenable for each k and such
that

⋂
k∈Z Pk,n = {1}. The corresponding result for the pure braid groups is
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proved in [22, Theorem 2.6]. However, to extend such a result from a subgroup
of finite index to a bigger group is highly non-trivial and in general not possible.
Indeed, for the full braid group it was conjectured for a while that it has no
non-trivial torsion-free quotients at all, opposite to what we need. Using cer-
tain totally disconnected completions of the groups involved, and cohomology
of these completions (Galois cohomology, which takes the topology of the com-
pletions into account) the above result is proved in [46]. Actually, it is proved
there that every torsion-free finite extension of Pn has a sequence of subgroups
as above, and therefore belongs to D. This paper also contains generalizations,
where the pure braid groups are replaced by other kinds of groups, still with
the result that the property to belong to D passes to finite extensions (as long
as they are torsion-free). In [47], it is shown how this applies to fundamental
groups of certain complements of links in R3 (a link is an embedding of the
disjoint union of finitely many circles).

The proof of the Baum-Connes conjecture for the full braid group [68] men-
tioned in Section 1.3.9 is based on the same results.

3.4.6 Atiyah conjecture for groups with torsion

The Atiyah conjecture has also been obtained for many groups Γ with torsion,
as long as Fin−1(Γ) is a discrete subset of R. We are not discussing them here
because of lack of space and time, and because there is no zero divisor conjecture
for groups with torsion. The ring DKΓ also exists for groups with torsion. It
can not be a skew field but, under the assumption that Fin−1(Γ) is discrete, it
often turns out to be a semi-simple Artinian ring. More details can be found
e.g. in the original sources [49, 48, 70].
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