Handout for the workshop on the Baum-Connes conjecture

Useful facts to keep in mind

speakers: Paul Baum, Pierre Julg, and Guoliang Yu May 22, 2002

1 C^* -algebras

- A C^* -algebra A is
 - a C-algebra
 - together with an involution $*: A \to A$ such that $(\lambda ab)^* = \overline{\lambda}b^*a^*$ for all $\lambda \in \mathbb{C}$, $a, b \in A$.
 - It is equipped with an algebra norm, i.e. |ab| < |a| |b|.
 - -A is complete with this norm.
 - The C^* -identity $|a^*a| = |a|^2$ is satisfied $\forall a \in A$

A C^* -algebra homomorphism is a continuous map which respects all the algebraic structure.

- Examples of C^* -algebras:
 - − (C)
 - every closed *-subalgebra of the bounded operators B(H) on a Hilbert space H. By the GNS-construction, every C^* -algebra is isomorphic to such an algebra.
 - If X is a (locally compact Hausdorff) space, the algebra $C_0(X)$ of complex valued continuous functions on X, which vanish at infinity, is a commutative C^* -algebra. Every commutative C^* -algebra is isomorphic to such an algebra.
 - If X is a measure space, $L^{\infty}(X)$ with its norm is another example of a commutative C^* -algebra. (This is usually very different from C(X)!).
 - Given an arbitrary C^* -algebra A and X as before, $C_0(X;A)$ is the algebra of continuous functions on X with values in A, which vanish at infinity. The algebraic operations are defined pointwise, the norm is the sup-norm.
 - Given a Hilbert space H, K(H) is the algebra of compact operators $k \colon H \to H$, i.e. the closure of the algebra of all operators of finite rank (i.e. with finite dimensional image). This is a two-sided ideal inside B(H).

- Given an arbitrary C^* -algebra A, the algebra of n-by-n-matrices $M_n(A)$ also is a C^* -algebra.
- Short exact sequences of C^* -algebras:

$$0 \to I \to A \to B \to 0$$
,

consist of C^* -algebras together with C^* -algebra homomorphism, such that kernel of outgoing and image of incoming map coincide at each algebra in question. In such a diagram, I is a two-sided closed ideal of A, and B = A/I is the quotient.

Example: $0 \to K(H) \to B(H) \to C(H) \to 0$, where by definition C(H) = B(H)/K(H) is the Calkin algebra.

- $a \in A$ is called
 - self adjoint, if $a = a^*$
 - unitary, if $a^* = a^{-1}$
 - a projection, if $a = a^2 = a^*$.
- For self-adjoint and unitary element a of a C^* -algebra A, functional calculus is defined, i.e. a C^* -homomorphism

$$C_0(\mathbb{C}) \to A \colon f \mapsto f(a)$$

with id(a) = a. If we replace for the domain of $f \mathbb{C}$ by the spectrum of a (a compact subset of \mathbb{C}), this map becomes a C^* -algebra embedding.

- Given a discrete group Γ , the reduced group C^* -algebra $C_r^*\Gamma$ is defined as the norm closure of the (algebraic) group ring $\mathbb{C}\Gamma$ inside the bounded operators on $l^2(\Gamma)$, where $l^2(\Gamma)$ is the Hilbert spaces of L^2 -functions on Γ , which we equip with the discrete measure (every element has volume one). Observe that this is a Haar measure on Γ .
- In a similar way, we can form the C^* -algebra of a topological group G (e.g. a Lie group) as completion of the convolution algebra $C_{comp}(G)$ inside $B(L^2(G))$. Attention: $C_{comp}(G)$ consists of functions on G with compact support, but the product is not pointwise, it is given by convolution (again using a fixed Haar measure).
- One can form (completed) tensor products of C^* -algebras. Of particular importance is
 - $-A\otimes M_n(\mathbb{C})=M_n(A)$
 - $-A\otimes K(l^2(\mathbb{Z}))$, a limit of $M_n(A)$ for $n\to\infty$.
 - $C_0(X) \otimes A = C_0(X; A).$

2 K-theory

- For a C^* -algebra A, we define the abelian groups
 - $K_0(A)$, consisting of (formal differences of) (equivalence classes of) projections in A, $M_n(A)$ (and $A \otimes K$). One of the (several different) ways to define equivalence is as: homotopic through the spaces of projections.
 - $K_1(A)$ consists of unitary elements of A, $M_n(A)$ (and $A \otimes K$), again module equivalence given by homotopies through the space of unitaries.
- Both K_0 and K_1 are functors from the category of C^* -algebras to the category of abelian groups.
- Examples:

 $K^0(X)$ is the topological K-theory of X, defined as (equivalence classes of formal differences) of vector bundles over X.

• Morita-Equivalence:

$$K_*(A) = K_*(M_n(A)) = K_*(A \otimes K).$$

• Bott periodicity and six term exact sequence (some people call this excision): Given a short exact sequence $0 \to I \to A \to B \to 0$, we get an induced exact sequence

$$K_0(I) \longrightarrow K_0(A) \longrightarrow K_0(B)$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(B) \longleftarrow K_1(A) \longleftarrow K_1(I).$$

The map $\delta: K_1(B) \to K_0(I)$ is the index map, the map $K_0(B) \to K_1(I)$ involves in addition Bott periodicity.

• Example: for $0 \to K \to B \to C \to 0$, we get the K-theory exact sequence

- Homotopy invariance: two C^* -homomophism $f_0, f_1: A \to B$ are called homotopic, if they can be joint by a (pointwise continuous) path $f_t: A \to B$ of C^* -homomorphism. In this situation, f_0 and f_1 induce identical maps on K_* .
- Every trace on a C*-algebra A gives rise to a homomorphism K₀(A) →
 C. The usual operator trace is defined on all of K, it gives rise to the isomorphism

$$\operatorname{tr}: K_0(K) \to \mathbb{Z}$$
.

For a projection $p \in K$, tr(p) is the dimension of the image of p.

3 Index and differential operators

Every element of K₁(C) can be represented by a unitary in C. By definition, C = B/K, i.e. u ∈ C comes from an element U of B. Being unitary in C means that U*U = 1 - k₀ and UU* = 1 - k₁ for suitable k₀, k₁ ∈ K. By Atkinsons theorem, such a bounded operator U: H → H is Fredholm, i.e. has finite dimension kernel and cokernel (and closed image). Therefore, its (Fredholm) index

$$ind(U) := \dim(\ker(U)) - \dim(\operatorname{coker}(U)) = \dim(\ker(U)) - \dim(\ker(U^*))$$

is defined. Using the index map $\delta \colon K_1(C) \to K_0(K)$, the following holds:

$$\operatorname{tr} \delta([u]) = \operatorname{ind}(U).$$

This gives an isomorphism $K_1(C) \cong \mathbb{Z}$.

• In the following, we will encounter unbounded operators on a Hilbert space H. Such operators are only defined on a dense subspace of H. The adjoint of an unbounded operator is another unbounded operator. If an unbounded operator A is self adjoint, the functional calculus for A is defined, i.e. there is a *-homomorphism

$$L^{\infty}(\mathbb{R}) \to B(H) \colon f \mapsto f(A),$$

with the property that if f(t) = tg(t), the f(A) = Ag(A), where on the right hand side we compose the operators A and g(A). If we replace \mathbb{R} by the spectrum of A, this becomes a C^* -algebra embedding.

- A generalized Dirac operator D on a (Riemannian) manifold M is a certain type of first order differential operator on M (defining a map between smooth section of two (Hermitian) vector bundles E and F over M). The following properties are important:
 - D is a self adjoint unbounded operator on $L^2(E)$, the Hilbert space of L^2 -section.
 - In particular, functions like
 - * $D(1+D^2)^{-1/2}$
 - * e^{itD} ; $t \in \mathbb{R}$
 - $* \frac{-tD^2}{t}; t \ge 0$

are defined. The first one is of the type $\chi(D)$ with $\chi::\mathbb{R}\to [-1,1]$ even, $\chi(t)\xrightarrow{t\to\pm\infty}\pm 1$. Such a χ is called a chopping function.

- D satisfies elliptic regularity. Classically: if Df is smooth (on some open subset V of M, then f is smooth (on V). This can be refraised in terms of operators: if $h \in C_0(\mathbb{R})$, and $f, g \in C_0(M)$, then fh(D)g is compact. Here f and g denote the operators on $L^2(E)$ which are given by pointwise multiplication. If M is compact, this means that h(D) itself is compact.
- D has finite propagation: gDf = 0 if the support of g and f are disjoint (this is simply true because D is a differential operator). It translates to corresponding, but weaker statements for functions like h(D).

- Example: on a Riemannian manifold M, let d be the exterior differential on the direct sum $\Omega^*(M)$ of all spaces of differential forms, and $\delta = d^*$ its adjoint. Then $d + \delta$ is a generalized Dirac operator.
- Grading Usually (on even dimensional manifolds) a generalized Dirac operator comes with a grading $E = E_+ \oplus E_-$, and

$$D = \begin{pmatrix} 0 & D_{-} \\ D_{+} & 0 : L^{2}(E_{+}) \oplus L^{2}(E_{-}) \to L^{2}(E_{+}) \oplus L^{2}(E_{-}). \end{pmatrix}$$

. If χ as above is an odd function, then

$$\chi(D) = \begin{pmatrix} 0 & \chi(D_{-}) \\ \chi(D_{+}) & 0 \colon L^{2}(E_{+}) \oplus L^{2}(E_{-}) \to L^{2}(E_{+}) \oplus L^{2}(E_{-}). \end{pmatrix}$$

.

- Example of a grading: on $\Omega^*(M)$ we can define a grading $\Omega^{ev}(M) \oplus \Omega^{odd}(M)$ by distinguishing between differential forms of even and odd degree. Then $d + \delta$ decomposes as described.
- Using a unitary isomorphism $U: L^2(E_-) \to L^2(E_+)$ (which usually exists, we assume this now) and a chopping function, we obtain an operator $T:=U\chi(D_+): L^2(E_+) \to L^2(E_+)$.

If M is a compact manifold, then $T^*T - 1$ and $TT^* - 1$ are compact. Therefore T defines a class in $K_1(C)$. We define the index of D to be $\delta([T]) \in K_0(K)$.

In this case, identifying $K_0(K)$ with \mathbb{Z} gives a number, which is indeed the difference of the dimension of kernel and cokernel of D, i.e. the Fredholm index of D. Using appropriate C^* -algebras instead of K, B, and C, one can define indices of Dirac operators for non-compact manifolds as elements in K-groups of certain C^* -algebras. Moreover, one can refine the analysis, if additional structure is given, e.g. if there is symmetry (a group acting on M such that D is equivariant), to obtain indices in more interesting K-groups like $K_*(C_r^*\Gamma)$.

• No matter how and where the index lives, if it is non-zero, then zero does belong to the spectrum of D, i.e. D can not have a bounded inverse. This is important for applications to geometry, where D often has a bounded inverse if some particular geometric condition is satisfied.

4 K-homology

- For every C^* -algebra A on can also define K-homology groups $K^0(A)$ and $K^1(A)$. This gives a contravariant functor (i.e. arrows are reversed) from the category of C^* -algebras to the category of abelian groups. Properties very similar to K-theory are satisfied.
- Most important is, that there is a pairing

$$K^*(A) \otimes K_*(A) \to \mathbb{Z}$$
.

- For us most important is the case A = C(X). In this case, every Dirac type differential operator D produces an element $[D] \in K^*(C(X))$. (If X is a manifold, one will use operators defined over X, in general, every (proper) map $M \to X$ can be used to push K-homology classes given by such operators from $K^*(C(M))$ to $K^*(C(X))$ (observe that we get a C^* -algebra map $C(X) \to C(M)$).
- In the case A = C(X), the pairing

$$K^*(C(X)) \otimes K_*(C(X)) \to \mathbb{C}$$

is given as follows: if a K-homology class is represented by a Dirac type operator D, and a K-theory class by a vector bundle E, then

$$[D] \otimes [E] \mapsto \operatorname{ind}(D_E).$$