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1 (*-algebras

e A (C*-algebra A is

a C-algebra

together with an involution *: A — A such that (Aab)* = Xb*a* for
all A € C, a,b € A.

It is equipped with an algebra norm, i.e. |ab| < |a] [b].
A is complete with this norm.
The C*-identity |a*a| = |a|? is satisfied Va € A

A (C*-algebra homomorphism is a continuous map which respects all the
algebraic structure.

e Examples of C*-algebras:

C

every closed #-subalgebra of the bounded operators B(H ) on a Hilbert
space H. By the GNS-construction, every C*-algebra is isomorphic
to such an algebra.

If X is a (locally compact Hausdorff) space, the algebra Cy(X) of
complex valued continuous functions on X, which vanish at infin-
ity, is a commutative C*-algebra. Every commutative C*-algebra is
isomorphic to such an algebra.

If X is a measure space, L (X) with its norm is another example

of a commutative C*-algebra. (This is usually very different from
C(X)).

Given an arbitrary C*-algebra A and X as before, Cy(X; A) is the
algebra of continuous functions on X with values in A, which vanish
at infinity. The algebraic operations are defined pointwise, the norm
is the sup-norm.

Given a Hilbert space H, K(H) is the algebra of compact operators
k: H — H, i.e. the closure of the algebra of all operators of finite
rank (i.e. with finite dimensional image). This is a two-sided ideal

inside B(H).
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— Given an arbitrary C*-algebra A, the algebra of n-by-n-matrices

M, (A) also is a C*-algebra.
e Short exact sequences of C*-algebras:
0>7T—-A—>B—0,

consist of C*-algebras together with C*-algebra homomorphism, such that
kernel of outgoing and image of incoming map coincide at each algebra
in question. In such a diagram, I is a two-sided closed ideal of A, and
B = A/I is the quotient.

Example: 0 - K(H) — B(H) —» C(H) — 0, where by definition C(H) =
B(H)/K(H) is the Calkin algebra.

e ac A is called

— self adjoint, if ¢ = a*
— unitary, if ¢* = a~?

— a projection, if a = a? = a*.
e For self-adjoint and unitary element a of a C*-algebra A, functional cal-

culus is defined, i.e. a C*-homomorphism
Co(C) = A: f s f(a)

with id(a) = a. If we replace for the domain of f C by the spectrum of a
(a compact subset of C), this map becomes a C*-algebra embedding.

e Given a discrete group I', the reduced group C*-algebra C}T' is defined
as the norm closure of the (algebraic) group ring CI' inside the bounded
operators on [%(T'), where [?(T') is the Hilbert spaces of L%-functions on
I', which we equip with the discrete measure (every element has volume
one). Observe that this is a Haar measure on T.

e In a similar way, we can form the C*-algebra of a topological group G
(e.g. a Lie group) as completion of the convolution algebra C.op,p, (G) inside
B(L?*(@)). Attention: Ciopyp(G) consists of functions on G with compact
support, but the product is not pointwise, it is given by convolution (again
using a fixed Haar measure).

e One can form (completed) tensor products of C*-algebras. Of particular
importance is

- A® K(IQ(Z_)), a limit of M, (A) for n — oc.
- Co(X)® A =Co(X;A).
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2 K-theory

e For a C*-algebra A, we define the abelian groups

— Ko(A), consisting of (formal differences of) (equivalence classes of)
projections in A, M, (A) (and A® K). One of the (several different)
ways to define equivalence is as: homotopic through the spaces of
projections.

— K1(A) consists of unitary elements of A, M, (A) (and A® K), again
module equivalence given by homotopies through the space of uni-
taries.

e Both Ky and K; are functors from the category of C*-algebras to the
category of abelian groups.

e Examples:

A C K B C C(C}GforGcompact Coh(X) CrG
Ko(A) Z Z 0 0 Rep(G) KO(X) 77
KiA4) 0 0 0 Z 0 K'Y (X) 77

KY(X) is the topological K-theory of X, defined as (equivalence classes
of formal differences) of vector bundles over X.

e Morita-Equivalence:
Ki(A) = Ki (M, (A)) = K. (A® K).

e Bott periodicity and six term exact sequence (some people call this exci-
sion): Given a short exact sequence 0 - I - A — B — 0, we get an
induced exact sequence

Ko(I) —— Ko(A) — Ko(B)

I l

Ki(B) +—— Ki(4) «—— Ki(I).

The map §: K1(B) — Ko(I) is the indez map, the map Ky(B) — Kq(I)
involves in addition Bott periodicity.

e Example: for 0 > K — B — C' — 0, we get the K-theory exact sequence

7 > 0 > 0
I |
Z 0 < 0

e Homotopy invariance: two C*-homomophism fy, fi: A — B are called
homotopic, if they can be joint by a (pointwise continuous) path fi: A —
B of C*-homomorphism. In this situation, fy and f; induce identical maps
on K,.

e Every trace on a C*-algebra A gives rise to a homomorphism Ky(A4) —
C. The usual operator trace is defined on all of K| it gives rise to the
isomorphism

tr: Ko(K) — Z.

For a projection p € K, tr(p) is the dimension of the image of p.
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3 Index and differential operators

e Every element of K1(C) can be represented by a unitary in C'. By defini-
tion, C = B/K, i.e. u € C comes from an element U of B. Being unitary
in C' means that U*U = 1 — kg and UU* = 1 — k; for suitable ko, ky € K.
By Atkinsons theorem, such a bounded operator U: H — H is Fredholm,
i.e. has finite dimension kernel and cokernel (and closed image). Therefore,
its (Fredholm) index

ind(U) := dim(ker(U)) — dim(coker(U)) = dim(ker(U)) — dim(ker(U*))

is defined. Using the index map d: K1 (C) — Ko(K), the following holds:
tr§([u]) = ind(U).

This gives an isomorphism Ki(C) =2 Z.

e In the following, we will encounter unbounded operators on a Hilbert space
H. Such operators are only defined on a dense subspace of H. The
adjoint of an unbounded operator is another unbounded operator. If an
unbounded operator A is self adjoint, the functional calculus for A is
defined, i.e. there is a *-homomorphism

LZ=(R) = B(H): f = f(A),

with the property that if f(¢t) = tg(¢), the f(A) = Ag(A), where on the
right hand side we compose the operators A and g(A). If we replace R by
the spectrum of A, this becomes a C'*-algebra embedding.

e A generalized Dirac operator D on a (Riemannian) manifold M is a certain
type of first order differential operator on M (defining a map between
smooth section of two (Hermitian) vector bundles E and F over M). The
following properties are important:

— D is a self adjoint unbounded operator on L%(E), the Hilbert space
of I2-section.

— In particular, functions like
¥ D(14+ D*)~1/?
x etD e R
x "% 1>

are defined. The first one is of the type x(D) with x :: R — [—1,1]

even, x(t) £2%%9, 11, Such a x is called a chopping function.

— D satisfies elliptic regularity. Classically: if Df is smooth (on some
open subset V of M, then f is smooth (on V). This can be refraised
in terms of operators: if h € Cy(R), and f, g € Co(M), then fh(D)g
is compact. Here f and g denote the operators on L%(E) which are
given by pointwise multiplication. If M is compact, this means that
h(D) itself is compact.

— D has finite propagation: gDf = 0 if the support of g and f are
disjoint (this is simply true because D is a differential operator). Tt
translates to corresponding, but weaker statements for functions like

h(D).
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e Example: on a Riemannian manifold M, let d be the exterior differential
on the direct sum Q*(M) of all spaces of differential forms, and § = d* its
adjoint. Then d + d is a generalized Dirac operator.

e Grading Usually (on even dimensional manifolds) a generalized Dirac op-
erator comes with a grading £ = E, @ E_, and

o3 g |
T\Dy 0:L2(Ey) @ L2(E_) — L*(Ey) & L2(E_).

. If x as above is an odd function, then
(D) = 0 x(D-
XD =\\(Dy) 0: L2(By) @ 1(B-) — LX(Ey) @ LX(E-).

e Example of a grading: on Q*(M) we can define a grading Q°(M) &
Q°d4(M) by distinguishing between differential forms of even and odd
degree. Then d 4 § decomposes as described.

e Using a unitary isomorphism U : L?(E_) — L?(Ey) (which usually exists,
we assume this now) and a chopping function, we obtain an operator
T = Ux(Dy): L*(Ey) — L2(Ey).

If M is a compact manifold, then 7*7" — 1 and TT™* — 1 are compact.
Therefore T defines a class in K1(C). We define the index of D to be
J([T]) € Ko(K).

In this case, identifying Ky(K) with Z gives a number, which is indeed
the difference of the dimension of kernel and cokernel of D, i.e. the Fred-
holm index of D). Using appropriate C*-algebras instead of K, B, and
C, one can define indices of Dirac operators for non-compact manifolds
as elements in K-groups of certain C*-algebras. Moreover, one can refine
the analysis, if additional structure is given, e.g. if there is symmetry (a
group acting on M such that D is equivariant), to obtain indices in more
interesting K-groups like K, (CxT).

e No matter how and where the index lives, if it is non-zero, then zero does
belong to the spectrum of D, i.e. D can not have a bounded inverse. This
is important for applications to geometry, where D often has a bounded
inverse if some particular geometric condition is satisfied.

4 K-homology

e For every C*-algebra A on can also define K-homology groups K°(A) and
K'(A). This gives a contravariant functor (i.e. arrows are reversed) from
the category of C*-algebras to the category of abelian groups. Properties
very similar to K-theory are satisfied.

e Most important is, that there is a pairing

K*(A) @ K.(A) > Z.
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e For us most important is the case A = C(X). In this case, every Dirac
type differential operator D produces an element [D] € K*(C(X)). (If
X is a manifold, one will use operators defined over X, in general, every
(proper) map M — X can be used to push K-homology classes given
by such operators from K*(C(M)) to K*(C(X)) (observe that we get a
C*-algebra map C(X) — C(M)).

e In the case A = C(X), the pairing
K*(C(X))® K. (C(X)) = C

is given as follows: if a K-homology class is represented by a Dirac type
operator D, and a K-theory class by a vector bundle E, then

[D] ® [E] = ind(Dg).



