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Chapter 1

Topological Spaces

1.1 Basic Notions

A topology on a set X is a set O of subsets of X, called open sets, with the
properties:

(1) The union of an arbitrary family of open sets is open.
(2) The intersection of a finite family of open sets is open.
(3) The empty set ∅ and X are open.

A topological space (X,O) consists of a set X and a topology O on X. The
sets in O are the open sets of the topological space (X,O). We usually denote
a topological space just by the underlying set X. A set A ⊂ X is closed in
(X,O) if the complement XrA is open in (X,O). Closed sets have properties
dual to (1)-(3):

(4) The intersection of an arbitrary family of closed sets is closed.
(5) The union of a finite family of closed sets is closed.
(6) The empty set ∅ and X are closed.

The properties (1) and (2) of a topology show that we need not specify all of its
sets since some of them are generated by taking unions and intersections. We
often make use of this fact in the construction of topologies. For this purpose
we collect a few general set theoretical remarks.

A subset B of a topology O is a basis of O if each U ∈ O is a union
of elements of B. (The empty set is the union of the empty family.) The
intersection A ∩ B of elements of B is then in particular a union of elements
of B. Conversely assume that a set B of subsets of X has the property that
the intersection of two of its members is the union of members of B, then there
exists a unique topology O which has B as a basis. It consists of the unions of
an arbitrary family of members of B.

A subset S of O is a subbasis of O if the set B(S) of intersections of a
finite number of elements in S is a basis of O. (The space X is the intersection
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of the empty family.) Let S be any set of subsets of X. Then there exists a
unique topology O(S) which has S as a subbasis. The set B(S) is a basis of
the topology O(S). If O is a topology containing S, then O(S) ⊂ O. If S ⊂ O,
then the topology O contains ∅, X, and the elements of S; let B(S) be the
family of all finite intersections of these sets; and let O(S) be the set of all
unions of elements in B(S). Then O(S) ⊂ O, and O(S) is already a topology,
by elementary rules about unions and intersections. Formally, O(S) may be
defined as the intersection of all topologies which contain S. But it is useful to
have some information about the sets contained in it.

(1.1.1) Example (Real numbers). The set of open intervals of R is a basis of
a topology on R, the standard topology on R. Thus the open sets are unions
of open intervals. A closed interval [c, d] is then closed in this topology. A half-
open interval ]a, b], a < b is neither open nor closed for this topology. We shall
verify later that ∅ and R are the only subsets of R which are both open and
closed (see (1.9.1)). The sets of the form {x | x < a} and {x | x > a}, a ∈ R
are a subbasis of this topology. The extended real line R = {−∞} ∪ R ∪ {∞}
has a similar subbasis for its standard topology; here, of course, −∞ < x <∞
for x ∈ R.

Note that the definition of the standard topology only uses the order re-
lation, and not the algebraic structures of the field R. Despite of the simple
language: The real numbers are a very rich and complicated topological space.
Many spaces of geometric interest are based on real numbers (manifolds, cell
complexes). The real numbers are also important in the axiomatic development
of the theory. 3

(1.1.2) Example (Euclidean spaces). The set of products
∏n

i=1 ]ai, bi[ of open
intervals is a basis for a topology on Rn, the standard topology on the Euclidean
space Rn.

Another basis for the same topology are the ε-neighbourhoods Uε(a) =
{x ∈ Rn | ‖x − a‖ < ε} of points a with respect to the Euclidean norm ‖ − ‖.
This should be known from calculus. We recall it in the next section when we
introduce metric spaces. 3

We fix a topological space X and a subset A. The intersection of the closed
sets which contain A is denoted A and called closure of A in X. A set A
is dense in X if A = X. The interior of A is the union of the open sets
contained in A. We denote the interior by A◦. A point in A◦ is an interior
point of A. A subset is nowhere dense if the interior of its closure is empty.
The boundary of A in X is Bd(A) = A ∩ (X rA). An open subset U of
X which contains A is an open neighbourhood of A in X. A set B is a
neighbourhood of A if it contains an open neighbourhood of A. If A = {a}
we talk about neighbourhoods of the point a. A system of neighbourhoods of
the point x is a neighbourhood basis of x if each neighbourhood of x contains
one of the system.
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One can define a topological space by using neighbourhood systems of points
or by using the closure operator (see (1.1.6) and Problem 10).

A map f : X → Y between topological spaces is continuous if the pre-
image f−1(V ) of each open set V of Y is open in X. Dually: A map is contin-
uous if the pre-image of each closed set is closed. The identity id(X) : X → X
is always continuous, and the composition of continuous maps is continuous.
Hence topological spaces and continuous maps form a category. We denote it
by TOP. A map f : X → Y between topological space is said to be continuous
at x ∈ X if for each neighbourhood V of f(x) there exists a neighbourhood U
of x such that f(U) ⊂ V ; it suffices to consider a neighbourhood basis of x and
f(x). The definitions are consistent: See (1.1.5) for various characterizations
of continuity.

A homeomorphism f : X → Y is a continuous map with a continuous
inverse g : Y → X. A homeomorphism is an isomorphism in the category TOP.
Spaces X and Y are homeomorphic if there exists a homeomorphism between
them. One of the aims of geometric and algebraic topology is to develop tools
which can be used to decide whether two given spaces are homeomorphic or not.
A property P which spaces can have or not is a topological property if the
following holds: If the space X has property P, then also every homeomorphic
space. Often one considers spaces with some additional structure (e.g., a metric,
a differential structure, a cell decomposition, a bundle structure, a symmetry)
which is not a topological property but may be useful for the investigation of
topological problems.

Starting from the definition of a topology and a continuous map one can
develop a fairly extensive axiomatic theory — often called point set topology .
But in learning about the subject it is advisable to use other material, e.g.,
what is known from elementary and advanced calculus. On the other hand the
general notions of the axiomatic theory can clarify concepts of calculus. For
instance, it is often easier to work with the general notion of continuity than
with the (ε, δ)-definition of calculus.

A map f : X → Y between topological spaces is open (closed) if the
image of each open (closed) set is again open (closed). These properties are
not directly related to continuity; but a continuous map can, of course, have
these additional and often useful properties.

In the sequel we assume that a map between topological spaces is continuous
if nothing else is specified or obvious. A set map is a map which is not assumed
to be continuous at the outset.

(1.1.3) Proposition. Let A and B be subsets of the space X. Then: (1)
A ⊂ B implies A ⊂ B. (2) A ∪B = A ∪ B. (3) A ∩B ⊂ A ∩ B. (4) A ⊂ B
implies A◦ ⊂ B◦. (5) (A ∩ B)◦ = A◦ ∩ B◦. (6) (A ∪ B)◦ ⊃ A◦ ∪ B◦. (7)
X rA = (X rA)◦. (8) X rA = X rA◦. (9) Bd(A) = ArA◦.

Proof. (1) Obviously, A ⊂ B ⊂ B. Since B is closed and contains A, we
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conclude A ⊂ B. (2) By A ⊂ A ∪ B and (1) A ⊂ A ∪B and hence A ∪ B ⊂
A ∪B. From A ⊂ A and B ⊂ B we see A∪B ⊂ A∪B. Since A∪B is closed, we
conclude A ∪B ⊂ A∪B. (3) A ⊂ A and B ⊂ B implies A∩B ⊂ A∩B. Since
A∩B is closed, we see A ∩B ⊂ A∩B. The proof of (4), (5), and (6) is “dual”
to the proof of (1), (2), and (3). (7) X r A is open, being the complement
of a closed set, and contained in X r A. Therefore X r A ⊂ (X r A)◦. We
pass to complements in X rA ⊃ (X rA)◦ and see that A is contained in the
closed set X r (X r A)◦, hence A is also contained in this set. Passing again
to complements, we obtain X r A ⊂ (X r A)◦. The proof of (8) is “dual” to
the proof of (7). (9) follows from the definition of the boundary and (8). 2

A point x ∈ X is called a touch point of A ⊂ X if each neighbourhood of
x intersects A. It is called a limit point or accumulation point of A if each
neighbourhood intersects Ar {x}.

(1.1.4) Proposition. The closure A is the set of touch points of A. A set is
closed if it contains all its limit points.

Proof. Let x ∈ A and let U be a neighbourhood of x. Suppose U ∩A = ∅. Let
V ⊂ U be an open neighbourhood of x. Then V ∩ A = ∅ and A ⊂ X r V ,
hence A ⊂ X r V and A ∩ V = ∅. This contradicts x ∈ A, x ∈ V . Therefore
U ∩A 6= ∅.

Suppose each neighbourhood of x intersects A. If x 6∈ A, then x is contained
in the open set X rA. Hence A ∩ (X rA) 6= ∅, a contradiction. 2

The previous proposition says, roughly, that limiting processes from inside
A stay in the closure of A.

Suppose O1 and O2 are topologies on X. If O1 ⊂ O2, then O2 is finer than
O1 and O1 coarser than O2. The topology O1 is finer than O2 if and only if
the identity (X,O1) → (X,O2) is continuous. The set of all subsets of X is the
finest topology; it is called the discrete topology and the resulting space a
discrete space . All maps f : X → Y from a discrete space X are continuous.
The coarsest topology on X consists of ∅ and X alone; we call it the lumpy
topology . All maps into a lumpy space are continuous. If (Oj | j ∈ J) is a
family of topologies on X, then their intersection is a topology.

(1.1.5) Proposition. Let f : X → Y be a set map between topological spaces.
Then the following are equivalent:

(1) The map f is continuous.
(2) The pre-image of each set in a subbasis of Y is open in X.
(3) The map f is continuous at each point of X.
(4) For each B ⊂ Y we have f−1(B◦) ⊂ (f−1(B))◦.
(5) For each B ⊂ Y we have f−1(B) ⊂ f−1(B).
(6) For each A ⊂ X we have f(A) ⊂ f(A).
(7) The pre-image of each closed set of Y is closed in X.
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Proof. (1) ⇒ (2). As a special case.
(2) ⇒ (1). We use the construction of the topology from its subbasis. The

relations f−1(
⋂

j Aj) =
⋂

j f
−1(Aj) and f−1(

⋃
j Aj) =

⋃
j f

−1(Aj) are then
used to show that the pre-image of each open set is open.

(1) ⇒ (3). Let V be a neighbourhood of f(x). It contains an open neigh-
bourhood W . Its pre-image is open, because f is continuous. Therefore f−1(V )
is a neighbourhood of x.

(3) ⇒ (1). Let V ⊂ Y be open. Then V is a neighbourhood of neighbour-
hood of each of its points v ∈ V . Hence U = f−1(V ) is a neighbourhood of
each of its points. But a set is open if and only if it is a neighbourhood of each
of its points.

(1) ⇒ (4). f−1(B◦) is open, being the pre-image of an open set, and
contained in f−1(B). Now use the definition of the interior.

(4) ⇒ (5). We use (1.1.3) and set-theoretical duality

X r f−1(B) = (X r f−1(B))◦ = f−1(X rB)◦ ⊃
f−1((X rB)◦) = f−1(X rB) = X r f−1(B).

The inclusion holds by (4). Passage to complements yields the claim.
(5) ⇒ (6). We have f−1(f(A)) ⊃ f−1f(A) ⊃ A, where the first inclusion

holds by (5), and the second because of f−1f(A) ⊃ A. The inclusion between
the outer terms is equivalent to the claim.

(6) ⇒ (7). Suppose B ⊂ Y is closed. From (6) we obtain

f(f−1(B)) ⊂ f(f−1(B)) ⊂ B = B.

Hence f−1(B) ⊂ f−1(B); the reversed inclusion is clear; therefore equality
holds, which means that f−1(B) is closed.

(7) ⇒ (1) holds by set-theoretical duality. 2

(1.1.6) Proposition. The neighbourhoods of a point x ∈ X have the proper-
ties:

(1) If U is a neighbourhood and V ⊃ U , then V is a neighbourhood.
(2) The intersection of a finite number of neighbourhoods is a neighbourhood.
(3) Each neighbourhood of x contains x.
(4) If U is a neighbourhood of x, then there exists a neighbourhood V of x

such that U is a neighbourhood of each y ∈ V .
Let X be set. Suppose each x ∈ X has associated to it a set of subsets, called
neighbourhoods of x, such that (1)-(4) hold for this system. Then there exists a
unique topology on X which has the given system as system of neighbourhoods
of points.

Proof. Define O as the set of subsets U of X such that each x ∈ U has a
neighbourhood V with V ⊂ U . Claim: O is a topology on X. Properties (1)
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and (3) of a topology are obvious from the definition and property (2) follows
from property (2) of the neighbourhood system.

Let Ux denote the given system of neighbourhoods of x and Ox the system
of neighbourhoods of x defined by O. We have to show Ux = Ox. By definition
of O, the set U0 = {y ∈ U | ∃ V ∈ Uy, V ⊂ U} is open for each U ⊂ X. If
U ∈ Ux, choose V by (4). Then x ∈ V ⊂ U0 ⊂ U and hence U ∈ Ox. If
U ∈ Ox, there exist an open U ′ ∈ Ox, and therefore V ∈ Ux with V ⊂ U ′ by
definition of O. By (1), U ∈ Ux.

The uniqueness of the topology follows from the fact that a set is open, if
and only if it contains a neighbourhood of each of its points. 2

1.1.7 Separation Axioms. We list some properties which a space X may
have.
(T1) Points are closed subsets.
(T2) Any two points x 6= y have disjoint neighbourhoods.
(T3) Let A ⊂ X be closed and x /∈ A. Then x and A have disjoint neighbour-
hoods.
(T4) Disjoint closed subsets have disjoint neighbourhoods.

We say X satisfies the separation axiom Tj (or X is a Tj-space) if X has
property Tj .

A T2-space is called Hausdorff space or separated . A space that satisfies
T1 and T3 is called regular . A space that satisfies T1 and T4 is called normal .
A normal space is regular, a regular space is separated. A space X is called
completely regular if it is separated and if for each point x ∈ X and each
closed set A not containing x there exists a continuous function f : X → [0, 1]
such that f(x) = 1 and f(A) ⊂ {0}. The separation axioms are of a technical
nature, but they serve the purpose of clarifying the concepts. 3

Felix Hausdorff defined 1912 topological spaces (in fact Hausdorff spaces)
via neighbourhood systems [?, p.213]. Neighbourhoods belong to the realm of
analysis (limits, convergence). Open sets are more geometric, at least psycho-
logically; they are “large” and “vague”, like the things we actually see. We
will see that open sets are very convenient for the axiomatic development of
the theory. But it is not intuitively clear that the axioms for a topology are a
good choice. The axioms for neighbourhoods should be convincing, especially
if one has already some experience with calculus.

Whenever one has an important category (like TOP) one is obliged to study
elementary categorical notions and properties. We will discuss subobjects, quo-
tient objects, products, sums, pullbacks, pushouts, and (in general categorical
terms) limits and colimits.
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Problems

1. A set D ⊂ R is dense in R if and only if each non-empty interval contains elements

of D. Thus Q is dense or the set of rational numbers with denominator of the form

2k.

2. Determine the closure, the interior and the boundary of the following subsets of

the space R: ]a, b], [2, 3[ ∪ ]3, 4[, Q.

3. A map f : X → R is continuous if the pre-images of ]−∞, a[ and ]b,∞[ are open

where a, b run through a dense subset of R.

4. Give examples for A ∩B 6= A ∩B or (A ∪B)◦ 6= A◦ ∪B◦, see (1.1.3).

5. Show by examples that the inclusions (4), (5), (6) in (1.1.5) are not equalities.

6. The union of two nowhere dense subsets is again nowhere dense. The intersection

of two dense open sets is dense. Give an example of dense open sets (An | n ∈ N)

with empty intersections.

7. x ∈ A if and only if each member of a neighbourhood basis of x intersects A.

8. Let A be a subset of a topological space X. How many subsets of X can be ob-

tained from A by iterating the processes closure and complement? There exist subsets

of R where the maximum is attained. Same question for interior and complement;

interior and closure; interior, closure and complement.

9. A space is said to satisfy the first axiom of countability or is first countable if

each point has a countable neighbourhood basis. A space with countable basis is said

to satisfy the second axiom of countability or is separable1 or second countable.

Euclidean spaces are first and second countable.

10. Let X be a space with countable basis. Then each basis contains a countable

subsystem which is a basis. A space with countable basis has a countable dense sub-

set. A disjoint family of open sets in a separable space is countable.

11. Consider the topology on the set R with the halve open intervals [a, b[ are a

basis. Then the basis sets are open and closed; X has a countable dense subset, but

no countable basis.

12. A Kuratowski closure operator on a set X is a map which assigns to each

A ⊂ X a set h(A) ⊂ X such that: (1) h(∅) = ∅. (2) A ⊂ h(A). (3) h(A) = h(h(A)).

(4) h(A∪B) = h(A)∪h(B). Given a closure operator, there exists a unique topology

on X such that h(A) = A is the closure of A in this topology.

13. Can one define topological spaces by an operator “interior”?.

14. A space is separated if and only if each point x ∈ X is the intersection of its

closed neighbourhoods. The points of a separated space are closed.

15. Classify topological spaces with 2 or 3 points up to homeomorphism.

16. Let A and Y be closed subsets of a T4-space X. Suppose U is an open neigh-

bourhood of Y in X. Let C ⊂ A be a closed neighbourhood of A in Y ∩ A which

is contained in U ∩ Y . Then there exists a closed neighbourhood Z of Y which is

contained in U and satisfies Z ∩A = C.

1Do not mix up with “separated”.
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1.2 Metric Spaces

Many examples of topological spaces arise from metric spaces, and metric
spaces are important in their own right. A metric d on a set X is a map
d : X ×X → [0,∞[ with the properties:

(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x) for all x, y ∈ X.
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X ( triangle inequality).

We call d(x, y) the distance between x and y with respect to the metric d. A
metric space (X, d) consists of a set X and a metric d on X.

Let (X, d) be a metric space. The set Uε(x) = {y ∈ X | d(x, y) < ε} is the
ε-neighbourhood of x. We call U ⊂ X open with respect to d if for each
x ∈ X there exists ε > 0 such that Uε(x) ⊂ U . The system Od of subsets U

�
�
�
� �

�
& %

$�� �

"!
# �
��

U

q
q

Uε(x) p p p p p p p p p p p p p p ppppppppp
ppppppp
Uη(y)

Figure 1.1. Underlying topology

which are open with respect to d is a topology on X, the underlying topology
of the metric space, and the ε-neighbourhoods of all points are a basis for this
topology. Subsets of the form Uε(x) are open with respect to d. For the proof,
let y ∈ Uε(x) and 0 < η < ε − d(x, y). Then, by the triangle inequality,
Uη(y) ⊂ Uε(x). A space (X,O) is metrizable if there exists a metric d on
X such that O = Od. Metrizable spaces are first countable: Take the Uε(x)
with rational ε. A set U is a neighbourhood of x if and only if there exists
an ε > 0 such that Uε(x) ⊂ U . For metric spaces our definition of continuity
is equivalent to the familiar definition of calculus: A map f : X → Y between
metric spaces is continuous at a ∈ X if for each ε > 0 there exists δ > 0
such that d(a, x) < δ implies d(f(a), f(x)) < ε. Continuity only depends on
the underlying topology. But a metric is a finer and more rigid structure;
one can compare the size of neighbourhoods of different points and one can
define uniform continuity. A map f : (X, d1) → (Y, d2) between metric spaces
is uniformly continuous if for each ε > 0 there exists δ > 0 such that
d1(x, y) < δ implies d2(f(x), f(y)) < ε. A sequence fn : X → Y of maps into a
metric space (Y, d) converges uniformly to f : X → Y if for each ε > 0 there
exists N such that for n > N and x ∈ X the inequality d(f(x), fn(x)) < ε
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holds. If the fn are continuous functions from a topological space X which
converge uniformly to f , then one shows as in calculus that f is continuous.

The Euclidean space Rn carries the metrics d1, d2, and d∞:

d2

(
(xi), (yi)

)
=

(
Σn

i=1(xi − yi)2
)1/2

d1

(
(xi), (yi)

)
= Σn

i=1|xi − yi|
d∞

(
(xi), (yi)

)
= max{|xi − yi| | i = 1, . . . , n}

For n ≥ 2 these metrics are different, but the corresponding topologies are

�
�

@
@�

�

@
@ "!
# 

d1 d2 d∞

Figure 1.2. ε-neighbourhoods

identical. This holds because an ε-neighbourhood of one metric contains an
η-neighbourhood of another metric. The metric d2 is the Euclidean metric.
The topological space Rn is understood to be the space induced from (Rn, d2).

A set A in a metric space (X, d) is bounded if {d(x, y) | x, y ∈ A} is
bounded in R. The supremum of the latter set is then the diameter of A. We
define

d(x,A) = inf{d(x, a) | a ∈ A}
as the distance of x from A 6= ∅.
(1.2.1) Proposition. The map X → R, x 7→ d(x,A) is uniformly continuous.
The relation d(x,A) = 0 is equivalent to x ∈ A.

Proof. Let a ∈ A. The triangle inequality d(x, y) + d(y, a) ≥ d(x, a) implies
d(x, y)+d(y, a) ≥ d(x,A). This holds for each a ∈ A, hence d(x, y)+d(y,A) ≥
d(x,A). Similarly if we interchange x and y, hence |d(x,A)−d(y,A)| ≤ d(x,A).
This implies uniform continuity.

Suppose d(x,A) = 0. Given ε > 0, there exists a ∈ A with d(x, a) < ε,
hence Uε(x) ∩A 6= ∅, and we can apply (1.1.4). And conversely. 2

(1.2.2) Proposition. A metrizable space is normal.

Proof. If A and B are disjoint, non-empty, closed sets in X, then

f : X → [0, 1], x 7→ d(x,A)(d(x,A) + d(x,B))−1

is a continuous function with f(A) = {0} and f(B) = {1}. Let 0 < a < b < 1.
Then [0, a[ and ]b, 1] are open in [0, 1], and their pre-images under f are disjoint
open neighbourhoods of A and B. The points of a metrizable space are closed:
dy : x 7→ d(x, y) is continuous and d−1

y (0) = {y}, by axiom (1) of a metric. 2
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In a metric space one can work with sequences. We begin with some general
definitions. Let (xn | n ∈ N) be a sequence in a topological space X. We call
z ∈ X an accumulation value of the sequence if each neighbourhood of z
contains an infinite number of the xn. The sequence converges to z if each
neighbourhood of z contains all but a finite number of the xj . We then call
z the limit of the sequence and write as usual z = limxn. In a Hausdorff
space a sequence can have at most one limit. In a lumpy space each sequence
converges to each point of X. Let µ : N → N be injective and increasing. Then
(xµ(n) | n ∈ N) is called a subsequence of (xn). We associate three sets to a
sequence (xn): A(xn) is the set of its accumulation values; S(xn) is the set of
limits of subsequences; H(xn) =

⋂∞
n=1H(n) withH(n) = {xn, xn+1, xn+2, . . .}.

(1.2.3) Proposition. For each sequence A = H ⊃ S. If X is first countable,
then also S = H.

Proof. A ⊂ H. Let z ∈ A. Since each neighbourhood U of z contains an
infinite number of xn, we see that U ∩ H(n) 6= ∅. Hence z is touch point of
H(n). This implies z ∈ H.

H ⊂ A. Let z ∈ H and U a neighbourhood of z. Then U ∩H(n) 6= ∅ for
each n. Therefore U contains an infinite number of the xn, i.e., z ∈ A.

S ⊂ A. Let z ∈ S and (xµ(n)) be s subsequence with limit z. If U is
a neighbourhood of z, then, by convergence, there exists N ∈ N such that
xµ(n) ∈ U for n > N . Hence U contains an infinite number of xn, i.e., z ∈ A.

H ⊂ S if X is first countable. Let z ∈ H. We construct inductively a
subsequence which converges to z. Let U1 ⊃ U2 ⊂ U3 ⊃ . . . be a neighbourhood
basis of z. Then Uj ∩H(n) 6= ∅ for all j and n. Let xµ(j), 1 ≤ j ≤ n − 1 be
given such that xµ(j) ∈ Uj . Since Un ∩ H(µ(n − 1) + 1) 6= ∅, there exists
µ(n) > µ(n − 1) with xµ(n) ∈ Un. The resulting subsequence converges to
z. 2

In metric spaces a sequence (xn) converges to x if for each ε > 0 there exists
N ∈ N such that for n > N the inequality d(xn, x) < ε holds. A sequence is a
Cauchy-sequence if for each ε > 0 there exists N such that for m,n > N the
inequality d(xm, xn) < ε holds. A metric space is complete if each Cauchy
sequence converges. A Cauchy seuqence has at most one accumulation value;
if a subsequence converges, then the sequence converges.

Recall from calculus that the spaces (Rn, di) are complete. (See (??) for a
general theorem to this effect.) Completeness is not a topological property of
the underlying space: The interval ]0, 1[ with the metric d1 is not complete.

Let V be a vector space over the field F of real or complex numbers. A
norm on V is a map N : V → R with the properties:

(1) N(v) ≥ 0, N(v) = 0 ⇔ v = 0.
(2) N(λv) = |λ|N(v) for v ∈ V and λ ∈ F .
(3) N(u+ v) ≤ N(u) +N(v).
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A normed vector space (V,N) consists of a vector space V and a norm N
on V . A norm N induces a metric d(x, y) = N(x − y). Property (3) of a
norm yields the triangle inequality. With respect to the topology Od, the map
N : V → R is continuous. A normed space which is complete in the induced
metric is a Banach space .

If 〈−,−〉 : V × V → R is an inner product on the real vector space V , then
N(v) = 〈v, v〉1/2 yields a norm on V . Similarly for an hermitian inner product
on a complex vector space. The Euclidean norm on Rn is ‖x‖ = (Σn

i=1x
2
i )

1/2.
An inner product space which is complete in the associated metric is called a
Hilbert space .

Problems

1. A metric δ is bounded by M if δ(x, y) ≤ M for all x, y. Let (X, d) be a metric

space. Then δ(x, y) = d(x, y)(1+d(x, y))−1 is a metric on X bounded by 1 which has

the same underlying topology as d.

2. Weaken the axioms of a metric and require only d(x, y) ≥ 0 and d(x, x) = 0 in-

stead of axiom (1); call this a quasi-metric. If d is a quasi-metric on E, one can still

define the associated topology Od. The relation x ∼ y ⇔ d(x, y) = 0 is an equiva-

lence relation on E. The space F of equivalence classes carries a metric d′ such that

d′(x′, y′) = d(x, y) if x′ denotes the class of x. The map E → F, x 7→ x′ is continuous.

Discuss also similar problems if one starts with a map d : E×E → [0,∞]; the axioms

then still make sense.

3. As a joke, replace the triangle inequality by d(x, y) ≥ d(x, z) + d(z, y). Discuss

the consequences.

4. Let (E, d) be a metric space. Then da : E → R, x 7→ d(x, a) is uniformly contin-

uous. The sets Dε(a) = {x ∈ E | d(a, x) ≤ ε} and Sε(a) = {x ∈ E | d(a, x) = ε}
are closed in E. In Euclidean space, Dε(a) is the closure of Uε(x); this need not hold

for an arbitrary metric space. It can happen that Dε(a) is open, and even equal to

Uε(x). Construct examples.

5. The space C = C([0, 1]) of continuous functions f : [0, 1] → R with the sup-norm

‖f‖ = sup{f(x) | x ∈ [0, 1]} is a Banach-space. The integral f 7→
R

f is a continuous

map C → R. The L1-norm on C is defined by ‖f‖1 =
R 1

0
|f(x)|dx.

6. A metrizable space with a countable dense subset has a countable basis.

7. Let C(R) be the set of continuous functions R → R. Let P ⊂ C(R) be the set of

positive functions. For d ∈ P and f ∈ C(R) let Ud(f) = {g ∈ C(R) | |f(x)− g(x)| <
d(x)}. Let O be the topology with subbasis consisting of the sets Ud(f). Then there

is no sequence in P which converges to the zero function n, but n ∈ P . (Sequences

are too “short”; see the notion of a net.) The topology cannot be generated by a

metric. The function n does not have a countable neighbourhood basis.

8. Weaken the axioms of a metric by only requiring d(x, x) = 0 in (1). One still can

define the topology Od. The relation x ∼ y ↔ d(x, y) = 0 is an equivalence relation
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on X. The set of equivalence classes carries a metric d′ such that d′(x′, y′) = d(x, y);

here x′ denotes the class of x.

9. It is know from calculus that the multiplication m : R × R → R, (x, y) 7→ x · y is

continuous. Study this from the view point of the general theory by looking at the

pre-images of ]a,∞[ . (Draw a figure.)

10. Let A ⊂ Rn be convex. Is then also the closure A convex?

1.3 Subspaces

It is a classical idea and method to define geometric objects (spaces) as subsets
of Euclidean spaces, e.g., as solution sets of a system of equations. But it is
important to observe that such objects have “absolute” properties which are
independent of their position in the ambient space. In the topological context
this absolute property is the subspace topology.

It is also an interesting problem to realize spaces with an abstract definition
as subsets of a Euclidean space. A typical problem is to find Euclidean models
for projective spaces.

Let (X,O) be a topological space and A ⊂ X a subset. Then

O|A = {U ⊂ A | there exists V ∈ O with U = A ∩ V }

is a topology on A. It is called the induced topology , the subspace topology ,
or the relative topology . The space (A,O|A) is called a subspace of (X,O);
we usually say: A is a subspace of X. A continuous map f : (Y,S) → (X,O)
is an embedding if it is injective and (Y,S) → (f(Y ),O|f(Y )), y 7→ f(y) a
homeomorphism.

(1.3.1) Proposition. Let A be a subspace of X. Then the inclusion i : A→ X,
a 7→ a is continuous. Let Y be a space and f : Y → X a set-map with f(Y ) ⊂ A.
Then f is continuous if and only if ϕ : Y → A, y 7→ f(y) is continuous.

Proof. If U ⊂ X is open, then i−1(U) = A ∩ U is open, by definition of the
subspace topology. If ϕ is continuous, then also f = i◦ϕ. If f is continuous and
V open in A, choose U open in X with U ∩A = V . Then ϕ−1(V ) = f−1(U) is
open. 2

Property (2) of the next proposition characterizes embeddings i in categor-
ical terms. We call it the universal property of an embedding .

(1.3.2) Proposition. Let i : Y → X be an injective set map. The following
are equivalent:

(1) i is an embedding.
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(2) A set map g : Z → Y from any topological space Z is continuous if and
only if ig is continuous.

X

Y

i

OO

Zg
oo

ig
``@@@@@@@

Proof. (1) ⇒ (2). Let A = i(Y ) with the subspace topology of X. If g is
continuous, then also the composition ig. Let ig be continuous. Since i is an
embedding, j : Y → A, y 7→ i(y) is a homeomorphism. From (1.3.1) we see that
jg is continuous, hence g is continuous.

(2 ⇒ (1). We apply (2) to g = id(Y ) and see that i and hence j is contin-
uous. Let h : A → Y be the inverse of j. The composition ih is the inclusion
A ⊂ X. Thus, by condition (2), h is continuous. Hence j is a homeomorphism
with inverse h. 2

Suppose A ⊂ B ⊂ X are subspaces. If A is closed in B and B closed in X,
then A is closed in X. Similarly for open subspaces. But in general, an open
(closed) subset of B must not be open (closed) in X. Note that B is always
open and closed in the subspace B. The next proposition will be used many
times without further reference. A family (Xj | j ∈ J) of subsets of X is called
locally finite if each point x ∈ X has a neighbourhood which intersects only
finitely many of the Xj .

(1.3.3) Proposition. Let f : X → Y be a set-map between topological spaces
and let X be the union of the subsets (Xj | j ∈ J). If the Xj are open and the
maps fj = f | Xj continuous, then f is continuous. A similar assertion holds
if the Xj are closed and locally finite.

Proof. Suppose the Xj are closed and suppose J is finite. Let C ⊂ Y be closed.
Then f−1(C) =

⋃
j f

−1(C)∩Xj =
⋃

j f
−1
j (C). Since f−1

j (C) is closed in Xj it
is also closed in X. Hence we have a finite union of closed sets, i.e., pre-images
of closed sets are closed. Similarly for open Xj . If the Xj form a locally finite
family, we first conclude that each point has an open neoghbourhood U such
that f |U is continuous. 2

(1.3.4) Proposition. Let f : X → Y be an open set map. Then the restriction
fB : f−1(B) → B is open for each B ⊂ Y . Similarly if “open” is replaced by
“closed”.

Proof. For B ⊂ Y and U ⊂ X the relation

f(f−1(B) ∩ U) = B ∩ f(U)

holds for any set map. By definition of the subspace topology, an open set V
in f−1(B) has the form V = f−1(B) ∩ U for an open U ⊂ X. If f is open,
B ∩ f(U) is open in B. The relation above shows that fB is open. 2
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A subset A of a space X is a retract of X if there exists a retraction
r : X → A, i.e., a continuous map r : X → A such that r|A = id(A). A
continuous map s : B → E is a section of the continuous map p : E → B if
ps = id(B). In that case s is an embedding onto its image.

Subsets of Euclidean spaces are usually considered as subspaces. We often
use the subspaces:

Dn = {x ∈ Rn | ‖x‖ ≤ 1}, Sn−1 = {x ∈ Rn | ‖x‖ = 1}, En = Dn r Sn−1.

We call Sn the n-dimensional unit sphere and Dn the n-dimensional unit
disk or unit ball .

(1.3.5) Example (Spheres). Let en = (0, . . . , 0, 1). We define the stereo-
graphic projection ϕN : UN = Sn r {en} → Rn: the point ϕN (x) is the
intersection of the line through en and x with the hyperplane Rn = Rn × 0.
One computes ϕN (x0, . . . , xn) = (1 − xn)−1(x0, . . . , xn−1). An inverse is
πN : x 7→ (1 + ‖x‖)2)−1(2x, ‖x‖2 − 1).

"!
# qHHHH Rn×0

N

ϕN (x)

qq x
Sn...

Figure 1.3. Stereographic projection

We also have the stereographic projection ϕS : US = Sn r{−en} → Rn and
the relation ϕS ◦ ϕ−1

N (y) = ‖y‖−2y holds. 3

Many interesting and important spaces are defined as subspaces of vector
spaces of matrices. We discuss later the matrix groups (general linear, or-
thogonal, unitary) as spaces together with a continuous group multiplication
(topological groups).

Problems

1. ]0, 1] is covered by the locally finite family of the [(n + 1)−1, n−1] | n ∈ N. If we
add {0} we obtain a covering of [0, 1] which is not locally finite. The conclusion of
(1.3.3) does not hold for the latter family.
2. The subspace topology of R ⊂ R is the standard topology.
3. A homeomorphism ]0, 1[→ R extends to a homeomorpism [0, 1] → R.
4. Two closed intervals of R with more than two points are homeomorphic.
5. Discuss the extension of the multiplication m : R × R → R ⊂ R as a continuous
map to a larger subset of R×R. Compare this with conventions, known from calculus,
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about working with the symbols ±∞.
6. The boundary of Dn in Rn is Sn−1 and En = Dn r Sn−1 its interior.
7. Let SU(2) be the set of unitary (2, 2)-matrices with determinant 1, considered as
subspace of the vector space of complex (2, 2)-matrices M2(C) ∼= C4:

A ∈ SU(2) ⇔ A =

„
z0 z1

−z̄1 z̄0

«
, z0z̄0 + z1z̄1 = 1.

Then SU(2) → S3, A 7→ (z0, z1) is a homeomorphism of SU(2) with the unit sphere
S3 ⊂ C2.
8. Let Sm

0 = Sm+n+1 ∩ (Rm+1 × 0) and Sn
1 = Sm+n+1 ∩ (0 × Rn+1). Then

X = Sm+n+1 r Sn
1 is homeomorphic to Sm ×En. A homeomorphism Sm ×En → X

is (x, y) 7→ (
p

1− ‖y‖2x, y). The space Y = Sm+n+1 r (Sm
0 ∪ Sn

1 ) is homeomorphic
to Sm × Sn× ]0, 1[ via (x, y, t) 7→ (

√
1− tx,

√
ty). (Note that the statement uses the

product topology, see Section 1.5.)
9. Let (X, d) be a metric space and A ⊂ X. The restriction of d to A×A is a metric
on A. The underlying topology is the subspace topology of (X,Od).
10. Let f : X → Y and g : Y → Z be continuous maps. If f and g are embeddings,
then gf is an embedding. If gf and g are embeddings, then g is an embedding. If
gf = id, then f is an embedding. An embedding is open (closed) if and only if its
image is open (closed). If f : X → Y is a homeomorphism and A ⊂ X, then the map
A → f(A), induced by f , is a homeomorphism.
11. Let B ⊂ A ⊂ X. Then the subspace topologies on B, considered as subspace of

A and of X, coincide. For the closures of B in A and X the relation B
A

= B
X ∩ A

holds. If A is closed in X, then both closures coincide.
12. The spaces X = R2 r (] −∞, 0] × 0) and Y = {(x, y) ∈ R2 | y > 0} are home-
omorphic. The following spaces are pairwise homeomorphic: X1 = R2 r {0}, X2 =
R2 r D1(0), X3 = R2 r ([−1, 1] × 0), X4 = {(x, y, z) ∈ R3 | x2 + y2 = 1} and
X5 = {(x, y, z) ∈ R3 | x2 + y2 − z2 = 1}. (Examples of this type show that home-
omorphic spaces can have quite different shape in the sense of elementary geometry.
The spaces are also homeomorphic to the product space S1 × R. Draw figures.)
13. Let X and Y be topological spaces. Suppose X is the union of A1 and A2. Let
f : X → Y be a map with continuous restrictions fj = f |Aj . Then f is continuous if
(X r A1) ∩ (X r A2) = ∅, (X r A2) ∩ (X r A1) = ∅. Show that C is closed in X if
the C ∩Aj are closed in Aj .

1.4 Quotient Spaces

In geometric and algebraic topology many of the important spaces are con-
structed as quotient spaces. They are obtained from a given space by an equiv-
alence relation. Although the quotient topology is easily defined, formally, it
takes some time to work with it. In several branches of mathematics quotient
object are more difficult to handle than subobjects. Even if one starts with
a nice and well-known space its quotient spaces may have strange properties;
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usually one has to add a number of hypotheses in order to exclude unwanted
phenomena. In other words: Quotient spaces do not, in general, inherit desir-
able properties from the original space.

The notion of a quotient spaces also makes precise the intuitive idea of
gluing and pasting spaces. We will discuss examples after we have introduced
compact spaces.

Let X be a topological space and f : X → Y a surjective map onto a set Y .
Then S = {U ⊂ Y | f−1(U) open in X} is a topology on Y . This is the finest
topology on Y such that f is continuous. We call S the quotient topology on
Y with respect to f . A surjective map f : X → Y between topological spaces
is called identification or quotient map if it has the property: U ⊂ Y open
⇔ f−1(U) ⊂ X open. If f : X → Y is a quotient map, then Y is called
quotient space of X. This simple definition of a quotient space is a good
example for the power of the general concept of a topological space. In general
it is impossible to construct quotient spaces in the category of metric spaces.

We recall that a surjective map f : X → Y is essentially the same thing
as an equivalence relation on X. If R is an equivalence relation on X, then
X/R denotes the set of equivalence classes. The canonical map p : X → X/R
assigns to x ∈ X its equivalence class. If f : X → Y is surjective, then x ∼
y ⇔ f(x) = f(y) is an equivalence relation Rf on X. There is a canonical
bijection ϕ : X/Rf → Y such that ϕp = f . The quotient space X/R is
defined to be the set X/R together with the quotient topology of the canonical
map p : X → X/R.

Property (2) of the next proposition characterizes quotient maps f in cat-
egorical terms. We call it the universal property of a quotient map.

(1.4.1) Proposition. Let f : X → Y be a surjective set map between topolog-
ical spaces. The following assertions are equivalent:

(1) f is a quotient map.
(2) A set map g : Y → Z into any topological space is continuous if and only

if gf is continuous.
X

f

��

gf

  @
@@

@@
@@

Y g
// Z

Proof. (1) ⇒ (2). If g is continuous, then gf is continuous. Suppose gf is
continuous and U ⊂ Z open. Then (gf)−1(U) = f−1(g−1(U)) is open in X,
hence, by definition of the quotient topology, g−1(U) is open in Y . Thus g is
continuous.

(2) ⇒ (1). Since id(Y ) is continuous, the composition id(Y ) ◦ f = f is
continuous. Let T denote the topology on Y and let S be the quotient topology
with respect to f . By (1) ⇒ (2), the map id: (Y,S) → (Y, T ) is continuous.
By (2), id : (Y, T ) → (Y,S) is continuous. Hence T = S. 2
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(1.4.2) Proposition. Let f : X → Y be a quotient map. Let B be open or
closed in Y and set A = f−1(B). Then the restriction g : A → B of f is a
quotient map.

Proof. Since f(X) = Y , we have g(A) = B. Let B ⊂ Y be open and thus
A ⊂ X open. Suppose U ⊂ B is such that g−1(U) is open in A. Then g−1(U)
is open X. Since f is a quotient map, U is open in Y and hence in B. If U ⊂ B
is open, then g−1(U) is open in A, since g is continuous. This shows that g is
a quotient map. A similar reasoning works if B is closed. 2

(1.4.3) Proposition. Let f : X → Y be surjective, continuous and open (or
closed). Then f is a quotient map. The restriction fB : f−1(B) → B is open
(or closed) for each B ⊂ Y , hence a quotient map.

Proof. Suppose f−1(C) is open in X. Since f is surjective, f(f−1(C)) = C.
Therefore if f is open (closed), then C is open (closed). Now use (1.3.4). 2

(1.4.4) Example. Let f : U → V be a continuously differentiable map be-
tween open subsets of Euclidean spaces U ⊂ Rm, V ⊂ Rn. Suppose that the
Jacobian has maximal rank n at each point of U . Then, by the rank theorem
of calculus, f is open. 3

(1.4.5) Example. The exponential map exp: C → C∗ = C r 0 is open (see
(1.4.4)). Similarly p : R → S1, t 7→ exp(2πit) is open (see (1.4.3)). The kernel of
p is Z. Let q : R → R/Z be the quotient map onto the factor group. There is a
bijective map α : R/Z → S1 which satisfies α◦q = p. Since p and q are quotient
maps, α is a homeomorphism (use part (2) of (1.4.1)). The continuous periodic
functions f : R → R, f(x+1) = f(x) therefore correspond to continuous maps
R/Z → R and to continuous maps S1 → R via composition with q or p. In a
similar manner the exponential function exp induces a homeomorphism from
the factor group with quotient topology bbbc/bbbz with C∗. 3

We add some general remarks about working with equivalence relations.
An equivalence relation ∼ on a set X can be specified by the set

R = {(x, y) ∈ X ×X | x ∼ y}

(sometimes called the graph of the relation). A subset R ⊂ X × X is an
equivalence relation if:

(1) (x, x) ∈ R for all x ∈ X;
(2) (x, y) ∈ R⇒ (y, x) ∈ R;
(3) (x, y) ∈ R, (y, z) ∈ R⇒ (x, z) ∈ R.

Any subset S ⊂ X ×X generates an equivalence relation; it is the intersection
of all equivalence relations containing S. A quotient spaces Y is often defined
by specifying a typical set S; one says, Y is obtained from X by identifying the
points a and b whenever (a, b) ∈ S; it is then understood that one works with
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the equivalence relation generated by S. A subset of X is said to be saturated
with respect to the equivalence relation if it is a union of equivalence classes.

Let A be a subspace of X. We denote by X/A be the quotient space of X
where A is identified to a point2. In the case that A = ∅ we set X/A = X+{∗},
the space X with an additional point {∗} (topological sum). A map f : X → Y
factors over the quotient map X → X/A, A 6= ∅, if and only if f sends A to a
point; the induced map X/A→ Y is continuous if and only if f is continuous.

(1.4.6) Example (Interval and circle). Let I = [0, 1] be the unit interval and
∂I = {0, 1} its boundary. Then I → S1, t 7→ exp(2πit) induces a bijective
continuous map q : I/∂I → S1. It is a homeomorphism, see (1.10.6). 3

(1.4.7) Example (Cylinder). We identify in the square [0, 1]× [0, 1] the point
(0, t) with the point (1, t). The result is homeomorphic to the cylinder S1 ×
[0, 1]. 3

(1.4.8) Example (Möbius band). We identify in the square [0, 1]× [0, 1] the
point (0, t) with the point (1, 1 − t). The result is the Möbius band M . For
more details see (1.11.2). 3

(1.4.9) Example (Projective plane). Important objects of geometry are the
projective spaces. They arise as quotient spaces and not as subspaces of Eu-
clidean spaces. They will be discussed later in detail. We mention here the
real projective plane RP2; one of its definitions is as the quotient space of S2,
by the relation x ∼ −x (antipodal points identified), see ??. 3

(1.4.10) Example. There exist continuous surjective maps p : I → I × I
(Peano curves, see Section 2.1). A map of this type is a quotient map (1.10.6).
Thus, although set-theoretically a quotient of a set is smaller, topologically the
quotient can become “larger” (here a 2-dimensional space as a quotient of a
1-dimensional space). 3

Problems

1. Let f : A → B and g : B → C be continuous. If f and g are quotient maps, then

gf is a quotient map. If gf is a quotient map, then g is a quotient map. If gf = id,

then g is a quotient map.

2. Let f : X → Y be a closed quotient map. If X is normal, then Y is normal.

3. Identify in Dn + Dn a point x ∈ Sn−1 in the first summand with the same point

in the second summand. The result is homeomorphic to Sn.

4. Identify in Sn−1× [0, 1] the set Sn−1×0 to a point and the set Sn−1×1 to another

point. The result is homeomorphic to Sn.

2A notation of this type is also used for factor groups and orbit spaces.
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5. Identify in Rn +Rn a point x ∈ Rn r0 in the first summand with the point x/‖x‖2

in the second summand. The result is homeomorphic to Sn.

6. Identify in Sk ×Dl+1 + Sk+1 ×Dl a point z ∈ Sk × Sl in the first summand with

the same point in the second summand. The result is homeomorphic to Sk+l+1.

7. Identify in S1 × [−1, 1] each point (z, t) with the point (−z,−t). Show that the

quotient is homeomorphic to the Möbius band.

8. Find a subspace M ⊂ R3 that is homeomorphic to the Möbius band.

9. Show that a space with four points is homeomorphic to a quotient of a Hausdorff

space.

1.5 Products and Sums

Let (Xj ,Oj | j ∈ J) be a family of topological spaces. The product set
X =

∏
j∈J Xj is the set of all families (xj | j ∈ J) with xj ∈ Xj . We

have the projection pri : X → Xi, (xj) 7→ xi into the i-th factor. Let Xj , Yj

be topological spaces and fj : Xj → Yj maps. We have the product map∏
fj :

∏
Xj →

∏
Yj , (xj | j ∈ J) 7→ (fj(xj) | j ∈ J).

The family of all pre-images f−1(Uj), Uj ⊂ Xj open in Xj , is the subbasis
for the product topology O on X. We call (X,O) the topological product
of the spaces (Xj ,Oj).

(1.5.1) Proposition. The product topology is the coarsest topology for which
all projections prj are continuous. A set-map f : Y → X from a space Y into
X is continuous if and only if all maps prj ◦f are continuous. The product∏

j fj of continuous maps fj : Xj → Yj is continuous.

Proof. If prj is continuous, then prj(U) is open for open U ⊂ Xj . The product
topology has by definition the sets prj(U) as subbasis. If f is continuous, then
also prj ◦f . For the converse use (1.1.5). 2

From (1.5.1) we see that X =
∏
Xj together with the projections prj is a

categorical product of the family (Xj) in the category TOP.
The product of two spaces X1, X2 is denoted X1×X2. Similarly f1×f2 for

the product of maps. The “identity” id: X1 × (X2 ×X3) → (X1 ×X2) ×X3

is a homeomorphism. In general, the topological product is associative, i.e.,
compatible with arbitrary bracketing (this is a general fact for products in
categories). The canonical identification Rk ×Rl = Rk+l is a homeomorphism.

The product of two quotient maps is not, in general, a quotient map. Here
is an example. Let R → R/Z be the quotient map which identifies the subset
Z to a point. (Hence this symbol is not the factor group!) Then the product of
p with the identity of Q is not a quotient map. For a proof see (2.10.25). But
the product with the identity of a locally compact space is again a quotient
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map, see (2.2.4) and (2.9.6). The category of compactly generated spaces (see
Section 2.10) is designed to remedy this defect.

(1.5.2) Proposition. A space X is separated if and only if the diagonal D =
{(x, x) | x ∈ X} is closed in X ×X.

Proof. Let x 6= y. Choose disjoint open neighbourhoods U of x and V of y.
Then U × V is open in X × Y and D ∩ (U × V ) = ∅. Hence X ×X rD is a
union of sets of type U × V and therefore open.

Conversely, let X × X r D be open. If x 6= y then (x, y) ∈ X × X r D.
By definition of the product topology, there exists a basic open set U ×V such
that (x, y) ∈ U × V ⊂ X ×X rD. But this means: U and V are disjoint open
neighbourhoods of x and y. 2

(1.5.3) Proposition. Let f, g : X → Y be continuous maps into a Hausdorff
space. Then the coincidence set A = {x | f(x) = g(x)} is closed in X.

Proof. The diagonal map d : X → X ×X, x 7→ (x, x) is continuous. We have
A = ((f × g)d)−1(D). 2

(1.5.4) Proposition. Let f : X → Y be surjective, continuous, and open.
Then Y is separated if and only if R = {(x1, x2) | f(x1) = f(x2)} is closed in
X ×X.

Proof. If Y is separated, then the diagonal D is closed in Y × Y and therefore
R = (f × f)−1(D) closed.

Suppose R is closed and hence X ×X r R open. Since f is surjective, we
have Y × Y rD = (f × f)(X ×X rR). If f is open, then also f × f . Hence
Y × Y rD is open and Y separated, by (1.5.2). 2

Let (Xj | j ∈ J) be a family of topological spaces. Suppose the Xj are
non-empty and pairwise disjoint. The set

O = {U ⊂
∐
Xj | U ∩Xj ⊂ Xj open for all j}

is a topology on the disjoint union
∐
Xj . We call (

∐
Xj ,O) the topological

sum of the Xj . A sum of two space is denoted X1 +X2. The assertions in the
next proposition are easily verified from the definitions.

(1.5.5) Proposition. The topological sum has the properties:
(1) The subspace topology of Xj in

∐
Xj is the original topology.

(2) Let X be the union of the family (Xj | j ∈ J) of pairwise disjoint subset.
Then X is the topological sum of the subspace Xj if and only if the Xj

are open.
(3) A map f :

∐
Xj → Y is continuous if and only if for each j ∈ J the

restriction f |Xj : Xj → Y is continuous. 2
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The topological sum together with the canonical inclusions Xj →
∐
Xj is

a categorical sum in TOP.

(1.5.6) Proposition. Let (Uj | j ∈ J) be a covering of a space X. We have
a canonical map p :

∐
j∈J Uj → X which is the inclusion on each summand.

The following are equivalent:
(1) The map p is a quotient map.
(2) A set map f : X → Y is continuous if and only if each restriction f |Uj

is continuous.
(3) U ⊂ X is open if and only if U ∩ Uj is open in Uj for each j ∈ J .

Similarly if “open” is replaced by “closed”.
These properties hold if the Uj are open, or if the Uj are closed and J is finite.
This is essentially a reformulation of (1.3.3). We say X carries the colimit
topology with respect to the family of subspaces (Uj | j ∈ J) if one of the
equivalent statements holds.

Proof. The map is a quotient map means: U ⊂ X is open if and only if
p−1(U) ⊂

∐
Xj is open. And the latter is the case if and only if for each j ∈ J

the set p−1(Uj) = U ∩Xj is open in Xj . This shows the equivalence of (1) and
(3).

By the universal property of quotient maps, p is a quotient map if and only
if f is continuous if fp is continuous. And fp is continuous if and only if each
restriction f |Uj is continuous, by definition of the sum topology. This shows
the equivalence of (1) and (2). 2

(1.5.7) Proposition. Let X be a set which is covered by a family (Xj | j ∈ J)
of subsets. Suppose each Xj carries a topology such that the subspace topologies
of Xi∩Xj in Xi and Xj coincide and these subspaces are closed in Xi and Xj.
Give X the quotient topology with respect to the canonical map p :

∐
Xj → X.

Then the subspace topology of Xj ⊂ X coincides with the given topology and
Xj is closed in X. The space has the colimit topology with respect to the Xj.
Similarly if “closed” is replaced by “open”.

Proof. Let A ⊂ Xi be closed. Then A ∩Xj ist closed in the subspace Xi ∩Xj

of Xi. By assumption, it is also closed in this subspace of Xj . Since Xi ∩Xj is
closed in Xj , we see that A ∩Xj is closed in Xj . From p−1p(A) =

∐
j A ∩Xj

we see, def definition of the topological sum, that p−1p(A) is closed in
∐

j Xj .
Hence p(A) is closed in X, by definiton of the quotient topology. This shows
that p(xi) is closed in X and p : Xi → p(Xi) is bijective, continuous and closed,
hence a homeomorphism. 2

Problems

1. Let (Xj | j ∈ J) be spaces and Aj ⊂ Xj non-empty subspaces. Then
Q

j∈J Aj =
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Q
j∈J Aj . The product

Q
j∈J Aj is closed if and only if the Aj are closed.

2. The projections prk :
Q

j Xj → Xk are open maps, and in particular quotient
maps. (The Xj are non-empty.)
3. Show that R2 → R, (x, y) 7→ x is not a closed map.
4. A discrete space is the topological sum of its points. There is always a canonical
homeomorphism X×

‘
j Yj

∼=
‘

j(X×Yj). For each y0 ∈ Y the map X → X×Y, x 7→
(x, y0) is an embedding; the image is closed if and only if the point y0 is closed in Y .
If f : X → Y is continuous, then X → X × Y, x 7→ (x, f(x)) is an embedding; the
image is closed if Y is a Hausdorff space.
5. The topological product of separated spaces is separated. (There exist normal
spaces X such that X × [0, 1] is not normal, see [?].)
6. The construction of the product topology can be generalized as follows. Let (Yj |
j ∈ J) be a family of topological spaces. Let fj : X → Yj be maps from a set X to
Yj . There exists a unique coarsest topology on X such that all fj are continuous.
A map of a topological space Z into X with this topology is continuous if and only
if the composition with each fj is continuous. This topology on X is called the
initial topology with respect to the fj . An example of an initial topology is also the
subspace topology.
7. Bd(A)×B ∪A× Bd(B) = Bd(A×B).
8. For metric spaces (Xi, di), 1 ≤ i ≤ n, the metric d∞((xi)(yi)) = max(dk((xi), (yi))
induces on

Q
Xi the product topology. Similarly for the metric d1((xj), (yj)) =Pn

i=1 di(xi, yi).
9. Let ((Xj , dj) | j ∈ N) be a countable family of metric spaces with metric bounded
by 1. Then d((xj), (yj)) | j ∈ N) =

P∞
n=1 2−ndn(xn, yn) defines a metric on the

product
Q∞

j=1 Xj which induces the product topology.
10. Let (Xj | j ∈ J) be a family if spaces. There is a topology on X =

Q
j∈J Xj

which has all products
Q

j∈J Uj , Uj ⊂ Xj open, as a subbasis. Call this the box
topology . Let Y be the product of a countable number of the discrete space T with
two points. Show that the box topology on Y is the discrete topology and is thus
different from the product topology.

1.6 Pullback and Pushout

1.6.1 Pullback. Let f : X → B and g : Y → B be continuous maps. Let
Z = {(x, y) ∈ X × Y | f(x) = g(y)} with the subspace topology of X × Y .
We have the projections onto the factors F : Z → Y and G : Z → X. The
commutative diagram

Z
F //

G��

Y
g
��

X
f // B

is a pullback in TOP, by (1.2.1) and (1.5.1). The space Z is sometimes written
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Z = X ×B Y and called the product of X and Y over B (the product in the
category TOPB of spaces over B). 3

Pullbacks allow to convert liftings into sections. A lifting of f along g is
a map ϕ : X → Y such that gϕ = f .

Y

g

��
X

f //

ϕ
>>

B

A section of G is a map Σ: X → Z such that GΣ = id(X). If Σ is a section,
then FΣ is a lifting. If ϕ is a lifting, then there exists a unique section Σ such
that FΣ = ϕ. Let A ⊂ X and a : A → Y be given. Then ϕ|A = a if and only
if Fσ|A = a.

Let σ : B → Y be a section of g. There exists a unique section Σ: X → Z
of G such that σf = FΣ. We call Σ the induced section .

Let g : Y → B and A ⊂ B be given. Let G : X = g−1(A) → A be the
restriction of g. Then

X
⊂ //

G��

Y
g
��

A
⊂ // B

is a pullback.

1.6.2 Pushout. Let j : A→ X and f : A→ B be continuous maps and form
a pushout diagram

A
f //

j
��

B

J��
X

F // Y

in the category SET of sets. Then Y is obtainable as a quotient of the set
X + B. We give Y the quotient topology via 〈F, J 〉 : X + B → Y . Then
the resulting diagram is a pushout in TOP. The space Y is sometimes written
X +A B and called the sum of X and B under A (the sum in the category
TOPA of spaces under A). 3

Pushouts allow to convert extensions into retractions. An extensions of
f over j is a map τ : X → B such that τj = f . A retraction of J is a map
R : Y → B such that RJ = id(B). If R is a retraction, then RF is an extension.
If τ is an extension, there exists a unique retraction R such that RF = τ .
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Problems

1. Consider the commutative diagrams

A
a //

f
��

B
b //

g
��

C

h
��

A
ba //

f
��

C

h
��

D
d // E

e // F D
ed // F.

Suppose the first square is a pushout. Then the second square is a pushout if and
only if the third square is a pushout. (This holds in any category.)
2. Let A and B be subspaces of X such that X = A ∪ B◦ = A◦ ∪ B. Then the
diagram of inclusions

A ∩B //

��

A

��
B // X

is a pushout in TOP.

1.7 Clutching Data

Suppose the set X is the union of a family (U(j) | j ∈ J) of subsets U(j).
Moreover, suppose that for each j ∈ J there is given a bijection hj : Uj → U(j)
with some other set Uj . We interprete hj as a parametrization (or coordinate
description) of U(j). Situations of this type occur for manifolds or bundles
(charts, bundle charts). Let

Ui ⊃ U j
i = h−1

i (U(i) ∩ U(j)).

The bijection
gj

i = h−1
j hi : U

j
i → U i

j

is then called a coordinate transformation. It often happens that the Ui are
topological spaces; we then want to provide X with a topology such that the hi

become embeddings. For this purpose it is necessary that the hi are compatible.

(1.7.1) Proposition. Suppose the Ui are topological spaces, the U j
i ⊂ Ui open

subspaces and the gj
i homeomorphisms. Then there exists a unique topology on

X such that the U(i) are open subsets and the hi : Ui → U(i) homeomorphisms.

Proof. Let h :
∐

j∈J Uj → X be the canonical map which coincides on Ui with
hi : Ui → U(i) ⊂ X. Give X the quotient topology with respect to h. We claim
that h is an open map. Let U ⊂ Ui be open. Then

h−1h(U) =
∐

j∈J g
j
i (U ∩ U j

i ).
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From our hypotheses we conclude that this set is open. By definition of the
quotient topology, h(U) is open. In particular h(Ui) = U(i) is open and
hi : Ui → U(i) bijective and open, hence a homeomorphism. An open set
in

∐
Uj is a union of open sets in the summands, hence the image under h is

a union of open sets.
Conversely, assume X carries a topology such that the hi : Ui → U(i) are

homeomorphisms onto open subsets. Then the U j
i ⊂ Ui are open and the gj

i

are homeomorphisms. Suppose h−1(U) is open. Then the set

h−1(U) ∩ Ui = h−1
i (U ∩ U(i))

is open, hence U ∩ U(i) ⊂ U(i) open, and therefore U =
⋃

(U ∩ U(i)) open.
This shows that h is a quotient map. 2

An important method for the construction of spaces is to paste spaces. Let
(Uj | j ∈ J) be a family of sets. Assume that for each pair (i, j) ∈ J × J a
subset U j

i ⊂ Ui is given as well as a map gj
i : U j

i → U i
j . We require the axioms:

(1) Uj = U j
j and gj

j = id.
(2) For each triple (i, j, k) ∈ J×J×J the inclusion gj

i (U
j
i ∩Uk

i ) ⊂ Uk
j holds;

thus we have an induced map

gj
i : U j

i ∩ U
k
i → U i

j ∩ Uk
j .

We require gk
j ◦ g

j
i = gk

i , considered as maps from U j
i ∩ Uk

i to U j
k ∩ U i

k.
Then we call the families (Uj , U

k
j , g

k
j ) a clutching datum . We apply (1) and

(2) for the triples (i, j, i) and (j, i, j) and conclude that gj
i and gi

j are inverse
bijections between the sets U j

i and U i
j .

Given a clutching datum, we have the equivalence relation on the disjoint
sum

∐
j∈J Uj :

x ∈ Ui ∼ y ∈ Uj ⇔ x ∈ U j
i and gj

i (x) = y.

Let X denote the set of equivalence classes and let hi : Ui → X be the map
which sends x ∈ Ui to its class. Then we have:

(1.7.2) Lemma. The map hi is injective. Set U(i) = image hi. Then we have
U(i) ∩ U(j) = hi(U

j
i ). 2

Conversely, assume that X is a quotient of
∐

j∈J Uj such that each hi : Ui →
X is injective with image U(i). Let U j

i = h−1
i (U(i) ∩ U(j)) and gj

i = h−1
j ◦

hi : U
j
i → U i

j . Then the (Ui, U
j
i , g

j
i ) are a clutching datum. If we apply the

construction above to this datum, we get back X and the hi.
We now turn our attention to a topological situation.
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(1.7.3) Proposition. Let (Ui, U
j
i , g

j
i ) be a clutching datum. Assume that the

Ui are topological spaces, the U j
i ⊂ Ui open (closed) subsets, and the gj

i : U j
i →

U i
j homeomorphisms. Let X carry the quotient topology with respect to the

quotient map p :
∐

j∈J Uj → X. Then the following holds:
(1) The map hi is a homeomorphism onto an open (closed) subset of X. If

the U j
i ⊂ Ui are open, then p is open.

(2) Suppose the Ui are Hausdorff spaces and the U j
i open. Then X is a

Hausdorff space if and only if for each pair (i, j) the map γj
i : U j

i →
Ui × Uj , x 7→ (x, gj

i (x)) is a closed embedding.

Proof. (1) is a consequence of (1.7.1).
(2) Suppose the conditions in (2) hold. We have to show that the diagonal

D ⊂ X ×X is closed. Since p is open, the map p × p is a quotient map. We
have to verify that (p × p)−1(D) is closed. This is the case if and only if the
intersection with Uk × Ul ⊂ (

∐
Ui)× (

∐
Uj) is closed. This intersection is the

image of γl
k. 2

(1.7.4) Example. Let U1 = U2 = Rn and V1 = V2 = Rnr0. Let ϕ = id. Then
the graph of ϕ in Rn ×Rn is not closed. The resulting locally Euclidean space
is not Hausdorff. If we use ϕ(x) = x · ‖x‖−2, then the result is homeomorphic
to Sn, see (1.3.5). 3

1.8 Adjunction Spaces

Special cases of pushout diagrams are used to define adjunction spaces. Let
j : A ⊂ X be an inclusion and f : A → Y a continuous map. We identify in
the topological sum X + Y for each a ∈ A the point a ∈ X with the point
f(a) ∈ Y , i.e., we consider the equivalence relation on X + Y with equivalence
classes {z} for z 6∈ A + f(A) and f−1(z) + {z} for z ∈ f(A). The quotient
space Z is sometimes denoted by Y ∪f X and called the adjunction space
obtained by attaching X via f to Y . The canonical inclusions X → X + Y
and Y → X + Y induce maps F : X → Y ∪f X and J : Y → Y ∪f X. The
diagram

A
f //

j
��

Y

J
��

X
F // Z = Y ∪f X

is a pushout in TOP.

(1.8.1) Proposition. The data of the pushout have the properties:
(1) J is an embedding.
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(2) If A is closed in X, then J is a closed embedding.
(3) If A is closed in X, then F restricted to X rA is an open embedding.
(4) If X,Y are T1-spaces (T4-spaces), then Y ∪f X is a T1-space (T4-space).
(5) If f is a quotient map, then F is a quotient map.
(6) If A 6= ∅ and X,Y are connected, then Y ∪f X is connected.
(7) If A 6= ∅ and X,Y are path connected, then Y ∪f X is path connected.

Proof. (1) Let U ⊂ Y be open. The pre-image of J(U) in X + Y is f−1(U) +
U . Since j is an embedding, there exists an open subset V ⊂ X such that
f−1(U) = A ∩ V . The set V + U is saturated, its image W in Z is open, and
W ∩ J(Y ) = J(U). Hence J(U) is open in Z.

(2) Let C ⊂ Y be closed. Then p−1(J(C)) = f−1(C)+C is closed in X+Y ,
because f−1(C) is closed in A and A is closed in X. Hence J(C) is closed.

(3) If U ⊂ X r A is open, then p−1F (U) = U is open in X + Y . Hence
F (U) is open.

(4) (T1) The points of Y ∪f X have pre-images in X + Y of the form {z}
for z 6∈ A+ j(A) or f−1(z) + {z}. Since these sets are closed, points are closed
in Y ∪f X.

(T4) Let C and D be disjoint closed subsets of Y ∪f X. Choose a function
a : Y → [0, 1] such that a(C ∩Y ) ⊂ {0} and a(D∩Y ) ⊂ {1}. Define a function
b : A ∪ p−1(C) ∩ X ∪ p−1(D) ∩ X → [0, 1] which equals f on A, is zero on
p−1(C)∩X and one on p−1(D)∩X. By the Tietze extension theorem (2.3.1),
b can be extended to c : X → [0, 1]. The function a and c together yield a
function d : Y ∪f X → [0, 1] with d(C) ⊂ {0}, d(D) ⊂ {1}. One can also use
(??) instead of (2.3.1).

(5) Let g : Y ∪f X → Z be given. Assume gF is continuous. Since gFj =
gJf and f is a quotient map, gJ is continuous. The functions gF and gJ
together yield, by the pushout property, a continuous function g.

(6) and (7) are left as exercises. 2

Because of (2) and (3) we identify XrA with the open subspace F (XrA)
and Y with the closed subspace J(Y ). In this sense, A∪f X is the union of the
disjoint subsets X rA and Y .

(1.8.2) Proposition. Suppose we have closed subspaces A ⊂ X ′ ⊂ X and a
subspace Y ′ ⊂ Y . Let f : A→ Y have an image in Y ′ and denote by g : A→ Y ′

the restriction of f . Then Y ′ ∪g X
′ is a subspace of Y ∪f X. This subspace is

open (closed) if X ′ and Y ′ are open (closed).

Proof. Let C ′ + D′ ⊂ X ′ + Y ′ be a saturated closed set. There exist closed
sets C ⊂ X with C ′ = C ∩X ′ and D ⊂ Y with D ∩ Y ′ = D′. The set C +D
is saturated, since A ⊂ X ′. Hence p(C + D) is closed in Y ∪f X and has
intersection p(C ′ +D′) with Y ′ ∪g X

′.
If X ′, Y ′ are open (closed), then X ′+Y ′ is a saturated open (closed) subset

of X + Y . Hence Y ′ ∪g X
′ = p(X ′ + Y ′) is open (closed) in Y ∪f X. 2
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Let x : X → A be a retraction of j. Since fr : X → Y , id : Y → Y satisfy
id ◦f = fr◦j we have, by the pushout property, an induced retraction R : Y ∪f

X → Y of J .

(1.8.3) Proposition. The space Y ∪f X is a Hausdorff space, provided the
following holds: Y is a Hausdorff space, X is regular, and A is a retract of an
open neighbourhood in X.

Proof. Let z1, z2 ∈ Y ∪f X = Z be different points. We distinguish three cases.
If z1, z2 ∈ X r A, they can be separated by neighbourhoods in X r A, since
this space is Hausdorff. Since X r A is open in Z, the same neighbourhoods
separate in Z.

Let z1 ∈ X r A and z2 ∈ Y . Since X is regular, there exist open disjoint
sets U, V of X with z1 ∈ U ⊂ X r A and A ⊂ V . Then U and V ∪f Y are
disjoint neighbourhoods of z1 and z2.

Let z1, z2 ∈ Y . Since Y is Hausdorff, we can choose open disjoint neigh-
bourhoods Wj of zj in Y . Let r : U → A be a retraction of an open set U ⊂ X
onto A. The sets r−1f−1(Wj) are open in U and X; they are disjoint, since
the f−1(Wj) are disjoint and r is a retraction. The sets r−1f−1(Wj) +Wj are
open and saturated in X + Y . Hence their images in Y ∪f X are separating
neighbourhoods of z1 and z2. 2

(1.8.4) Proposition. Let a commutative diagram (1.8.1) with closed embed-
dings j and J be given. Suppose F induces a bijection X rA→ Z r Y . Then
the diagram is a pushout, provided:

(1) F (X) ⊂ Z is closed.
(2) F : X → F (X) is a quotient map.

(2) holds if X is compact and Z Hausdorff.

Proof. Let g : X → U and h : Y → U be given such that gj = hf . The diagram
is a set-theoretical pushout. Therefore there exists a unique set map ϕ : Z → U
with ϕF = g, ϕJ = h. Since J is a closed embedding, ϕ|J(Y ) is continuous.
Since F is a quotient map, ϕ|F (X) is continuous. Thus ϕ is continuous, since
F (X) and J(Y ) are closed sets which cover Z. 2

Problems

1. The transitivity of pushouts in the diagram

A
j //

f

��

B
j′ //

F
��

X

F ′
��

Y
J // Y ∪f B // (Y ∪f B) ∪F X
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yields a canonical homeomorphism Y ∪f X ∼= (Y ∪f B) ∪F X. The transitivity of
pushouts in the next diagram yields a canonical homeomorphism

A
f //

j

��

Y
g //

J
��

Z

��
X // Y ∪f X // Z ∪g (Y ∪f X)

Z ∪fg X ∼= Z ∪g (Y ∪f X). (Here we view J as a closed inclusion.)
2. Let Ai ⊂ Xi be closed subsets and fi : Ai → Y be continuous maps (i = 1, 2).
Then Y ∪fi Xi are closed subsets of Y ∪〈f1,f2〉 (X1 + X2) = Z.
3. Let D be locally compact and C a closed subspace. Suppose the left diagram is a
pushout with closed inclusions j and J .

A
f //

j
��

B

J
��

X × C ∪A×D
f ′ //

j′

��

X × C ∪B ×D

J′
��

X
F // Y X ×D

F×1 // Y ×D

Then the right diagram is a pushout j′ = 1 × i ∪ j × 1, J ′ = 1 × i ∪ J × 1, and

f ′ = F × 1 ∪ f × 1.

1.9 Connected Spaces

A space is connected if it is not the topological sum of two non-empty sub-
spaces. Thus X is disconnected if and only if X contains a subset X which is
open, closed, and different from ∅ and X. A decomposition of X is a pair
U, V of open, non-empty, disjoint subsets with union X. A space X is discon-
nected if and only if there exists a continuous surjective map f : X → {0, 1}; a
decomposition is given by U = f−1(0), V = f−1(1). The continuous image of
a connected space is connected. A subset A of a space X is called connected
if it is a connected space in the subspace topology; thus this means that there
do not exist open subset U, V in X such that U ∩A and V ∩A are non-empty
but U ∩ V ∩A is empty.

(1.9.1) Theorem. A subset A ⊂ R is connected if and only if it is an interval.

Proof. An interval is a subset which contains with x, y also [x, y]. Suppose A is
not an interval. Then there exists z ∈ R such that A∩ ]−∞, z[ and A∩ ]z,∞[
are non-empty; these sets are then a decomposition of A.

Suppose A is an interval. Let U, V ⊂ R be open sets which yield a de-
composition A ∩ U , A ∩ V . Assume x ∈ A ∩ U , y ∈ A ∩ V , x < y. Let
z = sup(U ∩ [x, y]). If z ∈ U , then z < y and z cannot be the supremum, since
U is open. If z ∈ V , there would exist u < z with u ∈ [x, y] ∩ U ∩ V , and this
contradicts A ∩ U ∩ V = ∅. 2
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The intermediate value theorem of calculus is a direct consequence: If
f : A → R is continuous and f(x) < z < f(y), then z ∈ f(A), because other-
wise the pre-images of ]−∞, z[ and ]z,∞[ would give a decomposition of the
interval A.

(1.9.2) Proposition. Let (Aj | j ∈ J) be a family of connected subsets of X
such that Ai ∩ Aj 6= ∅ for all i, j. Then

⋃
j Aj = Y is connected. Let A be

connected and A ⊂ B ⊂ A. Then B is connected.

Proof. A continuous map f : Y → {0, 1} is constant on each Aj . Since Ai∩Aj 6=
∅, the value f(Ai) is independent of i.

Let U, V be open subsets of X with B ⊂ (U ∪V ) and B ∩U ∩V = ∅. Since
A is connected, we have, say, U ∩ A = ∅. Hence A ⊂ X r U , A ⊂ X r U ,
U ∩A = ∅. 2

The union of the connected sets in X which contain x is thus a closed
connected subset. We call it the component X(x) of x in X. If y ∈ X(x),
then X(y) = X(x). A component of X is a maximal connected subset. Any
space is the disjoint union of its components. A space is totally disconnected
if its components consist of single points.

A continuous map w : [a, b] → X is a path in X from w(a) to w(b), con-
necting a and b. Given w, then [0, 1] → X, t 7→ w((1− t)a+ tb) is also a path
from w(a) to w(b). It therefore often suffices to work with the unit interval
I = [0, 1]. Let u, v : I → U be paths with u(1) = v(0). The product path
w = u ∗ v is defined by w(t) = u(2t) for t ≤ 1/2 and w(t) = v(2t − 1) for
t ≥ 1/2. The path u−(t) = u(1− t) is the inverse path of u. The constant

' $
& % &%
'$
��
��

� �t t t→
v

→

ux y z

Figure 1.4. The product path u ∗ v

path cx with value x is, of course, t 7→ cx(t) = x. From these remarks we infer:
Being connectible by paths is an equivalence relation on X; the classes are
called the path components of X. If there is just one path component we call
X path connected or pathwise connected . Since intervals are connected, a
path connected space is connected.

A space X is locally (pathwise) connected if for each x ∈ X and each
neighbourhood U of x there exists a (pathwise) connected neighbourhood V of
x which is contained in U . Both properties are inherited by open sets.
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(1.9.3) Proposition. The components of a locally connected space X are open.
The path components of a locally pathwise connected space Y are open and
coincide with the components.

Proof. Let K be a (path-)component of x. Let V be connected neighbourhood
of x. Then K ∪V is connected. Hence K ∪V ⊂ K. This shows that K is open.

Let Y be connected and K a path component. Then Y r K is a union
of path components, hence open. In the case that Y 6= K we would obtain a
decomposition. 2

(1.9.4) Proposition. (1) Suppose the open set A is a component of the open
set B in X. Then Bd(A) ⊂ Bd(B).

(2) If A is open in X and connected, then A is a component of X r Bd(A).

Proof. (1) A is closed in B, hence A = B ∩A. We conclude

Bd(A) = ArA = Ar (X ∩A) = A ∩ (X rB) ⊂ B ∩ (X rB) = Bd(B).

(2) Let B be the component of X r Bd(A) which contains A. If A 6= B, then
B would intersect A as well as X r A. Since B ∩ Bd(A) = ∅, the set B would
contain points of X r A, and thus A ∩ B and (X r A) ∩ B would form a
decomposition of B. 2

(1.9.5) Proposition. Let X be connected and let A ⊂ X be a connected
subspace. Let C be a component of X rA. Then:

(1) If V is open and closed in X r C, then C ∪ V is connected.
(2) X r C is connected.

Proof. Let U1, U2 be a decomposition of C ∪ V . Then the connected set C is
contained in U1, say, and hence U2 contained in V . Hence U2 is open and closed
in V , and (since V is open and closed in X r C) open and closed in X r C,
thus altogether open and closed in (X r C) ∪ (C ∪ V ) = X. This contradicts
the connectedness of X.

(2) Let U3, U4 be a decomposition ofXrC. We show that then A∩U3, A∩U4

is a decomposition of A. Suppose A∩U3 = ∅. Then, by (1), C∪U3 is connected
and contained in X rA. Since C is a proper subset of C ∪U3, this contradicts
the fact that C is a component X r A. Hence A ∩ U3 6= ∅, and similarly
A ∩ U4 6= ∅. 2

Problems

1. Suppose there exists a homeomorphism R → X × Y . Then X or Y is a point.
2. A product

Q
j Xj is connected if each Xj is connected. The component of (xj) ∈Q

j Xj is the product of the components of the xj .
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...

Figure 1.5. The comb space

3. A countable metric space is totally disconnected.
4. Let f : X → Y be surjective. If X is (path) connected, then Y is (path) connected.
5. Let C be a countable subset of Rn, n ≥ 2. Show that Rn r C is path connected.
6. The unitary group U(n) and the general linear group GLn(C) are path connected.
The orthogonal group O(n) and the general linear group GLn(R) have two path
components; one of them consists of the matrices with positive determinant. (These
groups are defined as subspaces of the appropriate vector spaces of (n, n)-matrices.)
7. Let U ⊂ Rn be open. The path components of U are open and coincide with the
components. The set of path components is finite or countably infinite. An open
subset of R is a disjoint union of open intervals.

1.10 Compact Spaces

A collection (family, set) of subsets of X is a covering or cover of A ⊂ X if
their union contains A. If X is a topological space, a covering is open(closed)
if each of its members is open (closed). A covering B is a subcovering of A if
it is a subfamily (subset) of A. A covering is finite if the family (set) is finite.

A space X is compact if each open covering has a finite subcovering. (In
some texts, this property is called quasi-compact . In that case the property
compact includes the Hausdorff property.) By passage to complements we see:
If X is compact, then any family of closed sets with empty intersection contains
a finite family with empty intersection. A set A in a space X is relatively
compact if its closure is compact. We recall from calculus the fundamental
Heine–Borel Theorem :

(1.10.1) Theorem. The unit interval I = [0, 1] is compact. 2

Proof. Let [0, 1] be covered by a collectionA of open subsets of R. Let T ⊂ [0, 1]
be the set of t such that [0, t] can be covered by a finite number of members
of A. It contains 0, hence is non-empty. Let z = supT . Then z is contained
in an open interval J which is contained in a menber of A, and J together
with a finite covering of [0, t − ε], t − ε ∈ J , shows z ∈ T and that z < 1 is
impossible. 2
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(1.10.2) Example. A continuous map f : X → R from a non-empty compact
space assumes a maximum; if not, the covering by the open sets f−1]−∞, a[ ,
a ∈ f(X) would not contain a finite subcovering. 3

(1.10.3) Proposition. Let X be compact, A ⊂ X closed and f : X → Y
continuous. Then A and f(X) are compact.

Proof. Adjoin the open set X r A to an open covering of A and use the com-
pactness of X.

The pre-images of the sets in an open covering of f(X) form an open cov-
ering of X. Now use the compactness of X. 2

(1.10.4) Theorem. Let B,C be compact subsets of spaces X,Y , respectively.
Let A be a family of open subsets of X×Y which covers B×C. Then there exist
open neighbourhoods U of B in X and V of C in Y and a finite subcovering
of A which covers U × V In particular the product of two compact spaces is
compact.

Proof. We begin with the case B = {b}. For each c ∈ C there exist open
neighbourhoods Mc of b in X and Nc of c in Y such that Mc×Nc is contained in
some member Ac of A; this follows from the definition of the product topology.
Then (Nc | c ∈ C) is an open covering of C. Let (Nc | c ∈ F ) be a finite
subcovering. Set U =

⋂
c∈F Mc and V =

⋃
c∈F Nc. Then

{b} × C ⊂ U × V ⊂
⋃

c∈F Ac.

Let now B be an arbitrary compact subset. By the first part of the proof, we
can find an open neighbourhood Ub of b and an open neighbourhood Vb of C
such that Ub × Vb is contained in a finite union A(b) of members of A. Then
(Ub | b ∈ B) is an open covering of B. Let (Ub | b ∈ G) be a finite subcovering
and set U =

⋃
b∈G Ub, V =

⋂
b∈G Vb. Then

B × C ⊂ U × V ⊂
⋃

b∈GA(b)

proves the claim. 2

(1.10.5) Proposition. Let B and C be disjoint compact subsets of a Hausdorff
space X. Then B and C have disjoint open neighbourhoods. Hence a compact
Hausdorff space is normal. A compact subset C of a Hausdorff space X is
closed.

Proof. By assumption, B × C ⊂ X × X r D = W , D diagonal. Since X is
separated, W is open. By (1.10.4), we can find open neighbourhoods U of B
and V of C such that U × V ⊂W , i.e., U ∩ V = ∅. Let x ∈ X r C. Then {x}
and C have disjoint open neighbourhoods. Hence X r C is open. 2
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The next theorem often allows to show that a given map is a homeomor-
phism without an explicit construction or discussion of an inverse map. It also
provides us with a useful criterion for quotient maps and embeddings.

(1.10.6) Theorem. Let f : X → Y be a continuous map from a compact space
into a Hausdorff space.

(1) f is closed.
(2) If f is injective, then f is an embedding.
(3) If f is surjective, then f is a quotient map.
(4) If f is bijective, then f is a homeomorphism.

Proof. Let A ⊂ X be closed. By (1.10.3) and (1.10.5), f(A) is compact and
closed. An injective closed (or open) continuous map is an embedding. A
surjective closed (or open) continuous map is a quotient map. A bijective
embedding or quotient map is a homeomorphism. 2

(1.10.7) Proposition. Let X be a compact Hausdorff space and f : X → Y a
quotient map. The following assertions are equivalent:

(1) Y is a Hausdorff space.
(2) f is closed.
(3) R = {(x1, x2) | f(x1) = f(x2)} is closed in X ×X.

Proof. (1) ⇒ (3). The set R is closed as pre-image of the diagonal D ⊂ Y × Y
under f × f .

(3) ⇒ (2). Let A ⊂ X be closed. We have to show that f(A) is closed.
Since f is a quotient map, it suffices to show that f−1f(A) is closed. We have

f−1f(A) = pr1(R ∩ pr−1
2 (A)).

Since R is closed, so is R ∩ pr−1
2 (A). Hence this intersection is compact as

a closed subset of the Hausdorff space X × X. Hence pr1(R ∩ pr−1
2 (A)) is

compact, and therefore closed, since X is separated.
(2) ⇒ (1). Let y1 and y2 be different points of Y . Then f−1(y1) and f−1(y2)

are disjoint closed subsets of X; this uses the fact that the {yj} are closed as
image of points and points are closed in X. Since the compact Hausdorff space
X is normal, we have disjoint open neighbourhoods Uj of f−1(yj). Since f is
closed, the sets f(X r Uj) are closed; and Vj = Y r f(X r Uj) is therefore
open. By construction, yj ∈ Vj and V1 ∩ V2 = ∅. 2

(1.10.8) Proposition. Let K be compact. Then pr: X ×K → X is a closed
map.

Proof. Let A ⊂ X × K be closed and suppose x /∈ pr(A). Then {x} × K is
contained in the open complement V of A. By (1.10.4), there exists an open
neighbourhood U of x such that U ×K ⊂ V . Therefore U is contained in the
complement of pr(A). 2
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(1.10.9) Proposition. A discrete closed subset F of a compact space K is
finite.

Proof. For each x ∈ F , the set F r {x} is closed in F , since F carries the
discrete topology. Since F is closed in K, also F r {x} is closed in K. The
intersection

⋂
x∈F (F r {x}) is empty. Hence a finite number of F r {x} have

empty intersection, and this means that F is finite. 2

The set {n−1 | n ∈ N} is a discrete infinite subset of the compact space
[0, 1], but, of course, not closed.

(1.10.10) Proposition. Let (xn) be a sequence in a compact space. Then the
set A of its accumulation values is non-empty and closed.

Proof. We use (1.2.3) and the equality A = H. The set H is closed and
therefore compact. If H = ∅, then, by compactness, a finite intersection of the
H(n) would be empty; contradiction. 2

Let X be a union of subspaces X1 ⊂ X2 ⊂ · · · . We say X carries the
colimit-topology with respect to the filtration (Xi) if A ⊂ X is open
(closed) if and only if each intersection A ∩ Xn is open (closed) in Xn. This
topology has the universal property: A map f : X → Y is continuous if and only
if each restriction f |Xn is continuous. If only the Xi are given as topological
spaces, we can define a topology on X as the colimit topology. We then call X
the colimit of the ascending sequence (Xi). (This is a colimit in the categorical
sense.)

(1.10.11) Proposition. Suppose X is the colimit of the sequence X1 ⊂ X2 ⊂
· · · . Suppose points in Xi are closed. Then each compact subset K of X is
contained in some Xk.

Proof. Suppose this is not the case. Then there exists a countably infinite set
F ⊂ K such that each intersection F ∩ Xn is finite. For each subset S of F ,
the intersection S ∩Xn is a finite union of points, hence closed. By definition
of the colimit topology, each subset of F is closed in X and therefore also in
F . Thus F is discrete and, by the previous proposition, finite. 2

Problems

1. Dn/Sn−1 is homeomorphic to Sn. For the proof verify that

Dn → Sn, x 7→ (2
p

1− ‖x‖2x, 2‖x‖2 − 1)

induces a bijection Dn/Sn−1 → Sn.

2. Rn/Dn is homeomorphic to Rn.
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3. Let A and B be compact subsets of the metric space (E, d). Then there exists

(a, b) ∈ A×B such that for all (x, y) the inequality d(x, y) ≥ d(a, b) holds. In partic-

ular, there exists a pair of points in A which realizes the diameter of A.

4. Let f : X × C → R be continuous. Assume that C is compact and set g(x) =

sup{f(x, c) | c ∈ C}. Then g : X → R is continuous.

5. Let X be a countable compact Hausdorff space. Then each point has a neighbour-

hood basis consisting of sets which are open and closed.

6. A ⊂ Rn is compact if and only if it is closed and bounded.

7. A ⊂ Rn is compact if and only if continuous functions A → R are bounded.

8. Let A be a compact subset of X and p : X → X/A the quotient map. Then for

every Y the product p× id : X × Y → X/A× Y is a quotient map.

9. Let A ⊂ R and CA = A × [0, 1]/A × 1 (the formal cone on A). The map

f : CA → R2, (a, t) 7→ ((1 − t)a, t) is injective and continuous. If A is compact,

then f is an embedding. If A 6= ∅ is an open interval, then f is not an embedding

(consider neighbourhoods of the cone point A×1; it has no countable neighbourhood

basis).

10. Let (fn : X → R) be a sequence of continuous functions on a compact space

X. Suppose that for t ∈ X and n ∈ N the inequality fn(t) ≤ fn+1(t) holds. If

the sequence converges pointwise to a continuous function f , then the convergence is

uniform (Theorem of Dini).

11. Let R∞ be the vector space of all sequences (x1, x2, . . .) of real numbers which

are eventually zero. Let Rn be the subspace of sequences with xj = 0 for j > n. Give

R∞ the colimit topology with respect to the subspaces Rn. Then addition of vectors

is a continuous map R∞ × R∞ → R∞. Scalar multiplication is a continuous map

R × R∞ → R∞. (Thus R∞ is a topological vector space.) A neighbourhood basis

of zero consists of the intersection of R∞ with products of the form
Q

i≥1] − εi, εi[.

The space has also the colimit topology with respect to the set of finite-dimensional

linear subspaces. One can also consider the metric topology with respect to the met-

ric d((xi), (yi)) = (
P

i(xi − yi)
2)1/2; denote it by R∞

d . The identity R∞ → R∞
d is

continuous. The space R∞ is separated and not homeomorphic to R∞
d .

1.11 Examples

We discuss in this section a number of examples of quotient spaces. We study
by way of example some standard surfaces. The notion of a quotient space
gives precision to the intuitive idea of pasting and gluing. Everybody should
understand the surfaces that can be obtained from a square by pairwise iden-
tification of its sides. These are: Cylinder (1), Möbius Band (2), Sphere (3),
Torus (4), Projective Plane (5), Klein Bottle (6). We use a symbolic notation
for the identification process as shown in figure 1.6. We write I = [0, 1] for the
unit interval.
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Figure 1.6. Construction of surfaces from I × I

1.11.1 Cylinder. Here we identify (t, 0) with (t, 1). The quotient space is
I × I/∂I ∼= I × S1. In figure (1) A = D and B = C after the identification. 3

1.11.2 Möbius band. Here we identify (t, 0) with (1 − t, 1). A realization
as a subset of R3 is shown in the figures ?? and ??. After the identification
A = C and B = D.

M can also be defined as the quotient of S1× [−1, 1] with respect to (z, t) ∼
(−z,−t). In this way it is obtained as a quotient of the cylinder S1 × [−1, 1].

The Möbius band is often called “one-sided”. If you paint the paper-model,
then you can only use a single colour. But the Möbius band is proud of itself
and wants to be treated as an abstract space (not embedded in Euclidean
space.) As such the term one-sided is meaningless. The formal mathematical
analysis is more subtle. In technical terms, we have a non-orientable surface; it
is impossible to orient the tangent spaces in a continuous manner, the notion
“clock-wise” cannot be transported in a continuous manner over the Möbius
band. This property of the Möbius band is a “global” property. 3

1.11.3 Sphere. We leave it as an exercise to show that the identifications
(1, t) ∼ (1 − t, 0) and (0, s) ∼ (1, 1 − s) yield a space which is homeomorphic
to the 2-sphere S2. After the identification A = C 3

1.11.4 Torus. The 2-dimensional torus is the space (group) S1 × S1. Figure
?? shows standard realizations as a surface in R3.

We have the homeomorphism p : I/∂I → S1 induced by t 7→ exp(2πit).
Therefore the torus can also be obtained as the space T = I/∂I × I/∂I. This
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space is a quotient space of I × I. It is also obtainable via a pushout

∂(I × I) c //

��

I/∂I ∨ I/∂I

��
I × I // T.

The standard way to interprete this construction of the torus is by identifying
opposite edges in the square as shown in (4) of figure 1.6.

The edge a = AB is identified with the edge a−1 = DC, the edge b = BC
is identified with the edge b−1 = AD. After the identification we have A =
B = C = D. If we run along the boundary of the square starting at A counter-
clockwise, then the map c has the effect: a runs around the first summand
I/∂I and b runs around the second summand; a−1 and b−1 are given by the
inverse paths. 3

1.11.5 Projective plane. The real projective plane P 2 is defined as the
quotient of S2 by the relation x ∼ −x, see ?? for more details. Let [x0, x1, x2]
denote the equivalence class of x = (x0, x1, x2). We can also obtain P 2 from
S1 by attaching a 2-cell

S1
ϕ //

j
��

P 1

J
��

D2 Φ // P 2.

Here P 1 = {[x0, x1, 0]} ⊂ P 2 and ϕ(x0, x1) = [x0, x1, 0]. The space P 1 is
homeomorphic to S1 via [x0, x1, 0] 7→ z2 with z = x0 + ix1; and ϕ corresponds
to the standard map z 7→ z2 under this homeomorphism The map Φ is x =
(x0, x1) 7→ [x0, x1,

√
1− ‖x‖2].

Another interpretation of the pushout: P 2 is obtained from D2 by iden-
tifying opposite points of the boundary S1. (Part (5) in figure 1.6 illustrates
a similar definition starting from the square. After the identification we have
A = C and B = D.) The subspace {(x0, x1) | ‖x‖ ≥ 1/2} becomes in P 2

a Möbius band M . Thus P 2 is obtainable from a Möbius band M and a 2-
disk D by identification of the boundary circles by a homeomorphism. (The
reader should find a Möbius band in figure 1.6 (5) by comparison with (2).)
The projective plane cannot be embedded into R3. There exist models in R3

with self-intersections (technically, the image of a smooth immersion.) The
projective plane is a non-orientable surface. 3

1.11.6 Klein bottle. In order to obtain the Klein bottle from a square one
first forms the cylinder as in the case of the torus. The remaining boundary
circles are then identified in the opposite manner as in the case of the circle.
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Also this surface cannot be realized as a subspace of R3. As Felix Klein already
observed, one can obtain a model in R3 with self-intersections by pushing one
end of the pipe through its wall and then glue the parallel end from the inside,
see figure ??. The Klein bottle is a non-orientable surface.

After the identification in figure 1.6 we have (6) A = B = C = D. The Klein
bottle K can also be obtained from two Möbius band M by an identification
of their boundary curves with a homeomorphism, K = M ∪∂M M . In figure
1.7 the dotted area will give a the Möbius band. 3
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Figure 1.7. Möbius band in the Klein bottle

The space M/∂M is homeomorphic to the projective plane P 2. If we iden-
tify the central ∂M to a point, we obtain a map q : K = M ∪∂M M → P 2∨P 2.

There is a free involution on T = S1 × S1 given by (z, w) 7→ (z,−w). The
orbit space is another model of the Klein bottle. The classification theory of
compact connected surfaces presents a surface as a quotient space of a regu-
lar 2n-gon, see e.g. [?, p.75] [?] [?]. The edges are identified in pairs by a
homeomorphism. The surface F is obtained as a pushout of the type

S1
ϕ //

��

∨n
1 S

1

��
D2 Φ // F.

Problems

1. Show that the two definitions of the Möbius band in 1.11.2 yield homeomorphic
spaces.
2. Construct a Möbius band in R3 such that its boundary curve is a standard circle.
3. Show that the following quotient spaces are pairwise homeomorphic. They yield
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different descriptions of the real projective plane RP2.

P1 = R3 r 0/ ∼, x ∼ λx, λ ∈ R r 0

P2 = S2/ ∼, x ∼ −x

P3 = D2/ ∼, z ∈ S1 ∼ −z ∈ S1

P4 = [0, 1]× [0, 1]/ ∼, (0, t) ∼ (1, 1− t), (s, 0) ∼ (1, 1− s)

P5 = the space P 2 defined by the pushout in 1.11.5

P6 = M ∪S1 D2 Möbius band and 2-disk identified by

a homeomorphism between their boundaries

P7 = M/∂M

4. Show that the three definitions of the Klein bottle in 1.11.6 as the quotient of

I × I, as a quotient of S1 × S1 and as M ∪∂M M yield homeomorphic spaces.

5. Verify 1.11.3.

1.12 Compact Metric Spaces

The next result is of fundamental importance. It is impossible to prove geo-
metric results about continuous maps without subdivision and approximation
procedures. In most of these procedures (1.12.1) will be used.

(1.12.1) Theorem (Lebesgue-Lemma). Let X be a compact metric space. Let
A = (Aj | j ∈ J) be an open covering of X. Then there exists ε > 0 such that
for each x ∈ X the ε-neighbourhood Uε(x) is contained in some Aj. (An ε with
this property is called a Lebesgue number of the covering.)

Proof. For x ∈ X choose ε(x) > 0 such that U2ε(x)(x) is contained in some
member of A. By compactness there exists a finite subset E ⊂ X such that
the Wz = Uε(x)(z), z ∈ E cover X. Let ε = min(ε(z) | z ∈ E). Given
x ∈ X there exists z ∈ E such that x ∈ Wz. Let y ∈ Uε(x). Then d(y, z) ≤
d(y, x) + d(x, z) < ε + ε(z) ≤ 2ε(z). Hence Uε(x) ⊂ U2ε(z)(z), and the latter
set is contained in a member of A. 2

(1.12.2) Proposition. Let U = (Uj | j ∈ J) be an open covering of B× [0, 1].
For each b ∈ B there exists an open neighbourhood V (b) of x in B and n =
n(b) ∈ N such that for 0 ≤ i < n the set V (b)× [i/n, (i+ 1)/n] is contained in
some Uj.

Proof. Given (b, t) ∈ B × [0, 1] choose open neighbourhoods V (b, t) of b in
B and W (b, t) of t in [=, 1] such that V (b, t) ×W (b, t) is contained in some
member of U . Suppose [0, 1] is covered by W = (W (b, t1), . . . ,W (b, tk)). Set
V (b) =

⋂k
i=1 V (b, ti) and take 1/n(b) as a Lebesgue number of W. 2
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(1.12.3) Proposition. Let X be a compact metric space and W a neigh-
bourhood of the diagonal DX in X × X. Then there exists δ > 0 such that
Uδ(DX) = {(x, y) | d(x, y) < δ} is contained in W .

Proof. Given x ∈ X choose δ(x) > 0 such that U2δ(x)(x) × U2δ(x)(x) ⊂ W .
Suppose X is covered by the Wz = Uδ(z)(z), where z runs through a finite
subset E ⊂ X, and set δ = min(δ(z) | z ∈ E). We claim that Uδ(DX) ⊂ W .
Let δ(x, y) < δ. There exists z ∈ E such that x ∈ Wz, hence d(x, z) < δ(z).
Also d(y, z) ≤ d(y, x) + d(x, z) < 2δ(z). Hence x, y ∈ U2δ(z)(z) and therefore
(x, y) ∈W , by our choice of the δ(z). 2

(1.12.4) Proposition. A continuous map of a compact metric space into a
metric space is uniformly continuous.

Proof. The assertion can be expressed as follows: For each ε > 0 there exists
δ > 0 such that (f × f)−1(Uε(DY )) ⊃ Uδ(DX). We apply (1.12.3). 2

(1.12.5) Theorem. Let K ⊂ Rn be a compact convex subset with non-empty
interior. Then there exists a homeomorphism of pairs (Dn, Sn−1) → (K, ∂K)
which sends 0 ∈ Dn to a preassigned x ∈ K◦.

Proof. (1) Let K ⊂ Rn be closed and compact and 0 ∈ K◦. Then the ray from
0 intersect ∂K in exactly one point. Proof:

Let R be a ray, let p, q ∈ R∩K be different from 0, and suppose ‖p‖ < ‖q‖.
Choose ε > 0 such that Dε(0) ⊂ K. The set J of all segments from points
in Dε(0) to q is contained in K, by convexity, and p ∈ J◦, by a geometric
argument that we leave to the reader; hence p /∈ ∂K.

Let x ∈ Sn−1 and consider the ray Rx = {tx | t ≥ 0}. Then Rx 6⊂ K, by
compactness. If Rx∩∂K were empty, then K◦∩Rx 6= ∅ and (RnrK)∩Rx 6= ∅,
and this contradicts the connectedness of Rx.

(2) Let 0 ∈ K◦. The map f : ∂K → Sn−1, x 7→ x/‖x‖ is a homeomorphism.
Proof: The map is continuous and, by (1), bijective, hence a homeomorphism
by (1.10.6).

(3) Without essential restriction we can assume 0 ∈ K◦. Let f be as in
(2). The continuous map ϕ : Sn−1 × [0, 1] → K, (x, t) 7→ tf−1(x) factors over
q : Sn−1 × [0, 1] → Dn, (x, t) 7→ tx and yields a bijective map k : Dn → K. By
(1.10.6), q is a quotient map; by (1.4.1) k is continuous and, by (1.10.6) again,
a homeomorphism. 2

(1.12.6) Corollary. Let K be as in (1.12.5) and x ∈ K◦. Then there exists a
retraction of ∂K ⊂ K r {x}, i.e., a map K r {x} → ∂K which is the identity
on ∂K. 2

A metric space X is called pre-compact if for each ε > 0 there exists a
finite covering of X by sets of diameter less than ε. This latter property is
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equivalent to: For each ε > 0 there exists a finite set F ⊂ X such that for each
x ∈ X we have d(x, F ) < ε.

(1.12.7) Proposition. Let X be a metric space. The following assertions
about A ⊂ X are equivalent:

(1) A is compact.
(2) Each sequence in A has an accumulation point in X.
(3) Each sequence in A has a subsequence which converges in X.
(4) A is pre-compact and complete.

Proof. For the implications (1) ⇒ (2) ⇒ (3) see (1.2.3) and (1.10.10).
(3) ⇒ (4). Let (an | n ∈ N) be a Cauchy sequence in A. There exists bn ∈ A

such that d(bn, an) < 2−n. By (3), there exists a convergent subsequence of
(bn) with limit b and the corresponding subsequence of (an) has the same limit.
Hence (an) itself converges to b. Thus A is complete.

If, for α > 0, the set A is not covered by a finite number of sets
B(x, α) = {y | d(x, y) ≤ α}, we could find inductively a sequence (xn) such
that d(xi, xj) > α for all i 6= j. This sequence does not have a convergent
subsequence.

(4) ⇒ (1). Let (Uj | j ∈ J) be an open covering of A. We define induc-
tively a sequence of set B(xn, 2−n) = Bn as follows: Suppose A is not covered
by a finite subfamily of the Uj . There exists a finite covering of A by sets
B(x, 1) and hence a B(x1, 1) which is not covered by finitely many Uj . Sup-
pose B(xn−1, 2−(n−1)) is not covered by a finite number of Uj . We choose a
finite covering of A by sets B(yk, 2−n). Among the B(yk, 2−n) which intersect
B(xn−1, 2−(n−1)) we find a B(xn, 2−n) which is not covered by a finite number
of Uj . For n ≤ p < q we have d(xp, xq) ≤ d(xp, xp+1) + · · ·+ d(xq−1, xq). Since
Bn−1 ∩Bn 6= ∅, we have d(xn−1, xn) ≤ 1

2n−1 + 1
2n ≤ 1

2n−2 and hence

d(xp, xq) ≤
1

2p−1
+ · · ·+ 1

2q−2
≤ 1

2n−2
.

Thus (xp) is a Cauchy sequence. It has, by (3), a convergent subsequence,
with limit x say. There exists λ such that x ∈ Uλ. For some α > 0 we have
B(x, α) ⊂ Uλ. There exists n such that d(x, xn) < α

2 ,
1
2n < α

2 . Hence

B(xn, 2−n) ⊂ B(x, α) ⊂ Uλ,

and this contradicts the fact that B(xn, 2−n) is not covered by a finite number
of Uj . 2

Problems

1. Let A ⊂ R2 be a compact, non-empty set with the property: For each a ∈ A there
exists a unique affine line Ga ⊂ R2 with Ga ∩A = {a} and such that A r {a} lies on
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one side of Ga. Then A is homeomorphic to S1.
2. A countable set A ⊂ R is not equal to its set of accumulation points.
3. Let X be a compact metric space and f : X → X a set map preserving the distance
d(f(x), f(y)) = d(x, y). Then f is a homeomorphism. (Suppose y 6∈ f(x). Consider
the sequence y = y0, yn = f(yn−1).)
4. There exists a continuous map f : Dn×En → Dn → Dn such that for each y ∈ En

the map fy : x 7→ f(x, y) is a homeomorphism which is the identity on Sn−1 and sends
y to 0.
5. Let E1 and E2 be finite subsets of Rn with the same cardinality. There exists a
continuous map h : R×[0, 1] → R with the properties: h0 is the identity. h1(E1) = E2.
Each ht is a homeomorphism. There exists a compact set K ⊂ Rn such that ht is the
identity on Rn r K. (Here ht : x 7→ h(x, t).)



Chapter 2

Topological Spaces: Further
Results

2.1 The Cantor Space. Peano Curves

We construct inductively sets

C(0) = [0, 1] ⊃ C(1) ⊃ C(2) ⊃ . . .

with the properties: C(n) is the disjoint union of 2n intervals of length 3−n.
The set C(n) is obtained from C(n−1) by deleting from each of its intervals the
open middle third. The intersection C = ∩n≥0C(n) is compact. The space C
is called the Cantor space . The endpoints of the intervals which are deleted
in the n-th step from the 2n−1 intervals are the numbers∑n−1

i=1
a(i)
3i + 2

3n , a(i) ∈ {0, 2}.

The numbers remaining after the n-th step have the form∑n
i=1

a(i)
3i + x

3n , a(i) ∈ {0, 2}, 0 ≤ x ≤ 1;

these are the numbers which have in its 3-adic presentation up to the place
n only coefficients a(i) ∈ {0, 2}. This implies that C consists of the numbers
with 3-adic development

∑
i≥1 a(i)3

−i, a(i) ∈ {0, 2}. A number x ∈ [0, 1] has
at most one development of this form. Therefore we obtain a bijection

p : C → P =
∏

i≥1{0, 2},
∑

i≥1a(i)3
−i 7→ (a(i) | n ∈ N).

The projection pk : C → {0, 2},
∑
a(i)3−i 7→ a(k) is continuous. In order to

verify this, note that the conditions a(k) = 0, 2 determine closed sets. This is
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clear, since after a(1), . . . , a(k − 1) have been fixed the rest is homeomorphic
with C (multiplication by 3k−1.) If we provide P with the product topology, p
becomes a bijective continuous map of a compact space into a separated one.
Hence P is compact and p a homeomorphism.

Since pk is continuous, ϕ =
∑

k≥1 2−k−1pk is a uniformly convergent series
of continuous functions, hence ϕ is continuous. The image of ϕ is [0, 1], since
the 2-adic developments of its elements are contained in the image.

By grouping even and odd factors of P we see that P is homeomorphic to
P ×P , hence C is homeomorphic to C×C. (Similarly for a finite or countably
infinite number of factors.) We see that there exist continuous surjective maps
f : C → [0, 1]n. A map of this form has a continuous extension to [0, 1]: use in
each open interval of the complement the affine extension of the values of f in
the end points. (One can also refer to the Tietze extension theorem.)

The existence of surjective continuous maps [0, 1] → [0, 1] × [0, 1] was dis-
covered 1890 by Peano [?]. They are called Peano curves. We remark that
the arguments show that a countable product of factors [0, 1] is compact; the
same then holds for a countable product of factors which are homeomorphic to
compact subsets of Euclidean spaces. Thus in these cases it is not necessary to
use the theorem of Tychonoff. All this tells us that the unit interval [0, 1] is a
highly non-trivial topological space.

The space C is nowhere dense in [0, 1]. The total length of the removed
intervals is 1; hence C has measure 0. There don’t exist continuously differen-
tiable Peano curves. 3

2.2 Locally Compact Spaces

A space is locally compact if each neighbourhood of a point x contains a
compact neighbourhood. An open subset of a locally compact space is again
locally compact.

Let X be a Hausdorff space and assume that each point has a compact
neighbourhood. Let U be a neighbourhood of x and K a compact neighbour-
hood. Since K is normal, K ∩ U contains a closed neighbourhood L of x in
K. Then L is compact and a neighbourhood of x in X. Therefore X is locally
compact. In particular, a compact Hausdorff space is locally compact.

Let X be a topological space. An embedding f : X → Y is a compactifi-
cation of X if Y is compact and f(X) dense in Y .

A compactification by a single point is called an Alexandroff compact-
ification or the one-point compactification . The additional point is the
point at infinity . In a general compactification f : X → Y , one calls the
points in Y r f(X) the points at infinity.
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(2.2.1) Theorem. Let X be a locally compact Hausdorff space. Up to home-
omorphism, there exists a unique compactification f : X → Y by a compact
Hausdorff space such that Y r f(X) consists of a single point.

Proof. Let Y = X ∪ {∞}. Define a topology on Y as follows: The open sets
are the open sets of X and the sets Y r K for K ⊂ X compact. One verifies
that this is a topology on Y which induces on X the original topology. Two
points of X are still separable by disjoint open neighbourhoods. If x ∈ X and
K a compact neighbourhood, then K and Y rK are disjoint neighbourhoods
of x and ∞. Thus Y is separated. The space Y is compact, since each open
covering contains a set of the form Y rK with compact K.

Let Y ′ = X ∪ {∞′} be another space with the stated properties. Let
F : Y → Y ′ be the map which is the identity on X and sends ∞ to ∞′.
Then F is bijective and continuous in each point of X. We show continuity
in ∞. The complement of an open neighbourhood of ∞′ is, as a closed subset
of the compact Hausdorff space Y ′, compact. Hence the pre-image of this
neighbourhood by F is open. By (1.10.6), F is a homeomorphism. 2

(2.2.2) Proposition. Let the locally compact space be a union of compact
subsets (Ki | i ∈ N). Then there exists a sequence (Ui | i ∈ N) of open subsets
with the properties:

(1) For each i the closure Ui is compact.
(2) For each i we have Ui ⊂ Ui+1.
(3) X =

⋃∞
i=1 Ui.

Proof. Let K be a compact subset of X. Then there exists a compact set L
which contains K in its interior. For the proof, choose a compact neighbour-
hood K(x) of x ∈ X. A finite number K(x1)◦, . . . ,K(xn)◦ cover K, and the
union L of the K(xj) has the desired property. We call L a thickening of K.
Let U1 be the interior of a thickening of K1. Inductively, we let Un+1 be the
interior of a thickening of Un ∪Kn+1. 2

(2.2.3) Theorem. Let the locally compact Hausdorff space M 6= ∅ be a union
of closed subsets Mn, n ∈ N. Then at least one of the Mn contains an interior
point.

Proof. Suppose this is not the case. Since M is locally compact, there exists a
compact set K with K◦ = V 6= ∅. There exists v1 ∈ V rM1. The set V rM1

is open. There exists a compact neighbourhood K1 of v1 with K1 ⊂ V rM1.
There exists a point v2 ∈ K◦

1 rM2 and a compact neighbourhoodK2 ⊂ K◦
1 rM2

of v2. Inductively, we find compact sets K ⊃ K1 ⊃ K2 ⊃ . . . such that
Kn ∩Mj = ∅ for j ≤ n. The sets Ki are closed in the compact Hausdorff space
K, hence

⋂∞
i=1Ki 6= ∅. A point in this intersection does not lie in any Mj , and

this contradicts M =
⋃

j Mj . 2
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(2.2.4) Proposition. Let p : X → Y be a quotient map and Z locally compact.
Then p× id : X × Z → Y × Z is a quotient map.

Proof. Suppose U ⊂ Y × Z and V = (p× id)−1(U) is open. We have to show
that U is open. Let (y, z) ∈ U , p(x) = y, hence (x, z) ∈ V . Since Z is locally
compact, each neighbourhood of z contains a compact neighbourhood. Hence
z has a compact neighbourhood C such that x× C ⊂ V . The set

W = {x ∈ X | x× C ⊂ V } = {x ∈ X | p(x)× C ⊂ U}

is open in X, see (1.10.4). The relation p−1p(W ) = W holds, and therefore
p(W ) is open in Y , by definition of the quotient topology. Hence U contains
the neighbourhood f(W )× C of (y, z).

For a different proof which is conceptually more transparent see (2.9.6). 2

Problems

1. The following assertions about a locally compact Hausdorff space are equivalent:

(1) In the one-point compactification, ∞ has a countable neighbourhood basis. (2)

The space is the union of a countable number of compact subsets.

2. The one-point compactification of Rn is Sn; see (1.3.5).

2.3 Real Valued Functions

We say that closed subsets of a space can be numerically separated if for any
pair A,B of disjoint, closed, non-empty subsets of X there exists a continuous
function f : X → [0, 1] such that f(A) = {0} and f(B) = {1} . Metric spaces
have this property, see the proof of (??). If a function with the stated property
exists, then also a function g : X → [a, b] such that g(A) = {a} and g(B) = {b}.
The next theorem is known as the extension theorem of Tietze.

(2.3.1) Theorem. Suppose closed subsets of X can be numerically separated.
Let A ⊂ X be closed . Then each continuous map f : A→ [0, 1] has a continu-
ous extension f : X → [0, 1].

Proof. Let 0 < ε ≤ 1. An ε-extension of f is a continuous map g : X → [0, 1]
such that:

(1) |g(x)| ≤ 1− ε for each x ∈ X.
(2) |f(x)− g(x)| ≤ ε for each x ∈ A.

Given g, we construct an improved extension V g as follows. Let

C = {x ∈ A | f(x)− g(x) ≥ ε/3}, D = {x ∈ A | f(x)− g(x) ≤ −ε/3}.
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We choose a continuous function v : X → [−ε/3, ε/3] with value −ε/3 on C
and value ε/3 on D. The function V g = g − v has the properties:

(3) |V g(x)| ≤ 1− 2ε/3 for x ∈ X.
(4) |f(a)− V g(a)| ≤ 2ε/3 for a ∈ A.
(5) |g(x)− V g(x)| ≤ ε/3 for x ∈ X.

(3) and (5) hold by construction and (4) is verified separately on C,D, and
the complement. We use this construction and find inductively a sequence
of εn-extensions (gn) with g0 = 0, gn+1 = V gn, and εn = (2/3)n. These
functions have the further property |gm(x) − gn(x)| ≤ (2/3)p for m,n ≥ p.
The (gm(x) | m ∈ N0) are therefore a Cauchy-sequence; thus gm converges
point-wise to an extension F of f . Since the convergence is uniform, the limit
it continuous. 2

(2.3.2) Theorem. Let X be as in (2.3.1) and f : A → Rn a continuous map
from a closed non-empty subset A of X. Then f has a continuous extension to
X.

Proof. It suffices to extend the n components of f . Since there exists a homeo-
morphism R ∼= ]−1, 1[, we can assume that f : A→ ]−1, 1[. Let G : X → [−1, 1]
be an extension according to (2.3.1). Let u : X → [0, 1] be a continuous func-
tion which assumes the value 1 on A and the value 0 on G−1{−1, 1}. Then
F = G · u is an extension of f with image contained in ]− 1, 1[. 2

(2.3.3) Lemma. Let D ⊂ [0, 1] be a dense subset. Suppose that we are given
for each d ∈ D an open subset Ld of the space X . Suppose Ld ⊂ Le whenever
d < e. Then the function f : X → [0, 1], x 7→ inf{d ∈ D | x ∈ Ld} is continu-
ous. In the case that D(x) = {d ∈ D | x ∈ Ld} is empty, the infimum is, by
definition, equal to 1; thus f assume the value 1 on the complement of the Ld.

Proof. The sets of the form [0, a[ and ]a, 1], 0 < a < 1 form a subbasis for the
topology of [0, 1]. Thus it suffices to show that their pre-images under f are
open. This follows from the set-theoretic relations

f−1[0, a[ = {x|f(x) < a} =
⋃

(Ld | d < a}
f−1 ]a, 1] = {x|f(x) > a} =

⋃
(X r Ld | d > a) =

⋃
(X r Ld | d > a).

For the proof of the last equality one uses the condition Ld ⊂ Le and the
denseness of D. 2

We use this lemma in the proof of the following Urysohn existence the-
orem .

(2.3.4) Theorem. Let X be a T4-space and suppose that A and B are disjoint
closed subsets of X. Then there exists a continuous function f : X → [0, 1] with
f(A) ⊂ {0} and f(B) ⊂ {1}. Hence (2.3.1) and (2.3.2) hold for T4-spaces X.
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Proof. We apply the lemma with the set of rational numbers D = {m/2n | 0 ≤
m ≤ 2n,m ∈ Z}. The sets Ld are chosen inductively according to the power
of 2 in the denominator. We set L1 = X r B and choose A ⊂ L0 ⊂ L0 ⊂ L1;
this is possible by the T4-property X. In the next steps we shuffle L0 ⊂ L1/2 ⊂
L1/2 ⊂ L1 and then

L0 ⊂ L1/4 ⊂ L1/4 ⊂ L1/2 ⊂ L1/2 ⊂ L3/4 ⊂ L3/4 ⊂ L1

and proceed similarly in the general induction step. 2

2.4 The Theorem of Stone–Weierstraß

Let X be a compact Hausdorff space and C(X) the algebra of continuous
functions f : X → R. The space C(X) with the norm |f | = sup{|f(x)| | x ∈ X}
is a Banach space. A subalgebra A of C(X) is said to separate points if for
each pair x, y of different points in X there exists a function in A which assume
different values on x and y.

(2.4.1) Theorem (Stone–Weierstraß). Let A ⊂ C(X) be a subalgebra which
separates the points and contains the constant functions. Then the closure of
A is C(X).

Proof. (1) We can assume that A is closed in C(X). Let us assume, in addition,
that with f and g also the functions max(f, g) and min(f, g) are contained in
A. Let x1 and x2 be different points of X and let ai be real numbers. Then
there exists h ∈ A such that h(xi) = ai. In order to see this, we take g ∈ A
such that g(x1) 6= g(x2), and then

h(x) = x1 + (x2 − x1)
g(x)− g(x1)
g(x2)− g(x1)

has the desired property.
(2) Let f ∈ C(X) and ε > 0 be given. We show that there exists g ∈ A

such that the inequalities f−ε < g < f+ε hold. By (1) we can choose for each
pair x, y ∈ X a function hx,y ∈ A such that hx,y(x) = f(x) and hx,y(y) = f(y).
Each y ∈ X has an open neighbourhood Uy such that for z ∈ Uy the inequality
hx,y(z) < f(z) + ε holds. Let Uy(1), . . . , Uy(n) be a covering of X. By our
additional assumption, the minimum hx of the hx,y(j) is contained in A and
satisfies hx < f + ε as well as hx(x) = f(x). Each x ∈ X has then an open
neighbourhood Vx such that for z ∈ Vx the inequality f(z)− ε < hx(z) holds.
Let Vx(1), . . . , Vx(m) be a covering of X and denote by g the maximum of the
hx(j). This function has the desired property.
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(3) It remains to be shown that our additional assumption always holds.
Since 2 max(f, g) = |f +g|+ |f −g| and 2 min(f, g) = |f +g|− |f −g| it suffices
to see that for each f ∈ A also |f | ∈ A. Let P be a polynomial in the variable
t ∈ R such that for t ∈ [−a, a] the inequality |P (t) − |t|| < ε holds. Then also
|P (f(x))− |f(x)|| < ε holds and x 7→ P (f(x)) is contained in A.

(4) In order to find suitable polynomials P we reduce the problem via the
substitution t 7→ at to the case that a = 1. Let s = t2 and 0 ≤ s ≤ 1. Define
inductively P1 = 0 and Pn+1(s) = Pn(s) + 1

2 [s − Pn(s)2]. These polynomials
converge uniformly to

√
s. A proof uses the identity

|s| − Pn+1(s) = (|t| − Pn(s))
(
1− 1

2 (|s|+ Pn(s))
)
,

which is a consequence of the recursion formula. It implies inductively

0 ≤ Pn(s) ≤ Pn+1(s) ≤ |s|.

A first consequence is that the sequence (Pn(s) | n ∈ N) always converges.
Passing to the limit in the recursion formula we see that the limit is |s|. The
theorem of Dini tells us that the convergence is uniform. One can also verify
inductively the inequality

|s| − Pn(s) ≤ |s|
(
1− 1

2 |s|
)n
< 2

n+1 .

Then it is not necessary to use the theorem of Dini. 2

(2.4.2) Corollary. Let X ⊂ Rn be compact. Then a continuous function
X → R is a uniform limit of polynomials in n variables. 2

(2.4.3) Theorem. Let C(X,C) be the space of continuous functions X → C
with sup-norm. Suppose A is a complex subalgebra which contains the constant
functions, separates the points, and contains with f also the complex conjugate
function. The the closure of A is C(X,C).

Proof. Let f be any function. It suffices to show that the real and imaginary
part of f are contained in the closure of A. This is a consequence of (2.4.1)
if we show that the subalgebra A0 of real-valued functions in A satisfies the
hypothesis of that theorem. But with g also the real part 1

2 (f + f) and the
imaginary part 1

2i (f − f) are contained in A, and hence in A0. If g separates
the points x and y, then either the real part or the imaginary part separates
these points. The other hypotheses of (2.4.1) certainly hold. 2

Problems

1. Let X be a compact Hausdorff space and ϕ : C(X) → R a homomorphism of R-

algebras. Then there exists x ∈ X such that ϕ(f) = f(x).



2.5 Convergence. Filter 53

2. Let f : [a, b] → R be continuous. Suppose that
R b

a
f(t)tn dt = 0 for each n ∈ N0.

Then f = 0. In order to see this note that
R b

a
f(t)P (t) dt = 0 for each polynomial P .

Choose P such that ‖f − P‖ < ε. Then |
R b

a
f2(t) dt| = |

R b

a
(f − P )f | ≤ ε‖f‖(b− a).

But
R

f2 = 0 implies f = 0.

3. Let f : R → C be a continuous function of period 2π. Then for each ε > 0 there

exists T (x) =
Pn

k=−n ckeikx such that ‖f − T‖ < ε.

2.5 Convergence. Filter

Sequences are too small or too short in order to build a convergence theory for
general spaces. One needs longer index sets. This leads to the notion of a net.

A directed set (I,≤) consists of a set I and a relation ≤ on I such that:
(1) i ≤ i for all i ∈ I.
(2) i < j, j ∈ k implies i ≤ k.
(3) For each pair i, j ∈ I there exists k ∈ I such that i ≤ k, j ≤ k.

We also write j ≥ i for i ≤ j. The set N with the usual order is directed. The
set U(x) of neighbourhoods of x is directed by U ≤ V ⇔ V ⊂ U .

A net with directed index set I in X is a map I → X, i 7→ xi. We
write (xi)i∈I or just (xi) for such a net. A net (xi) in a topological space X
converges to x, notation x = limxi, provided for each neighbourhood U of x
there exists i ∈ I such that for j ≥ i we have xj ∈ U . If one chooses from each
U ∈ U(x) a point xU , then the net (xU ) with index set U(x) converges to x.

(2.5.1) Theorem. Let X and Y be topological spaces and f : X → Y a map.
Let A ⊂ X. Then the following holds:

(1) A point x is contained in A if and only if there exists a net in A which
converges to x.

(2) The map f is continuous in x ∈ X if and only if for each net (xi)i∈I

with limit x the net (f(xi))i∈I converges to f(x).

Proof. (1) Let x ∈ A. Given U ∈ U(x) choose xU ∈ U ∩A. Then (xU ) is a net
in A which converges to x.

Let (Xi)i∈I be a net in A which converges to x. If U ∈ U(x), there exists
xi ∈ U , hence U ∩A 6= ∅, hence x is a touch point of A.

(2) Let f be continuous in x and (xi) a net which converges to x. Let V be a
neighbourhood of f(x). There exists i such that for j ≥ i we have xj ∈ f−1(V ),
hence f(xj) ∈ V for j ≥ i. This shows that (f(xi)) converges to f(x).

Suppose the convergence condition holds. If f is not continuous in x there
exists a neighbourhood V of f(x) such that no neighbourhood U of x is mapped
under f into V . Choose xU ∈ U such that f(xU ) 6∈ V . The net (xU ) converges
to x but (f(xU )) does not converge. 2
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The directed sets U(x) are basic for convergence theory. Instead of choosing
a point from each neighbourhood, one can right away work with U(x). This
idea leads to the next definition.

A filter F on the set X is a set of subset with the properties:
(1) ∅ 6∈ F , X ∈ F .
(2) F1, F2 ∈ F ⇒ F1 ∩ F2 ∈ F .
(3) F ∈ F , G ⊃ F ⇒ G ∈ F .

A subset F0 ⊂ F is called a basis of F if each element of F contains an element
of F0. If F1 and F2 are filter and F1 ⊃ F2, then F1 is called finer than F2

and F2 coarser than F1. A filter which does not contain a different and finer
one is called ultrafilter .

A nonempty system B of nonempty subsets of X is a basis of a filter if and
only if for each pair B,C ∈ B there exists D ∈ B such that D ⊂ B ∩ C. The
corresponding filter consists of the sets which contain a set of B. The set U(x)
is the neighbourhood filter of x.

(2.5.2) Theorem. Each filter F is contained in an ultrafilter.

Proof. The set of filters which are finer than F is ordered by inclusion. The
union of a totally ordered subset in this set of filters is again a filter. Thus, by
Zorn’s lemma, this set contains a maximal element, and this is an ultrafilter. 2

(2.5.3) Theorem. A filter F is an ultrafilter if and only if for each A ⊂ X
either A ∈ F or X rA ∈ F .

Proof. Suppose always A orXrA are in F . Let G ⊃ F be a filter. If G ∈ GrF ,
then X rG ∈ F ⊂ G. Since G and X rG cannot be both elements of a filter,
we reach a contradiction if G 6= F .

Let F be an ultrafilter and A ⊂ X. Suppose F ∩A 6= ∅ for all F ∈ F . Then
{F ∩ A | F ∈ F} is a basis for a filter which is finer than F and contains A.
Since F is an ultrafilter, A ∈ F . Similarly, if (X r A) ∩ F 6= ∅ for all F ∈ F .
If both cases do not occur, then there exist F1, F2 ∈ F such that F1 ∩ A = ∅
and F2 ∩ (X rA) = ∅. Then F1 ∩ F2 ⊂ (X rA) ∩A = ∅, and this contradicts
the definition of a filter. 2

(2.5.4) Theorem. The sets of an ultrafilter have a nonempty intersection if
and only if the filter consists of all sets which contain a given point.

Proof. By (2.5.3), the sets which contain a given point are an ultrafilter. If x
is contained in all sets of a filter F , then all sets which contain x form a filter
which is finer than F . 2

We use filters as basic objects for convergence theory. A filter F on a
topological space is said to converge to a point x if F ⊃ U(x). Such points
are called limit points or convergence points of the filter. A point x is
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called touch point of the filter F if each neighbourhood of x intersects each
filter set. The set of touch points of a filter is the intersection of the closures
of the filter sets. If G ⊃ F , then each touch point of G is a touch point of F .
A convergence point of a filter is a touch point.

(2.5.5) Theorem. A point is a touch point of a filter if and only if there exists
a finer filter which converges to this point.

Proof. Let x be a touch point of the filter F . Then {U ∩F | U ∈ U(x), F ∈ F}
is the basis of a filter which converges to x.

If G ⊃ F and x is a convergence point of G, then x is a touch point of F . 2

Let f : X → Y be a map and F a filter on X. Then {f(F ) | F ∈ F} is the
basis of a filter f(F) on Y , called image filter of F under f .

(2.5.6) Theorem. A map f : X → Y between topological spaces is continuous
in x if and only if the image filter of each filter which converges to x converges
to f(x).

Proof. Let f be continuous in x and let F converge to x. Let V be a neigh-
bourhood of f(x) and U a neighbourhood of x such that f(U) ⊂ V . Since F
converges to x we have U ∈ F and hence V ∈ f(F) since f(U) ⊂ V . Hence
f(F) is finer than U(f(x)) and converges to f(x).

Let F = U(x). Each neighbourhood V of f(x) belongs to f(F) if f(F)
converges to f(x). Thus there exists a neighbourhood U of x such that f(U) ⊂
V , since the f(U) are a filter basis of f(F). 2

(2.5.7) Theorem. Let X be a set, (Xi | i ∈ I) be a family of topological spaces
and (fi : X → Xi | i ∈ I) a family of maps. Let X carry the coarsest topology
such that each fi is continuous. Then a filter F on X converges to x if and
only if for each i ∈ I the filter fi(F) converges to fi(x).

Proof. The system of sets of the form
⋂

k∈K f−1
k (Uk), K ⊂ I finite, Uk ∈

U(fk(x)) is a neighbourhood basis of x. Suppose the fi(F) converge. Then
there exists for each Uk ∈ U(fk(x)) an Fk ∈ F with fk(Fk) ⊂ Uk. Then
F =

⋂
k∈K Fk ∈ F , and F is contained in the basis set fk(Fk) ⊂ Uk of U(x).

The converse holds by (2.5.6). 2

We can apply (2.5.7) to a topological product and the projections onto the
factors.

(2.5.8) Theorem. The following assertions about the topological space X are
equivalent.

(1) X is compact.
(2) Each filter on X has a touch point.
(3) Each ultrafilter converges.
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Proof. (1) ⇒ (2). Suppose F has no touch point. Then the intersection of the
sets F , F ∈ F , is empty. Since X is compact, a finite intersection is empty.
This contradicts the definition of a filter.
(2) ⇒ (3). This is a consequence of (2.5.5).
(3) ⇒ (1). Let (Uj | j ∈ J) be an open covering without finite subcovering.
For each finite L ⊂ J the set AL = X r (

⋃
j∈L Uj) =

⋂
j∈L(X r Uj) is not

empty. The system of the AL is therefore a basis of a filter F . Let U ⊃ F be
an ultrafilter. It converges to some point x. For some j ∈ J we have x ∈ Uj .
By convergence of U , we have Uj ∈ U ; and by construction X r Uj ∈ U . A
contradiction. 2

The following Theorem of Tychonoff is an important general result of topol-
ogy.

(2.5.9) Theorem. The product of compact spaces is compact.

Proof. Let (Xj | j ∈ J) be a family of compact spaces and F an ultrafilter
on their product X. The image filter prj(F) on Xj is an ultrafilter: Suppose
G ⊃ prj(F); then the sets pr−1

i (G), G ∈ G are a basis of a filter which contains
F . Since Xi is compact, by the previous theorem pi(F) converges to a point
xi, and by (2.5.7), F converges to (xi). 2

Problems

1. Let fi : Xi+1 → Xi for i ∈ N be continuous maps between non-empty compact
Hausdorff-spaces. Then the set of sequences

{(xi) | xi ∈ Xi, fi(xi+1) = xi}

is not empty. The set of these sequences, considered as a subspace of the productQ
Xi, is called (inverse) limit of the sequence fi.

2.6 Proper Maps

The notion of a proper map codifies families of compact spaces. Among other
things we characterize compact spaces without using coverings.

A continuous map f : X → Y is called proper if it is closed and the pre-
images f−1(y), y ∈ Y are compact. From (1.10.8) we know:

(2.6.1) Proposition. Let K be compact. Then pr: X×K → X is proper. 2

(2.6.2) Proposition. If f : X → Y is proper and K ⊂ Y compact, then
f−1(K) is compact.
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Proof. Let (Uj | j ∈ J) be an open covering of f−1(K). For each c ∈ K
there exists a finite Jc ⊂ J such that f−1(c) is contained in the union Uc of
the Uj , j ∈ Jc. The set Vc = Y r f(X r Uc) is open, since f is closed. We
have c ∈ Vc, f

−1(Vc) ⊂ Uc, and K is contained in a finite number of the Vc,
in the union of Vc(1), . . . , Vc(n) say. We conclude that f−1(K) is contained in
Uc(1) ∪ . . . ∪ Uc(n). 2

(2.6.3) Lemma. A set map f : X → Y between topological spaces is closed if
and only if for each neighbourhood U of f−1(y) there exists a neighbourhood V
of y such that f−1(V ) ⊂ U .

Proof. Let f be closed and U an open neighbourhood f−1(y). Then X r U is
closed and therefore also f(XrU). The open neighbourhood V = Y rf(XrU)
has the desired property.

Suppose, conversely, that the condition holds. Let C be closed in X. Let
y ∈ Y r f(C). Then f−1(y) is contained in the open set U = X r C. Hence
there exists an open neighbourhood V of y with Y ⊂ Y r f(C). This shows
that Y r f(C) is open, hence f(C) is closed. 2

(2.6.4) Theorem. The following assertion about a continuous map f : X → Y
are equivalent:

(1) f is proper.
(2) For each space T the product f × id : X × T → Y × T is closed.

Proof. (1) ⇒ (2). Let W be an open neighbourhood of f−1(y)×{t} in X × T .
Since f−1(y) is compact, there exist a neighbourhoods U of f−1(y) and V of
t, such that U × V ⊂ W . Since f is closed, there exists, by (2.6.3), a neigh-
bourhood N of y such that f−1(N) ⊂ U . The set N × V is a neighbourhood
of (y, t), and the inclusion

(f × id)−1(N × V ) ⊂ f−1(N)× V ⊂ U × V ⊂W

holds. The lemma then says that f is closed.
(2) ⇒ (1). If we use a point T , we see that f is closed. The hypothesis

(2) shows that for each y ∈ Y the map pr: f−1(y)× T → T is closed, since in
general with f : X → Y also f : f−1(B) → B is closed. Therefore it remains to
show the next theorem. 2

(2.6.5) Theorem. Suppose that for each T the projection X × T → T is
closed. Then X is compact.

Proof. Let W be a set of open sets which cover X. Let U be the set of all finite
unions of sets in W. We have to show X ∈ U .

Suppose this is not the case. We construct an auxiliary space X ′ = X+{∗}.
We furnish this set with a topology which has a basis B consisting of the sets:

(1) X ′ r U , U ∈ U .
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(2) W ∩ (X r U), U ∈ U , W ⊂ X open.
This is a basis of a topology, since the intersection of two of these sets is again
a set of this form. Let D = {(x, x) | X} ⊂ X ×X ′ and C the closure of D in
X ×X ′. By continuity of pr : X ×X ′ → X ′ we have pr(C) = pr(D) ⊂ pr(D).
Since, by hypothesis, pr is closed, we see that pr(D) is closed, hence also
pr(D) ⊃ pr(D). Altogether we see pr(C) = X.

The set X is not closed in X ′. For if this were the case, then X ′rX = {∗}
would be open, hence a union of sets of the form (1) and (2), and this is not the
case, by our assumption X 6= U for all U ∈ U . Since pr(C) = X 6= X, there
exists x ∈ X such that (x, ∗) ∈ C. We show that this point x is not contained
a set U ∈ U , contrary to our assumption that U is a covering. Suppose x ∈ U .
Then U × (X ′ r U) is a neighbourhood of (x, ∗) in X × X ′. Since C = D 3
(x, ∗), this neighbourhood meets D, and this would mean U ∩ (X r U) 6= ∅.
Contradiction. 2

The next three propositions are easily verified from the definitions.

(2.6.6) Proposition. Let f : X → X ′ and g : X ′ → X ′′ be continuous. Then:
(1) If f and g are proper, then g ◦ f is proper.
(2) If g ◦ f is proper and f surjective, then g is proper.
(3) If g ◦ f is proper and g injective, then f is proper. 2

(2.6.7) Proposition. Let f : X → Y be injective. Then the following are
equivalent:

(1) f is proper.
(2) f is closed.
(3) f is a homeomorphism onto a closed subspace. 2

(2.6.8) Proposition. Let f : X → Y be continuous.
(1) If f is proper, then for each subset B ⊂ Y the restriction f =

fB : f−1(B) → B is proper.
(2) Let (Uj | j ∈ J) be a covering of Y such that the canonical map

p :
∐

j∈J Uj → Y is a quotient map. If each restriction fj : f−1(Uj) →
Uj is proper, then f is proper. 2

(2.6.9) Proposition. Let f be a continuous map of a Hausdorff space X into
a locally compact Hausdorff space Y . Then f is proper if and only if each
compact set K ⊂ Y has a compact pre-image. If f is proper, then X is locally
compact.

Proof. Is f is compact, then we know from (2.6.2) that pre-images of compact
sets are compact. Conversely, let (Uj) be a covering of Y by relatively compact
open sets. Then f−1(U j) is compact and f , restricted to these sets, is proper,
for a continuous map of a compact Hausdorff space into a Hausdorff space is
proper. By (2.6.8), f is proper. 2
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(2.6.10) Theorem. Let f : X → X ′ and g : X ′ → X ′′ be continuous and
assume that gf is proper. If X ′ is a Hausdorff space, then f is proper.

Proof. We consider the commutative diagram

X
(id,f) //

f

��

X ×X ′

gf×id

��
X ′

(g,id) // X ′′ ×X ′.

The horizontal maps are homeomorphisms onto the graph of f and onto the
interchanged graph of g. Since X ′ is a Hausdorff space, the graph of f is
closed and hence (id, f) proper (2.6.7). By (2.6.13), gf × id is proper. The
commutativity then shows that (g, id)◦f is proper, and since (g, id) is injective,
we see from (2.6.6) that f is proper. 2

(2.6.11) Theorem. The following statements about a continuous map f are
equivalent:

(1) f is proper.
(2) If F is a filter on X and y a touch point of f(F), then there exists a

touch point x of F with f(x) = y.
(3) If F is an ultrafilter on X and if f(F) converges to y, then there exists

a convergence point x of F with f(x) = y.

Proof. (1) ⇒ (2). Let M ∈ F . Since f is closed, the equality f(M) = f(M)
holds. Being a touch point of f(F) the point y is contained in each f(M), hence
M ∩ f−1(y) is non-empty. Since f−1(y) is compact, there exists an x ∈ f−1(y)
which is contained in each M,M ∈ F . But this means that x is a touch point
of F .

(2) ⇒ (3) is clear.
(3) ⇒ (1). We begin by showing that f is closed. Let ∅ 6= A ⊂ X be closed.

Let F be the filter of the sets which contain A. Then A is the set of touch
points of F . Let B be the set of touch points of f(F). Then B is closed and
contains f(A). We show B = f(A).

Suppose y ∈ B. Each neighbourhood V of y intersects f(F), hence f−1(V )∩
F 6= ∅ for each F ⊃ A. Therefore the f−1(V ) ∩ F for a filter basis. Let U
be an ultrafilter which is finer. The ultrafilter f(U) is finer than U(y), hence
converges to y. By (3), there exists a convergence point x of U with f(x) = y.
Since U ⊃ F , the element x is a touch point of F and therefore contained in
A, hence y ∈ f(A).

The next theorem is used to finish the proof. It implies that with f also
the product f × id(Z) is closed. 2

(2.6.12) Theorem. Suppose that condition (3) of the previous theorem holds
for every map fi : Xi → Yi. Then it also holds for the product f =

∏
i fi.
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Proof. Let U be an ultrafilter on
∏

iXi and y = (yi) ∈
∏

i Yi a convergence
point of f(U). By (2.6.11), pri(f(U)) = fi(pri(U)) converges to yi. By condi-
tion (3) there exists then for each i a xi ∈ Xi such that fi(xi) = yi and pri(U)
converges to xi. Then, by (2.6.11), U converges to x = (xi), and the equality
f(x) = y holds. 2

(2.6.13) Corollary. Any product of proper maps is proper. 2

Problems

1. Let f and g be proper. Then f × g is proper. This is a special case of (2.6.12).

Give a more elementary proof, using (??).

2. Let X and Y be locally compact Hausdorff spaces, let f : X → Y be continuous

and f+ : X+ → Y + the extension to the one-point compactification. Then f+ is

continuous, if f is proper.

3. The restriction of a proper map to a closed subset is proper.

4. Let f : X → Y be proper and X a Hausdorff space. Then the subspace f(X) of

Y is a Hausdorff space.

5. Let f : X → Y be continuous. Let R be the equivalence relation on X induced by

f , and denote by p : X → X/R the quotient map, by h : X/R → f(X) the canonical

bijection, and let i : f(X) ⊂ Y . Then f = i◦h◦p is the canonical decomposition of f .

The map f is proper if and only if p is proper, h a homeomorphism, and f(X) ⊂ Y

closed.

2.7 Paracompact Spaces

Let A = (Uj | j ∈ J) be an open covering of the space X. An open covering
B = (Bj | j ∈ J) is called a shrinking of A if for each j ∈ J we have the
inclusion Bj ⊂ Uj . An open covering ϕ = (Cj | j ∈ J) is called a partial
shrinking with respect to K ⊂ J if Cj ⊂ Uj for j ∈ K and Cj = Uj for
j /∈ K. Let (Cj) and (C ′j) be partial shrinkings with respect to K and K ′; we
define C ≤ C ′ by K ⊂ K ′, and Cj = C ′j for j ∈ K.

(2.7.1) Lemma. Let (Uj | j ∈ J) be a point-finite open covering of X. Then
the set of partial shrinkings is inductively ordered by ≤.

Proof. The following assertion is claimed: Let ϕs =
(
(Cs

j ),Ks
)

be a totally
ordered set of partial shrinkings (s ∈ S); then there exists a partial shrinking
ϕ with ϕs ≤ ϕ for all s. Let K = ∪Ks and Cj = Cs

j for j ∈ Ks, Cj = Uj for
j 6∈ K. This is a well-defined system of open sets Cj . We show: The Cj are a
covering. Let x ∈ X be given. The set J(x) = {j ∈ J | x ∈ Uj} is finite, by
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the point finite assumption. If j ∈ J(x) ∩ (J rK), then x ∈ Uj . If J(x) ⊂ K,
then there exists s with J(x) ⊂ Ks. Then x ∈ Cl for an l ∈ Ks ⊂ K. 2

(2.7.2) Proposition. A point-finite open covering of a normal space has a
shrinking.

Proof. By (2.7.1) and Zorn’s lemma, there exists a maximal partial shrinking
((Cj | j ∈ J),K) of the point-finite covering (Uj | j ∈ J). Suppose k /∈ K, and
set L = K∪{k}. Let D be the complement of (

⋃
j∈K Cj)∪(

⋃
j /∈L Uj). This is a

closed subset, and is contained in Uk, since the (Cj) are a covering. We choose
an open set Ck such that D ⊂ Ck ⊂ Ck ⊂ Uk and replace Uk by Ck. This is a
larger partial shrinking, contradicting the maximality. Thus K = J . 2

A space X is called paracompact if it is a Hausdorff space and if each open
covering has an open, locally finite refinement. From this definition one verifies
easily: A closed subset of a paracompact space is paracompact. A compact
space is paracompact.

(2.7.3) Theorem. A paracompact space is normal.

Proof. Let A and B be closed disjoint sets of the Hausdorff space X. Let
(Uj | j ∈ J) be a locally finite family in X which covers A. Assume that for
each j ∈ J there exists an open neighbourhood Vj of B which is disjoint to Uj .

We claim that under these assumptions there exists an open neighbourhood
W of B which is disjoint to U =

⋃
∈J Uj .

Since (Uj) is locally finite, there exists for each y ∈ B an open neighbour-
hood W (y) such that J(y) = {j ∈ J |W (y) ∩ Uj 6= ∅} is finite. Then

W ′(y) = W (y) ∩
⋂

j∈J(y)
Vj

is an open neighbourhood of y which meets no Uj . Hence W =
⋃

y∈B W
′(y)

is an open neighbourhood of B, which is disjoint to the open neighbourhood
U =

⋃
j∈J Uj of A.

Suppose now that X is paracompact. We consider disjoint closed sets A
and B = {b}. Since X is separated, we can, by passing to a locally finite
refinement, satisfy the hypothesis of the first paragraph. We therefore find for
each b ∈ B an open neighbourhood Vb and a disjoint open neighbourhood Wb

of A. We refine the covering (Uj | j ∈ J). Then we argue again as in the first
paragraph, but now with the roles of A and B interchanged. 2

(2.7.4) Theorem. Suppose the locally compact Hausdorff space X is a count-
able union of compact sets. Then X is paracompact.

Proof. Choose an open covering (Un | n ∈ N) of X properties as in (2.2.2). Let
(Vj | j ∈ J) be an open covering of X. For each x ∈ Ūn r Un−1 = Kn there
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exists in Un+1 r Ūn−2 an open neighbourhood which is contained in one of the
sets Vj . We choose a finite number of them which cover Kn. We do this for
each n and obtain a locally finite refinement of (Vj). 2

(2.7.5) Theorem. Let X be paracompact and K be compact Hausdorff. Then
X ×K is paracompact.

Proof. Let (Uj | j ∈ J) be an open covering of X × K. For each (x, k) ∈
X ×K choose open neighbourhoods V (x, k) of x and W (x, k) of k such that
V (x, k) × W (x, k) is contained in a set Uj . Suppose W (x, k1), . . . ,W (x, kn)
cover K. We define U(x) as the intersection of the V (x, kj). The U(x) then
form an open covering of X. Suppose it is is refined by the locally finite open
covering (Ca | a ∈ A). For each a ∈ A choose xa with Ca ⊂ U(xa) and consider
the finite covering W (xa, k), k ∈ J(xa) which was chosen for xa. Then the sets
Ca ×W (xa, k), a ∈ A, k ∈ J(xa) form a locally finite refinement of (Uj). 2

2.8 Partitions of Unity

Let t : X → R be continuous. The closure of t−1(Rr0) is the support supp(t)
of t. A family T = (tj : X → R | j ∈ J) of continuous functions is said to
be locally finite if the family of supports (supp(tj) | j ∈ J) is locally finite.
We call T a partition of unity if the tj assume only non-negative values and
if for each x ∈ X we have

∑
j∈J tj(x) = 1. A covering U = (Uj | j ∈ J) is

numerable if there exists a partition of unity T such that supp(tj) ⊂ Uj holds
for each j ∈ J ; the family T is then called a numeration of U .

(2.8.1) Theorem. A locally finite open covering of a normal space is numer-
able.

Proof. Let U = (Uj | j ∈ J) be a locally finite covering of the normal space X
and V = (Vj | j ∈ J) a shrinking of U and W = (Wj | j ∈ J) a shrinking of
V . By the theorem of Urysohn there exist continuous functions τj : X → [0, 1]
which assume the value 1 on Wj and the value 0 on the complement of Vj . The
function τ =

∑
j∈J τj : X → [0, 1] is well-defined and continuous, since by local

finiteness of V , in a suitable neighbourhood of a point only a finite number of
τj are non-zero. We set fj(x) = τj(x) · τ−1(x). The functions (fj | j ∈ J) are
a numeration of U . 2

(2.8.2) Lemma. Let the covering V = (Vk | k ∈ K) be a refinement of the
covering U = (Uj | j ∈ J). If V is numerable, then also U is numerable.

Proof. Let (fk | k ∈ K) be a numeration of V . For each k ∈ K choose
a(k) ∈ J with Vk ⊂ Ua(k). This defines a map a : K → J . We set gj(x) =
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∑
k,a(k)=j fk(x); this is the zero function if the sum is empty. Then gj is

continuous; the support of gj is the union of the supports of the fk with a(k) = j
and is therefore contained in Uj . Moreover, the sum of the gj is one. The family
(gj | j ∈ J) is locally finite: If W is an open neighbourhood of x which meets
only a finite number of supports supp(fk), k ∈ E ⊂ J , E finite, then W meets
only the supports of the gj with j ∈ a(E). 2

(2.8.3) Theorem. Each open covering of a paracompact space is numerable.

Proof. Let U = (Uj | j ∈ J) be an open covering of the paracompact space X
and let V = (Vk | k ∈ K) be a locally finite refinement. since X is normal, there
exists a numeration (fk | k ∈ K) of V . Now apply the previous lemma. 2

(2.8.4) Lemma. Let (fj : X → [0,∞[ | j ∈ J) be a family of continuous
functions such that U = (f−1]0,∞[ | j ∈ J) is a locally finite covering of X.
Then U is numerable and has, in particular a shrinking.

Proof. Since U is locally finite, f : x 7→ max(fj(x) | j ∈ J) is continuous and
nowhere zero. We set gj(x) = fj(x)f(x)−1. Then

tj : X → [0, 1], x 7→ max(2gj(x)− 1, 0)

is continuous. Since tj(x) > 0 ⇔ gj(x) > 1/2, we have the inclusions
supp(tj) ⊂ g−1

j [1/4,∞[⊂ f−1]0,∞[. For x ∈ X and i ∈ J with fi(x) =
max(fj(x)) we have ti(x) = 1. Hence the supports of the tj form a locally
finite covering of X, and the functions x 7→ ti(x)/t(x), t(x) =

∑
j∈J tj(x) are

a numeration of U . 2

(2.8.5) Theorem. Let U = (Uj |j ∈ J) be a covering of the space X. The
following assertions are equivalent:

(1) U is numerable.
(2) There exists a family (sa,n : X → [0,∞[ | a ∈ A, n ∈ N) = S of contin-

uous functions sa,n with the properties:
(a) S, i.e., (s−1

a,n] 0,∞ [), refines U .
(b) For each n the family (s−1

a,n]0,∞[ | a ∈ A) is locally finite.
(c) For each x ∈ X there exists (a, n) such that sa,n(x) > 0.

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (1). (sa,n) is, by assumption, a countable union of locally finite

families. From these data we construct a locally finite family. By replacing
sa,n with sa,n/(1 + sa,n) we can assume that sa,n has an image contained in
[0, 1]. Let

qr(x) =
∑

a∈A, i<r

sa,i(x), r ≥ 1
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and qr(x) = 0 for r = 0. (The sum is finite for each x ∈ X.) Then qr and

pa,r(x) = max(0, sa,r(x)− rqr(x))

are continuous. Let x ∈ X; Then there exists sa,k with sa,k(x) 6= 0; we
choose such a function with minimal k; then qk(x) = 0, pa,k(x) = sa,k(x).
Therefore the sets p−1

a,k ]0, 1] also cover X. Choose N ∈ N such that N > k

and sa,k(x) > 1
N . Then qN (x) > 1

N , and therefore NqN (y) > 1 for all y in
a suitable neighbourhood of x. In this neighbourhood, all pa,r with r ≥ N
vanish. Hence

(p−1
a,n ]0, 1] | a ∈ A, n ∈ N)

is a locally finite covering of X which refines U . We finish the proof by an
application of the previous lemma. 2

(2.8.6) Theorem. A metrizable space is paracompact.

Proof. Let (Uj | j ∈ J) be an open covering of the metric space (X, d). Suppose
the index set J is well-ordered. For i ∈ J and n ∈ N consider

Bi,n = {x ∈ X | d(x,X r Ui) ≥ 2−n; d(x,X r Uj) ≤ 2−n−1 for all j < i}

and the function

si,n(x) = max(0, 2−n−3 − d(x,Bi,n)).

Fix x ∈ X. Let i be the minimal index such that x ∈ Ui; it exists since J is
well-ordered. There exists an n such that d(x,X r Ui) > 2−n, since X r Ui

is closed. For j < i then x ∈ X r Uj such that, altogether, x ∈ Bi,n and
si,n(x) > 0.

We now show: For j < i the sets s−1
i,n ]0,∞ [ and s−1

j,n ]0,∞ [ are disjoint.
The inequality si,n(x) > 0 implies d(x,Bi,n) < 2−n−3. Therefore there exists
y ∈ Bi,n with d(x, y) < 2−n−3. We now use the definition of the Bi,n and
obtain

d(x,X r Ui) ≥ 2−n − 2−n−3 d(x,X r Uj) ≤ 2−n−1 + 2−n−3.

If sj,n > 0, we conclude similarly

d(x,X r Uj) ≥ 2−n − 2−n−3.

Since 2−n−1 + 2−n−3 < 2−n − 2−n−3, both inequalities cannot hold simultane-
ously for the index j. We also see that si,n(x) > 0 implies x ∈ Ui.

We thus have verified the hypotheses of (2.8.5). 2
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(2.8.7) Theorem. Let (Uj | j ∈ J) be a numerable covering of B×[0, 1]. Then
there exists a numerable covering(Vk | k ∈ K) of B and a family (ε(k) | k ∈ K)
of positive real numbers such that for t1, t2 ∈ [0, 1], t1 < t2 and |t1 − t2| < ε(k)
there exist a j ∈ J with Vk × [t1, t2] ⊂ Uj.

Proof. Let (tj | j ∈ J) be a numeration of (Uj). For each r-tuple k =
(j1, . . . , jr) ∈ Jr define a continuous map

vk : B → I, x 7→
r∏

i=1

min
(
tji

(x, s) | s ∈
[
i− 1
r + 1

,
i+ 1
r + 1

])
.

Let K =
⋃∞

r=1 J
r. We show that the Vk = v−1

k ]0, 1] and ε(k) = 1
2r for k =

(j1, . . . , jr) satisfy the requirements of the theorem. Namely if |t1 − t2| < 1
2r ,

there exists i with [t1, t2] ⊂ [ i−1
r+1 ,

i+1
r+1 ] and hence Vk × [t1, t2] ⊂ Uji

.
We show that (Vk) is a covering. Let x ∈ B be given. Each point (x, t) has

an open neighbourhood of the form U(x, t) × V (x, t) which is contained in a
suitable set W (i) = t−1

i ]0, 1] and meets only a finite number of the W (j). Sup-
pose V (x, t1), . . . , V (x, tn) cover the interval I = [0, 1]; let 2

r+1 be a Lebesgue
number of this covering. We set U = U(x, t1) ∩ . . . ∩ U(x, tn). Each set
U × [ i−1

r+1 ,
i+1
r+1 ] is then contained in a suitable W (ji). Hence x is contained in

Vk, k = (j1, . . . , jr).
There are only a finite number of j ∈ J for which W (j)∩ (U×I) 6= ∅. Since

vk(x) 6= 0 implies the relation W (ji) ∩ {x} × I 6= ∅, the family (Vk | k ∈ Jr) is
locally finite for r fixed. The existence of a numeration for (Vk | k ∈ K) follows
now from theorem (2.8.5). 2

A family of continuous maps (tj : X → [0, 1] | j ∈ J) is called a generalized
partition of unity if for each x ∈ X the family (tj(x) | j ∈ J) is summable
with sum 1.

(2.8.8) Lemma. Let (tj | j ∈ J) be a generalized partition of unity. Then
(t−1

j ]0, 1] | j ∈ J) is a numerable covering.

Proof. Summability of (tj(a)) means: For each ε > 0 there exists a finite set
E ⊂ J such that for all finite sets F ⊃ E the inequality |1−

∑
j∈F tj(a)| > 1−ε

holds. In that case V = {x |
∑

j∈E tj(x) > 1 − ε} is an open neighbourhood
of a. If k /∈ E, x ∈ V and tk(x) > ε, then tk(x) +

∑
j∈E tj(x) > 1. This is

impossible. Hence for each a ∈ X there exists an open neighbourhood V (a)
such that only a finite number of functions tj have a value greater then ε on
V (a). Let sj,n(x) = max(tj(x) − n−1, 0) for j ∈ J and n ∈ N. By what we
have just shown, the sj,n are locally finite for fixed n. The claim now follows
from (2.8.5). 2
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(2.8.9) Theorem. Let U = (Uj | j ∈ J) be a numerable covering of X ×K
and K a compact Hausdorff space. Then there exists a numerable covering
(Vi | i ∈ I) of X and for each i ∈ I a finite numerable covering (W` | ` ∈ Li)
of K such that the Vi×W`, ` ∈ Li form a numerable covering of X ×K which
refines (Uj).

Proof. We use notion which will be introduced later. Let B(U) be the geometric
realization of the nerve N(U) of U with the metric topology. Let (tj | j ∈ J)
be a numeration of U . We obtain a continuous map into the mapping space
with sup-metric τ : X → B(U)K by setting τ(x)(k) =

∑
j∈J tj(x, k)[j]. (Note:

the space B(U) is a set of functions f : J → [0, 1] which we write as
∑
f(j)[j].)

To begin with, we show that B(U)K ×K has a suitable covering which we
then pull back to X ×B via τ × id. For this purpose, we consider the set A of
all functions a : K(a) → J , where K(a) is a finite numerable covering of K by
compact sets. For each function we consider

Va = {x ∈ X | x× C ⊂ Ua(C), C ∈ Ka}.

We claim:
(1) (Va | a ∈ A) is a numerable covering of X.
(2) (Va×C | a ∈ A, c ∈ Ka) is a numerable covering of X ×K which refines

U .
We use for this purpose analogous sets in B(U)K ×K. Let λj : B(U) → [0, 1]
be the barycentric coordinate which belongs to the index j. Let

Ba = {f ∈ B(U)K | λa(K) ◦ f(c) 6= 0, c ∈ C, C ∈ Ka}.

Then
Va ⊃ τ−1(Ba);

for if τ(x) ∈ Ba, then ta(K)(x, c) 6= 0, c ∈ C, C ∈ Ka, i.e.,

x× C ⊂ t−1
a(C)]0, 1] ⊂ Ua(C).

In order to see that (Va) is a numerable covering it suffices to show that (Ba)
is a numerable covering of B(U)K . But the latter space is metric hence para-
compact. Therefore it suffices to show that the interiors (B◦a) are a covering.

Let f ∈ B(U)K be given. The sets λ−1
j ]0, 1] form an open covering of B(U).

Therefore there exists a function a ∈ A with f(C) ⊂ λ−1
a(C)]0, 1] for all C ∈ Ka,

and this means f ∈ Ba.
Since also B(U)K ×K is paracompact, by (2.7.5), the family (Ba ×C | a ∈

A, C ∈ Ka) is numerable. This shows (2). 2

(2.8.10) Theorem. Let X be a metric space, E a normed vector space and A
a non-empty closed set in X. A continuous map f : A → E has a continuous
extension F : X → E. One can choose F such that F (X) is contained in the
convex hull of f(A).



2.9 Mapping Spaces and Homotopy 67

Proof. Let p ∈ X rA and set

Up = {x ∈ X | 2d(x, p) < d(p,A)}.

Let (ϕp) be a partition of unity which is subordinate to the open covering (Up)
of X rA. We then define

F (x) =
{
f(x), x ∈ A∑

p∈XrA ϕp(x)f(a(p)), x ∈ X rA

with a point a(p) ∈ A which satisfies d(p, a(p)) < 2d(p,A). The map F is
continuous on A and on X rA. The continuity is only a problem at points x0

in the boundary of A. For x ∈ Up we have

d(x0, p) ≤ d(x0, x) + d(x, p) < d(x0, x) +
1
2
d(p,A) ≤ d(x0, x) +

1
2
d(p, x0),

hence d(x0, p) < 2d(x0, x) for x ∈ Up. Since d(p, a(p)) < 2d(p,A) ≤ 2d(p, x0),
we conclude for x ∈ Up

d(x0, a(p)) ≤ d(x0, p) + d(p, a(p)) < 3d(p, x0) < 6d(x0, x).

For x ∈ X rA we have

‖F (x)− F (x0)‖ ≤
∑

p ϕp(x)‖f(a(p))− f(x0)‖

with a sum over the p ∈ X rA with x ∈ Up. Given ε > 0 we choose δ > 0, by
continuity of f , such that ‖f(y)−f(x0)‖ < ε, provided y ∈ A and d(x0, y) < 6δ.
For x ∈ XrA and d(x, x0) < δ we conclude for p with x ∈ Up by the inequality
above d(x0, a(p)) < 6δ, hence ‖f(a(p))− f(x0)‖ < ε, and altogether we arrive
at ‖F (x)− F (x0)‖ ≤

∑
ϕp(x)ε = ε. 2

2.9 Mapping Spaces and Homotopy

It is customary to endow sets of continuous maps with a topology. In this
section we study the compact-open topology on mapping spaces. This topology
enables us to consider a homotopy H : X × I → Y as a family of paths in Y ,
parametrised by X.

We denote by Y X or F (X,Y ) the set of continuous maps X → Y . For K ⊂
X and U ⊂ Y we set W (K,U) = {f ∈ Y X | f(K) ⊂ U}. The compact-open
topology (CO-topology) on Y X is the topology which has as a subbasis the
sets of the form W (K,U) for compact K ⊂ X and open U ⊂ Y . In the sequel
the set Y X always carries the CO-topology. A continuous map f : X → Y
induces continuous maps fZ : XZ → Y Z , g 7→ fg and Zf : ZY → ZX , g 7→ gf .
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Recall: A space X is locally compact if each point has a neighbourhood
basis consisting of compact sets. If X is a Hausdorff space and if each point
has a compact neighbourhood, then X is locally compact. Thus a compact
Hausdorff space is locally compact. If X and Y are locally compact so is their
product X × Y .

(2.9.1) Proposition. Let X be locally compact. Then the evaluation eX,Y =
e : Y X ×X → Y, (f, x) 7→ f(x) is continuous.

Proof. Let U be an open neighbourhood of f(x). Since f is continuous and
X locally compact, there exists a compact neighbourhood K of x such that
f(K) ⊂ U . The neighbourhood W (K,U) × K of (f, x) is therefore mapped
under e into U . This shows the continuity of e at (f, x). 2

(2.9.2) Proposition. Let f : X × Y → Z be continuous. Then the adjoint
map f∧ : X → ZY , f∧(x)(y) = f(x, y) is continuous.

Proof. Let K ⊂ Y be compact and U ⊂ Z open. It suffices to show that
W (K,U) has an open pre-image under f∧. Let f∧(x) ∈ W (K,U) and hence
f({x} ×K) ⊂ U . Since K is compact, there exists a neighbourhood V of x in
X such that V ×K ⊂ f−1(U) and hence f∧(V ) ⊂W (K,U). 2

From (2.9.2) we obtain a set map α : ZX×Y → (ZY )X , f 7→ f∧. Let eY,Z

be continuous. A continuous map ϕ : X → ZY induces a continuous map
ϕ∨ = eY,Z ◦ (ϕ × idY ) : X × Y → ZY × Y → Z. Hence we obtain a set map
β : (ZY )X → ZX×Y , ϕ 7→ ϕ∨.

(2.9.3) Proposition. Let eY,Z be continuous. Then α and β are inverse
bijections. Thus ϕ : X → ZY is continuous if ϕ∨ : X × Y → Z is continuous,
and f : X × Y → Z is continuous if f∧ : X → ZY is continuous. 2

(2.9.4) Corollary. If h : X×Y ×I → Z is a homotopy, then h∧ : X×I → ZY

is a homotopy (see (2.9.2)). Hence [X × Y, Z] → [X,ZY ], [f ] 7→ [f∧] is well-
defined. If, moreover, eY,Z is continuous, e.g., Y locally compact, then this
map is bijective (see (2.9.3)). 2

(2.9.5) Definition (Dual version of homotopy). We have the continuous eval-
uation et : Y I → Y, w 7→ w(t). A homotopy from f0 : X → Y to f1 : X → Y
is a continuous map h : X → Y I such that eε ◦ h = fε for ε = 0, 1. The
equivalence with our original definition follows from (2.9.3): Since I is locally
compact, continuous maps X × I → Y correspond bijectively to continuous
maps X → Y I . 3

(2.9.6) Theorem. Let Z be locally compact. Suppose p : X → Y is a quotient
map. Then p× id(Z) : X × Z → Y × Z is a quotient map.
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Proof. We verify for p× id the universal property of a quotient map: If h : Y ×
Z → C is a set map and h ◦ (p × id) continuous, then h is continuous. The
adjoint of h ◦ (p × id) is h∧ ◦ p. By (2.9.2), it is continuous. Since p is a
quotient map, h∧ is continuous. Since Z is locally compact, h is continuous,
by (2.9.3). 2

(2.9.7) Theorem (Exponential law). Let X and Y be locally compact. Then
the adjunction map α : ZX×Y → (ZY )X is a homeomorphism.

Proof. By (2.9.3), α is continuous, if α1 = eX,ZY ◦ (α× id) is continuous. And
this map is continuous, if α2 = eY,Z ◦ (α1× id) is continuous. One verifies that
α2 = eX×Y,Z . The evaluations which appear are continuous by (2.9.1).

The inverse α−1 is continuous, if eX×Y,Z ◦ (α−1× id) is continuous, and this
map equals eY,Z ◦ (eX,ZY × id). 2

Let (X,x) and (Y, y) be pointed spaces. We denote by F 0(X,Y ) the space
of pointed maps with CO-topology as a subspace of F (X,Y ). In F 0(X,Y )
we use the constant map as a base point. The adjoint f∧ : X → F (Y, Z) of
f : X×Y → Z is a pointed map into F 0(Y, Z) if and only if X×y∪x×Y is send
under f to the base point of Z. Let p : X×Y → X∧Y = X×Y/(X×y∪x×Y )
be the quotient map.

Let (A, a) and (B, b) be pointed spaces. Their smash product is

A ∧B = A×B/A× b ∪ a×B = A×B/A ∨B.

(This is not a categorical product. It is rather analogous to the tensor product.)
The smash product is a functor in two variables and also compatible with
homotopies: Given f : A→ C, g : B → D we have the induced map f ∧ g : A ∧
B → C ∧ D, (a, b) 7→ (f(a), g(b)), and homotopies ft, gt induce a homotopy
ft ∧ gt.

If g : X∧Y → Z is given, we denote the adjoint of g◦p : X×Y → X∧Y → Z
by α0(g) and consider it as an element of F 0X,F 0(Y, Z)). In this manner we
obtain a set map α0 : F 0(X ∧ Y, Z) → F 0(X,F 0(Y, Z)).

The evaluation F 0(X,Y )×X → Y, (f, x) 7→ f(x) factors over the quotient
space F 0(X,Y )∧X and induces e0 = e0X,Y : F 0(X,Y )∧X → Y . From (2.9.1)
we conclude:

(2.9.8) Proposition. Let X be locally compact. Then e0X,Y is continuous. 2

Let e0Y,Z be continuous. From a pointed map ϕ : X → F 0(Y, Z) we ob-
tain ϕ∨ = β0(ϕ) = e0Y,Z ◦ (ϕ ∧ id) : X ∧ Y → Z, and hence a set map
β0 : F 0(X,F 0(Y, Z)) → F 0(X ∧ Y, Z).

(2.9.9) Proposition. Let e0Y,Z be continuous. Then α0 and β0 are inverse
bijections. 2
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(2.9.10) Corollary. Let h : (X ∧ Y ) × I → Z be a pointed homotopy. Then
α0(ht) : X → F 0(Y, Z) is a pointed homotopy and therefore

[X ∧ Y, Z]0 → [X,F 0(Y, Z)]0, [f ] 7→ [α0(f)]

well-defined. If, moreover, e0Y,Z is continuous, then this map is bijective. 2

By a proof, formally similar to the proof of (2.9.7), we obtain the pointed
version of the exponential law.

(2.9.11) Theorem (Exponential law). Let X and Y be are locally compact.
Then the pointed adjunction map α0 : F 0(X ∧ Y, Z) → F 0(X,F 0(Y, Z)) is a
homeomorphism. 2

(2.9.12) Lemma. Let ka : Z → A denote the constant map with value a. Then
ψ : XZ ×A→ (X ×A)Z , (ϕ, a) 7→ (ϕ, ka) is continuous.

Proof. Let ψ(f, a) ∈W (K,U). This means: For x ∈ K we have (f(x), a) ∈ U .
There exists open neighbourhoods V1 of f(K) in X and V2 of a in A such that
V1×V2 ⊂ U . The inclusion ψ(W (K,V1)×V2) ⊂W (K,U) shows the continuity
of ψ at (f, a). 2

(2.9.13) Proposition. A homotopy Ht : X → Y induces homotopies HZ
t and

ZHt .

Proof. In the first case we obtain, with a map ψ from (2.9.12), a continuous
map

HZ ◦ ψ : XZ × I → (X × I)Z → Y Z .

In the second case we use the composition

e ◦ (α× id) ◦ (ZH × id) : ZY × I → ZX×I × I → (ZX)I × I → ZX

which is continuous. 2

(2.9.14) Corollary. Let f be a homotopy equivalence. Then the induced maps
F (Z,X) → F (Z, Y ) and F (Y, Z) → F (X,Z) are h-equivalences. If f is a
pointed h-equivalence, the induced maps F 0(Z,X) → F 0(Z, Y ) and F 0(Y, Z) →
F 0(X,Z) are pointed h-equivalences. 2

Problems

1. Verify that fZ and Zf are continuous.
2. An inclusion i : Z ⊂ Y induces an embedding iX : ZX → Y X .
3. The canonical map F (

‘
j Xj , Y ) →

Q
j F (Xj , Y ) is always a homeomorphism.

4. The canonical map F (X,
Q

j Yj) →
Q

j F (X, Yj), f 7→ (prj f) is always bijective
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and continuous. If X is locally compact, it is a homeomorphism.
5. Let p : X → Y be a surjective continuous map. Suppose the pre-image of a
compact set is compact. Then Zp : ZY → ZX is an embedding.
6. We have a canonical bijective map F 0(

W
j∈J Xj , Y ) →

Q
j∈J F 0(Xj , Y ), sinceW

j Xj is the sum in TOP0. If J is finite, it is a homeomorphism.
7. Let S be a subbasis for the topology on Y and let X be a Hausdorff space. Then
the sets W (K, U), K ⊂ X compact, U ∈ S, are a subbasis of the CO-topology on
Y X .
8. Let X and Y be Hausdorff spaces. Then the sets of the form W (K × L, U),
K ⊂ X compact, L ⊂ Y compact, U ⊂ Z open, form a subbasis for the KO-topology
on ZX×Y .
9. The map α has these properties:

(1) If X is a Hausdorff space, then α is continuous.
(2) If Y is locally compact, then α is surjective.
(3) If X and Y are Hausdorff spaces, then α is an embedding.
(4) If X and Y are Hausdorff spaces and Y is locally compact, then α is a home-

omorphism.
10. Let X, Y, U , and V be spaces. Cartesian product of maps gives a map

π : UX × V Y → (U × V )X×Y , (f, g) 7→ f × g.

Let X and Y be Hausdorff spaces. Then the map π is continuous.
11. By definition of a product, a map X → Y × Z is essentially the same thing as
a pair of maps X → Y , X → Z. In this sense, we obtain a tautological bijection
τ : (Y × Z)X → Y X × ZX . Let X be a Hausdorff space. Then the tautological map
τ is a homeomorphism.
12. Let X and Y be locally compact. Then composition of maps ZY × Y X →
ZX , (g, f) 7→ g ◦ f is continuous.
13. Let (Y, ∗) be a pointed space, (X, A) a pair of spaces and p : X → X/A the
quotient map. The space X/A is pointed with base point {A}. Let F ((X, A), (Y, ∗))
be the subspace of F (X, Y ) of the maps which send A to the base point. Composition
with p induces a bijective continuous map γ : F 0(X/A, Y ) → F ((X, A), (Y, ∗)); and a
bijection of homotopy sets [X/A, Y ]0 → [(X, A), (Y, ∗)]. If p has compact pre-images
of compact sets, then γ is a homeomorphism.
14. Consider diagrams where the right one is obtained by multiplying the left one

A //

��

B

��

A×X //

��

B ×X

��
C // D C ×X // D ×X

with X. If the left diagram is a pushout in TOP and X locally compact, then the

right diagram is a pushout in TOP.

15. The CO-topology on the set of linear maps Rn → R is the standard topology.

16. Let X be compact space and Y a metric space. Then the CO-topology on Y X

is induced by the supremum-metric.

17. Let X be a compact Hausdorff space and H(X) the group of homeomorphism.
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Then H(X) together with the CO-topology is a topological group and H(X)×X →
X, (f, x) 7→ f(x) a continuous group action.

2.10 Compactly Generated Spaces

A compact Hausdorff space will be called a ch-space. For the purpose of the
following investigations we also call a ch-space a test space and a continuous
map f : C → X of a test space C a test map. A space X is called weakly
hausdorff or wh-space , if the image of each test map is closed.

(2.10.1) Proposition. A Hausdorff space is a wh-space. A wh-space is a
T1-space.

Proof. If X is Hausdorff and f : K → X a test map, then f(K) is compact
therefore closed in X. If X is a wh-space, then a one-point space has a closed
image in X. 2

(2.10.2) Proposition. A space X is a wh-space if and only if each test map
f : K → X is proper. If X is a wh-space, then the image of each test map is a
Hausdorff space.

Proof. Let X be a wh-space. A closed set L ⊂ K is compact Hausdorff; there-
fore f |L is a test map and hence has a closed image f(L). This means: f is
closed. For each x ∈ X the pre-image f−1(x) is closed in K, hence compact.

Since proper maps have closed images, we see that the condition is also
necessary.

A proper image of a ch-space is a ch-space (??). Therefore the image of a
test map is Hausdorff. 2

(2.10.3) Proposition. A subspace of a wh-space is a wh-space. Products of
wh-spaces are wh-spaces.

Proof. Let B ⊂ X and f : K → B a test map. Then the image of f is closed
in X, provided X is a wh-space, and this image is then also closed in B.

Let (Xj | j ∈ J) be wh-spaces and let f : K →
∏

j Xj be a test map
with components fj : K → Xj . We write f as composition of the diagonal
∆: K →

∏
j K with the product

∏
j fj . By (2.10.1), the fj are proper. Then

(2.6.12) tells us that the product
∏

j fj is proper. Since K is Hausdorff, ∆(K)
is closed in

∏
j K. Hence f(K) is closed, being the image of a closed set under

a proper map. 2

A subset A of a topological space (X, T ) is said to be k-closed (k-open)
if for each test map f : K → X the pre-image f−1(A) is closed (open) in
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K. The k-open sets in (X, T ) form a topology kT on X. A closed (open)
subset is also k-closed (k-open). Therefore kT is finer than T and the identity
ι = ιX : kX → X is continuous. We set kX = k(X) = (X, kT ). Let f : K → X
be a test map. The same set map f : K → kX is then also continuous. For if
U ⊂ kX is open, then U ⊂ X is k-open, hence f−1(U) ⊂ K open. Therefore
ιX induces for each ch-space K a bijection.

TOP(K, kX)
∼=−→ TOP(K,X), f 7→ ιX ◦ f.

Hence X and kX have the same k-open sets, i.e., k(kX) = kX. A topological
space X is called k-space , if the k-closed sets are closed, i.e., if X = kX.
Because of k(kX) = kX the space kX is always a k-space. A k-space is also
called compactly generated . We let k- TOP be the full subcategory of TOP
with objects the k-spaces. A whk-space is a space which is a wh-space and a
k-space.

The next proposition explains the definition of a k-space. We call a topology
S on X ch-definable, if there exists a family (fj : Kj → X | j ∈ J) of test maps
such that: A ⊂ X is S-closed⇔ for each j ∈ J the pre-image f−1

j (A) is closed in
Kj . We can rephrase this condition: The canonical map 〈 fj 〉 :

∐
j Kj → (X,S)

is a quotient map. A ch-definable topology is finer than T . We define a partial
ordering on the set of ch-definable topologies by S1 ≤ S2 ⇔ S1 ⊃ S2.

(2.10.4) Proposition. The topology kT is the maximal ch-definable topology
with respect to the partial ordering.

Proof. By Zorn’s Lemma there exists a maximal ch-definable topology S. If
this topology is different from kT , then there exists an S-open set U , which is
not k-open. Hence there exists a test map t : K → X such that t−1(U) is not
open. If we adjoin this test map to the defining family of S, we see that S is
not maximal. 2

(2.10.5) Corollary. The k-spaces are the spaces which are quotients of a topo-
logical sum of ch-spaces. 2

(2.10.6) Proposition. The following are equivalent:
(1) X is a k-space.
(2) A set map f : X → Y is continuous if and only if for each test map

t : K → X the composition ft is continuous.

Proof. (1) ⇒ (2). Let U ⊂ Y be open. In order to see that f−1(U) is open it
suffices to show that this set is k-open, since X is a k-space. Let t : K → X
be a test map and ft continuous. Then k−1(f−1(U)) is open, and this shows
what we want.

(2) ⇒ (1). We show that the identity X → kX is continuous. This holds
by (2) and because X and kX have the same test maps. 2
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(2.10.7) Proposition. Let f : X → Y be continuous. Then the same set map
kf : kX → kY is continuous.

Proof. By (2.10.6) it suffices to show that for each test map t : K → kX the
composition kf ◦ t is continuous. But this is a consequence of (??). 2

The assignments X 7→ kX, f 7→ kf yield a functor k; moreover, we have
the inclusion functor i

k : TOP → k- TOP, i : k- TOP → TOP .

(2.10.8) Proposition. The functor k is right adjoint to the functor i.

Proof. A natural bijection is k- TOP(Y, kX) ∼= TOP(iY,X), f 7→ ι ◦ f . This
map is certainly injective. If Y is a k-space and f : Y → X continuous, then
kf : Y = kY → kX is continuous; this is used to show surjectivity. 2

(2.10.9) Proposition. Let X be a wh-space. Then is A ⊂ X is k-closed if
and only if for each ch-space K ⊂ X the set A∩K is closed in K. In particular
a wh-space X is a k-space if and only if: A ⊂ X closed ⇔ for each ch-space
K ⊂ X the intersection A ∩K is closed in K.

Proof. Let A be k-closed. The inclusion K ⊂ X of a ch-space is a test map.
Hence A ∩K is closed in K.

Conversely, suppose that A satisfies the stated condition and let f : L→ X
be a test map. Since X is a wh-space, f(L) is a ch-space and therefore f(L)∩A
closed in f(L). Then f−1(A) = f−1(f(L) ∩A) is closed in L = f−1f(L). This
shows: A is k-closed. 2

Thus we see that wh-spaces have an internal characterization of their k-
closed sets. We have already used this earlier in the context of Hausdorff
spaces. For wh-spaces therefore k(X) can be defined from internal properties
of X. If X is a wh-space, so is kX.

(2.10.10) Theorem. X is a k-space under one of the following conditions:
(1) X is metrizable.
(2) Each point of X has a countable neighbourhood basis.
(3) Each point of X has a neighbourhood which is a ch-space.
(4) For Q ⊂ X and x ∈ Q there exists a ch-subspace K ⊂ X such x is

contained in the closure of Q ∩K in K.
(5) For each Q ⊂ X the following holds: Q∩K open (closed) in K for each

test space K ⊂ X implies Q open (closed) in X.

Proof. (1) is a special case of (2).
(2) Let Q ⊂ X and suppose that f−1(Q) is closed for each test map f : C →

X. We have to show that Q is closed. Thus let a ∈ Q and let (Un | n ∈ N) be
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a neighbourhood basis of a. For each n choose an ∈ Q ∩ U1 ∩ . . . ∩ Un. Then
the sequence (an) converges to a. The subspace K = {0, 1, 2−1, 3−1, . . .} of R
is compact. The map f : K → X, f(0) = a, f(n−1) = an is continuous, and
n−1 ∈ f−1(Q). By assumption, f−1(Q) is closed in K, hence 0 ∈ f−1(Q), and
therefore a = f(0) ∈ Q.

(3) ⇒ (4). Let Q ⊂ X and suppose a ∈ Q. We choose a ch-neighbourhood
K of a and show that a is contained in the closure of Q ∩K in K. Thus let
U be a neighbourhood of a in K. Then there exists a neighbourhood U ′ of a
in X such that U ′ ∩K ⊂ U . Since U ′ ∩K is a neighbourhood of a in X and
a ∈ Q, we conclude

U ∩ (Q ∩K) ⊃ (U ′ ∩K) ∩ (Q ∩K) = (U ′ ∩K) ∩Q 6= ∅.

Hence a is contained in the closure of Q ∩K in K.
(4) ⇒ (5). Suppose Q∩K is closed inK for every test subspace K ⊂ X. Let

a ∈ Q. By (4), there exists a test subspace K0 of X, such that a is contained
in the closure of Q∩K0 in K0. By the assumption (5), Q∩K0 is closed in K0;
and hence a ∈ Q ∩K0 ⊂ Q.

(5) Let f−1(Q) be closed in K for each test map f : K → X. Then, in
particular, for each test subspace L ⊂ X the set Q ∩ L is closed in L. The
assumption (5) then says that Q is closed in X. This shows that X is a k-
space. 2

(2.10.11) Theorem. Let p : Y → X be a quotient map and Y a k-space. Then
X is a k-space.

Proof. Let B ⊂ X be k-closed. We have to show that B is closed, hence, since
p is a quotient map, that p−1(B) is closed in Y . Let g : D → Y be a test map.
Then g−1(p−1(B)) = (pg)−1(B) is closed in D, because B is k-closed. Since Y
is a k-space, p−1(B) is closed in Y . 2

(2.10.12) Proposition. A closed (open) subspace of a k-space is a k-space.
The same holds for whk-spaces.

Proof. Let A be closed and B ⊂ A a subset such that f−1(B) is closed in C
for test maps f : C → A. We have to show: B is closed in A or, equivalently,
in X.

If g : D → X is a test map, then g−1(A) is closed in D and hence compact,
since D is compact. The restriction of g yields a continuous map h : g−1(A) →
A. The set h−1(B) = g−1(B) is closed in g−1(A) and therefore in D, and this
shows that B is closed in X.

Let U be open in the k-space X. We write X as quotient q : Z → X
according to (2.10.5). Then q : q−1(U) → U is a quotient map and q−1(U) as
topological sum of locally compact Hausdorff spaces a k-space. Therefore the
quotient U is a k-space.

The second assertion follows, if we take (2.10.1) into account. 2
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In general, a subspace of a k-space is not a k-space (see (2.10.25)). Let X be
a k-space and i : A ⊂ X the inclusion. Then the map k(i) : k(A) → X = k(X)
is continuous. The next proposition shows that k(i) has in the category k- TOP
the formal property of a subspace.

(2.10.13) Proposition. A map h : Z → k(A) from a k-space Z into k(A) is
continuous if and only if k(i) ◦ h is continuous.

Proof. If h is continuous then also k(i)◦h. Conversely, let k(i)◦h be continuous.
We have k(i) = i◦ιA. Since i is the inclusion of a subspace, ιA◦h is continuous;
(2.10.8) now shows that h is continuous. 2

(2.10.14) Theorem. The product in TOP of a k-space X with a locally com-
pact Hausdorff space Y is a k-space.

Proof. By (2.10.10), a locally compact Hausdorff space is a k-space. We write
X as quotient of q : Z → X, where Z is a sum of ch-spaces (2.10.5). Since the
product of a quotient map with a locally compact space is again a quotient
map, we see that X × Y is a quotient of the locally compact Hausdorff space,
hence k-space, Z × Y , and therefore a k-space (2.10.11). 2

A product of k-spaces is not always a k-space (see (2.10.25)). Therefore one
is looking for a categorical product in the category k- TOP. Let (Xj | j ∈ J)
be a family of k-spaces and

∏
j Xj its product in the category TOP, i.e., the

ordinary topological product. We have a continuous map

pj = k(prj) : k(
∏

j Xj) → k(Xj) = Xj .

The next theorem is a special case of the fact that a right adjoint functor
respects limits.

(2.10.15) Theorem. (pj : k(
∏

j Xj) → Xj | j ∈ J) is a product of (Xj | j ∈ J)
in the category k-TOP.

Proof. We use (2.10.8) and the universal property of the topological product
and obtain, in short-hand notation, for a k-space B the canonical bijection

k- TOP(B, k(
∏
Xj)) = TOP(B,

∏
Xj) ∼=

∏
TOP(B,Xj) =

∏
k- TOP(B,Xj),

and this is the claim. 2

In the case of two factors, we use the notation X ×k Y for the product in
k- TOP just defined. The next result shows that the wh-spaces are the formally
hausdorff spaces in the category k- TOP.

(2.10.16) Proposition. A k-space X is a wh-space if and only if the diagonal
DX of the product X ×k X is closed.
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Proof. Let X be a wh-space. In order to verify that DX is closed, we have to
show that for each test map f : K → X×kX the pre-image f−1(DX) is closed.
Let fj : K → X be the j-th component of f . Then Lj = fj(K) is a ch-space,
since X is wh-space. Hence L = L1 ∪ L2 ⊂ X is a ch-space. The relation
f−1DX = f−1((L× L) ∩DX) shows that this set is closed.

Let DX be closed in X ×k X and f : K → X a test map. We have to show
that f(K) ⊂ X is closed. Let g : L → X be another test map. Since X is a
k-space, we have to show that g−1f(K) ⊂ L is closed. We use the relation

g−1f(K) = pr2((f × g)−1DX).

Since DX is closed, the pre-image under f × g is closed and therefore also pr2
as a compact set in a Hausdorff space. 2

Recall the mapping space F (X,Y ) with compact-open topology.

(2.10.17) Theorem. Let X and Y be k-spaces, and let f : X ×k Y → Z be
continuous. The adjoint map f∧ : X → kF (Y, Z), which exists as a set map,
is continuous.

Proof. The map f∧ : X → kF (Y, Z) is continuous, if for each test map t : C →
X the composition f∧ ◦ t is continuous. We use f∧ ◦ t = (f ◦ (t × idY ))∧.
Therefore is suffices to assume that X is a ch-space. But then, by (2.10.14),
X ×k Y = X ×Y and therefore f∧ : X → F (Y, Z) is continuous and hence also
f∧ : X → kF (Y, Z), by (2.10.6). 2

(2.10.18) Theorem. Let Y be a k-space. Then the evaluation

eY,Z : kF (Y, Z)×k Y → Z, (f, y) 7→ f(y)

is continuous.

Proof. Let t : C → kF (Y, Z) ×k Y be a test map. We have to show the con-
tinuity of eY,Z ◦ t. Let t∧1 : C → F (Y, Z) and t2 : C → Y be the continuous
components of t. We show first: The adjoint t1 : C×Y → Z of t∧1 is continuous.
By (?? 1.4), this continuity is equivalent to the continuity of the second adjoint
map t∨1 : Y → F (C,Z). In order to show its continuity, we compose with a test
map s : D → Y . But t∨1 ◦ s = F (s, Z) ◦ t∧1 is continuous. Moreover we have
eY,Z ◦ t = t1 ◦ (id, t2), and the right hand side is continuous. 2

A combination of (2.10.17) and (2.10.18) now yields the universal prop-
erty of the evaluation eY,Z for k-spaces:

(2.10.19) Proposition. Let X and Y be k-spaces. The assignments f 7→ f∧

and g 7→ eY,Z ◦ (g ×k idY ) = g∼ are inverse bijections

TOP(X ×k Y, Z) ∼= TOP(X, kF (Y, Z))

between these sets. 2
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(2.10.20) Theorem. Let X, Y and Z be k-spaces. Since eY,Z is continuous,
we have an induced set map

λ : kF (X, kF (Y, Z)) → kF (X ×k Y, Z), f 7→ eY,Z ◦ (f ×k idY ) = f∼.

The map λ is a homeomorphism.

Proof. We use the commutative diagram

kF (X, kF (Y, Z))×k X ×k Y
e1×id //

λ×id× id

��

kF (Y, Z)×k Y

e2

��
kF (X ×k Y, Z)×k X ×k Y

e3 // Z

with e1 = eX,kF (Y,Z), e2 = eY,Z , and e3 = eX×kY,Z . Since e1 × id and e2 are
continuous, the universal property of e3 shows that λ is continuous; namely,
using the notation from (2.10.19), we have e2 ◦ (e1 × id) = λ∼. The universal
property of e1 provides us with a unique continuous map

µ : kF (X ×k Y, Z) → kF (X, kF (Y, Z)), f 7→ f∧,

such that e1 ◦ (µ× id(X)) = e∧3 , where e∧3 : kF (X ×k Y, Z)×k X → kF (Y, Z) is
the adjoint of e3 with respect to the variable Y . One checks that λ and µ are
inverse to each other, hence homeomorphisms. 2

(2.10.21) Theorem. Let X and Y be k-spaces, and f : X → X ′ and g : Y →
Y ′ be quotient maps. Then f × g : X ×k Y → X ′ ×k Y

′ is a quotient map.

Proof. It suffices to treat the case g = id, since a composition of quotient maps
is a quotient map. Using (2.10.20), the proof is now analogous to (??). 2

(2.10.22) Proposition. Let f : X → Y be a quotient map and X a whk-space.
Then Y is a whk-space if and only if R = {(x1, x) | f(x1) = f(x2)} is closed in
X ×k X.

Proof. The set R is the pre-image of DY under f×f . Since f×k f is a quotient
map (2.10.21), DY is closed if and only if R is closed. Now apply (2.10.11) and
(2.10.16). 2

(2.10.23) Proposition. Let Y and Z be k-spaces and assume that Z is a wh-
space. Then the mapping space kF (Y, Z) is a wh-space. In particular, if Y and
Z are whk-spaces, then kF (Y, Z) is a whk-space.

Proof. Let f∧ : K → kF (Y, Z) be a test map. We have to show that it has
a closed image hence a k-closed. For this purpose let g∧ : L → kF (Y, Z) be
another test map. It remains to show that the pre-image M of f∧(K) under
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g∧ is closed. We use the adjoint maps f : K × Y → Z and g : L × Y → Z.
For y ∈ Y let iy : K × L → (K × Y ) ×k (L × Y ), (k, l) 7→ (k, y, l, y). Then
M = pr2(

⋂
y∈Y ((f × g)iy)−1DZ). Since Z is a wh-space and therefore the

diagonal DZ closed (see (2.10.16)), we see that M is closed. 2

We now consider pointed spaces. Let (Xj | j ∈ J) be a family of pointed
k-spaces. Let

∏k
j Xj be its product in k- TOP. Let WJXj be the subset of

the product of those points for which at least one component equals the base
point. The smash product

∧k
j Xj is the quotient space (

∏k
j Xj)/WJXj . In

the case that J = {1, . . . , n} we denote this space by X1∧k . . .∧kXn. A family
of pointed maps fj : Xj → Yj induces a pointed map

∧k
fj :

∧k
j Xj →

∧k
j Yj .

Let X and Y be pointed k-spaces. Let F 0(X,Y ) ⊂ F (X,Y ) be the sub-
space of pointed maps. We compose a pointed map f : X ∧k Y → Z with
the projections p : X ×k Y → X ∧k Y . The adjoint (fp)∧ : X → kF (Y, Z) is
continuous and has an image contained in kF 0(Y, Z). We obtain a continuous
map X → kF 0(Y, Z) which will be denoted by f∧.

The evaluation eY,Z induces e0Y,Z which makes the following diagram com-
mutative.

kF 0(Y, Z)×k X
k(i)×id //

p

��

kF (Y, Z)×k X

eY,Z

��
kF 0(Y, Z) ∧k X

e0
Y,Z // Y

i is the inclusion and p the quotient map. The continuity of k(i) and eY,Z

implies the continuity of the pointed evaluation e0Y,Z . In analogy to (2.10.20)
one proves:

(2.10.24) Theorem. Let X, Y and Z be pointed k-spaces. The assignment

µ0 : kF 0(X ∧k Y, Z) → kF 0(X, kF 0(Y, Z), f 7→ f∧

is a homeomorphism. 2

(2.10.25) Example. Let R/Z be obtained from R by identifying the subset
Z to a point (so this is not the factor group!). We denote by p : R → R/Z the
quotient map.

(1) The product p× id : R×Q → R/Z×Q of quotient maps is not a quotient
map.

(2) The product R/Z×Q is not a k-space, but the factors are k-spaces (see
(2.10.6)).

(3) The product R/Z×R is a k-space (see (2.10.11) and (2.10.14)), but the
subspace R/Z×Q is not a k-space by (2).
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If K ⊂ R/Z is compact, then there exists l ∈ N such that K ⊂ p[−l, l].
Let (rn | n ∈ N) be a strictly decreasing sequence of rational numbers with

limit
√

2. The set F =
{(
m+ 1

2n ,
rn

m

)
| n,m ∈ N

}
⊂ R × Q is saturated with

respect to p× id and closed in R×Q.
The set G = (p× id)(F ) is not closed in R/Z×Q. Note that z = (p(0), 0) 6∈

G; but we show that z ∈ G. Let U be a neighbourhood of z. Then there exists
a neighbourhood V of p(0) in R/Z and ε > 0 such that V × ( ] − ε, ε[∩Q) ⊂
U . Choose m ∈ N such that m−1

√
2 < 2−1ε. The set p−1(V ) is then a

neighbourhood of m in R, since m ∈ p−1p(0) ⊂ p−1(V ). Hence there exists
δ > 0 such that ]m− δ,m+ δ[⊂ p−1(V ). Now choose n ∈ N such that 1

2n < δ

and rn −
√

2 < m ε
2 . Then (p× id)(m+ 1

2n ,
rn

m ) ∈ V × ( ]− ε, ε[∩Q) ⊂ U holds,
because m+ 1

2n ∈ ]m−δ,m+δ[⊂ p−1(V ) and 0 < rn

m =
√

2
m + rn−

√
2

m < ε
2 + ε

2 = ε.
We see that U ∩G 6= ∅. This finishes the proof that z ∈ G.

We now see that p× id is not a quotient map, since there exists a saturated
closed set F with non-closed image G.

The space R/Z×Q is not a k-space. Let s : K → R/Z×Q be an arbitrary
test map. We show that s−1(G) is closed in K although G is not closed (this
could not occur in a k-space). The two projections pri s(K) are compact and
Hausdorff. Hence there exists l ∈ N such that pr1 s(K) ⊂ p[−l, l]. The inclusion

s(K) ⊂ pr1 s(K)× pr2 s(K) ⊂ p[−l − l]× pr2 s(K)

then shows s−1(G) = s−1(G ∩ p[−l, l] × pr2 s(K)). But the set G ∩ p[−l, l] ×
pr2 s(K) is finite: By construction, F is a closed discrete subspace of R × Q;
moreover, F ∩ [−l, l] × pr2 s(K) is finite as closed discrete subspace of the
compact space [−l, l]× pr2 s(K); therefore also

(p× id)(F ∩ [−l, l]× pr2 s(K)) = G ∩ p[−l, l]× pr2 s(K)

is finite. A finite set in a Hausdorff space is closed, and therefore s−1(G) as
pre-image of a closed set closed itself. 3

(2.10.26) Example. It is already stated in [?, p. 336] that (Q ∧ Q) ∧ N0

and Q ∧ (Q ∧ N0) are not homoeomorphic. In [?, p. 26] it is proved that
the canonical continuous bijection from the first to the second space is not a
homeomorphism. 3

Problems

1. A space is a k-space if and only if it is a quotient of a locally compact Hausdorff
space.
2. Let X1 ⊂ X2 ⊂ . . ., let Xj be a whk-space and let Xj ⊂ Xj+1 be closed. Then
X = ∪jXj , with colimit topology, is an whk-space. If the Xi are k-spaces, then X
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is a k-space, being a quotient of the k-space
‘

i Xi. If the Xi are wh-spaces, hence
T1-spaces, then each test map f : K → X has an image which is contained in some Xi

and therefore closed. If each inclusion is Xi ⊂ Xi+1 closed, the image is also closed
in X and therefore X a wh-space.
3. Let X and Y be k-spaces. Passage to adjoint maps induces bijections of homotopy
sets [X ×k Y, Z] ∼= [X, kF (Y, Z)] and [X ∧ Y, Z]0 ∼= [X, kF 0(Y, Z)]0.
4. A map f : X → Y between topological spaces is said to be quasi-continuous,
if the composition with each test map K → X is continuous. Continuous maps
are certainly quasi-continuous. The composition of quasi-continuous maps is quasi-
continuous. We obtain the category QU of topological spaces and quasi-continuous
maps. TOP is a subcategory of QU; but in QU there may exist more morphisms
between two topological spaces than in TOP. We can rephrase (2.10.6): X is a k-
space, if each quasi-continuous map X → Y is continuous.
5. Let (Xj | j ∈ J) be a family of k-spaces. Then the topological sum

P
j∈J Xj is a

k-space. The product in k-TOP is compatible with sums.
6. Let a pushout of topological spaces with closed j : A ⊂ X be given.

A
f //

j
��

B

J
��

X
F // Y

Let X and B be whk-spaces. Then Y is a whk-space.

Proof. As a quotient of the k-space X + B, the space Y is a k-space. As a closed
subspace of X the space A is a whk-space. One verifies that the relation for the
definition of Y is closed in (X + B)×k (X + B). Now use (2.10.22). 2

2.11 Interval and Circle

We characterize the unit interval and the unit circle by topological properties.
The proofs are a remarkable example of an axiomatic deduction. The method
goes back to Hilbert and aims at a topological foundation of plane geometry.

In order to formulate the main theorems we introduce the notion of a cut
point. A point of x in a connected space X is said to be a cut point of X if
X r x is disconnected. A point which is not a cut point will be called in this
context end point of X. A decomposition Y = U ∪ V of a space Y in the sense
of section (??) will be expressed by the symbol Y = U |V . We assume that X
contains more than one point.

(2.11.1) Theorem (Interval theorem). A compact connected metric space
whose point with the exception of at most two are cut points is homeomorphic
to the unit interval.
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(2.11.2) Theorem (Circle theorem). A compact connected metric space which
becomes disconnected when we remove any two point set is homeomorphic to
the unit circle.

The idea for proving (2.11.1) is: By studying connected subsets of X we
construct a total ordering of X. This ordering allows to construct a monotonic
map X → 0, 1] which will turn out to be a homeomorphism. We know that the
topology of [0, 1] is defined from the ordering.) We try to imitate this situation
for X.

(2.11.3) Proposition. Let X be a connected Hausdorff space, x ∈ X a cup
point and X r x = U |V . Then:

(1) U = U ∪ x, V = V ∪ x. In particular U and V are open in X.
(2) U and V are connected.
(3) If y ∈ U and X r y = A|B, then A or B is contained in U .

Proof. (1) U is closed in X r x, hence U = U ∩ (X r x) = U r x and therefore
U ⊂ U ∪ x. If U were equal to U , then U and V ∪ x would be closed sets in
X, and U ∩ (V ∪ x) = U ∩ V ⊂ U ∩ (V ∪ x) = ∅ would show that they are a
decomposition of X. As complement of V the set U is open.

(2) Let U = A|B and x ∈ A, say. Then we have B ∩ V = B ∩ (V ∪ x) =
B ∩ V = ∅ and therefore X = B|(A ∪ V ), since A and B ate closed in U and
hence in X.

(3) V = V ∪ x is contained in X r y, and, being connected, contained in A
or in B. If V ∪ x ⊂ A, say, then B ⊂ X r V = U . 2

(2.11.4) Proposition. Assume in addition to (2.11.3) that X is compact met-
ric. Then U and V each contain an end point of X.

Proof. Suppose each point of U , and hence of U = U ∪ x, is a cut point of
X. Since U is, by (2.11.3), a connected compact metric space, which contains
more than one point, there exists in U and hence in U a countably infinite
dense subset. Let {x(1), x(2), . . .} ⊂ U be dense. We show inductively: There
exists a subsequence (x(n1), x(n2), . . .) and decompositions X rx(nr) = Ur|Vr

with these properties:

(α) X r x(nr) = Ur|Vr,
(β) nr+1 is the smallest element of {j ∈ N | x(j) ∈ Ur},
(γ) U ⊃ U1 ⊃ U2 ⊃ · · · .
Suppose n1 = 1 and Xrx(1) = U1|V1, where U1 the part lying in U (2.11.3)

(3). Suppose x(j), Uj , Vj are given with the stated properties 1 ≤ j ≤ t.
Then Ut is a non-empty, and by (2.11.3) (1) open, subset of U . Therefore
Ut contains points of the form x(n). We define nt+1 as smallest integer in
{j ∈ N | x(j) ∈ Ut}. By assumption, X r x(nt+1) is decomposable; we choose
a decomposition

X r x(nt+1) = Ut+1|Vt+1, Ut+1 ⊂ Ut.
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Since x(n1), . . . , x(nt) /∈ Ut+1, the index nt+1 is different from n1, . . . , nt.
The compact sets U ⊃ U1 ⊃ U2 ⊃ . . . have a non-empty intersection U∞.

Since U t+1 = Ut+1 ∪ x(nt+1) ⊂ Ut, the U ⊃ U1 ⊃ U2 ⊃ . . . have the same
intersection. Let z ∈ U∞ ⊂ U and Xr z = A|B. By (2.11.3), each Umcontains
either A or B. Say A is contained in infinitely many Um, hence in U∞. Since
A is open, we can select a point x(i) ∈ A. Let nt+1 the smallest of the integers
n2, n3, . . . , which is larger than i. Then x(i) ∈ A ⊂ Ut, and this contradicts
(β); therefore not every point of U is a cut pint. Similarly for V . 2

(2.11.5) Proposition. Suppose X satisfies the hypotheses of (2.11.1). Let x
be a cup point and X r x = U |V . Then U and V are connected.

Proof. Since X has at most two end point it has exactly two, by (2.11.4), say
a ∈ U and b ∈ V . Suppose U = A|B and a ∈ A. Then

X r x = B|((X r x) rB),

but B does not contain a and b, and this contradicts (2.11.4) applied now to
this decomposition. 2

Now we are able to define a total order < on a space X satisfying the
hypotheses of (2.11.1). Recall that a total order is a relation < which satisfies:

(o1) For no x the relation x < x holds.
(o2) If x 6= y, then either x < y or y < x.
(o3) x < y and y < z implies x < z.

For x ∈ X let Lx = ∅ in the case that x = a, and other the component of
X r x which contains a. Similarly let Rx = ∅ in the case that x = b ist, and
otherwise the component of X r x which contains b. Here a and b are the two
end points, as in the proof of (2.11.5). For each x we now have a disjoint union
X = Lx ∪ x ∪Rx.

We now postulate:

x < y ⇔ Lx ⊂ Ly, Lx 6= Ly.

(2.11.6) Lemma. x < y ⇔ x ∈ Ly.

Proof. Let x ∈ Ly. Then Lx 6= Ly, since x /∈ Lx. We have y 6= a, since La = ∅
but x ∈ Ly. If y = b, then Lx ⊂ X r b = Ly. Finally, if y /∈ {a, b}, then,
by (2.11.3) (3), Lx ⊂ Ly oder Rx ⊂ Ly; and because of a ∈ Lx ∩ Ly the first
relation holds.

Let x < y. Then y 6= a, since Ly 6= ∅. If x = a, then x ∈ Ly by definition of
Ly. If x 6= a, then Lx ∪ x = Lx ⊂ Ly = Ly ∪ y. The relation Lx 6= Ly implies
x 6= y, and hence x ∈ Ly. 2

In a similar manner one shows: x ∈ Ry ⇔ Rx ⊂ Ry Rx 6= Ry.
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(2.11.7) Proposition. The relation < is a total order on X.

Proof. (o1) and (o3) are direct consequences of the definition.
(o2): Let x 6= y. Then x ∈ Ly or x ∈ Ry. If x ∈ Ly, then x < y holds

by (11.7). If x ∈ Ry, then we conclude Rx ⊂ Ry; Lx ∪ x ⊃ Ly ∪ y; Lx ⊃ Ly;
y < x. 2

The order topology on X has as basis the sets of the U(< q) = {x ∈ X |
x < q} and U(p <) = {y ∈ X | p < y}. For p < q we then have the open
sets U(p < q) = {x ∈ X | p < x < q} = U(p <) ∩ U(< q). These sets are
non-empty, because otherwise Lp ∪ p | Rq ∪ q would be a decomposition of X.
Therefore there exists a further element between two given elements. These
sets are also open in the original topology, for, by (2.11.7), we have

U(< q) = Lq, U(p <) = Rp;

and these sets are open by (2.11.3).
The order topology is hausdorff: Suppose x < y, and choose z with x < z <

y; then Lz and Rz are disjoint open neighbourhoods of x and y. The identity
map from X with the original topology to X with order topology is therfore
continuous, and therefore a homeomorphism since X is compact.

Let E ⊂ X r {a, b} be a countable dense subset of X. The induced order
on E has, as we have seen the property that there exists between any two
elements a further element, more over there do not exist maximal and minimal
elements. Under these conditions there exists an order preserving bijection
f : E → Q∩]0, 1[ from E to the rational numbers in ]0, 1[. We want to extend f
to a homeomorphism X → [0, 1]. for this purpose we show that (X,E) satisfies
the Dedekind axiom:

(2.11.8) Proposition (Dedekind cuts). Let A ⊂ E be a subset without largest
element. Moreover assume: If x ∈ A, y ∈ E and y < x, then y ∈ A. Then the
set K = {s ∈ X | x < s for allx ∈ A} of upper bounds of A has a minimum
sA, and A = U(< sA) ∩ E.

Proof. Since b ∈ K the set K is non-empty. If K = X, then a is the smallest
element of K. The set X r K is open: Let x ∈ X r K. There exists y ∈ A
with x < y. The set U(a < y) is then open, contains in x and is contained in
X rK. If K does not have a minimum, then K is open too and K|(X rK) a
decomposition of X. 2

A subset A ⊂ E which satisfies the hypotheses of (2.11.8) is called a cut of
E. (2.11.8) implies that the assignment x 7→ U(< x)∩E = Ax is a bijection of
X with the set of cuts of E. This bijection is order preserving in the following
sense: x < y ⇔ Ax ⊂ Ay. We assign to a cut A of E the cut f(A) of R =
Q∩ ]0, 1[. The cuts of R are the sets Q∩ [0, t] for t ∈ [0, 1]. The bijection of cuts
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from E to R induces in this manner a bijective order preserving mapX → [0, 1].
It is continuous with respect to the order topologies and, by compactness of
X, a homeomorphism. This finishes the proof of theorem (2.11.1).

Proof of (2.11.2). We reduce the proof of (2.11.2) to (2.11.1): The space is
seen to be the union of two intervals with the same end points. We divide the
proof into five steps.

(1) No point is a cut point. If X r x = U ∪ V were a decomposition,
then there would exist, by (2.11.4), a point y ∈ U which does not separate
U = U ∪ x and a point z ∈ V , which does not separate V ∪ x = V . Then
X r {y, z} = (U r y) ∪ (V r z) would be the union of connected sets which
contain x. Hence X r {y, x} would be connected, and this contradicts the
assumption.

(2) Suppose here and in the sequel X r {a, b} = U |V , a 6= b. Then U ∪
{a, b} = U , because U ⊂ U ∪ {a, b} as in the proof of (2.11.3) (1). The set
X r a is connected, by (1), and b ∈ is cut point of this space. If we apply
(2.11.3) (1) to (X r a, b) instead of (X,x), we see that b ∈ U , and analogously
a ∈ U .

(3) U ∪{a, b} is connected. Suppose we have a decomposition U ∪ a = A|B
with a ∈ A. From (2) we see U ∪ a = U r b, hence this set is closed in X r b.
Similarly, V ∪ a is closed in X r b. From

X r b = U ∪ a ∪ V = B ∪A ∪ (V ∪ a)

we obtain X r b = B|(A ∪ a ∪ V ), and this contradicts (1).
(4) Since U ∪ a is connected we also have U ∪ {a, b} = U ∪ a.
(5) We show that U and V satisfy the hypotheses of (11.1), and that {a, b}

are the end points. We have already seen in (3) that a and b are not cut points.
Let u ∈ U and suppose that Uru is connected. Then for no v ∈ V the set V rv
is connected, for otherwise Xr{u, v} = Uru∪V rv and a ∈ (Uru)∩(V rv)
the space X r {u, v} would be connected, in contrast to the assumption. By
(2.11.1), V is a simple arc with end points a and b. Therefore the sets V r v,
v ∈ V has two components a ∈ Ca and b ∈ Cb and hence Ca ∪ (U r u) ∪ Cb is
connected. But this set equals X r {u, v}. The assumption that U r u, u ∈ U
is connected thus leads to a contradiction. From (2.11.1) we now see that U
is a simple arc with end points a, b; the same holds for V . Therefore X is the
union of two simple arcs with the same endpoint and therefore homeomorphic
to S1. 2
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