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Chapter 1

Manifolds

1.1 Differentiable Manifolds

A topological space X is n-dimensional locally Euclidean if each x ∈ X
has an open neighbourhood U which is homeomorphic to an open subset V of
Rn. A homeomorphism h : U → V is a chart or local coordinate system
of X about x with chart domain U . The inverse h−1 : V → U is a local
parametrization of X about x. If h(x) = 0, we say that h and h−1 are
centered at x. A set of charts is an atlas for X if their domains cover X. If
X is n-dimensional locally Euclidean, we call n the dimension of X and write
dimX = n. The dimension is well-defined, by invariance of dimension.

An n-dimensional manifold or just n-manifold is an n-dimensional
locally Euclidean Hausdorff space with countable basis for its topology. Hence
manifolds are locally compact. A surface is a 2-manifold. A 0-manifold is a
discrete space with at most a countably infinite number of points. The notation
Mn is used to indicate that n = dimM .

Suppose (U1, h1, V1) and (U2, h2, V2) are charts of an n-manifold. Then we
have the associated coordinate change or transition function

h2h
−1
1 : h1(U1 ∩ U2) → h2(U1 ∩ U2),

a homeomorphism between open subsets of Euclidean spaces.
Recall: A map f : U → V between open subsets of Euclidean spaces (U ⊂

Rn, V ⊂ Rm) is a Ck-map if it is k-times continuously differentiable in the
ordinary sense of analysis (1 ≤ k ≤ ∞). A continuous map is also called a
C0-map. A Ck-map f : U → V has a differential Df(x) : Rn → Rm at x ∈ U .

If the coordinate changes h2h
−1
1 and h1h

−1
2 are Ck-maps, we call the charts

(U1, h1, V1) and (U2, h2, V2) Ck-related (1 ≤ k ≤ ∞). An atlas is a Ck-atlas
if any two of its charts are Ck-related. We call C∞-maps smooth or just
differentiable ; similarly, we talk about a smooth or differentiable atlas.
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(1.1.1) Proposition. Let A be a smooth atlas for M . The totality of charts
which are smoothly related to all charts of A is a smooth atlas D(A). If A
and B are smooth atlasses, then A ∪ B is a smooth atlas if and only if D(A) =
D(B). The atlas D(A) is the uniquely determined maximal smooth atlas which
contains A. 2

A differential structure on the n-manifold M is a maximal smooth atlas
D for M . The pair (M,D) is called a smooth manifold . A maximal atlas
serves just the purpose of this definition. Usually we work with a smaller
atlas which then generates a unique differential structure. Usually we omit the
differential structure from the notation; the charts of D are then called the
charts of the differentiable manifold M .

Let M and N be smooth manifolds. A map f : M → N is smooth at
x ∈M if f is continuous at x and if for charts (U, h, U ′) about x and (V, k, V ′)
about f(x) the composition kfh−1 is differentiable at h(x). We call kfh−1

the expression of f in local coordinates. The map f is smooth if it is
differentiable at each point. The composition of smooth maps is smooth. Thus
we have the category of smooth manifolds and smooth maps. A diffeomor-
phism is a smooth map which has a smooth inverse. Manifolds M and N are
diffeomorphic if there exists a diffeomorphism f : M → N .

Let U ⊂ Rn be open. Then (U, id, U) is a chart for U and already an atlas.
This atlas makes U into a smooth manifold. When we talk about U as a smooth
manifold, we think of this structure.

Let U be open in a smooth manifold M . The totality of charts of M with
domain in U form a smooth atlas for U . We call such manifolds U open sub-
manifolds of M . The reader should now verify two things: (1) The inclusion
U ⊂ M is then a smooth map. (2) A chart (U, h, V ) of a smooth n-manifold
M is a diffeomorphism of the open submanifold U onto the open submanifold
V of Rn.

Smooth manifolds M and N have a product in the category of smooth
manifolds. The charts of the form (U × V, f × g, U ′ × V ′) for charts (U, f, U ′)
of M and (V, g, V ′) of N define a smooth structure on M ×N . The projections
onto the factors are smooth. The canonical isomorphisms Rm × Rn = Rm+n

are diffeomorphisms.
A subset N of an n-manifold M is a k-dimensional submanifold of M

if the following holds: For each x ∈ N there exists a chart h : U → U ′ of M
about x such that h(U ∩ N) = U ′ ∩ (Rk × 0). A chart with this property
is called adapted to N . The difference n − k is the codimension of N in
M . (The subspace Rk × 0 of Rn may be replaced by any k-dimensional linear
or affine subspace if this is convenient.) If we identify Rk × 0 = Rk, then
(U ∩ N,h, U ′ ∩ Rk) is a chart of N . If M is smooth, we call N a smooth
submanifold of M if there exists about each point an adapted chart from the
differential structure of M . The totality of charts (U ∩ N,h, U ′ ∩ Rk) which



1.1 Differentiable Manifolds 5

arise from adapted smooth charts of M is then a smooth atlas for N . In this
way, a differentiable submanifold becomes a smooth manifold, and the inclusion
N ⊂M is a smooth map. A smooth map f : N →M is a smooth embedding
if f(N) ⊂M is a smooth submanifold and f : N → f(N) a diffeomorphism.

(1.1.2) Spheres. The spheres are manifolds which need an atlas with at
least two charts. We have the atlas with two charts (UN , ϕN ) and (US , ϕS)
coming from the stereographic projection (??). The coordinate transformation
is ϕS ◦ ϕ−1

N (y) = ‖y‖−2y. The differential of the coordinate transformation
at x is ξ 7→ (‖x‖2ξ − 2〈x, ξ 〉x) · ‖x‖−4. For ‖x‖ = 1 we obtain the reflection
ξ 7→ ξ − 2〈x, ξ 〉x in a hyperplane. 3

(1.1.3) Projective Spaces. We construct charts for the projective space
RPn. The subset Ui = {[x0, . . . , xn] | xi 6= 0} is open. The assignment

ϕi : Ui → Rn, [x0, . . . , xn] 7→ x−1
i (x0, . . . , xi−1, xi+1, . . . , xn)

is a homeomorphism. These charts are smoothly related.
Charts for CPn can be defined by the same formulas. Note that CPn has

dimension 2n as a smooth manifold. (It is n-dimensional when viewed as a
so-called complex manifold.) 3

(1.1.4) Proposition. Let M be an n-manifold and U = (Uj | j ∈ J) an open
covering of M . Then there exist charts (Vk, hk, Bk | k ∈ N) of M with the
following properties:

(1) Each Vk is contained in some member of U .
(2) Bk = U3(0).
(3) The family (Vk | k ∈ N) is a locally finite covering of M .

In particular, each open cover has a locally finite refinement, i.e., manifolds
are paracompact. If M is smooth, there exists a smooth partition of unity
(σk | k ∈ N) subordinate to (Vk). There also exists a smooth partition of unity
(αj | j ∈ J) such that the support of αj is contained in Uj and at most a
countable number of the αj are non-zero.

Proof. The space M is a locally compact Hausdorff space with a countable
basis. Therefore there exists an exhaustion

M0 ⊂M1 ⊂M2 ⊂ . . . ⊂M =
⋃∞
i=1Mi

by open sets Mi such that M i is compact and contained in Mi+1 (??). Hence
Ki = M i+1 rMi is compact. For each i we can find a finite number of charts
(Vν , hν , Bν), Bν = U3(0), such that Vν ⊂ Uj for some j and such that the
h−1
ν U1(0) cover Ki and such that Vν ⊂Mi+2 rM i−1 (M−1 = ∅). Then the Vν

form a locally finite, countable covering ofM , now denoted (Vk, hk, Bk | k ∈ N).
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The function λ : R → R, λ(t) = 0 for t ≤ 0, λ(t) = exp(−1/t) for t > 0,
is a C∞-function. For ε > 0, the function ϕε(t) = λ(t)(λ(t) + λ(ε − t))−1 is
C∞ and satisfies 0 ≤ ϕε ≤ 1, ϕε(t) = 0 ⇔ t ≤ 0, ϕε(t) = 1 ⇔ t ≥ ε. Finally,
ψ : Rn → R, x 7→ ϕε(‖x‖ − r) is a C∞-map which satisfies 0 ≤ ψ(x) ≤ 1,
ψ(x) = 1 ⇔ x ∈ Ur(0), ψ(x) = 0 ⇔ ‖x‖ ≥ r + ε.

We use these functions ψ for r = 1 and ε = 1 and define ψi by ψ ◦ hi on Vi
and as zero on the complement. Then the σk = s−1ψk with s =

∑∞
j=1 ψj yield

a smooth, locally finite partition of unity subordinate to (Vk | k ∈ N).
The last statement follows from ??. 2

(1.1.5) Example. Let C0 and C1 be closed disjoint subsets of the smooth
manifold M . Then there exists a smooth function ϕ : M → [0, 1] such that
ϕ(Cj) ⊂ {j}; apply the previous proposition to the covering by the Uj =
M r Cj . 3

(1.1.6) Example. Let A be a closed subset of the smooth manifold M and
U an open neighbourhood of A in M . Let f : U → [0, 1] be smooth. Then
there exists a smooth function F : M → [0, 1] such that F |A = f |A. For the
proof choose a partition of unity (ϕ0, ϕ1) subordinate to (U,M rA). Then set
F (x) = ϕ0(x)f(x) for x ∈ U and F (x) = 0 otherwise. 3

(1.1.7) Proposition. Let M be a submanifold of N . A smooth function
f : M → R has a smooth extension F : N → R.

Proof. From the definition of a submanifold we obtain for each p ∈M an open
neighbourhood U of p in N and a smooth retraction r : U → U ∩M . Hence
we can find an open covering (Uj | j ∈ J) of M in N and smooth extensions
fj : Uj → R of f |Uj ∩M . Let (αj | j ∈ J) be a subordinate smooth partition
of unity and set F (x) =

∑
j∈J αj(x)fj(x), where a summand is defined to be

zero if fj(x) is not defined. 2

(1.1.8) Proposition. Let M be a smooth manifold. There exists a smooth
proper function f : M → R.

Proof. A function is proper if the pre-image of a compact set is compact (??).
We choose a countable partition of unity (τk | k ∈ N) such that the func-
tions τk have compact support. Then we set f =

∑∞
k=1 k · τk : M → R.

If x /∈
⋃n
j=1 Supp(τj), then 1 =

∑
j≥1 τj(x) =

∑
j>n τj(x) and therefore

f(x) =
∑
j>n jτj(x) > n. Hence f−1[−n, n] is contained in

⋃n
j=1 Supp(τj)

and therefore compact. 2

In working with submanifolds we often use, without further notice, the
following facts. Let M be a smooth manifold and A ⊂ M . Then A is a
submanifold if and only if each a ∈ A has an open neighbourhood U such that
A ∩ U is a submanifold of U . (Being a submanifold is a local property.) Let
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f : N1 → N2 be a diffeomorphism. Then M1 ⊂ N1 is a submanifold if and only
if f(M1) = M2 ⊂ N2 is a submanifold. (Being a submanifold is invariant under
diffeomorphisms.)

The definition of a manifold via charts admits a different interpretation. The
manifold is obtained as an identification space from the domains of definition
of the local parametrizations. The identification is given by the coordinate
changes. It turns out that the coordinate changes are the basic structural
data. In particular, they determine the topology. We have formalized the
identification process in ??; we use the notation of that section.

Suppose in addition to the hypothesis of?? that the Ui are smooth n-
manifolds and the gji are diffeomorphisms. Then X is n-dimensional locally
Euclidean. If X is a Hausdorff space and has a countable basis, then X carries
a unique structure of a smooth n-manifold such that the hi are smooth embed-
dings onto open submanifolds. The simplest situation arises, when we have two
manifolds U1 and U2 with open subsets Vj ⊂ Uj and a gluing diffeomorphism
ϕ : V1 → V2. Then X = U1 ∪ϕ U2 is the manifold obtained from U1 + U2 by
identifying v ∈ V1 with ϕ(v) ∈ V2.

(1.1.9) Example. Let U1 = U2 = Rn and V1 = V2 = Rn \ 0. Let ϕ = id.
Then the graph of ϕ in Rn ×Rn is not closed. The resulting locally Euclidean
space is not Hausdorff. If we use ϕ(x) = x · ‖x‖−2, then the result is a compact
n-manifold. It is diffeomorphic to Sn. 3

Important objects are the group objects in mathematics are the smooth
category. A Lie group consists of a smooth manifold G and a group structure
on G such that the group multiplication and the passage to the inverse are
smooth maps. The fundamental examples are the classical matrix groups. A
basic result in this context says that a closed subgroup of a Lie group is a
submanifold and with the induced structure a Lie group [?] [?].

Problems

1. Let E be an n-dimensional real vector space 0 < r < n. We define charts for the
Grassmann manifold Gr(E) of r-dimensional subspaces of E. Let K be a subspace
of codimension r in E. Consider the set of complements in K

U(K) = {F ∈ Gr(E) | F ⊕K = E.}

The sets are the chart domains. Let P (K) = {p ∈ Hom(E, E) | p2 = p, p(E) = K} be
the set of projections with image K. Then P (K)→ U(K), p 7→ Ker(p) is a bijection.
The set P (K) is an affine space for the vector space Hom(E/K, K). Let j : K ⊂ E
and q : E → E/K) the quotient map. Then

Hom(E/K, K)× P (K)→ P (K), (ϕ, p) 7→ p + jϕq



8 1 Manifolds

is a transitive free action. We choose a base point p0 ∈ P (K) in this affine space and
obtain a bijection

U(K)← P (K)→ Hom(E/K, K), Ker(p)←p p 7→ p− p0.

The bijections are the charts for a smooth structure.

2. {(x, y, z) ∈ R3 | z2x3 + 3zx2 + 3x− zy2 − 2y = 1} is a smooth submanifold of R3

diffeomorphic to R2. If one considers the set of solution (x, y, z) ∈ C2, then one obtains

a smooth complex submanifold of C3 which is contractible but not homeomorphic to

C2 [?].

1.2 Tangent Spaces and Differentials

We associate to each point p of a smooth m-manifold M an m-dimensional
real vector space Tp(M), the tangent space of M at the point p, and to
each smooth map f : M → N a linear map Tpf : Tp(M) → Tf(p)(N), the
differential of f at p, such that the functor properties hold (chain rule)

Tp(gf) = Tf(p)g ◦ Tpf, Tp(id) = id .

The elements of Tp(M) are the tangent vectors of M at p.
Since there exist many different constructions of tangent spaces, we define

them by a universal property.
A tangent space of the m-dimensional smooth manifold M at p con-

sists of an m-dimensional vector space Tp(M) together with an isomorphism
ik : TpM → Rm for each chart k = (U,ϕ, U ′) about p such that for any two
such charts k and l = (V, ψ, V ′) the isomorphism i−1

l ik is the differential of
the coordinate change ψϕ−1 at ϕ(p). If (T ′pM, i′k) is another tangent space,
then ιp = i−1

k ◦ i′k : T ′pM → TpM is independent of the choice of k. Thus a
tangent space is determined, up to unique isomorphism, by the universal prop-
erty. If we fix a chart k, an arbitrary m-dimensional vector space TpM , and
an isomorphism ik : TpM → Rm, then there exists a unique tangent space with
underlying vector space TpM and isomorphism ik; this follows from the chain
rule of calculus. Often we talk about the tangent space TpM and understand
a suitable isomorphism ik : TpM → Rm as structure datum.

Let f : Mm → Nn be a smooth map. Choose charts k = (U,ϕ, U ′) about
p ∈ M and l = (V, ψ, V ′) about f(p) ∈ N . There exists a unique linear map
Tpf which makes the diagram

TpM
Tpf // Tf(p)N

Rm
D(ψfϕ−1) //

ik

OO

Rn
il

OO
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commutative; the morphism at the bottom is the differential of ψfϕ−1 at
ϕ(p). Again by the chain rule, Tpf is independent of the choice of k and l.
Differentials, defined in this manner, satisfy the chain rule. This definition
is also compatible with the universal maps ιp for different choices of tangent
spaces Tpf ◦ ιp = ιf(p) ◦ T ′pf .

In abstract terms: Make a choice of Tp(M) for each pair p ∈M . Then the
TpM and the Tpf constitute a functor from the category of pointed smooth
manifolds and pointed smooth maps to the category of real vector spaces.
Different choices of tangent spaces yield isomorphic functors.

The purpose of tangent spaces is to allow the definition of differentials. The
actual vector spaces are adapted to the situation at hand and can serve other
geometric purposes (e.g. they can consist of geometric tangent vectors).

(1.2.1) Examples. (1) If V ⊂ Rn is an open subset, we set TpV = Rn and
ik = id for k = (V, id, V ). In this way, we identify TpV with Rn. Under
this identification, Tpf for a smooth map f : U → V between open subsets of
Euclidean spaces becomes the ordinary differential Df(p) of calculus.

(2) Let j : W ⊂M be the inclusion of an open subset of a smooth manifold
M and let x ∈ W . Fix a chart k = (U, h, V ) of M about x such that U ⊂ W .
Then k is also a chart for the open submanifold U . Given TxM and ik, we
set TxW = TxM and use the same ik for W . Then Txj : TxW → TxM is the
identity.

(3) Let k = (U, h, V ) be a chart of M about p. We use the conventions of
(1) and (2). Then Tph : TpU → Th(p)V = Rm is ik.

(4) Let i : M → N be the inclusion of a submanifold. Then Tpi is injective,
because in local coordinates with an adapted chart, i is the inclusion of a
subspace (restricted to open subsets), and the differential of i is this inclusion.
Given TpN , the image of Tpi is independent of the choice of TpM . We often
therefore take this image as a model for TpM . More precisely: IfK = (U,Φ, V ),
V ⊂ Rn is an adapted chart and k = (U ∩M,ϕ,W ), W ⊂ Rm ∼= Rm × 0 ⊂ Rn
its restriction, then we use

TpN
iK // Rn

TpM
ik //

∪
OO

Rm

OO

as structure data, and Tpi becomes the inclusion TpM ⊂ TpN .
In particular, if M is a submanifold of Rn, then TpM is identified with a

subspace of Rn. This subspace has the following interpretation in terms of
tangents. Let α : ] − ε, ε[ → M be a smooth curve with α(0) = p. Then the
derivative α′(0) = dα

dt (0) ∈ Rn is contained in this subspace TpM , and TpM is
the totality of such “velocity vectors” of curves α.
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Suppose we have a commutative diagram

M0
f0 //

∩
��

N0

∩
��

M
f // N

of smooth maps and submanifolds. The chain rule tells us that under the
identifications TpM0 ⊂ TpM,TqN0 ⊂ TqN the differential Tp(f0) coincides
with the restriction of Tp(f) to Tp(M0). 3

We call a smooth map f an immersion if each differential Txf is injective
and a submersion if each differential Txf is surjective. The point x ∈ M is
a regular point of f if Txf is surjective. A point y ∈ N is a regular value
of f if each x ∈ f−1(y) is a regular point, and otherwise a singular value . If
f−1(y) = ∅, then y is also called a regular value.

(1.2.2) Rank Theorem. Let f : M → N be a smooth map from an m-
manifold into an n-manifold.

(1) If Taf is bijective, then there exist open neighbourhoods U of a and V
of f(a), such that f induces a diffeomorphism f : U → V .

(2) If Taf is injective, then there exist open neighbourhoods U of a, V
of f(a), W of 0 ∈ Rn−m and a diffeomorphism F : U × W → V such that
F (x, 0) = f(x) for x ∈ U .

(3) If Taf is surjective, then there exist open neighbourhoods U of a, V
of f(a), W of 0 ∈ Rm−n and a diffeomorphism F : U → V × W such that
prV F (x) = f(x) for x ∈ U with the projection prV : V ×W → V .

(4) Suppose Txf has rank r for all x ∈ M . Then for each a ∈ M there
exist open neighbourhoods U of a, V of f(a) and diffeomorphisms ϕ : U → U ′,
ψ : V → V ′ onto open sets U ′ ⊂ Rm, V ′ ⊂ Rn such that f(U) ⊂ V and
ψfϕ−1(x1, . . . , xm) = (x1, . . . , xr, 0, . . . , 0) for all (x1, . . . , xm) ∈ U ′.

Proof. The assertions are of a local nature. Therefore we can, via local charts,
reduce to the case that M and N are open subsets of Euclidean spaces. Then
these assertions are known from calculus. 2

(1.2.3) Proposition. Let y be a regular value of the smooth map f : M → N .
Then P = f−1(y) is a smooth submanifold of M . For each x ∈ P , we can
identify TxP with the kernel of Txf .

Proof. Let x ∈ P . The rank theorem 1.2.2 says that f is in suitable local
coordinates about x and f(x) a surjective linear map; hence P is locally a
submanifold.

The differential of a constant map is zero. Hence TxP is contained in the
kernel of Txf . For reasons of dimension, the spaces coincide. 2
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(1.2.4) Example. The differentials of the projections onto the factors yield an
isomorphism T(x,y)(M×N) ∼= Tx(M)×Ty(N) which we use as an identification.
With these identifications, T(x,y)(f × g) = Txf × Tyg for smooth maps f and
g. Let h : M × N → P be a smooth map. Then T(x,y)h, being a linear map,
is determined by the restrictions to TxM and to TyN , hence can be computed
from the differentials of the partial maps h1 : a 7→ h(a, y) and h2 : b 7→ h(x, b)
via T(x,y)h(u, v) = Txh1(u) + Tyh2(v). 3

(1.2.5) Proposition. Suppose f : M → N is an immersion which induces a
homeomorphism M → f(M). Then f is a smooth embedding.

Proof. We first show that f(M) is a smooth submanifold of N of the same
dimension as M . It suffices to verify this locally.

Choose U, V,W and F according to 1.2.2. Since U is open and M → f(M)
a homeomorphism, the set f(U) is open in f(M). Therefore f(U) = f(M)∩P ,
with some open set P ⊂ N . The set R = V ∩ P is an open neighbourhood of
b in N , and R ∩ f(M) = f(U) holds by construction. It suffices to show that
f(U) is a submanifold of R. We set Q = F−1R, and have a diffeomorphism
F : Q→ R which maps U×0 bijectively onto f(U). Since U×0 is a submanifold
of U ×W , we see that f(U) is a submanifold.

By assumption, f : M → f(M) has a continuous inverse. This inverse is
smooth, since f : M → f(M) has an injective differential, hence bijective for
dimensional reasons, and is therefore a local diffeomorphism. 2

(1.2.6) Proposition. Let f : M → N be a surjective submersion and g : N →
P a set map between smooth manifolds. If gf is smooth, then g is smooth.

Proof. Let f(x) = y. By the rank theorem, there exist chart domains U about
x and V about y such that f(U) = V and f : U → V has, in suitable local
coordinates, the form (x1, . . . , xm) 7→ (x1, . . . , xn). Hence there exists a smooth
map s : V → U such that fs(z) = z for all z ∈ V . Then g(z) = gfs(z), and
gfs is smooth. (The map s is called a local section of f about y.) 2

We now give an intrinsic and canonical construction of tangent vectors
as directional derivatives of smooth functions. Let Ex(M) be the R-algebra of
germs of smooth functions (M,x) → R. Elements in Ex(M) are represented by
smooth functions defined in a neighbourhood of x and will be denoted by their
representatives; two such define the same element of Ex(M) if they coincide in
some neighbourhood of x. Addition and multiplication is defined pointwise on
representatives. A derivation of Ex(M) is a linear map D : Ex(M) → R such
that D(f · g) = D(f) · g(x) + f(x) · D(g). Let Tx(M) be the vector space of
derivations of Ex(M). A smooth map f : M → N induces a homomorphism of
algebras

Exf : Ef(x)N → ExM, ϕ 7→ ϕ ◦ f
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and a linear map

Tx(f) : Tx(M) → Tf(p)(N), D 7→ D ◦ Exf.

This construction is functorial. The next lemma from calculus is used to show
that these data can be used to exhibit the TxM as tangent spaces.

(1.2.7) Lemma. The vector space TpRn has a basis consisting of ∂
∂x1

, . . . , ∂
∂xn

.
Here we view

∑
i ai

∂
∂xi

as the derivation f 7→
∑
i ai

∂f
∂xi

(p) which arises from
the standard coordinates x1, . . . , xn of Rn. If we identify Tp(Rn) via this basis
with Rn, then Tp(ϕ), for a smooth map ϕ between open sets of Euclidean spaces,
is given by the Jacobi-matrix of Dϕ(p). 2

From this lemma it follows that the ik = Txϕ : Tx(M) → Tϕ(x)(V ) = Rm
for charts k = (U,ϕ, V ) form a tangent space. With this model of tangent
spaces, we have for each Xp ∈ Tp(M) and each smooth function f : M → R
the derivative Xpf of f in direction Xp.

Problems

1. An injective immersion of a compact manifold is a smooth embedding.

2. Let f : M → N be a smooth map which induces a homeomorphism M → f(M).

If the differential of f has constant rank, then f is a smooth embedding. By the rank

theorem, f has to be an immersion, since f is injective.

3. Let M be a smooth m-manifold and N ⊂M . The following assertions are equiv-

alent: (1) N is a k-dimensional smooth submanifold of M . (2) For each a ∈ N there

exist an open neighbourhood U of a in M and a smooth map f : U → Rm−k such that

the differential Df(u) has rank m − k for all u ∈ U and such that N ∩ U = f−1(0).

(Submanifolds are locally solution sets of “regular” equations.)

4. The graph of a smooth function f : Rn → R is a smooth submanifold of Rn+1.

5. Let Y be a smooth submanifold of Z and X ⊂ Y . Then X is a smooth submani-

fold of Y if and only if it is a smooth submanifold of Z. If X is a smooth submanifold,

then there exists about each point x ∈ X a chart (U, ϕ, V ) of Z such that ϕ(U ∩X)

as well as ϕ(U ∩Y ) are intersections of V with linear subspaces. (Charts adapted to

X ⊂ Y ⊂ Z. Similarly for inclusions X1 ⊂ X2 ⊂ . . . ⊂ Xk.)

6. The defining map Rn+1 r 0 → RP n is a submersion. Its restriction to Sn is a

submersion and an immersion (a 2-fold regular covering).

1.3 The theorem of Sard

It is an important fact of analysis that most values are regular. A set A ⊂ N
in the n-manifold N is said to have (Lebesgue) measure zero if for each chart
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(U, h, V ) of N the subset h(U ∩ A) has measure zero in Rn. A subset of Rn
has measure zero if it can be covered by a countable number of cubes with
arbitrarily small total volume. We use the fact that a diffeomorphism (in fact
a C1-map) sends sets of measure zero to sets of measure zero. An open (non-
empty) subset of Rn does not have measure zero. The next theorem is a basic
result for differential topology. (Proofs [?], [?], [?].)

(1.3.1) Theorem (Sard). The set of singular values of a smooth map has
measure zero, and the set of regular values is dense.

Proof. 2

1.4 Examples

(1.4.1) Example. f : Rn+1 → R, (x0, . . . , xn) 7→
∑
x2
i = ‖x‖2 has, away from

the origin, a non-zero differential. The sphere

Sn(c) = f−1(c2) = {x ∈ Rn+1 | c = ‖x‖}

of radius c > 0 is therefore a smooth submanifold of Rn+1. From 1.2.3 we
obtain TxSn(c) = {v ∈ Rn+1 | x ⊥ v}. 3

(1.4.2) Example. Let M(m,n) be the vector space of real (m,n)-matrices
and M(m,n; k) for 0 ≤ k ≤ min(m,n) the subset of matrices of rank k. Then
M(m,n; k) is a smooth submanifold of M(m,n) of dimension k(m + n − k).
For the proof, write a matrix X ∈M(m,n; k) in block form(

A B
C D

)
with a (k, k)-matrix A. The subset U = {X ∈ M(m,n) | det(A) 6= 0} is open.
The relation (

E 0
−CA−1 E

) (
A B
C D

)
=

(
A B
0 D − CA−1B

)
shows that X ∈ U has rank k if and only if D = CA−1B. The map

ϕ : U →M(m− k, n− k),
(
A B
C D

)
7→ D − CA−1B

satisfies ϕ−1(0) = U ∩M(m,n; k), and its differential has rank (m− k)(n− k)
everywhere, as can be seen by varying D alone. This shows that U∩M(m,n; k)
is a smooth submanifold of U . By interchanging suitable rows and columns one
proves analogous assertions for neighbourhoods of other matrices inM(m,n; k).

3
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(1.4.3) Example. The subset

Sk(Rn) = {(x1, . . . , xk) | xi ∈ Rn; x1, . . . , xk linearly independent }

of the k-fold product of Rn is called the Stiefel manifold of k-frames in
Rn. It can be identified with M(k, n; k) and carries this structure of a smooth
manifold. 3

(1.4.4) Example. The group O(n) of orthogonal (n, n)-matrices is a smooth
submanifold of the vector spaceMn(R) of real (n, n)-matrices. Let Sn(R) be the
subspace of symmetric matrices. The map f : Mn(R) → Sn(R), B 7→ Bt · B
is smooth, O(n) = f−1(E), and f has surjective differential at each point
A ∈ O(n). The derivative at s = 0 of s 7→ (At+sXt)(A+sX) is At ·X+Xt ·A;
the differential of f at A is the linear mapMn(R) → Sn(R), X 7→ At ·X+Xt ·A.
It is surjective, since the symmetric matrix S is the image of X = 1

2AS. From
1.2.3 we obtain

TAO(n) = {X ∈Mn(R) | At ·X +Xt ·A = 0},

and in particular for the unit matrix E, TEO(n) = {X ∈Mn(R) | At+A = 0},
the space of skew-symmetric matrices. A local parametrization of O(n) about
E can be obtained from the exponential map TEO(n) → O(n), X 7→ expX =∑∞

0 Xk/k!. Group multiplication and passage to the inverse are smooth maps.
3

(1.4.5) Example. The Stiefel manifolds have an orthogonal version which
generalizes the orthogonal group, the Stiefel manifold of orthonormal k-
frames. Let Vk(Rn) be the set of orthonormal k-tuples (v1, . . . , vk), vj ∈ Rn.
If we write vj as row vector, then Vk(Rn) is a subset of the vector space M =
M(k, n; R) of real (k, n)-matrices. Let S = Sk(R) again be the vector space
of symmetric (k, k)-matrices. Then f : M → S,A 7→ A · At has the pre-image
f−1(E) = Vk(Rn). The differential of f at A is the linear map X 7→ XAt+AXt

and it is surjective. Hence E is a regular value. The dimension of Vk(Rn) is
(n− k)k + 1

2k(k − 1). 3

Problems

1. Make an analysis of the unitary group U(n) along the lines of 1.4.4.
2. Let Λk(Rn) be the k-th exterior power of Rn. The action of O(n) on Rn induces
an action on Λk(Rn), a smooth representation. If we assign to a basis x(1), . . . , x(k)
of a k-dimensional subspace the element x(1)∧ . . .∧x(k) ∈ Λk(Rn), we obtain a well-
defined, injective, O(n)-equivariant map j : Gk(Rn) → P (ΛkRn) (Plücker coordi-
nates). The image of j is a smooth submanifold of P (ΛkRn), i.e., j is an embedding
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of the Grassmann manifold Gk(Rn).
3. The Segre embedding is the smooth embedding

RP m × RP n → RP (m+1)(n+1)−1, ([xi], [yj ]) 7→ [xiyj ].

For m = n = 1 the image is the quadric {[s0, s1, s2, s3] | s0s3 − s1s2 = 0}.
4. Let h : Rn+1×Rn+1 → Rn+k+1 be a symmetric bilinear form such that x 6= 0, y 6= 0

implies h(x, y) 6= 0. Let g : Sn → Sn+k, x 7→ h(x, x)/|h(x, x)|. If g(x) = g(y), hence

h(x, x) = t2h(y, y) with some t ∈ R, then h(x+ty, x−ty) = 0 and therefore x+ty = 0

or x− ty = 0. Hence g induces a smooth embedding RP n → Sn+k. The bilinear form

h(x0, . . . , xn, y0, . . . , yn) = (z0, . . . , z2n) with zk =
P

i+j=k xiyj yields an embedding

RP n → S2n [?] [?].

5. Let h : Rn+1×Rn+1 → Rn+k+1 be a symmetric bilinear form such that x 6= 0, y 6= 0

implies h(x, y) 6= 0. Leti g : Sn → Sn+k, x 7→ h(x, x)/|h(x, x)|. If g(x) = g(y), hence

h(x, x) = t2h(y, y) with some t ∈ R, then h(x+ty, x−ty) = 0 and therefore x+ty = 0

or x− ty = 0. Hence g induces a smooth embedding RP n → Sn+k. The bilinear form

h(x0, . . . , xn, y0, . . . , yn) = (z0, . . . , z2n) with zk =
P

i+j=k xiyj yields an embedding

RP n → S2n [?] [?].

6. Remove a point from S1 × S1 and show (heuristically) that the result has an

immersion into R2. (Removing a point is the same as removing a big 2-cell!).

1.5 Quotients

(1.5.1) Theorem. Let M be a smooth n-manifold. Let C ⊂ M ×M be the
graph of an equivalence relation R on M , i.e., C = {(x, y) | x ∼ y}. Then the
following are equivalent:
(1) The set of equivalence classes N = M/R carries the structure of a smooth
manifold such that the quotient map p : M → N is a submersion.
(2) C is a closed submanifold of M ×M and pr1 : C →M is a submersion.

Proof. (1) ⇒ (2). Since N is a Hausdorff space, the diagonal D ⊂ N ×N is a
closed submanifold. The product p×p is a submersion, hence (p×p)−1(D) = C
a closed submanifold.

Let (x, y) ∈ C. Let V be an open neighbourhood of p(x) in N and s : V →
M a local section of p with sp(x) = y. Then τ : p−1(V ) → C, z 7→ (z, sp(z))
is a smooth map such that τ(x) = (x, y) and pr1 ◦τ = id. Therefore pr1 is a
submersion in a neighbourhood of (x, y).

(2) ⇒ (1). The construction of a smooth structure on N is based on the
following assertions (A) and (B).

(1.5.2) Lemma. (A) For each x ∈ M there exists an open neighbourhood U
and a retractive submersion u : U → S onto a submanifold S of U such that

C ∩ (U × U) = {(z1, z2) ∈ U × U | u(z1) = u(z2)}.
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(B) For each (x, y) ∈ C there exists an open neighbourhood U of x in M and a
smooth map s : U →M with s(x) = y and: u ∈ U ⇒ u ∼ s(u).

Let (U, u, S) be chosen according to (A). The left side of the equality is the
restriction of the equivalence relation to U . Therefore there exists a bijection
u : p(U) → S such that u ◦ p = u. We want to define the smooth structure on
N such that u is a diffeomorphism. Let (V, v, T ) be a second datum according
to (A). Let

x = p(a) = p(b) ∈ p(U) ∩ p(V ), a ∈ U, b ∈ V.

By (B) and continuity of s there exist open neighbourhoods U0 ⊂ U of a,
V0 ⊂ V of b and a smooth map s : U0 → V0 such that s(a) = b and s(z) ∼ z for
each z ∈ U0. This implies p(U0) ⊂ p(V0) ⊂ p(U) ∩ p(V ). The set U∗0 = u(U0)
is contained in u(p(U) ∩ p(V )) and an open neighbourhood of u(x), since u is
an open map. Hence u(p(U) ∩ p(V )) is open in S. We show that v ◦ u−1 is
smooth. Since u : U0 → U∗0 is a submersion, there exists (after shrinking of U0)
a smooth section t : U∗0 → U0 of this map, and v ◦ u−1|U∗0 = v ◦ s ◦ t is smooth.

We have now verified the hypothesis for the gluing process: There exists
a unique topology on N such that the p(U) are open and the u : p(U) → S
homeomorphisms. By construction, p is a continuous open map. Hence p×p is
open, and therefore (p×p)(M ×M rC) = N ×N rD open and N a Hausdorff
space. In general, if B is a basis for the topology on X and f : X → Y a
continuous, surjective, open map, then {f(B) | B ∈ B} is a basis of Y . Hence
N has a countable basis.

The smooth structure on N is determined by the conditions that the maps
u : p(U) → S are diffeomorphisms. This also shows that p is a submersion.

Proof of (B). Let (x, y) ∈ C. Since pr1 : C → M is a submersion, there exists
an open neighbourhood U of x in M and a smooth map σ : U → C such that
σ(x) = (x, y) and pr1 ◦σ = id(U). Then s = pr2 ◦σ satisfies (B). 2

Proof of (A). The proof is subdivided into several steps.
(i) The set C contains the diagonal of M × M , hence C has dimension

m + n, 0 ≤ m ≤ n. Let x ∈ M . There exists an open neighbourhood U0 of
x in M and a map f : U0 × U0 → Rn−m of constant rank n − m such that
C ∩ (U0 × U0) = {(z, z′) ∈ U0 × U0 | f(z, z′) = 0}.

(ii) We claim that fl : U0 → Rn−m, z 7→ f(x, z) has a surjective differential
at x. Note that the diagonal ∆x of TxU0 × TxU0 is contained in T(x,x)C, since
C contains the diagonal of M . Since T(x,x)f is surjective and T(x,x)C, hence
∆x, is contained in the kernel of T(x,x)f , we obtain an induced surjective map

Txfl : TxU0
∼= (TxU0 × TxU0)/∆x → Rn−m, v 7→ (0, v) 7→ T(x,x)f(0, v).

In a similar manner we see that fr : z 7→ f(z, x) has a surjective differential at
x.
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(iii) We choose by the rank theorem a smooth map g : U0 → Rm with
g(x) = 0 such that

F = (fl, g) : U0 → Rn−m × Rm, z 7→ (f(x, z), g(z))

maps U0 (perhaps after shrinking) diffeomorphically onto an open set.
(iv) Let h : U0 × U0 → Rn−m × Rm, (z, z′) 7→ (f(z, z′), g(z′)). The partial

map F = h(x, ?) : z′ 7→ h(x, z′) has bijective differential at x, by (iii). Hence
there exist open neighbourhoods W and W ′ of x in U0 and a smooth map
u : W →W ′ such that

{(z, z′) ∈W ×W ′ | f(z, z′) = 0, g(z′) = 0} = {(z, u(z)) | z ∈W}.

By the choice of g and U0 in (iii), B = g−1(0) ⊂ U0 is a submanifold, and u is,
by construction, a map u : W → W ′ ∩ B which yields a point u(z) ∈ B in the
equivalence class of z.

(v) We show: The differential Txu : TxW → Tx(W ′ ∩B) is surjective. Since
h(z, u(z)) = 0 the relation

Txu = −Txh(x, ?)−1 ◦ Txh(?, x)

holds. Since h(?, x) equals fr (up to a zero component), the rank of Txh(?, x)
equals the rank of Txfr; hence this rank is n−m, and this is the dimension of
Tx(W ′ ∩B) and the rank of Txu.

(vi) If we shrink W , we do not affect (iv). We therefore choose W small
enough such that u : W → W ′ ∩ B has constant rank. Let T = u(W ) and
z ∈ T ∩W ⊂W ′ ∩B = u(W ) ∩W ⊂ u(W ) ⊂W ′. Then (z, z) ∈W ×W ′ and
hence u(z) = z. Let U = u−1(T ∩W ) and S = U ∩ T . We show: u(U) ⊂ S.
So let z ∈ U . Then we know that

u(z) ∈ u(U) = u(u−1(T ∩W )) ⊂ T ∩W

and, by what we have already proved, u(u(z)) = u(z) ∈ T ∩W , i.e., u(z) ∈
u−1(T ∩W ) = U ; moreover u(z) ∈ T ∩W and hence altogether u(z) ∈ U ∩T =
S.

We have now obtained an open neighbourhood U of x inM and a submersive
retraction u : U → S onto a submanifold S of U such that

C ∩ (U × S) = {(z, u(z)) | z ∈ U}.

(vii) Let (z1, z2) ∈ C ∩ (U × U). Then (z1, u(z1)) ∈ C and (z2, u(z2)) ∈ C.
Since C is an equivalence relation, we conclude that (u(z1), u(z2)) ∈ C∩(S×S)
and hence u(z1) = u(z2). Finally we see

C ∩ (U × U) = {(z1, z2) ∈ U × U | u(z1) = u(z2)}.

This finishes the proof of (A). 2
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1.6 Smooth Transformation Groups

Let G be a Lie group and M a smooth manifold. We consider smooth action
G ×M → M of G on M . The left translations lg : M → M,x 7→ gx are then
diffeomorphisms. The map β : G→M, g 7→ gx is a smooth G-map with image
the orbit B = Gx through x. We have an induced bijective G-equivariant
set map γ : G/Gx → B. The map β has constant rank; this follows from the
equivariance. If Lg : G→ G and lg : M →M denote the left translations by g,
then lgβ = βLg, and since Lg and lg are diffeomorphisms, we see that Teβ and
Tgβ have the same rank.

(1.6.1) Proposition. Suppose the orbit B = Gx is a smooth submanifold of
M . Then:

(1) β : G→ B is submersion.
(2) Gx = β−1(x) is a closed Lie subgroup of G.
(3) There exists a unique smooth structure on G/Gx such that the quotient

map G→ G/Gx is a submersion. The induced map γ : G/Gx → B is a
diffeomorphism.

Proof. If β would have somewhere a rank less than the dimension of B, the rank
would always be less than the dimension, by equivariance. This contradict the
theorem of Sard. We transport via γ the smooth structure from B to G/Gx.
The smooth structure is unique, since G → G/Gx is a submersion. The pre-
image Gx of a regular value is a closed submanifold. 2

The previous proposition gives us Gx as a closed Lie subgroup. We need
not use the general theorem about closed subgroups being Lie subgroups.

(1.6.2) Example. The action of SO(n) on Sn−1 by matrix multiplication is
a smooth action. We obtain a resulting equivariant diffeomorphism Sn−1 ∼=
SO(n)/SO(n−1). In a similar we obtain equivariant diffeomorphisms we have
S2n−1 ∼= U(n)/U(n− 1) ∼= SU(n)/SU(n− 1). 3

(1.6.3) Theorem. Let M be a smooth G-manifold with free, proper action of
the Lie group G. Then the orbit space M/G carries a smooth structure and the
orbit map p : M →M/G is a submersion.

Proof. We verify the hypothesis of the quotient theorem ??. We have to show
that C is a closed submanifold. The set C is homeomorphic to the image of
the map Θ: G×M →M ×M, (g, x) 7→ (x, gx), since the action is proper. We
show that Θ is a smooth embedding. It suffices to show that Θ is an immersion
(1.2.5). The differential

T(g,x)Θ: TgG× TxM → TxM × TgxM
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will be decomposed according to the two factors

T(g,x)Θ(u, v) = TgΘ(?, x)u+ TxΘ(g, ?)v.

The first component of TgΘ(?, x)u is zero, since the first component of the
partial map is constant. Thus if T(g,x)(u, v) = 0, the component of TxΘ(g, ?)v
in TxM is zero; but this component is v. It remains to show that Tgf : TgG→
TgxM is injective for f : G → M, g 7→ gx. Since the action is free, the map
f is injective; and f has constant rank, by equivariance. An injective map of
constant rank has injective differential, by the rank theorem. Thus we have
verified the first hypothesis of ??. The second one holds, since pr1 ◦Θ = pr2
shows that pr1 is a submersion. 2

(1.6.4) Example. The cyclic group G = Z/m ⊂ S1 acts on Cn by

Z/m× Cn → Cn, (ζ, (z1, . . . , zn)) 7→ (ζr1z1, . . . , ζrnzn)

where rj ∈ Z. This action is a smooth representation. Suppose the integers
rj are co-prime to m. The induced action on the unit sphere is then a free G-
manifold S(r1, . . . , rn); the orbit manifold L(r1, . . . , rn) is called a (generalized)
lens space . 3

(1.6.5) Example. Let H be a closed Lie subgroup of the Lie group G. The
H-action on G by left translation is smooth and proper. The orbit space
H\G carries a smooth structure such that the quotient map G → H\G is a
submersion. The G-action on H\G is smooth. One can consider the projective
spaces, Stiefel manifolds and Grassmann manifolds as homogeneous spaces from
this view point. 3

(1.6.6) Theorem. Let M be a smooth G-manifold. Then:
(1) An orbit C ⊂ M is a smooth submanifold if and only if it is a locally

closed subset.
(2) If the orbit C is locally closed and x ∈ C, then there exists a unique

smooth structure on G/Gx such that the orbit map G → G/Gx is a
submersion. The map G/Gx → C, gGx 7→ gx is a diffeomorphism. The
G-action on G/Gx is smooth.

(3) If the action is proper, then (1) and (2) hold for each orbit.

Proof. (1) β : G → C, g 7→ gx has constant rank by equivariance. Hence there
exists an open neighbourhood of e in G such that β(U) is a submanifold of M .
Since C is locally closed in the locally compact space M , the set C is locally
compact and therefore β : G→ C an open map (see ??). Hence there exists an
open set W in M such that C ∩W = β(U). Therefore C is a submanifold in a
neighbourhood of x and, by equivariance, also globally a submanifold.



20 1 Manifolds

(2) Since C is locally closed, the submanifold C has a smooth structure. The
map β has constant rank and is therefore a submersion. We now transport the
smooth structure from C to G/Gx.

(3) The orbits of a proper action are closed. 2

1.7 Slice Representations

(1.7.1) Proposition. Let M be a smooth G-manifold. Let x ∈ M be a
point with compact isotropy group Gx. Then there exist a Gx-equivariant chart
(W,ψ, TxM) centered in x.

Proof. We start with an arbitrary chart (U,ϕ, TxM) which is centered at x.
The orbit map p : M → M/H is closed, since H = Gx is compact. Hence
W = M r p−1p(M r U) is open, H-invariant and contained in U . We use
the invariant integration on H: A linear map

∫
: C(H,R) → R, f 7→

∫
f(h) dh

from the vector space of continuous functions H → R which maps the constant
function 1 to 1 and has the property

∫
f(hu) dh =

∫
f(uh) dh =

∫
f(h) dh for

each u ∈ H. We define

ψ : W → TxM, z 7→
∫
H

h−1 · ϕ(hz) dh

with the H-action (h, v) 7→ h · v on TxM given by the differential of the action
on M . By invariance of the integral, ψ is H-equivariant. After a suitable
restriction to a smaller W we can use ψ as a chart. For the proof we show that
the differential of ψ at x is bijective. For this purpose we start with a chart
ϕ such that Txϕ = id(TxM). We claim: The differential of ψ is the identity.
This is seen by differentiating “under the integral symbol”, since z 7→ h ·ϕ(hz)
has at x the identity as differential. 2

(1.7.2) Corollary. Let G be compact. Then the fixed point set MG is a smooth
submanifold.

Proof. In a neighbourhood of x ∈ MG the manifold M is G-diffeomorphic to
a representation V (2.8.3). In a representation the fixed point set is a linear
subspace, thus we obtain an adapted chart. 2

Let Gx = H be compact. Suppose the orbit C through x is a submanifold.
Then TxC is an H-stable subspace of TxM . Let V be an H-stable comple-
ment of TxC in TxM ; it is uniquely determined as an H-representation, up to
isomorphism. We call V the slice representation of M in x.

Let ϕ : U → TxM be an H-equivariant chart with inverse ψ. The map

τ̃ : G× V →M, (g, v) 7→ gψ(v)
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factors over the orbit space G ×H V . Since H is compact, G ×H V is in
a canonical manner a smooth G-manifold, and τ̃ induces a smooth G-map
τ : G×H V →M .

We choose an H-invariant inner product on V and set

V (ε) = {v ∈ V | ‖v‖ < ε}.

(1.7.3) Proposition. There exists ε > 0 such that τ : G×H V (ε) →M is an
embedding onto an open neighbourhood of C (equivariant tubular map).

Proof. We begin by showing that τ has bijective differential at points of the
zero section. This is a consequence of the relations

T(e,0)τ̃(TeG× {0}) = TxC, T(e,0)τ̃({e} × V ) = V

and the fact that τ is a G-map between manifolds of the same dimension.
For each compact set L ⊂ G/H there exists an ε > 0 such that τ embeds
p−1(L)×H V (ε). Since the action is proper (2.8.3), there exists an η > 0 such
that

{g ∈ G | gψ(V (η)) ∩ ψ(V (η) 6= ∅}

is contained in a compact set K. We choose an open neighbourhood W of eH in
G/H with compact closure andε with 0 < ε < η such that p−1(W ) ⊃ KH and
τ embeds p−1(W )×H V (ε) We claim that then also G×H V (ε) is embedded. By
equivariance, τ has bijective differential everywhere and is therefore an open
map. Thus it suffices to show that τ is injective. But g1ψ(v1) = g2ψ(v2) implies
g−1
2 g1ψ(v1) = ψ(v2), hence k = g−1

2 g1 ∈ K. The points (k, v1) and (e, v2) are
contained in p−1(W )× V (ε). We conclude k ∈ H and kv1 = v2; hence (g1, v1)
and (g2, v2) represent the same element in G×H V (ε). 2

1.8 Principal Orbits

In this section we study smooth G-manifolds for a compact group G.

(1.8.1) Theorem. A compact G-manifold M has finite orbit type, i.e., the set
of conjugacy classes of isotropy groups is finite.

Proof. Induction on dimM . For dimM = 0 the situation is clear. By com-
pactness, M has a finite covering by sets of the form G×H V with orthogonal
H-representations V . The unit sphere SV has smaller dimension and finite
H-orbit type by induction hypothesis.

The isotropy group of (u, v) ∈ G×H V consists of the g ∈ G such that the
relation (gu, v) = uh, h−1v holds for some h ∈ H. This means h ∈ Hv and
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g ∈ uHvu
−1. Therefore an isotropy group of G ×H V is G-conjugate to an

H-isotropy group of V . The H-isotropy groups ofV are H and the isotropy
groups of SV . 2

(1.8.2) Theorem (Principal Orbit). Let M/G be connected. Then the follow-
ing holds:

(1) There exists a unique isotropy type (H) of M such that the orbit bundle
M(H) is open and dense in M .

(2) The space M(H)/G is connected.
(3) Each isotropy type (K) of M is subconjugate to (H).
(4) MH intersects each orbit.

The orbit type (H) in the previous theorem is called the principal orbit type
of M and M(H) the associated principal orbit bundle .

Proof. Induction on dimM . In the case that dimM = 0 the connectedness of
M/G means that M/G is a point and hence M a single orbit.

Suppose that dimM ≥ 1.
(1) We begin with manifolds of the form G ×H V . Since (G ×H SV )/G ∼=

SV/H we see that for a non-connected orbit spaceG×HSV necessarily dimV =
1 and V is the trivial H-representation. In that case G×H V ∼= G/H ×R and
the theorem holds for this space.

Thus let G×HSV be connected. By induction, the assertions of the theorem
hold for this manifold and also for the H-manifold SV . Let K ⊂ H and (K)
by the principal isotropy type of SV . Then either 0 ∈ V(K) and hence H = K,
or V(K)

∼= SV(K)× ]0,∞[ .
In the first case SV(H) = SV H ; and since SV(H) is dense in SV , we conclude

SV = SV H and this means that the representation V is trivial. But for
G×H V ∼= G/H × V the theorem holds.

In the second case

(G×H V )(K) = G×H V(K),

and since V(K) is open and dense in V r 0 and V , the set (G×H V )(K) is open
and dense in G×H V . The set

(G×H V )(K)/G ∼= V(K)/H ∼= SV(K)× ]0,∞[

is connected. Since two open and dense subsets have non-empty intersection,
there exists at most one isotropy type (H) for which the first statement of the
theorem holds. Hence the first two assertions hold for K in place of H for
M = G×H V . This settles the case under consideration.

(2) We now cover M with G-sets of the form G ×H V for suitable H and
V . If two such G-sets have non-empty intersection, then also their principal
orbit bundles as open an dense subsets, hence the corresponding isotropy types
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coincide. Since M/G is connected, the isotropy types of each of the subsets
coincide, and the union of their orbit bundles is then open and dense in M .

The union of connected sets with non-empty intersection is connected.
Hence M(H)/G is connected.

(3) Let now K be any isotropy group, K = Gx. Let U a neighbourhood of
the orbit x which is isomorphic to G×K V . By denseness, there exists an orbit
in U which is contained in the principal orbit bundle This orbit has via the
projection G ×K V → G/K an equivariant map into G/K, hence (H) ≤ (K).
We conclude G/KH 6= ∅, hence (Gx)H 6= ∅, and finally MH ∩Gx 6= ∅. 2

(1.8.3) Proposition. Let H be an isotropy group of the G-manifold M .
(1) The orbit bundle M(H) is a submanifold (perhaps with components of

different dimension).
(2) The closure M (H) only contains smaller orbits, i.e., orbits which admit

a G-map G/H → G/K.
(3) The set M(H) is open in its closure.

Proof. (1) A local consideration suffices. So let us assume M = G×H V . From
G(g,v) = gHvg

−1 we see that (G(g,v)) = (H) if and only if Hv = H and v ∈ V H .
The set

(G×H V )(H) = G×H V H ⊂ G×H V

is a smooth subbundle, hence a smooth submanifold.
(2) If z ∈M and K = Gz, then there exists a neighbourhood W of z of the

form G×K W , and in a neighbourhood of this type (Gy) ≤ (K) holds for each
y ∈W .

If z ∈M (H), thenW contains points y with (Gy) = (H). Hence (H) ≤ (Gz).
(3) Let x ∈ M(H) and U a neighbourhood with (Gy) ≤ (H) for y ∈ U . If

z ∈ U ∩M (H), then (H) ≤ (Gz) ≤ (H); therefore U ∩M (H) ⊂M(H), i.e., M(H)

is open in its closure. 2

(1.8.4) Proposition. Let M/G be connected. If an orbit of type G/U has
smaller dimension that a principal orbit, then M(U) has at least codimension 2
in M .

Proof. Induction on dimM . In the case dimM = 0 the set M(U) is empty. For
the induction step it suffices to consider M = G×H V . We have already shown
that

(G×U V )(U)
∼= G×U V U ∼= G/U × V U .

Thus we have to show that V U has at least codimension 2 in V . Consider the
U -manifold SV . Suppose SV = ∅, and hence dimV = 0, then M = G/U and
(U) would be the principal isotropy type. Let dimSV = 0, hence dimG/U =
n − 1 = dimM − 1. Then a principal orbit must have dimension n, and then
M would consist of a single orbit.
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Hence we can assume dimV ≥ 2. Then SV and SV/U are connected. We
apply the induction hypothesis to the U -manifold SV . The fixed point set SV U

has a smaller dimension than the principal orbit, since otherwise the orbits in
SV an hence V would be 0-dimensional. Then the DieG-orbits ofG×UV would
have the dimension of G/U , in contradiction to our assumption about U . Hence
we can apply to SV U the induction hypothesis: dimSV U ≤ dimSV − 2. 2

(1.8.5) Proposition. Let the compact Lie group G acts smoothly and effec-
tively on the connected n-manifold M . Then

dimG ≤ 1
2
n(n+ 1).

Proof. Induction on n. In the case n = 0 the manifold M is a point, hence
M = G/G, and therefore G = {e}, since the action is effective.

We can assume that G is connected, since the component of the neutral
element acts effectively and has the same dimension.

LetG/H be a principal orbit, hence dimG ≤ n+dimH. IfH acts effectively
on the connected k-manifold with k ≤ n− 1, then we can apply the induction
hypothesis.

We have k = dimG/H ≤ n, and G acts effectively on G/H. Namely if
g ∈ G would acts trivially on G/H, the also trivially on the principal orbit
bundle, hence by denseness trivially at all. Therefore the component H0 of
e in H acts effectively on G/H and also on the principal orbit bundle of the
H0-manifold G/H. The principal orbit is connected. If the dimensions of the
principal orbit is less that k we are ready.

In the the remaining case H0eH = G/H, and G/H is a point, hence G =
{e}. 2

(1.8.6) Example. The group SO(n + 1) has dimension (n + 1)n/2 and acts
effectively on Sn and RPn. 3

1.9 Manifolds with Boundary

We now extend the notion of a manifold to that of a manifold with boundary.
A typical example is the n-dimensional disk Dn = {x ∈ Rn | ‖x‖ ≤ 1}. Other
examples are half-spaces. Let λ : Rn → R be a non-zero linear form. We use the
corresponding half-space H(λ) = {x ∈ Rn | λ(x) ≥ 0}. Its boundary ∂H(λ)
is the kernel of λ. Typical half-spaces are Rn± = {(x1, . . . , xn) ∈ Rn | ±x1 ≥ 0}.
If A ⊂ Rm is any subset, we call f : A → Rn differentiable if for each a ∈ A
there exists an open neighbourhood U of a in Rm and a differentiable map
F : U → Rn such that F |U ∩ A = f |U ∩ A. We only apply this definition to
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open subset A of half-spaces. In that case, the differential of F at a ∈ A is
independent of the choice of the extension F and will be denoted Df(a).

Let n ≥ 1 be an integer. An n-dimensional manifold with boundary
or ∂-manifold is a Hausdorff space M with countable basis such that each
point has an open neighbourhood which is homeomorphic to an open subset in
a half-space of Rn. A homeomorphism h : U → V , U open in M , V open in
H(λ) is called a chart about x ∈ U with chart domain U . With this notion
of chart we can define the notions: Ck-related, atlas, differentiable structure.
An n-dimensional smooth manifold with boundary is therefore an n-
dimensional manifold M with boundary together with a (maximal) smooth
C∞-atlas on M .

Let M be a manifold with boundary. Its boundary ∂M is the following
subset: The point x is contained in ∂M if and only if there exists a chart
(U, h, V ) about x such that V ⊂ H(λ) and h(x) ∈ ∂H(λ). The complement
M r ∂M is called the interior In(M) of M . The following lemma shows
that specifying a boundary point does not depend on the choice of the chart
(invariance of the boundary).

(1.9.1) Lemma. Let ϕ : V → W be a diffeomorphism between open subsets
V ⊂ H(λ) and W ⊂ H(µ) of half-spaces in Rn. Then ϕ(V ∩ ∂H(λ)) =
W ∩ ∂H(µ). 2

(1.9.2) Proposition. Let M be an n-dimensional smooth manifold with
boundary. Then either ∂M = ∅ or ∂M is an (n − 1)-dimensional smooth
manifold. The set M r ∂M is a smooth n-dimensional manifold with empty
boundary.

Proof. Let ∂M 6= ∅. The assertion about ∂M means that the differential
structure on M induces a differential structure on ∂M in the following manner.
A little thinking shows that M has an atlas which consists of charts (U, h, V )
with V open in Rn−, called adapted to the boundary . The charts for ∂M
are the restrictions h : U ∩∂M → V ∩∂Rn− of such charts (they form an atlas).
Then V ∩ ∂Rn− is open in 0 × Rn−1 ∼= Rn−1. The charts for M r ∂M are the
restrictions h : U ∩ (M r ∂M) → V ∩ (Rn− r ∂Rn−). The latter set is open in
Rn. 2

The boundary of a manifold can be empty. Sometimes it is convenient to
view the empty set as an n-dimensional manifold. If ∂M = ∅, we call M a
manifold without boundary. This coincides then with the notion introduced
in the first section. In order to stress the absence of a boundary, we call a
compact manifold without boundary a closed manifold .

A map f : M → N between smooth manifolds with boundary is called
smooth if it is continuous and C∞-differentiable in local coordinates. Tangent
spaces and the differential are defined as for manifolds without boundary.
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Let x ∈ ∂M and k = (U, h, V ) be a chart about x with V open in Rn−. Then
the pair (k, v), v ∈ Rn represents a vector w in the tangent space TxM . We
say that w is pointing outwards (pointing inwards, tangential to ∂M)
if v1 > 0 (v1 < 0, v1 = 0, respectively). One verifies that this disjunction is
independent of the choice of charts.

(1.9.3) Proposition. The inclusion j : ∂M ⊂M is smooth and the differential
Txj : Tx(∂M) → TxM is injective. Its image consists of the vectors tangential
to ∂M . We consider Txj as an inclusion. 2

The notion of a submanifold can have different meanings for manifolds with
boundary. We define therefore submanifolds of type I and type II.

Let M be a smooth n-manifold with boundary. A subset N ⊂ M is called
a k-dimensional smooth submanifold (of type I) if the following holds: For
each x ∈ N there exists a chart (U, h, V ), V ⊂ Rn− open, of M about x such
that h(U ∩ N) = V ∩ (Rk × 0). Such charts of M are adapted to N . The
set V ∩ (Rk × 0) ⊂ Rk− × 0 = Rk− is open in Rk−. A diffeomorphism onto a
submanifold of type I is an embedding of type I. From this definition we draw
the following conclusions.

(1.9.4) Proposition. Let N ⊂ M be a smooth submanifold of type I. The
restrictions h : U ∩ N → h(U ∩ N) of the charts (U, h, V ) adapted to N form
a smooth atlas for N which makes N into a smooth manifold with boundary.
The relation N ∩ ∂M = ∂N holds, and ∂N is a submanifold of ∂M . 2

Let M be a smooth n-manifold without boundary. A subset N ⊂ M is
a k-dimensional smooth submanifold (of type II) if the following holds: For
each x ∈ N there exists a chart (U, h, V ) of M about x such that h(U ∩N) =
V ∩ (Rk− × 0). Such charts are adapted to N .

The intersection of Dn with Rk× 0 is a submanifold of type I (k < n). The
subset Dn is a submanifold of type II of Rn. The next two propositions provide
a general means for the construction of such submanifolds.

(1.9.5) Proposition. Let M be a smooth n-manifold with boundary. Let
f : M → R be smooth with regular value 0. Then f−1[0,∞[ is a smooth sub-
manifold of type II of M with boundary f−1(0).

Proof. We have to show that for each x ∈ f−1[0,∞[ there exists a chart which
is adapted to this set. If f(x) > 0, then x is contained in the open submanifold
f−1]0,∞[; hence the required charts exist. Let therefore f(x) = 0. By the rank
theorem 1.2.2, f has in suitable local coordinates the form (x1, . . . , xn) 7→ x1.
From this fact one easily obtains the adapted charts. 2

(1.9.6) Proposition. Let f : M → N be smooth and y ∈ f(M) ∩ (N r ∂N)
a regular value of f and f |∂M . Then P = f−1(y) is a smooth submanifold of
type I of M with ∂P = (f |∂M)−1(y) = ∂M ∩ P .
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Proof. Being a submanifold of type I is a local property and invariant under
diffeomorphisms. Therefore it suffices to consider a local situation. Let there-
fore U be open in Rm− and f : U → Rn a smooth map which has 0 ∈ Rn as
regular value for f and f |∂U (n ≥ 1,m > n).

We know already that f−1(0)∩ In(U) is a smooth submanifold of In(U). It
remains to show that there exist adapted charts about points x ∈ ∂U . Since x
is a regular point of f |∂U , the Jacobi-matrix (Difj(x) | 2 ≤ i ≤ m, 1 ≤ j ≤ n)
has rank n. By interchange of the coordinates x2, . . . , xm we can assume that
the matrix

(Difj(x) | m− n+ 1 ≤ i ≤ n, 1 ≤ j ≤ n)

has rank n. (This interchange is a diffeomorphism and therefore harmless.)
Under this assumption, ϕ : U → Rm− , u 7→ (u1, . . . , um−n, f1(u), . . . , fn(u)) has
bijective differential at x and therefore yields, by part (1) of the rank theorem
applied to an extension of f to an open set in Rm, an adapted chart about
x. 2

If only one of the two manifolds M and N has a non-empty boundary, say
M , then we define M ×N as the manifold with boundary which has as charts
the products of charts for M and N . In that case ∂(M × N) = ∂M × N . If
both M and N have a boundary, then there appear “corners” along ∂M ×∂N ;
later we shall explain how to define a differentiable structure on the product in
this case.

Problems

1. The map

Dn(+) = {(x, t) | t > 0, ‖x‖2 + t2 ≤ 1} → ]− 1, 0]× U1(0), (x, t) 7→ ( t√
1−‖x‖2

− 1, x)

is an adapted chart for Sn−1 = ∂Dn ⊂ Dn.
2. Let B be a ∂-manifold. A smooth function f : ∂B → R has a smooth extension
to B. A smooth function g : A → R from a submanifold A of type I or of type II of
B has a smooth extension to B.
3. Verify the invariance of the boundary for topological manifolds (use local homol-
ogy groups).
4. A ∂-manifold M is connected if and only if M r ∂M is connected.
5. Let M be a ∂-manifold. There exists a smooth function f : M → [0,∞[ such that
f(∂M) = {0} and Txf 6= 0 for each x ∈ ∂M .
6. Let f : M → Rk be an injective immersion of a compact ∂-manifold. Then the
image is a submanifold of type II.
7. Verify that “pointing inwards” is well-defined, i.e., independent of the choice of
charts.
8. Unfortunately is not quite trivial to classify smooth 1-dimensional manifolds by
just starting from the definitions. The reader may try to show that a connected
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1-manifold without boundary is diffeomorphic to R1 or S1; and a ∂-manifold is dif-
feomorphic to [0, 1] or [0, 1[ .

1.10 Orientation

Let V be an n-dimensional real vector space. Ordered bases b1, . . . , bn and
c1, . . . , cn of V are called positively related if the determinant of the transi-
tion matrix is positive. This relation is an equivalence relation on the set of
bases with two equivalence classes. An equivalence class is an orientation
of V . We specify orientations by their representatives. The standard ori-
entation of Rn is given by the standard basis e1, . . . , en, the rows of the unit
matrix. Let W be a complex vector space with complex basis w1, . . . , wn. Then
w1, iw1, . . . , wn, iwn defines an orientation of the underlying real vector space
which is independent of the choice of the basis. This is the orientation induced
by the complex structure . Let u1, . . . , um be a basis of U and w1, . . . , wn
a basis of W . In a direct sum U ⊕ W we define the sum orientation by
u1, . . . , um, w1, . . . , wn. If o(V ) is an orientation of V , we denote the opposite
orientation (the occidentation) by −o(V ). A linear isomorphism f : U → V
between oriented vector spaces is called orientation preserving or positive
if for the orientation u1, . . . , un of U the images f(u1), . . . , f(un) yield the given
orientation of V .

Let M be a smooth n-manifold with or without boundary. We call two
charts positively related if the Jacobi-matrix of the coordinate change has
always positive determinant. An atlas is called orienting if any two of its
charts are positively related. We call M orientable , if M has an orienting
atlas. An orientation of a manifold is represented by an orienting atlas; and
two such define the same orientation if their union contains only positively
related charts. If M is oriented by an orienting atlas, we call a chart positive
with respect to the given orientation if it is positively related to all charts of
the orienting atlas. These definitions apply to manifolds of positive dimension.
An orientation of a zero-dimensional manifold M is a function ε : M → {±1}.

Let M be an oriented n-manifold. There is an induced orientation on each
of its tangent spaces TxM . It is specified by the requirement that a positive
chart (U, h, V ) induces a positive isomorphism Txh : TxM → Th(x)V = Rn with
respect to the standard orientation of Rn. We can specify an orientation of M
by the corresponding orientations of the tangent spaces.

If M and N are oriented manifolds, the product orientation on M ×N
is specified by declaring the products (U × V, k × l, U ′ × V ′) of positive charts
(U, k, U ′) of M and (V, l, V ′) of N as positive. The canonical isomorphism
T(x,y)(M ×N) ∼= TxM ⊕ TyN is then compatible with the sum orientation of
vector spaces. If N is a point, then the canonical identification M ×N ∼= M is
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orientation preserving if and only if ε(N) = 1. If M is oriented, then we denote
the manifold with the opposite orientation by −M .

Let M be an oriented manifold with boundary. For x ∈ ∂M we have a
direct decomposition Tx(M) = Nx ⊕ Tx(∂M). Let nx ∈ Nx be pointing out-
wards. The boundary orientation of Tx(∂M) is defined by that orientation
v1, . . . , vn−1 for which nx, v1, . . . , vn−1 is the given orientation of Tx(M). These
orientations correspond to the boundary orientation of ∂M ; one verifies that
the restriction of positive charts for M yield an orienting atlas for ∂M .

In Rn−, the boundary ∂Rn− = 0 × Rn−1 inherits the orientation defined by
e2, . . . , en. Thus positive charts have to use Rn−.

LetD2 ⊂ R2 carry the standard orientation of R2. Consider S1 as boundary
of D2 and give it the boundary orientation. An orienting vector in TxS

1 is
then the velocity vector of a counter-clockwise rotation. This orientation of
S1 is commonly known as the positive orientation. In general if M ⊂ R2 is
a two-dimensional submanifold with boundary with orientation induced from
the standard orientation of R2, then the boundary orientation of the curve ∂M
is the velocity vector of a movement such that M lies “to the left”.

Let M be an oriented manifold with boundary and N an oriented manifold
without boundary. Then product and boundary orientation are related as
follows

o(∂(M ×N)) = o(∂M ×N), o(∂(N ×M)) = (−1)dimNo(N × ∂M).

The unit interval I = [0, 1] is furnished with the standard orientation of
R. Since the outward pointing vector in 0 yields the negative orientation, we
specify the orientation of ∂I by ε(0) = −1, ε(1) = 1. We have ∂(I ×M) =
0 ×M ∪ 1 ×M . The boundary orientation of 0 ×M ∼= M is opposite to the
original one and the boundary orientation of 1×M ∼= M is the original one, if
I×M carries the product orientation. We express these facts by the suggestive
formula ∂(I×M) = 1×M−0×M . (These conventions suggest that homotopies
should be defined with the cylinder I ×X.)

A diffeomorphism f : M → N between oriented manifolds respects the
orientation if Txf is for each x ∈M orientation preserving. IfM is connected,
then f respects or reverses the orientation.

Problems

1. The atlas in 1.1.2 is not orienting; but Sn is orientable.
2. Show that a 1-manifold is orientable.
3. Let f : M → N be a smooth map and let A be the pre-image of a regular value
y ∈ N . Suppose M is orientable, then A is orientable.

We specify an orientation as follows. Let M and N be oriented. We have an exact

sequence 0→ TaA
(1)−→ TaM

(2)−→ TyN → 0, with inclusion (1) and differential Taf at
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(2). This orients TaA as follows: Let v1, . . . , vk be a basis of TaA, w1, . . . , wl a basis

of TyN , and u1, . . . , ul be pre-images in TaM ; then v1, . . . , vk, u1, . . . , ul is required

to be the given orientation of TaM . These orientations induce an orientation of A.

This orientation of A is called the pre-image orientation .

4. Let f : Rn → R, (xi) 7→
P

x2
i and Sn−1 = f−1(1). Then the pre-image orientation

coincides with the boundary orientation with respect to Sn−1 ⊂ Dn.

1.11 Tangent Bundle. Normal Bundle

The notions and concepts of bundle theory can now be adapted to the smooth
category. A smooth bundle p : E → B has a smooth bundle projection p and
the bundle charts are assumed to be smooth. A smooth subbundle of a smooth
vector bundle has to be defined by smooth bundle charts. Let α : ξ1 → ξ2 be
a smooth bundle morphism of constant rank; then Kerα and Imα are smooth
subbundles. The proof of ?? can also be used in this situation. A smooth
vector bundle has a smooth Riemannian metric; for the existence proof one
uses a smooth partition of unity and proceeds as in ??. Let ξ be a smooth
subbundle of the smooth vector bundle η with Riemannian metric; then the
orthogonal complement of ξ in η is a smooth subbundle.

Let M be a smooth n-manifold. Denote by TM the disjoint union of the
tangent spaces Tp(M), p ∈ M . We write a point of Tp(M) ⊂ TM in the form
(p, v) with v ∈ Tp(M), for emphasis. We have the projection πM : TM →
M, (p, v) 7→ p. Each chart k = (U, h, V ) of M yields a bijection

ϕk : TU =
⋃
p∈U Tp(M) → U × Rn, (p, v) 7→ (p, ik(v)).

Here ik is the morphism which is part of the definition of a tangent space.
The map ϕk is a map over U and linear on fibres. The next theorem is a
consequence of the general gluing procedure.

(1.11.1) Theorem. There exists a unique structure of a smooth manifold on
TM such that the (TU,ϕk, U × Rn) are charts of the differential structure.
The projection πM : TM → M is then a smooth map, in fact a submersion.
The vector space structure on the fibres of πM give πM the structure of an
n-dimensional smooth real vector bundle with the ϕk as bundles charts. 2

The vector bundle πM : TM → M is called the tangent bundle of M .
A smooth map f : M → N induces a smooth fibrewise map Tf : TM →
TN, (p, v) 7→ (f(p), Tpf(v)).

(1.11.2) Proposition. Let M ⊂ Rq be a smooth n-dimensional submanifold.
Then

TM = {(x, v) | x ∈M, v ∈ TxM} ⊂ Rq × Rq
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is a 2n-dimensional smooth submanifold.

Proof. Write M locally as h−1(0) with a smooth map h : U → Rq−n of constant
rank q − n hat. Then TM is locally the pre-image of zero under

U × Rq → Rq−n × Rq−n, (u, v) 7→ (h(u), Dh(u)(v)),

and this map has constant rank 2(q − n); this can be seen by looking at the
restrictions to U × 0 and u× Rq. 2

We can apply 1.11.2 to Sn ⊂ Rn+1 and obtain the model of the tangent
bundle of Sn, already used at other occasions.

Let p : E → B be a smooth vector bundle. Then E is a smooth manifold
and we can ask for its tangent bundle.

(1.11.3) Proposition. There exists a canonical exact sequence

0 → p∗E
α−→ TE

β−→ p∗TM → 0

of vector bundles.

Proof. The differential of p is a bundle morphism Tp : TE → TM , and it
induces a bundle morphism β : TE → p∗TM which is fibrewise surjective,
since p is a submersion. We consider the total space of p∗E → E as E⊕E and
the projection onto the first summand is the bundle projection. Let (x, v) ∈
Ex ⊕Ex. We define α(x, v) as derivative of the curve t 7→ x+ tv at t = 0. The
bundle morphism α has an image contained in the kernel of β and is fibrewise
injective. Thus, for reasons of dimension, the sequence is exact. 2

Let the Lie group G act smoothly on M . We have an induced action

G× TM → TM, (b, v) 7→ (T lg)v.

This action is again smooth and the bundle projection is equivariant, i.e.,
TM →M is a smooth G-vector bundle.

(1.11.4) Proposition. Let ξ : E →M be a smooth G-vector bundle. Suppose
the action on M is free and proper. Then the orbit map E/G → M/G is a
smooth vector bundle. We have an induced bundle map ξ → ξ/G.

The differential Tp : TM → T (M/G) of the orbit map p is a bundle mor-
phism which factors over the orbit map TM → (TM)/G and induces a bundle
morphism q : (TM)/G→ T (M/G) over M/G. The map is fibrewise surjective.
If G is discrete, then M and M/G have the same dimension, hence q is an
isomorphism.
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(1.11.5) Proposition. For a free, proper, smooth action of the discrete group
G on M we have a bundle isomorphism (TM)/G ∼= T (M/G) induced by the
orbit map M →M/G. 2

(1.11.6) Example. We have a bundle isomorphism TSn ⊕ ε ∼= (n + 1)ε. If
G = Z/2 acts on TSn via the differential of the antipodal map and trivially
on ε, then the said isomorphism transforms the action into Sn × Rn+1 →
Sn × Rn+1, (x, v) 7→ (−x,−v). We pass to the orbit spaces and obtain an
isomorphism T (RPn) ⊕ ε ∼= (n + 1)η with the tautological line bundle η over
RPn. 3

In the general case the map q : (TM)/G→ T (M/G) has a kernel, a bundle
K →M/G with fibre dimension dimG.

(1.11.7) Example. The defining map Cn+1r0 → (Cn+1r0)/C∗ = CPn yields
a surjective bundle map q : (T (Cn+1r0))/C∗ → T (CPn). The source of q is the
(n+1)-fold Whitney sum (n+1)η where E(η) is the quotient of (Cn+1 r0)×C
with respect to (z, x) ∼ (λz, λx) for λ ∈ C∗ and (z, x) ∈ (Cn+1 r 0)× C. The
kernel bundle of q is trivial: We have a canonical section of (n+ 1)η

CPn → ((Cn+1 r 0)× Cn+1)/C∗, [z] 7→ (z, z)/ ∼,

and the subbundle generated by this section is contained in the kernel of q.
Hence the complex tangent bundle of CPn satisfies T (CPn)⊕ ε ∼= (n+ 1)η. 3

Let f : M → N be an immersion. Then Tf is fibrewise injective. We pull
back TN along f and obtain a fibrewise injective bundle morphism i : TM →
f∗TN |M . The quotient bundle is called the normal bundle of the immersion.
In the case of a submanifold M ⊂ N the normal bundle ν(M,N) of M in N
is the quotient bundle of TN |M by TM . If we give TN a smooth Riemannian
metric, then we can take the orthogonal complement of TM as a model for the
normal bundle. The normal bundle of Sn ⊂ Rn+1 is the trivial bundle.

We will show that the total space of the normal bundle of an embedding
M ⊂ N describes a neighbourhood of M in N . We introduce some related
terminology. Let ν : E(ν) →M denote the smooth normal bundle. A tubular
map is a smooth map t : E(ν) → N with the following properties:

(1) It is the inclusion M → N when restricted to the zero section.
(2) It embeds an open neighbourhood of the zero section onto an open neigh-

bourhood U of M in N .
(3) The differential of t, restricted to TE(ν)|M , is a bundle morphism

TE(ν)|M → TN |M.

We compose with the inclusion

E(ν) → E(ν)⊕ TM ∼= TE(ν)|M
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and the projection

TN |M → E(ν) = (TN |M)/TM.

We require that this composition is the identity.
The purpose of (3) is to exclude bundle automorphisms.

(1.11.8) Example. We restrict the exact sequence ?? to the zero section
i : M ⊂ E. Then we obtain a canonical isomorphism (α, T i) : E⊕TM ∼= TE|M .
The restriction of this isomorphism to E is a tubular map onto a tubular
neighbourhood of M ⊂ TE. The normal bundle of the zero section M ⊂ E
equals E. 3

(1.11.9) Remark (Shrinking). Let t : E(ν) → N be a tubular map for a
submanifold M . Then one can find by the process of shrinking another tubular
map that embeds E(ν). There exists a smooth function ε : M → R such that

Eε(ν) = {y ∈ E(ν)x | ‖y‖ < ε(x)} ⊂ U.

Let λη(t) = ηt · (η2 + t2)−1/2. Then λη : [0,∞[→ [0, η[ is a diffeomorphism
with derivative 1 at t = 0. We obtain an embedding

h : E → E, y 7→ λε(x)(‖y‖) · ‖y‖−1 · y, y ∈ E(ν)x.

Then g = fh is a tubular map that embeds E(ν). 3

Let M be an m-dimensional smooth submanifold M ⊂ Rn of codimension
k. We take N(M) = {(x, v) | x ∈ M,v ⊥ TxM} ⊂ M × Rn as the normal
bundle of M ⊂ Rn.

(1.11.10) Proposition. N(M) is a smooth submanifold of M × Rn, and the
projection N(M) →M is a smooth vector bundle.

Proof. Let A : Rn → Rk be a linear map. Its transpose At with respect to the
standard inner product is defined by 〈Av,w〉 = 〈v,Atw〉. If A is surjective,
then At is injective, and the relation image (At) = (kernelA)⊥ holds; moreover
A ·At ∈ GLk(R).

We define M locally as solution set: Suppose U ⊂ Rn is open, ϕ : U → Rk
a submersion, and ϕ−1(0) = U ∩M = W . We set N(M)∩ (W ×Rn) = N(W ).
The smooth maps

Φ: W × Rn →W × Rk, (x, v) 7→ (x, Txϕ(v))
Ψ: W × Rk →W × Rn, (x, v) 7→ (x, (Txϕ)t(v))

satisfy
N(W ) = Im Ψ, T (W ) = Ker Φ.
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The composition ΦΨ is a diffeomorphism: it has the form (w, v) 7→ (w, gw(v))
with a smooth map W → GLk(R), w 7→ gw and therefore (w, v) 7→ (w, g−1

w (v))
is a smooth inverse. Hence Ψ is a smooth embedding with image N(W ) and
Ψ−1|N(W ) is a smooth bundle chart. 2

(1.11.11) Proposition. The map a : N(M) → Rn, (x, v) 7→ x+ v is a tubular
map for M ⊂ Rn.

Proof. We show that a has bijective differential at each point (x, 0) ∈ N(M).
Let NxM = TxM

⊥. Since M ⊂ Rn we consider TxM as subspace of Rn. Then
T(x,0)N(M) is the subspace TxM ×NxM ⊂ T(x,0)(M ×Rn) = TxM ×Rn. The
differential T(x,0)a is the identity on each of the subspaces TxM and NxM .
Therefore we can consider this differential as the map (u, v) 7→ u + v, i.e.
essentially as the identity.

It is now a general topological fact ?? that a embeds an open neighbourhood
of the zero section. Finally it is not difficult to verify property (3) of a tubular
map. 2

(1.11.12) Corollary. If we transport the bundle map via the embedding a we
obtain a smooth retraction r : U → M of an open neighbourhood U of M ⊂
Rn. 2

(1.11.13) Theorem. Let f : X → Y be a local homeomorphism. Let A ⊂ X
and f : A→ f(A) = B be a homeomorphism. Suppose that each neighbourhood
of B in Y contains a paracompact neighbourhood. Then there exists an open
neighbourhood U of A in X which is mapped homeomorphically under f onto
an open neighbourhood V of B in Y .

Proof. Let x ∈ X and y = s(x). We choose open neighbourhoods Ux of y in U
and Vx of x in N such that f induces a homeomorphism Ux → Vx. The inverse
is then a section sx of f over Vx. Since s(x) = sx(x), both sections coincide on
a neighbourhood of x in X.

We now choose a family (Vj | j ∈ J) of open sets Vj ⊂ N which cover X
together with sectionssj : Vj → U of f such that sj |Vj ∩ X = s|Vj ∩ X. We
can replace the Vj by smaller sets, if necessary, such that (Vj | j ∈ J) is locally
finite, e.g. if we choose a subordinate partition of unity (τj) and replace Vj
with τ−1

j ]0, 1].
Set V = ∪j∈JVj . There exists an open covering (Wj | j ∈ J) of V such that

W j ⊂ Vj for j ∈ J . We could use for this purpose the sets W j which are the
supports of a partition of unity subordinate to (Vj). Let

W = {x ∈W | x ∈W i ∩W j ⇒ si(x) = sj(x)}.

Then X ⊂W . We define a continuous section s on W by the requirement that
s is equal to sj on W j ; by construction, s is well-defined, and the continuity is
seen by using local finiteness.
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We show: W is a neighbourhood of X, and s(W ◦) is open. For this purpose
we choose an open neighbourhood Q of s(x), x ∈ X which is mapped under f
homeomorphically onto an open neighbourhood f(Q) ⊂ V of x. This done, we
choose an open neighbourhood A of x in V with the following properties:

(1) A ⊂ f(Q).
(2) A meets only a finite number of W j , say W j(1), . . . ,W j(k).
(3) x ∈W j(1) ∩ . . . ∩W j(k).
(4) A ⊂ Vj(1) ∩ . . . ∩ Vj(k).
(5) sj(t)(A) ⊂ Q, 1 ≤ t ≤ k.

A choice of this type is possible: By local finiteness of (W j) the set {j ∈ J |
x ∈W j} is finite; let {j(1), . . . , j(k)} be this set. Suppose x is contained in

Vj(1), . . . , Vj(k), Vj(k+1), . . . , Vj(l).

Then

A = f(Q) ∩ Vj(1) ∩ . . . ∩ Vj(k) ∩ (V rW j(k+1)) ∩ . . . ∩ (V rW j(l))

is an open neighbourhood of x in V with properties (1) – (4). By continuity of
si, the pre-image s−1

i (Q) is an open neighbourhood of x. Thus we can shrink
A such that A ⊂ s−1

j(t)(Q) holds.
Let y ∈ A. For 1 ≤ a, b ≤ k the equality sj(a)(y) = sj(b)(y) holds, for by

(5) both sets have the same image under f , and f is injective. Therefore A is
contained in W . 2

For embeddings of compact manifolds and their tubular maps one can apply
another argument as in the following proposition.

(1.11.14) Proposition. Let Φ: X → Y be a continuous map of a locally
compact space into a Hausdorff space. Let Φ be injective on the compact set
A ⊂ X. Suppose that each a ∈ A has a neighbourhood Ua in X on which Φ is
injective. Then there exists a compact neighbourhood V of A in X on which Φ
is an embedding.

Proof. The coincidence set K = {(x, y) ∈ X × X | Φ(x) = Φ(y)} is closed in
X × X, since Y is a Hausdorff space. Let D(B) be the diagonal of B ⊂ X.
If Φ is injective on Ua, then (Ua × Ua) ∩K = D(Ua). Thus our assumptions
imply that D(X) is open in K and hence W = X ×X \ (K \D(X)) open in
X ×X. By assumption, A×A is contained in W . Since A×A is compact and
X locally compact, there exists a compact neighbourhood V of A such that
V × V ⊂ W . Then Φ|V is injective and, being a map from a compact space
into a Hausdorff space, an embedding. 2

(1.11.15) Proposition. A submanifold M ⊂ N has a tubular map.
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Proof. We fix an embedding of N ⊂ Rn. By ?? there exists an open neigh-
bourhood W of V in Rn and a smooth retraction r : W → V . The standard
inner product on Rn induces a Riemannian metric on TN . We use as normal
bundle for M ⊂ N the model

E = {(x, v) ∈M × Rn | v ∈ (TxM)⊥ ∩ TxN}.

Again we use the map f : E → Rn, (x, v) 7→ x+v and set U = f−1(W ). Then U
is an open neighbourhood of the zero section of E. The map g = rf : U → N is
the inclusion when restricted to the zero section. We claim that the differential
of g at points of the zero section is the identity, if we use the identification
T(x,0)E = TxM ⊕Ex = TxN . On the summand TxM the differential T(x,0)g is
obviously the inclusion TxM ⊂ TxV . For (x, v) ∈ Ex the curve t 7→ (x, tv) in E
has (x, v) as derivative at t = 0. Therefore we have to determine the derivative
of t 7→ r(x + tv) at t = 0. The differential of r at (x, 0) is the orthogonal
projection Rn → TxN , if we use the retraction r in ??. The chain rule tells us
that the derivative of t 7→ r(x+ tv) at t = 0 is v. We now apply again ??. One
verifies property (3) of a tubular map. 2

1.12 Embeddings

This section is devoted to the embedding theorem of Whitney:

(1.12.1) Theorem. A smooth n-manifold has an embedding as a closed sub-
manifold of R2n+1.

We begin by showing that a compact n-manifold has an embedding into
some Euclidean space. Let f : M → Rt be a smooth map from an n-manifold
M . Let (Uj , φj , U3(0)), j ∈ {1, . . . , k} be a finite number of charts of M .
Choose a smooth function τ : Rn → [0, 1] such that τ(x) = 0 for ‖x‖ ≥ 2 and
τ(x) = 1 for ‖x‖ ≤ 1. Define σj : M → R by σj(x) = 0 for x /∈ Uj and by
σj(x) = τφj(x) for x ∈ Uj ; then σj is a smooth function on M . With the help
of these functions we define

Φ: M → Rt × (R× Rn)× · · · × (R× Rn) = Rt × RN

Φ(x) = (f(x);σ1(x), σ1(x)φ1(x); . . . ;σk(x), σk(x)φk(x)),

(k factors R × Rn), where σj(x)φj(x) should be zero if φj(x) is not defined.
The differential of this map has the rank n on Wj = φ−1

j (U1(0)), because
Φ(Wj) ⊂ Vj = {(z; a1, x1; . . . ; ak, xk) | aj 6= 0}, and the composition of Φ|Wj

with Vj → Rn, (z; a1, x1; . . .) 7→ a−1
j xj is φj . By construction, Φ is injective

on W =
⋃k
j=1Wj , since Φ(a) = Φ(b) implies σj(a) = σj(b) for each j, and



1.12 Embeddings 37

then φi(a) = φi(b) holds for some i. Moreover, Φ is equal to f composed with
Rt ⊂ Rt×RN on the complement of the φ−1

j U2(0). Hence if f is an (injective)
immersion on the open set U , then Φ is an (injective) immersion on U ∪W . In
particular, if M is compact, we can apply this argument to an arbitrary map
f and M = W . Thus we have shown:

(1.12.2) Note. A compact smooth manifold has a smooth embedding into some
Euclidean space. 2

We now try to lower the embedding dimension by applying a suitable par-
allel projection.

Let Rq−1 = Rq−1 × 0 ⊂ Rq. For v ∈ Rq \ Rq−1 we consider the projection
pv : Rq → Rq−1 with direction v, i.e., for x = x0+λv with x0 ∈ Rq−1 and λ ∈ R
we set pv(x) = x0. In the sequel we only use vectors v ∈ Sq−1. Let M ⊂ Rq.
We remove the diagonal D and consider σ : M × M \ D → Sq−1, (x, y) 7→
N(x− y) = (x− y)/‖x− y‖.

(1.12.3) Note. ϕv = pv|M is injective if and only if v is not contained in the
image of σ.

Proof. The equality ϕv(x) = ϕv(y), x 6= y and x = x0 + λv, y = y0 + µv imply
x− y = (λ− µ)v 6= 0, hence v = ±N(x− y). Note σ(x, y) = −σ(y, x). 2

Let now M be a smooth n-manifold in Rq. We use the bundle of unit vectors

STM = {(x, v) | v ∈ TxM, ‖v‖ = 1} ⊂M × Sq−1

and its projection to the second factor τ = pr2 |STM : STM → Sq−1. The
function (x, v) 7→ ‖v‖2 on TM ⊂ Rq×Rq has 1 as regular value with pre-image
STM , hence STM is a smooth submanifold of the tangent bundle TM .

(1.12.4) Note. ϕv is an immersion if and only if v is not contained in the
image of τ .

Proof. The map ϕv is an immersion if for each x ∈ M the kernel of Txpv
has trivial intersection with TxM . The differential of pv is again pv. Hence
0 6= z = pv(z) + λv ∈ TxM is contained in the kernel of Txpv if and only if
z = λv and hence v is a unit vector in TxM . 2

(1.12.5) Theorem. Let M be smooth compact n-manifold. Let f : M →
R2n+1 be a smooth map which is an embedding on a neighbourhood of a compact
subset A ⊂M . Then there exists for each ε > 0 an embedding g : M → R2n+1

which coincides on A with f and satisfies ‖f(x)− g(x)‖ < ε for x ∈M .

Proof. Suppose f embeds the open neighbourhood U of A and let V ⊂ U be a
compact neighbourhood of A. We apply the construction in the beginning of
this section with chart domains Uj which are contained in M \V and such that
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the sets Wj cover M rU . Then Φ is an embedding on some neighbourhood of
M \ U and

Φ: M → R2n+1 ⊕ RN = Rq, x 7→ (f(x),Ψ(x))

is an embedding which coincides on V with f (up to composition with the
inclusion R2n+1 ⊂ Rq). For 2n < q − 1 the image of σ is nowhere dense and
for 2n − 1 < q − 1 the image of τ is nowhere dense (Sard). Therefore in each
neighbourhood of w ∈ Sq−1 there exist vectors v such that pv ◦ Φ = Φv is an
injective immersion, hence an embedding since M is compact. By construction,
Φv coincides on V with f . If necessary, we replace Ψ with sΨ (with small s)
such that ‖f(x) − Φ(x)‖ ≤ ε/2 holds. We can write f as composition of Φ
with projections Rq → Rq−1 → . . . → R2n+1 along the unit vectors (0, . . . , 1).
Sufficiently small perturbations of these projections applied to Φ yield a map
g such that ‖f(x) − g(x)‖ < ε, and, by the theorem of Sard, we find among
these projections those for which g is an embedding. 2

The preceding considerations show that that we need one dimension less for
immersions.

(1.12.6) Theorem. Let f : M → R2n be a smooth map from a compact n-
manifold. Then there exists for each ε > 0 an immersion h : M → R2n such
that ‖h(x) − f(x)‖ < ε for x ∈ M . If f : M → R2n+1 is a smooth embedding,
then the vectors v ∈ S2n for which the projection pv ◦ f : M → R2n is an
immersion are dense in S2n. 2

Let f : M → R be a smooth proper function from an n-manifold without
boundary. Let t ∈ R be a regular value and set A = f−1(t). The manifold A
is compact. There exists an open neighbourhood U of A in M and a smooth
retraction r : U → A.

(1.12.7) Proposition. There exists an ε > 0 and open neighbourhood V ⊂ U
of A such that (r, f) : V → A× ]t− ε, t+ ε[ is a diffeomorphism.

Proof. The map (r, f) : U → A × R has bijective differential at points of A.
Hence there exists an open neighbourhood W ⊂ U of A such that (r, f) embeds
W onto an open neighbourhood of A × {t} in A × R. Since f is proper, each
neighbourhood W of A contains a set of the form V = f−1 ]t − ε, t + ε[ . The
restriction of (r, f) to V has the required properties. 2

In a similar manner one shows that a proper submersion is locally trivial
(Theorem of Ehresmann).

We now show that a non-compact n-manifold M has an embedding into
R2n+1 as a closed subset. For this purpose we choose a proper smooth function
f : M → R+. We then choose a sequence (tk | k ∈ N) of regular values of f such
that tk < tk+1 and limk tk = ∞. Let Ak = f−1(tk) and Mk = f−1[tk, tk+1].
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Choose εk > 0 small enough such that the intervals Jk = ]tk − εk, tk + εk[ are
disjoint and such that we have diffeomorphisms f−1(Jk) ∼= Ak×Jk of the type
1.12.7. We then use 1.12.7 in order to find embeddings Φk : f−1(Jk) → R2n×Jk
which have f as their second component. We then use the method of 1.12.5
to find an embedding Mk → R2n× [tk, tk+1] which extends the embeddings Φk
and Φk+1 in a neighbourhood of Mk+Mk+1. All these embeddings fit together
and yield an embedding of M as a closed subset of R2n+1.

(1.12.8) Proposition. A smooth ∂-manifold M has a collar.

Proof. There exists an open neighbourhood U of ∂M in M and a smooth
retraction r : U → ∂M . Choose a smooth function f : M → R+ such that
f(∂M) = {0} and the derivative of f at each point x ∈ ∂M is non-zero. Then
(r, f) : U → ∂M × R+ has bijective differential along ∂M . Therefore this map
embeds an open neighbourhood V of ∂M onto an open neighbourhood W of
∂M×0. Now choose a smooth function ε : ∂M → R+ such that {x}×[0, ε(x)[⊂
W for each x ∈ ∂M . Then compose ∂M× [0, 1[→ ∂M×R+, (x, s) 7→ (x, ε(x)s)
with the inverse of the diffeomorphism V →W . 2

(1.12.9) Theorem. A compact smooth n-manifold B with boundary M has a
smooth embedding of type I into D2n+1.

Proof. Let j : M → S2n be an embedding. Choose a collar k : M × [0, 1[→ U
onto the open neighbourhood U of M in B, and let l = (l1, l2) be its inverse.
We use the collar to extend j to f : B → D2n+1

f(x) =
{

max(0, 1− 2l2(x))j(l1(x)) x ∈ U
0 x /∈ U.

Then f is a smooth embedding on k(M × [0, 1
2 [ ). As in the proof of 1.12.4 we

approximate f by a smooth embedding g : B → D2n+1 which coincides with f
on k(M× [0, 1

4 [ ) and which maps BrM into the interior of D2n+1. The image
of g is then a submanifold of type I of D2n+1. 2

1.13 Approximation

Let M and N be smooth manifolds and A ⊂ M a closed subset. We assume
that N ⊂ Rp is a submanifold and we give N the metric induced by this
embedding.

(1.13.1) Theorem. Let f : M → N be continuous and f |A smooth. Let
δ : M → ]0,∞[ be continuous. Then there exists a smooth map g : M → N
which coincides on A with f and satisfies ‖g(x)− f(x)‖ < δ(x) for x ∈M .
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Proof. We start with the special case N = R. The fact that f is smooth at
x ∈ A means, by definition, that there exists an open neighbourhood Ux of x
and a smooth function fx : Ux → R which coincides on Ux ∩A with f . Having
chosen fx, we shrink Ux, such that for y ∈ Ux the inequality ‖fx(y)− f(y)‖ <
δ(y) holds.

Fix now x ∈M rA. We choose an open neighbourhood Ux of x in M rA
such that for y ∈ Ux the inequality ‖f(y) − f(x)‖ < δ(y) holds. We define
fx : Ux → R in this case by fx(y) = (x).

Let (τx | x ∈ M) be a smooth partition of unity subordinate to (Ux | x ∈
M). The function g(y) =

∑
x∈M τx(y)fx(y) now has the required property.

From the case N = R one immediately obtains a similar result for N = Rp.
The general case will now be reduced to the special case N = Rp. For this
purpose we choose an open neighbourhood U ofN in Rp together with a smooth
retraction r : U → N . We show in a moment:

(1.13.2) Lemma. There exists a continuous function ε : M → ]0,∞[ with the
properties:

(1) Ux = Uε(x)(f(x)) ⊂ U for each x ∈M .
(2) For each x ∈M the diameter of r(Ux) is smaller than δ(x).

Assuming this lemma, we apply 1.13.1 to N = Rp and ε instead of δ. This
provides us with a map g1 : M → Rp which has an image contained in U . Then
g = r ◦ g1 has the required properties. 2

Proof. We first consider the situation locally. Let x ∈ M be fixed. Choose
γ(x) > 0 and a neighbourhood Wx of x such that δ(x) ≥ 2γ(x) for y ∈ Wx.
Let

Vx = r−1(Uγ(x)/2(f(x)) ∩N).

The distance η(x) = d(f(x),Rp r Vx) is greater that zero. We shrink Wx to a
neighbourhood Zx such that ‖f(x)− f(y)‖ < 1

4η(x) for y ∈ Zx.
The function f |Zx satisfies the lemma with the constant function ε =

εx : y 7→ 1
4η(x). In order to see this, let y ∈ Zx and ‖z − f(y)‖ < 1

4η(x),
i.e., z ∈ Uy. Then, by the triangle inequality, ‖z − f(x)‖ < 1

2η(x), and hence,
by our choice of η(x),

z ∈ Vx ⊂ U, r(z) ∈ Uγ(x)/2(f(x)).

If z1, z2 ∈ Uy, then the triangle inequality yields ‖r(z1)−r(z2)‖ < γ(x) ≤ 1
2δ(x).

Therefore the diameter of r(Uy) is smaller than δ(y).
After this local consideration we choose a partition of unity (τx | x ∈ M)

subordinate to (Zx | x ∈ M). Then we define ε : M → ]0,∞[ as ε(x) =∑
a∈M

1
4τa(x)η(a). This function has the required properties. 2
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(1.13.3) Proposition. Let f : M → N be continuous. For each continuous
map δ : M → ]0,∞[ there exists a continuous map ε : M → ]0,∞[ with the
following property: Each continuous map g : M → N with ‖g(x)−f(x)‖ < ε(x)
and f |A = g|A is homotopic to f by a homotopy F : M × [0, 1] → N such
that F (a, t) = f(a) for (a, t) ∈ A × [0, 1] and ‖F (x, t) − f(x)‖ < δ(x) for
(x, t) ∈M × [0, 1].

Proof. We choose r : U → N and ε : M → ]0,∞[ as in 1.13.1 and 1.13.2. For
(x, t) ∈ M × [0, 1] we set H(x, t) = t · g(x) + (1 − t) · f(x) ∈ Uε(x)(f(x)).
The composition is F (x, t) = rH(x, t) is then a homotopy with the required
properties. 2

(1.13.4) Theorem. (1) Let f : M → N be continuous and f |A smooth. Then
f is homotopic relative A to a smooth map. If f is proper and N closed in Rp,
then f is properly homotopic relative A to a smooth map.

(2) Let f0, f1 : M → N be smooth maps. Let ft : M → N be a homotopy
which is smooth on B = M × [0, ε[∪M× ]1− ε, 1]∪A× [0, 1]. Then there exists
a smooth homotopy gt from f0 to f1 which coincides on A× [0, 1] with f . If ft
is a proper homotopy and N closed in Rp, then gt can be chosen as a proper
homotopy.

Proof. (1) We choose δ and ε according to 1.13.3 and apply 1.13.1. Then 1.13.3
yields a suitable homotopy. If f is proper, δ bounded, and if ‖g(x)− f(x)‖ <
δ(x) holds, then g is proper.

(2) We now consider M× ]0, 1[ instead of M and its intersection with B
instead of A and proceed as in (1). 2

1.14 Transversality

Let f : A→M and g : B → N be smooth maps. We form the pullback diagram

C
F //

G
��

B

g
��

A
f // M

with C = {(a, b) | f(a) = g(b)} ⊂ A × B. If g : B ⊂ M , then we identify C
with f−1(B). If also f : A ⊂M , then f−1(B) = A ∩B. The space C can also
be obtained as the pre-image of the diagonal of M ×M under f ×g. The maps
f and g are said to be transverse in (a, b) ∈ C if

Taf(TaA) + Tbg(TbB) = TyM,
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y = f(a) = g(b). They are called transverse if this condition is satisfied for
all points of C. If g : B ⊂ M is the inclusion of a submanifold and f(a) = b,
then we say that f is transverse to B in a if

Taf(TaM) + TbB = TbM

holds. If this holds for each a ∈ f−1(B), then f is called transverse to B. We
also use this terminology if C is empty, i.e., we also call f and g transverse in
this case. In the case that dimA+dimB < dimM , the transversality condition
cannot hold. Therefore f and g are then transverse if and only if C is empty.
A submersion f is transverse to every g.

In the special case B = {b} the map f is transverse to B if and only if b is
a regular value of f . We reduce the general situation to this case.

We use a little linear algebra: Let a : U → V be a linear map and W ⊂ V
a linear subspace; then a(U) +W = V if and only if the composition of a with
the canonical projection p : V → V/W is surjective.

Let B ⊂ M be a smooth submanifold. Let b ∈ B and suppose p : Y → Rk
is a smooth map with regular value 0, defined on an open neighbourhood Y of
b in M such that B ∩ Y = p−1(0). Then:

(1.14.1) Note. f : A → M is transverse to B in a ∈ A if and only if a is a
regular value of p ◦ f : f−1(Y ) → Y → Rk.

Proof. The space TbB is the kernel of Tbp. The composition of Taf : TaA →
TbM/TbB with the isomorphism TbM/TbB ∼= T0Rk induced by Tb : TbM →
T0Rk is Ta(p ◦ f). Now we apply the above remark from linear algebra. 2

(1.14.2) Proposition. Let f : A → M and f |∂A be smooth and transverse
to the submanifold B of M of codimension k. Suppose B and M have empty
boundary. Then C = f−1(B) is empty or a submanifold of type I of A of
codimension k. The equality TaC = (Taf)−1(Tf(a)B) holds. 2

Let, in the situation of the last proposition, ν(C,A) and ν(B,M) the be
normal bundles. Then Tf induces a smooth bundle map ν(C,A) → ν(B,M);
for, by definition of transversality, Taf : TaA/TaC → Tf(a)/Tf(a)B is surjective
and then bijective for reasons of dimension.

From 1.14.1 we see that transversality is an “open condition”: If f : A →
M is transverse in a to B, then it is transverse in all points of a suitable
neighbourhood of a, for a similar statement holds for regular points.

(1.14.3) Proposition. Let f : A → M and g : B → M be smooth and let
y = f(a) = g(b). Then f and g are transverse in (a, b) if and only if f × g is
transverse in (a, b) to the diagonal of M ×M .

Proof. Let U = Taf(TaA), V = Tbg(TbB), W = TyM . The statement amounts
to: U+V = W and (U⊕V )+D(W ) = W ⊕W are equivalent relations (D(W )
diagonal). By a small argument from linear one verifies this equivalence. 2
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(1.14.4) Corollary. Suppose f and g are transverse. Then C is a smooth
submanifold of A×B. Let c = (a, b) ∈ C. We have a diagram

TcC
TF //

TG
��

TbB

Tg
��

TaA
Tf // TyM.

It is bi-cartesian, i.e., 〈Tf, Tg 〉 is surjective and the kernel is TcC. There-
fore the diagram induces an isomorphism of the cokernels of TG and Tg (and
similarly of TF and Tf).

(1.14.5) Corollary. Let a commutative diagram of smooth maps be given

C
F //

G
��

B
g

��
Z

h // A
f // M.

Let f be transverse to g and C as above. Then h is transverse to G if and only
if fh is transverse to g.

Proof. The uses the isomorphisms of cokernels in 1.14.4. 2

(1.14.6) Corollary. We apply 1.14.5 to the diagram

M //

is
��

{s}

��
W

f // M × S
pr // S

and obtain: f is transverse to is : x 7→ (x, s) if and only if s is a regular value
of pr ◦f . 2

Let F : M ×S → N be smooth and Z ⊂ N a smooth submanifold. Suppose
S, Z, and N have no boundary. For s ∈ S we set Fs : M → N, x 7→ F (x, s).
We consider F as a parametrised family of maps Fs. Then:

(1.14.7) Theorem. Suppose F : M × S → N and ∂F = F |(∂M × S) are
transverse to Z. Then for almost all s ∈ S the maps Fs and ∂Fs are both
transverse to Z.

Proof. By 1.14.2, W = F−1(Z) is a submanifold of M × S with boundary
∂W = W ∩ ∂(M × S). Let π : M × S → S be the projection. The theorem of
Sard yields the claim if we can show: If s ∈ S is a regular value of π : W → S,
then Fs is transverse to Z, and if s ∈ S is regular value of ∂π : ∂W → S, then
∂Fs is transverse to Z. But this follows from 1.14.6. 2
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(1.14.8) Theorem. Let f : M → N be a smooth map and Z ⊂ N a subman-
ifold. Suppose Z and N have no boundary. Let C ⊂ M be closed. Suppose f
is transverse to Z in the points of C and ∂f transverse to Z in the points of
∂M ∩C. Then there exists a smooth map g : M → N which is homotopic to f ,
coincides on C with f and is on M and ∂M transverse to Z.

Proof. We begin with the case C = ∅. We use the following facts: N is diffeo-
morphic to a submanifold of some Rk; there exists an open neighbourhood U
of N in Rk and a submersion r : U → N with r|N = id. Let S = Ek ⊂ Rk be
the open unit disk and set

F : M × S → N, (x, s) 7→ r(f(x) + ε(x)s).

Here ε : M → ]0,∞[ is a smooth function for which this definition of F makes
sense. We have F (x, 0) = f(x). We claim: F and ∂F are submersions. For the
proof we consider for fixed x the map

S → Uε(f(x)), s 7→ f(x) + ε(x)s;

it is the restriction of an affine automorphism of Rk and hence a submersion.
The composition with r is then a submersion too. Therefore F and ∂F are
submersions, since already the restrictions to the {x} × S are submersions.

By 1.14.7, for almost all s ∈ S the maps Fs and ∂Fs are transverse to Z.
A homotopy from Fs to f is M × I → N, (x, t) 7→ F (x, st).

Let now C be arbitrary. There exists an open neighbourhood W of C in
M such that f is transverse to Z on W and ∂f transverse to Z on W ∩ ∂M .
We choose a set V which satisfies C ⊂ V ◦ ⊂ V ⊂ W ◦ and a smooth function
τ : M → [0, 1] such that M \ W ⊂ τ−1(1), V ⊂ τ−1(0). Moreover we set
σ = τ2. Then Txσ = 0, whenever τ(x) = 0. We now modify the map F from
the first part of the proof

G : M × S → N, (x, s) 7→ F (x, σ(x)s)

and claim: G is transverse to Z. For the proof we choose a (x, s) ∈ G−1(Z).
Suppose, to begin with, that σ(x) 6= 0. Then S → N, t 7→ G(x, t) is, as a
composition of a diffeomorphism t 7→ σ(x)t with the submersion t 7→ F (x, t),
also a submersion and therefore G is regular at (x, s) and hence transverse to
Z.

Suppose now that σ(x) = 0. We compute T(x,s)G at (v, w) ∈ TxM ×TsS =
TxX × Rm. Let

m : M × S →M × S, (x, s) 7→ (x, σ(x)s).

Then
T(x,s)m(v, w) = (v, σ(x)w + Txσ(v)s).
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The chain rule, applied to G = F ◦m, yields

T(x,s)G(v, w) = Tm(x,s)F ◦ T(x,s)m(v, w) = T(x,0)F (v, 0) = Txf(v),

since σ(x) = 0, Txσ = 0 and F (x, 0) = f(x). Since σ(x) = 0, by choice of W
and τ , f is transverse to Z in x, hence — since T(x,s)G and Txf have the same
image — also G is transverse to Z in (x, s). A similar argument is applied to
∂G. Then one finishes the proof as in the case C = ∅. 2

1.15 Gluing along Boundaries

We use collars in order to define a smooth structure if we glue manifolds with
boundaries along pieces of the boundary. Another use of collars is the defi-
nition of a smooth structure on the product of two manifolds with boundary
(smoothing of corners).

(1.15.1) Gluing along Boundaries. Let M1 and M2 be ∂-manifolds. Let
Ni ⊂ ∂Mi be a union of components of ∂Mi and let ϕ : N1 → N2 be a diffeo-
morphism. We denote by M = M1 ∪ϕ M2 the space which is obtained from
M1 + M2 by the identification of x ∈ N1 with ϕ(x) ∈ N2. The image of Mi

in M is again denoted by Mi. Then Mi ⊂ M is closed and Mi r Ni ⊂ M
open. We define a smooth structure on M . For this purpose we choose collars
ki : R− ×Ni →Mi with open image Ui ⊂Mi. The map

k : R×N1 →M, (t, x) 7→
{
k1(t, x) t ≤ 0
k2(−t, ϕ(x)) t ≥ 0

is an embedding with image U = U1 ∪ϕ U2. We define a smooth structure
(depending on k) by the requirement that Mi r Ni → M and k are smooth
embeddings. This is possible since the structures agree on (Mi rNi) ∩ U . 3

(1.15.2) Products. Let M1 and M2 be smooth ∂-manifolds. Then M1×M2r
(∂M1×∂M2) has a canonical smooth structure by using products of charts for
Mi as charts. We now choose collars ki : R− × ∂Mi → Mi and consider the
composition λ

R2
− × ∂M1 × ∂M2

π×id //

λ

��

R− × R− × ∂M1 × ∂M2

(1)

��
M1 ×M2 (R− × ∂M1)× (R− × ∂M2).

k1×k2oo

Here π : R2
− → R1

− × R1
−, (r, ϕ) 7→ (r, 1

2ϕ + 3π
4 ), written in polar coordinates

(r, ϕ), and (1) interchanges the 2. and 3. factor. There exists a unique smooth
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structure on M1 ×M2 such that M1 ×M2 r (∂M1 × ∂M2) ⊂M1 ×M2 and λ
are diffeomorphisms onto open parts of M1 ×M2. 3

(1.15.3) Boundary Pieces. Let B and C be smooth n-manifolds with
boundary. Let M be a smooth (n − 1)-manifold with boundary and suppose
that

ϕB : M → ∂B, ϕC : M → ∂C

are smooth embeddings. We identify in B + C the points ϕB(m) with ϕC(m)
for each m ∈ M . The result D carries a smooth structure with the following
properties:

(1) B r ϕB(M) ⊂ D is a smooth submanifold.
(2) C r ϕC(M) ⊂ D is a smooth submanifold.
(3) ι : M → D, m 7→ ϕB(m) ∼ ϕC(m) is a smooth embedding as a subman-

ifold of type I.
(4) The boundary of D is diffeomorphic to the gluing of ∂BrϕB(M)◦ with

∂C r ϕC(M)◦ via ϕB(m) ∼ ϕC(m), m ∈ ∂M .
The assertions (1) and (2) are understood with respect to the canonical embed-
dings B ⊂ D ⊃ C. We have to define charts about the points of ι(M), since
the conditions (1) and (2) specify what happens about the remaining points.
For points of ι(M r ∂M) we use collars of B and C and proceed as in 1.15.1.
For ι(∂M) we use the following device.

Choose collars κB : R−×∂B → B and κ : R−×∂M →M and an embedding
τB : R× ∂M → ∂B such that the next diagram commutes

R× ∂M
τB // ∂B

R− × ∂M

∪
OO

κ // M.

ϕB

OO

Here τB can essentially be considered as a tubular map, the normal bundle of
ϕ(∂M) in ∂B is trivial. And κ is “half” of this normal bundle.

Then we form ΦB = κB ◦ (id×τB) : R− × R× ∂M → B. For C we choose
in a similar manner κC and τC , but we require ϕC ◦κ− = τC where κ−(m, t) =
κ(m,−t). Then we define ΦC from κC and τC . The smooth structure in a
neighbourhood of ι(∂M) is now defined by the requirement that α : R− × R×
∂M → D is a smooth embedding where

α(r, ψ,m) =
{

ΦB(r, 2ψ − π/2,m), π
2 ≤ ψ ≤ π

ΦC(r, 2ψ − 3π/2,m), π ≤ ψ ≤ 3π
2

with the usual polar coordinates (r, ψ) in R− × R. 3

(1.15.4) Connected Sum. Let M1 and M2 be n-manifolds. We choose
smooth embeddings si : Dn → Mi into the interiors of the manifolds. In
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M1 r s1(En) + M2 r s2(En) we identify s1(x) with s2(x) for x ∈ Sn−1. The
result is a smooth manifold (1.15.1). We call it the connected sum M1#M2

of M1 and M2. Suppose M1,M2 are oriented connected manifolds, assume
that s1 preserves the orientation and s2 reverses it. Then M1#M2 carries an
orientation such that the Mi r si(En) are oriented submanifolds. One can
show by isotopy theory that the oriented diffeomorphism type is in this case
independent of the choice of the si. 3

(1.15.5) Attaching Handles. Let M be an n-manifold with boundary. Let
s : Sk−1 ×Dn−k → ∂M be an embedding and identify in M +Dk ×Dn−k the
points s(x) and x. The result carries a smooth structure (1.15.3) and is said
to be obtained by attaching a k-handle to M .

Attaching a 0-handle is the disjoint sum with Dn. Attaching an n-handle
means that a “hole” with boundary Sn−1 is closed by inserting a disk. A funda-
mental result asserts that each (smooth) manifold can be obtained by successive
attaching of handles. A proof uses the so-called Morse-theory (see e.g. [?] [?]).
A handle decomposition of a manifold replaces a cellular decomposition, the
advantage is that the handles are themselves n-dimensional manifolds. 3

(1.15.6) Elementary Surgery. IfM ′ arises fromM by attaching a k-handle,
then ∂M ′ is obtained from ∂M by a process called elementary surgery . Let
h : Sk−1 ×Dn−k → X be an embedding into an (n − 1)-manifold with image
U . Then X r U◦ has a piece of the boundary which is via h diffeomorphic to
Sk−1 × Sn−k−1. We glue the boundary of Dk × Sn−k−1 with h; in symbols

X ′ = (X r U◦) ∪h Dk × Sn−k−1.

The transition from X to X ′ is called elementary surgery of index k at
X via h. The method of surgery is very useful for the construction of mani-
folds with prescribed topological properties. See [?] [?] to get an impression of
surgery theory. 3

Problems

1. The subsets of Sm+n+1 ⊂ Rm+1 × Rn+1

D1 = {(x, y) | ‖x‖2 ≥ 1
2
, ‖y‖2 ≤ 1

2
}, D2 = {(x, y) | ‖x‖2 ≤ 1

2
, ‖y‖2 ≥ 1

2
}

are diffeomorphic to D1
∼= Sm×Dn+1, D2

∼= Dm+1×Sn. They are smooth subman-

ifolds with boundary of Sm+n+1. Hence Sm+n+1 can be obtained from Sm ×Dn+1

and Dm+1 × Sn by identifying the common boundary Sm × Sn with the identity. A

diffeomorphism D1 → Sm ×Dn+1 is (z, w) 7→ (‖z‖−1z,
√

2w).

2. Let M be a manifold with non-empty boundary. Identify two copies along the
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boundary with the identity. The result is the double D(M) of M . Show that D(M)

for a compact M is the boundary of some compact manifold. (Hint: Rotate M about

∂M about 180 degrees.)

3. Show M#Sn ∼= M for each n-manifold M .

4. Study the classification of closed connected surfaces. The orientable surfaces are

S2 and connected sums of tori T = S1 × S1. The non-orientable ones are connected

sums of projective plains P = RP 2. The relation T#P = P#P#P holds. Connected

sum with T is classically also called attaching of a handle.



Chapter 2

Manifolds II

2.1 Vector Fields and their Flows

A vector field is defined geometrically as a section of the tangent bundle. It also
has an interpretation as a linear differential operator of first order. If U ⊂ Rn
is open, we write as usual T (U) = U × Rn, and then a vector field on U is
determined by its second component X : U → Rn. The vector field is smooth,
if this map is smooth. Let f : U → R be smooth and let X(p) =

∑n
i=1 ai(p)ei

be a linear combination of the standard basis. Then (Tpf)(X(p)) ∈ Tf(p)R = R
equals

∑n
i=1 ai(p)∂f/∂xi(p). The vector X(p) is determined by its action on

smooth functions. For this reason we denote X(p) as differential operator∑n
i=1 ai(p)∂/∂xi, and instead of (Tpf)(X(p)) we write X(p)f , in order to indi-

cate that X(p) is an operator on smooth functions. If X is smooth, the smooth
function p 7→ X(p)f is denoted Xf . We use a similar notation for smooth
vector fields X on smooth manifolds M and for smooth functions f : M → R.

Let X : M → TM be a smooth vector field on M . An integral curve of
X with initial condition p ∈ M is a smooth map α : J → M from an open
interval 0 ∈ J ⊂ R such that α(0) = p and α′(t) = X(α(t)) for each t ∈ J .
We also say: α starts in p. We have used the notation α′(t) for the velocity
vector of α. The next theorem globalizes some standard results about linear
differential equations (existence, uniqueness, dependence on initial conditions).
Let f : M → N be a diffeomorphism and X : M → TM a smooth vector field.
Then Y = Tf◦X◦f−1 : N → TN is a smooth vector field on N . Let α : J →M
be an integral curve of X. We have the constant vector field ∂/∂t on J . We
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obtain a commutative diagram

TJ
Tα // TM

Tf // TN

J
α //

∂
∂t

OO

M
f //

X

OO

N.

Y

OO

The left square commutes, because α is an integral curve, the right square
commutes by definition of Y . Hence the composition f ◦ α is an integral curve
of Y .

(2.1.1) Theorem. Let X be a smooth vector field on M . There exists an open
set D(X) ⊂ R×M and a smooth map Φ: D(X) →M such that:

(1) 0×M ⊂ D(X).
(2) t 7→ Φ(t, p) is an integral curve of X with initial condition p.
(3) If α : J → M is an integral curve with initial condition p, then J is

contained in D(X) ∩ (R × p) = ]ap, bp[ , and α(t) = Φ(t, p) holds for
t ∈ J .

(4) The relations Φ(0, x) = x and Φ(s,Φ(t, x)) = Φ(s + t, x) hold whenever
the left side is defined (then the right side is also defined). In particular
]ap − t, bp − t[ = ]aΦ(t,p), bΦ(t,p)[ holds for each t ∈ ]ap, bp[ .

(5) If M is compact or, more generally, X has compact support, then
D(X) = R×M . 2

The map Φ in 2.1.1 is called the flow of the vector field X. If D(X) =
R × M , then we say that X is globally integrable . In that case the flow
Φ: R×M →M has the properties Φ(0, x) = x and Φ(s,Φ(t, x)) = Φ(s+ t, x);
it is a smooth action of the additive group R on M .

An integral curve with finite interval of definition leaves each compact set.
More precisely:

(2.1.2) Proposition. Let α : ]a, b[→ M be an integral curve with maximal
interval of definition, let K ⊂ M be compact, and b < ∞. Then there exists
c < b such that α(t) /∈ K for t > c. 2

(2.1.3) Theorem. Integral curves have one of the following types:
(1) The curve is constant. (The initial condition is a zero of the vector field.)
(2) The curve is an injective immersion.
(3) The curve α is periodic and defined on R, i.e., there exists τ > 0 such that

α(s) = α(t) if and only if s− t ∈ τZ. The image of α is then a compact
submanifold of M , and α induces a diffeomorphism exp(2πit) 7→ α(τt)
of S1 with the image of α. 2

(2.1.4) Proposition. Let M be a smooth submanifold of N and A ⊂ M a
subset which is closed in N . Given a smooth vector field X on M , there exists
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a smooth vector field Y on N such that Y |A = X|A and Y is zero in the
complement of a neighbourhood of A in N .

Proof. Using adapted charts we see that X has about each point of M an
extension to a neighbourhood of the point in N . Let (Uj | j ∈ J) be an open
covering of N . Choose an extension Y j of X|N∩Uj to Uj . Let (τj) be a smooth
partition of unity subordinate to (Uj). Then Yp =

∑
j τjY

j is an extension of
X. We apply this construction to a covering which consists of N r A and an
open covering of A. 2

(2.1.5) Proposition. Let M be a ∂-manifold. There exist smooth vector fields
X on M such that for each p ∈ ∂M the vector Xp points inwards.

Proof. From the definition of a ∂-manifold on sees immediately that each p ∈
∂M has an open neighbourhood U(p) in M and a smooth vector field X(p)
on U(p) which points inwards along U(p) ∩ ∂M . Choose a smooth partition
of unity (τp) subordinate to the covering (U(p) | p ∈ ∂M), U(0) = M r ∂M .
Then X =

∑
p τpX(p) has the required properties. 2

Let M be a smooth ∂-manifold. A collar for M is a smooth map

k : R− × ∂M →M

which is a diffeomorphism onto an open neighbourhood of ∂M in M and sat-
isfies k(x, 0) = x for x ∈ ∂M . The next theorem will be proved later.

(2.1.6) Theorem. A smooth ∂-manifold has a collar.

Proof. Let X be a smooth vector field on M which points inwards along ∂M .
Through each point x ∈ ∂M passes a maximal integral curve kx : [0, bx[→ M
which begins in x. The set d(X) = {(x, t) | t ∈ [0, bx[ } is open in ∂M × [0,∞[
and κ : d(X) → M, (x, t) 7→ kx(t) is smooth. The map κ has maximal rank in
the points of ∂M×0. Hence there exists an open neighbourhood U of ∂M×0 in
d(X) which is mapped diffeomorphically under κ onto an open neighbourhood
V of ∂M in M .

There exists a positive smooth function ε : ∂M → R such that {(x, t) | 0 ≤
t < ε(x)} ⊂ U . The map k(x, t) = κ(x, ε(x)t) is then a collar. 2

Problems

1. A smooth flow on M consists of an open neighbourhood O of 0 ×M in R ×M
and a smooth map Ψ: O →M such that:

(1) {t ∈ R | (t, x) ∈ O} is an open interval ]ax, bx[.

(2) For each t ∈ ]ax, bx[ the equality ]ax − t, bx − t[ = ]aΨ(t,x), bΨ(t,x)[ holds.
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(3) Ψ(0, x) = x; and Ψ(s, Ψ(t, x)) = Ψ(s + t, x) for each t ∈ ]ax, bx[ and s + t ∈
]ax, bx[ .

The flow line through x ∈M is the curve αx : ]ax, bx[→M, t 7→ Ψ(t, x). Let X(x) =
α′

x(0). This is a smooth vector field X on M , and αx an integral curve which starts
in x. The flow Φ 2.1.1 of X extends Ψ to a possibly larger set of definition. In this
sense, smooth vector fields correspond to maximal smooth flows.
2. If A is a closed submanifold of M and X a vector field on M such that X|A is
a vector field on A (i.e. X(a) ∈ Ta(A) ⊂ Ta(M) for a ∈ A), then an integral curve
which starts in A stays inside A. If X|A is globally integrable, then it is not necessary
to assume that A is closed.

2.2 Proper Submersions

(2.2.1) Theorem. Let f : M → J be a proper submersion onto an open inter-
val J ⊂ R. Then there exists a diffeomorphism Φ: Q× J →M such that f ◦Φ
is the projection onto J .

Proof. There exists a smooth vector field X on M such that Tpf(Xp) = Xpf =
1 for each p ∈M . (Proof: choose a Riemannian metric on M , form the gradient
field of f and divide it at each point by the square of its norm.) Let Ψ be the
flow of X. We fix σ ∈ J and set Q = f−1(σ). Let x ∈ Q and α : I → M the
maximal integral curve of X starting at α(σ) = x. Since f ◦ α has derivative
1, we conclude fα(t) = t. Since f is proper and an integral curve with finite
interval of definition leaves each compact set, we see that I = J . We can write
α in the form α(t) = Ψ(t − σ, x). From the relation fΨ(t, x) = f(x) + t we
conclude that Ψ is defined on {(t, x) | t − f(x) ∈ J} ⊂ R ×M . The smooth
map

Φ: Q× J →M, (x, t) 7→ Ψ(t− σ, x)

satisfies f ◦ Φ = prJ . In order to see that Φ is a diffeomorphism it suffices to
show that for each t ∈ J the fibre pr−1

J (t) = Q× {t} ∼= Q = f−1(σ) is mapped
by a diffeomorphism onto f−1(t). The map in question is

x ∈ f−1(σ) 7→ Ψ(t− σ, x) ∈ f−1(t)

It has the inverse y 7→ Ψ(σ − t, y), by one of the basic properties of a flow. 2

We have used the properness of f to determine the maximal interval of def-
inition of an integral curve. There exist non-proper submersions with compact
fibres.

(2.2.2) Proposition. Let f : M → N be a submersion. Suppose the fibres
f−1(y) are compact and connected. Then f is proper.
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Proof. We fix y0 ∈ N . Since f−1(y0) is compact, this set has a compact neigh-
bourhood V . We show: There exists a compact neighbourhood W of y0 such
that f−1(W ) is contained in V . Suppose that for each compact neighbourhood
A of y0 the intersection with the boundary f−1(A) ∩ Bd(V ) 6= ∅. Since⋂

A f
−1(A) ∩ Bd(V ) = f−1(y0) ∩ Bd(V ) = ∅,

by compactness of Rd(V ) the intersection of a finite number of sets f−1(A) ∩
Bd(V ) is empty, and this is impossible. Hence there exists A0 such that
f−1(A0) ∩ Bd(V ) = ∅. We now use the connectedness of f−1(a) and conclude
from f−1(a) ∩ Rd(V ) = ∅ that f−1(a) is either contained in V ◦ or in M r V .
Since f is a submersion, f(V ) is a neighbourhood of y0, and f−1(a) ∩ V 6= ∅
for a ∈ f(V ). Hence W = A0 ∩ f(V ) is a suitable neighbourhood. The closed
subset f−1(W ) of V is compact. Therefore each point of N has a compact
neighbourhood with compact pre-image. This implies that each compact sub-
set of N has a compact pre-image. 2

(2.2.3) Theorem. Let f : M → U be a proper submersion onto the product
U =

∏k
j=1 Jj ⊂ Rk of open intervals Jj ⊂ R. Then there exists a diffeomor-

phism Φ: Q× U →M such that f ◦ Φ is the projection onto U .

Proof. Induction over k. The case k = 1 is settled by 2.2.1. Let fj be the
die j-th component of f . We choose a smooth vector field X1 on M which
is mapped under Tf1 to ∂/∂t1 and under Tfj , j > 1, to zero. (Existence:
Choose a Riemannian metric; form the orthogonal complement of the kernel
bundle of Tf ; then Tf is an isomorphism on the fibres of this complement;
the values of the vector field X1 should be taken in this complement; all these
conditions determine the vector field uniquely.) The integral curve α of X1

through x ∈ f−1(σ1, . . . , σk) origin α(σ1) = x has J1 as maximal interval of
definition. Let Q1 = f−1

1 (σ1). As in the proof of 2.2.1 we obtain from the flow
of X1 a diffeomorphism Φ1 : Q1 × J1 → M such that f1 ◦ Φ1 is the projection
onto J1. We use the induction hypothesis for (f2, . . . , fk)|Q1. 2

(2.2.4) Corollary (Ehresmann). A proper submersion f : M → N is locally
trivial. 2

We now prove the Whitney embedding theorem 1.12.1 for not necessarily
compact manifolds. Let h : M → [0,∞[ be a smooth proper function. We
set Ui = h−1 ]i − 1

4 , i + 5
4 [ and Ki = h−1 ]i − 1

3 , i + 4
3 [ . Then Ui is open, Ki

compact and U i ⊂ Ki. By the procedure of 1.12.4 there exist smooth maps
si : M → R2n+1 which embed a neighbourhood of U i and which are zero away
from Ki. If necessary, we compose with a suitable diffeomorphism of R2n+1 and
assume that the si have an image contained in D = D2n+1. We define fj as the
sum of the si with i ≡ j mod 2 and f = (f0, f1, h) : M → R2n+1×R2n+1×R =
V . By construction f(M) ⊂ D × D × R = K × R. Let f(x) = f(y); then
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h(x) = h(y); therefore there exists i with x, y ∈ Ui; since then si is injective,
we conclude that x = y. Hence f is an embedding, and the image is closed,
since f is proper. Again by the procedure of 1.12.4 there exists a projection
p : V → H onto a subspace H of dimension 2n+1 such that p◦f is an injective
immersion. Moreover we can choose p in such a manner that the kernel of p has
trivial intersection with the kernel of the projection q : V → R2n+1×R2n+1. We
claim that p◦f is proper. Suppose that C ⊂ H is compact. Then (p◦f)−1(C) =
f−1p−1(C) ⊂ (K ×R)∩ p−1(C) = (q, p)−1(K ×C) is compact, since the linear
inclusion (q, p) is proper.

2.3 Isotopies

Let h0, h1 : M → N be smooth embeddings. An isotopy from h0 to h1 is a
smooth map H : M × R → N with the properties:

(1) h0(x) = H(x, 0), h1(x) = H(x, 1) for x ∈M .
(2) Ht : M → N, x 7→ H(x, t) is a smooth embedding.
(3) There exists ε ∈ ]0, 1[ such that Ht = H0 for t < ε and Ht = H1 for

t > 1− ε.
We call h0 and h1 isotopic if there exists an isotopy from h0 to h1. This
relation is an equivalence relation; the proof is the same as for the homotopy
relation. We have arranged the definition so that the product isotopy (defined
as the product homotopy) is smooth.

In analogy to the homotopy notion one would expect to define an isotopy
from h0 to h1 as a smooth map h : M × [0, 1] → N which yields for each t ∈ I
an embedding ht. If h is a smooth map of this type and ϕ : R → [0, 1] a smooth
function, ϕ(t) = 0 for t < ε and ϕ(t) = 1 for t > 1− ε, then (x, t) 7→ h(x, ϕ(t))
is an isotopy in the sense of our definition, i.e., satisfying also condition (3).
We use this device without further mentioning.

A diffeotopy of the smooth manifold N is a smooth map D : N ×R → N
such that D0 = id(N) and Dt is a diffeomorphism for each t.

Let h0, h1 : M → N be smooth embeddings. A diffeotopy D of N is said to
be an ambient isotopy from h0 to h1 if

h : M × R → N, (x, t) 7→ D(h0(x), t) = Dt(h0(x))

is an isotopy from h0 to h1. We say is this case that the isotopy is carried
along by the diffeotopy. Only the restriction D|N×[0, 1] matters. The relation
“ambient isotopic” is an equivalence relation on the set of embeddings.

(2.3.1) Example. Let f : Rn → Rn be a smooth embedding which preserves
the origin. Then f is isotopic to the differential Df(0). We write f(x) =
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∑n
i=1 xigi(x) with smooth functions gi : Rn → Rn. Note that Df(0) : v 7→∑n
i=1 vigi(0). An isotopy is now defined by

(x, t) 7→
∑n
i=1 xigi(tx) =

{
t−1f(tx) t > 0
Df(0) t = 0.

If h0 and h1 are ambient isotopic and if h0(M) ⊂ N is closed, then also
h1(M) ⊂ N is closed. This shows that not every isotopy just constructed can
be extended to an ambient isotopy. 3

(2.3.2) Theorem. Any two strong tubular maps are isotopic as strong tubular
maps.

Proof. (1) The proof generalizes the method of the previous example. Let M
be a smooth m-submanifold of the smooth n-manifold N . Let f0 and f1 be
tubular maps. We assume, to begin with, an additional hypothesis: For each
p ∈ M there exist chart domains U and V of M about p such that E(ν) is
trivial over U and V and such that f0(E(ν)|U) ⊂ f1(E(ν)|V ) holds. Then f0
and f1 are strongly isotopic.

The hypothesis f0(E(ν)) ⊂ f1(E(ν)) allows us to consider

ϕ = f−1
1 f0 : E(ν) → E(ν);

and we show that ϕ is strongly isotopic to the identity. The isotopy ψt, t ∈ [0, 1]
is defined for t > 0 as ψt(v) = t−1ϕ(tv), and ψ0 is the identity. For each t the
map ψt is a smooth embedding onto an open neighbourhood of ?? which is the
identity on the zero section. We show that ψt is strong and that ψ is smooth.
By our hypothesis, we can express ϕ in suitable local coordinates in the form

ϕ : U × Rn−m → V × Rn−m, (x, y) 7→ (f(x, y), g(x, y))

with f(x, 0) = x, g(x, 0) = 0. There exists a presentation

g(x, y) =
∑n−m
i=1 yigi(x, y)

with smooth functions gi : Rm × Rn−m → Rn−m which satisfy gi(x, 0) =
∂g
∂yi

(x, 0). This shows us that

(x, y, t) 7→ ψt(x, y) = (f(x, ty),
∑
i yigi(x, ty))

is smooth in x, y, t. The derivative at the zero section satisfies

∂ψt
∂yi

(x, 0) = gi(x, 0).

Since f0 and f1 are strong, the matrix with rows gi(x, 0) is the unit matrix.
Hence ψt is strong.
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(2) We now verify that we can arrange for the additional assumption of part
(1) of the proof. Let E(ν) be trivial over the chart domain V about p. Then
f1(E(ν)|V ) is an open neighbourhood of V ⊂M ⊂ N in N . Let W ⊂ E(ν) be
an open neighbourhood of p ∈ M such that f0(W ) ⊂ f1(E(ν)|V ). We choose
in W a set of the form E(ν, η)|U , η > 0 with chart domain U over which E(ν)
is trivial. There exists a smooth positive function ε : M → R such that for each
(U, η) the inequalities ε(x) < η, x ∈ U hold. From E(ν, ε) we obtain a suitable
tubular map by shrinking f0. The argument in (1) shows that shrinking does
not change the strong isotopy class. 2

We construct diffeotopies by integrating suitable vector fields. For this
purpose we consider isotopies as “movie”. Let h : M × R → N be a smooth
map. The movie of h is the smooth map

h# : M × R → N × R, (x, t) 7→ (ht(x), t).

Since h#(M×t) ⊂ N×t, we call h# height preserving . If h is an isotopy, then
h# is a height preserving immersion. We call h strict if h# is an embedding.

(2.3.3) Example. Let D : N × R → N be a diffeotopy. Then D# is a diffeo-
morphism (obviously a bijective immersion). Conversely, if a height preserving
diffeomorphism of this type is given and if D0 = id(N), then pr1 ◦D# = D is
a diffeotopy of N . 3

(2.3.4) Note. An isotopy h : M × R → N which is constant away from a
compact set K ⊂M is strict.

Proof. Since h# is an injective immersion it suffices to show that h# is a topo-
logical embedding.

Let U ⊂ M be open and relatively compact and and suppose that ht is
constant in the complement of U . Then h0|M r U is a homeomorphism onto
a closed subset of h0(M); hence h0 × id = h# : (M rU)× [0, 1] → N × [0, 1] is
a homeomorphism onto a closed subset of h#(M × [0, 1]). By injectivity and
compactness also h# : U × [0, 1] → N × [0, 1] is a homeomorphism onto a closed
subset. Altogether we see that h# is a homeomorphism onto a closed subset of
the image of h#. 2

A vector field X on M × R can be decomposed according to the direct
decomposition T(x,t)(M×R) = TxM×TtR. We then obtain from X two vector
fields on M ×R which we call the M - and the R-component of X. (In a similar
manner we can treat arbitrary products M1 ×M2.) In particular we have on
M ×R the constant vector field with M -component zero and R-component ∂

∂t .

(2.3.5) Proposition. Let Z be a smooth vector field on N × R with R-
component ∂

∂t .
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(1) Suppose Z is globally integrable. Then its flow Φ satisfies

Φt(N × {s}) ⊂ N × {s+ t}, s, t ∈ R

and
D : N × R → N, (x, t) 7→ pr1 ◦Φt(x, 0) = Dt(x)

is a diffeotopy of N .
(2) If Z has in addition in the complement of the compact set C = K× [c, d]

the N -component zero, then Z is globally integrable and D is constant in the
complement of K.

Proof. (1) Let α : R → N × R be the integral curve through (y, s). Then
β = pr2 ◦α is the integral curve of ∂

∂t through s, and therefore the relation
β(t) = s+ t holds. This proves the first inclusion.

We know that D is smooth, and D(y, 0) = pr1 ◦Φ0(y, 0) = pr1(y, 0) = y.
Moreover, Dt is a diffeomorphism, since a smooth inverse is given by y 7→
pr1 ◦Φ−t(y, t).

(2) Let α : ]a, b[→ N×R be a maximal integral curve. If b <∞, then there
exists t0 ∈ ]a, b[ such that α(t) 6∈ C for t ≥ t0. As long as the integral curve
stays within C it has the form t 7→ (x0, s0 + t). This leads to a contradiction
with b <∞. 2

(2.3.6) Theorem. Let h : M ×R → N be an isotopy which is constant in the
complement of a compact set K ⊂ M . Then there exists an isotopy D of N
which carries h along and which is constant in the complement of a compact
set.

Proof. We obtain D by the method of 2.3.5. By 2.3.4, h is strict and therefore
P = h#(M ×R) a submanifold. The diffeomorphism h# transports the vector
field ∂

∂t to a vector field X on P . The R-component of X is ∂
∂t . The set

N0 = h#(K × [0, 1]) is compact in P . Let N1 be a compact neighbourhood of
N0. We look for an extension Y of P to N×R with R-component ∂

∂t which has
away from N1 × [0, 1] the N -component zero. We can apply 2.3.5 to Y . The
resulting diffeotopy carries h along. The vector field Y will be obtained from
suitable local data with the help of a partition of unity. In the complement
of N0 × [ε, 1 − ε] we take the vector field ∂

∂t . On N◦
1× ]0, 1[ we construct an

extension ofX; this can be done, because the part of P therein is a submanifold.
The two part are combined with a partition of unity. 2

(2.3.7) Theorem. Let k0 and k1 be collars of M . Let ∂M be compact and K
a compact neighbourhood of ∂M in M . Then there exists ε > 0 and a diffeotopy
D of M which is constant on ∂M ∪ (MrK) and satisfies D1k0(x, s) = k1(x, s)
for 0 ≤ s < ε.
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Proof. The vector field ∂/∂t on ∂M × [0, 1[ is transported by k0 and k1 into
vector fields which are defined in a neighbourhood of ∂M in M . Denote them
by X0 and X1 on the intersection U of these neighbourhoods. On U we have
the family of vector fields Xλ = (1− λ)X0 + λX1, λ ∈ [0, 1]. Each member of
the family is pointing inwards on ∂M . As in the proof of 2.1.6 we obtain from
Xλ a collar kλ. There exist ε > 0 such that all these collars kλ, λ ∈ [0, 1] are
defined on ∂M × [0, 2ε], and

k : (∂M × [0, 2ε])× [0, 1] →M, (x, s, λ) 7→ kλ(x, s)

is a smooth isotopy (of the restrictions) of k0 to k1 and have an image in K◦.
There exists a diffeotopy of K◦ which carries along k|(∂M × [0, ε]) × [0, 1]

and is constant away from a compact set of K◦. We can therefore extend this
diffeotopy to M if we use away from K◦ the constant diffeotopy. The extended
diffeotopy has the required property. 2

Problems

1. Let M be a connected manifold without boundary of dimension greater that 1.
Let {y1, . . . , yn} and {z1, . . . , zn} be subsets of M . Then there exist a diffeomorphism
h : M → M which is smoothly isotopic to the identity such that h(yi) = zi for
1 ≤ i ≤ n. The diffeotopy can be chosen to be constant in the complement of a
compact set.
2. For each t ∈ R the map

ht : ]0,∞[→ R2, x 7→ ((x−1t2 − x)2, (x−1t2 − x)t)

is an embedding. (If t 6= 0, then t−1 pr2 ◦ht : x 7→ x−1t2 − x is a diffeomorphism
]0,∞[→ R; in the case t = 0 the map pr1 ◦ht : x 7→ x2 is an embedding with image
]0,∞[.) Hence ht is a smooth isotopy. But h# is not an embedding and therefore
ht not strict. (We have h#(

√
1 + t2 − 1, t) = (4, 2t, t), t 6= 0. The limit t → 0 is

(4, 0, 0); but (
√

1 + t2 − 1, t) does not converge in ]0,∞[×R.) The image P of h# is
not a submanifold, for P is the subset of Q = {(x, y, z) ∈ R3 | xz2 = y2} given by
z 6= 0, x ≥ 0 and z = 0, x > 0. The intersection of P with {x = a2 > 0} consists of
the two lines {(a2,±at, t) | t ∈ R}, and P ∩ {x > 0} consists of two submanifolds of
R3 with transverse intersection along the positive x-axis. 3

2.4 Sprays

Let M be smooth manifold with tangent bundle πM : TM →M . A vector field
ξ : TM → TTM on TM is called differential equation of second order or
vector field of second order on M if TπM ◦ ξ = id(TM). A vector field ξ
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of second order is said to be a spray on M if for each s ∈ R and v ∈ TM the
equality ξ(sv) = Ts(sξ(v)) holds. Here s also denotes the map s : TM → TM
which multiplies each tangent vector by the scalar s, and Ts is its differential.

Let ϕ : M → N be a diffeomorphism. We associate to the vector field ξ on
TM the transported vector field η = TTϕ◦ ξ ◦Tϕ−1 on TN . One verifies from
the definitions:

(2.4.1) Note. η is a vector field of second order (a spray) if and only if this
holds for ξ. 2

Let U ⊂ M be open. By restriction we obtain ξU : TU → TTU , and ξU is
a vector field of second order (a spray) if this holds for ξ. Therefore we can
study a spray in local coordinates.

Let U ⊂ Rn be open. We identify as usual

TU = U × Rn, TTU = (U × Rn)× (Rn × Rn).

Then a vector field ξ on TU has the form (x, v) 7→ (x, v, f(x, v), g(x, v)). One
verifies:

(2.4.2) Note. ξ is of second order if and only if f(x, v) = v. And a second
order ξ is a spray if and only if g(x, sv) = s2g(x, v) holds for each s ∈ R and
each (x, v) ∈ U × Rn. 2

The last condition is trivially satisfied if g = 0. Hence sprays exist at
least locally. Sprays can be globalized with partitions of unity. The geometric
meaning of a spray is seen by looking at its integral curves.

(2.4.3) Proposition. A smooth vector field ξ on TM is a vector field of
second order if an only if for each maximal integral curve βv : ]av, bv[→ TM
with initial condition v ∈ TM and projection αv = πm◦βv the relation α′v = βv
holds.

Proof. Let βv be an integral curve; this means ξ(v) = T0βv(∂/∂t). We apply
TπM and obtain with the chain rule

TvπM (ξ(v)) = TvπMT0βv(∂/∂t) = T0(πMβv)(∂/∂t)

= T0(αv)(∂/∂t)
(1)
= βv(0) = v,

where (1) uses the condition of the proposition.
Conversely, assume TπM ◦ ξ = id, and let βv be an integral curve starting

in v. We compute

Tsαv(∂/∂t) = Tβv(s)πTsβv(∂/∂t) = Tβv(s)π(ξ(βv(s)) = βv(s).

We have used: the definition of α; the definition of an integral curve; the
assumption about ξ. 2
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(2.4.4) Proposition. Let ξ be a smooth vector field of second order on M .
Then ξ is a spray if and only if the integral curves have the following properties:

(1) For s, t ∈ R and v ∈ TM the following holds: st ∈ ]av, bv[ if and only if
t ∈ ]asv, bsv[ .

(2) For s, t ∈ R and v ∈ TM with st ∈ ]av, bv[ the equality αv(st) = αsv(t)
holds.

Proof. Suppose the integral curves have these properties. We differentiate
αsv(t) = αv(st) with respect to t and obtain βsv(t) = sβv(st); we differen-
tiate again and obtain, using the chain rule, β′sv(t) = Ts(sβ′(st)). For t = 0
we obtain ξ(sv) = Ts(sξ(v)).

Conversely, suppose that ξ is a spray. We consider the integral curve γv : t 7→
sβv(st) for those t for which st ∈ ]av, bv[ . Then

γ′v(t) = Ts(sβ′v(st)) = Ts(sξ(βv(st))) = ξ(sβv(st)) = ξ(γv(t)).

We have used: chain rule; integral curve; assumption about ξ; definition of γ.
The computation shows that γv is an integral curve of ξ starting in γv(0) =
sβv(0) = sv. Similarly, βsv is an integral curve with the same properties. By
uniqueness of integral curves, βsv(t) = sβv(st). Hence for each t such that
st ∈ ]avbv[ the inclusion t ∈ ]asv, bsv[ holds. If s 6= 0, we apply the same
argument to 1/s and obtain the reversed inclusion. For s = 0 the situation is
clear and causes no problem. We apply the projection to the equality for the
β-curves and obtain αv(st) = αsv(t). 2

2.5 The Exponential Map of a Spray

Let p : E → M be a smooth vector bundle. The zero section i : M → E sends
x ∈M to the zero vector i(x) ∈ Ex = p−1(x); it is a smooth embedding which
we consider as inclusion; we also call the submanifold the M = i(M) as zero
section of E. We determine TE|M , the restriction of TE to the zero section.
We have two types of tangent vectors: The horizontal ones, tangent to M , and
the vertical ones, tangent to Ex. This yields a decomposition of TE|M into a
Whitney-sum.

The differential Ti : TM → TE has an image in TE|M . Since i is an
embedding, Ti is a fibrewise injective bundle morphism. Moreover, we have
the bundle morphism j : E → TE|M ; it sends v ∈ Ex to the velocity vector
at t = 0 of the curve t 7→ tv in Ex. (Associated µ : R × E → E, (t, v) 7→ tv
belongs µ′ : R× E → TE.)

(2.5.1) Note. 〈 j, T i 〉 : E⊕TM → TE|M is an isomorphism of vector bundles.
2
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We apply these considerations to the bundle πM : TM → M and obtain a
canonical isomorphism TM ⊕ TM ∼= TTM |M . One has to remember that the
two factors TM have a different meaning: The first one comprises the vertical
tangent vectors, the second one the horizontal tangent vectors.

Now suppose that ξ is a spray on M . The set

O(ξ) = {v ∈ TM | 1 ∈ ]av, bv[ }

is an open neighbourhood of the zero section. The exponential map of the
spray is

expξ : O(ξ) →M, v 7→ αv(1).

This map is the identity on the zero section. By the preceding remarks

TO(ξ)|M ∼= TM ⊕ TM.

Under this identification the following holds:

(2.5.2) Proposition. The differential of expξ at the zero section is

Tx expξ : TxO(ξ) = TxM ⊕ TxM → TxM, (v, w) 7→ v + w.

Proof. Since expξ |M = id(M), the horizontal vectors are mapped identically
(0, w) 7→ w. On the vertical summand

t 7→ tv 7→ expξ(tv) = αtv(1) = αv(t)

with derivative α′v(0) = v at t = 0; hence the mapping is (v, 0) 7→ v. 2

(2.5.3) Theorem. The differential of (π, expξ) : O(ξ) → M ×M at the zero
section is TxM ⊕ TxM → TxM ⊕ TxM, (v, w) 7→ (w, v + w).

Proof. Because of 2.5.2, we only have to observe that TπM has the form
(v, w) 7→ w, since πM is constant on fibres and the identity on the horizon-
tal part. 2

By 2.5.3 and ?? there exists an open neighbourhood U(ξ) ⊂ O(ξ) of the
zero section which is mapped under (π, exp) diffeomorphically onto an open
neighbourhood W (ξ) ⊂ M × M of the diagonal. We can pass to a smaller
neighbourhood which has a more appealing form. Choose a Riemannian metric
〈−,−〉 on TM and a smooth function ε : M → ]0,∞[ such that

T ε(M) = {v ∈ TxM | ‖v‖ < ε(x)}

is contained in U(ξ). Then πM : T ε(M) →M is a bundle with fibres open disks
about the origin.
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2.6 Tubular Neighbourhoods

Let i : A ⊂ M be the inclusion of a smooth submanifold. The differential
Ti : TA → TM |A is an injective bundle morphism. We think of TaA as a
subspace of TaM . Fix a Riemannian metric on TM and take the orthogonal
complement NaA = (TaA)⊥ of TaA in TaM . We obtain the sub-bundle NA of
TM |A, called the normal bundle of the submanifold. Up to isomorphism it is
independent of the Riemannian metric, because it is isomorphic to the quotient
bundle of the inclusion TA→ TM |A. We have a direct decomposition TM |A =
NA ⊕ TA which is fibrewise the direct decomposition TaM = NaA ⊕ TaA of
the subspaces.

Let ξ be a spray on M and exp: O →M its exponential map. Then O∩NA
is an open neighbourhood of the zero section A ⊂ O∩NA ⊂ TA. With respect
to the decomposition

TaO = TaM ⊕ TaM

into the vertical and horizontal part we have

Ta|(O ∩NA) = NaA⊕ TaA.

Since Ta exp is on both summands the identity, the differential of the restriction
of

t = exp |O ∩NA : O ∩NA→M

to the summands NaA and TaA is the inclusion of these subspaces into TaM .
Therefore we can consider the differential of t at the zero section essentially as
the identity. Hence there exists an open neighbourhood U of A in O ∩NA on
which t is an embedding onto an open neighbourhood V of A in M .

(2.6.1) Lemma. Let U be an open neighbourhood of the zero section in a
smooth vector bundle q : E → A. Then there exists a fibrewise embedding
σ : E → U which is the identity on a neighbourhood of the zero section (shrink-
ing of E).

Proof. We choose a Riemannian metric on E. There exists a smooth function
ε : A→ ]0,∞[ such that

Uε(a)(a) = {x ∈ Ea | ‖x‖ < ε(a)} ⊂ U.

Let ϕη : [0,∞[→ [0, η[ be a diffeomorphism which is the identity on [0, η/2[
and which depends smoothly on η. We set σ(v) = ϕε(qv)(‖v‖)‖v‖−1v. 2

A tubular map for a smooth submanifold A ⊂M is a smooth embedding
t : NA→M onto an open set U ⊂M which is the identity on the zero section.
We call the image U of a tubular map a tubular neighbourhood of A in M .
The tubular map transports the bundle projection into a smooth retraction
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r : U → M . A partial tubular map maps an open neighbourhood of the
zero section of NA diffeomorphically onto an open neighbourhood of A in M
(and is the inclusion A ⊂ M on the zero section). By shrinking, we obtain
from a partial tubular neighbourhood a global one. A tubular map is said
to be strong if its differential at the zero section satisfies a further condition
to be explained now. The differential of t, restricted to TNA|A, is a bundle
morphism

TNA|A→ TM |A.
We compose with the inclusion

NA→ NA⊕ TA ∼= TNA|A

and the projection
TM |A→ NA = (TM |A)/TA.

If this composition is the identity, we call t strong. Similarly for partial tubular
maps. Shrinking 2.6.1 does not affect this property.

(2.6.2) Proposition. A smooth submanifold A ⊂ M has a strong tubular
map.

Proof. We have seen in the beginning of this section that the exponential map
of a spray yields a strong partial tubular map. 2

We transport the bundle projection with a tubular map and obtain:

(2.6.3) Proposition. A smooth submanifold A of M is a smooth retract of
an open neighbourhood. 2

Problems

1. Let A ⊂M be a smooth submanifold and q : E → A a smooth vector bundle. Let

τ : E →M be an embedding of E onto an open subset U of M which is the inclusion

on the zero section. Then we call τ also a tubular map. This is justified by the fact

that E is isomorphic to the normal bundle. The differential of τ yields a smooth

bundle isomorphism Tτ : TE|A→ TU |A which is the identity on the subbundles TA,

and therefore it induces an isomorphism of the quotient bundles E → NA.

2. (Normal bundle of the zero section) Let q : E → A be a smooth vector bundle.

The zero section is a smooth submanifold i : A ⊂ E. Its normal bundle is E. We had

a direct decomposition TE|A = E ⊕ TA and therefore a direct complement of TA.

A strong tubular map is in this case the identity of E.

3. (Normal bundle of the diagonal) The normal bundle of the diagonal M = D(M) ⊂
M ×M is isomorphic to the tangent bundle TM . The tangent space T(x,x)D(M) is

the diagonal of TxM × TxM = T(x,x)(M ×M), and the bundle 0 ⊕ TM is a direct

complement of the diagonal bundle.
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2.7 Morse Functions

Let U ⊂ Rn be an open neighbourhood of 0 ∈ Rn and f : U → R a smooth
function with 0 as a critical point, i.e. the differential Df(0) of f is zero,
equivalently, the partial derivativesDif(0) of f are zero. The symmetric matrix
of the second partial derivatives

Hf(0) = D2f(0) =
(

∂2f

∂xi∂xj
(0)

)
is called the Hesse matrix of f . The critical point is regular or non-
degenerate if this matrix is regular. The differential Df : U → Hom(Rn,R)
has the derivative D2f : U → Hom(Rn,Hom(Rn,R)). We identify the latter
Hom-space with the vector space of bilinear forms on Rn. The bilinear form
D2f(0) is described in standard coordinates by the Hesse matrix and called
Hesse form of the critical point. Let ϕ : U → V be a diffeomorphism with
ϕ(0) = 0. Then 0 is a critical point of f ◦ ϕ if and only if it is a critical point
of f . The chain rule yields

H(f ◦ ϕ)(0) = Dϕ(0)t ·Hf(0) ·Dϕ(0),

provided 0 is a critical point of f . Hence 0 is regular for f ◦ ϕ if and only if it
is regular for f .

Let M be smooth n-manifold, f : M → R a smooth function and p a critical
point of f . Let Xp, Yp ∈ TpM be given and suppose X,Y are smooth vector
fields defined in a neighbourhood of p such that X(p) = Xp and Y (p) = Yp.
Then the Lie bracket Xp(Y f)− Yp(Xf) = [X,Y ]pf = 0. The map

Hp : TpM × TpM → R, (Xp, Yp) 7→ XpY f

is therefore independent of the choice of X and Y and a symmetric bilinear
form, called the Hesse form of f in the critical point p. In local coordinates
about p the Hesse form of f with respect to the basis ( ∂

∂xi
|p) is described by

the Hesse matrix above.
If H is a symmetric matrix, then the number of negative eigenvalues is the

index of the matrix and the associated bilinear form.

(2.7.1) Proposition. Let p be a non-degenerate critical point of index i. Then
there exists a chart (U,ϕ, V ) centered at p such that f ◦ ϕ−1 has the form

(y1, . . . , yn) 7→ f(p)− y2
1 − · · · − y2

i + y2
i+1 + · · ·+ y2

n

hat.

Proof. The problem is of a local type, hence we can assume that M is an open
ball Uε(0) ⊂ Rn, p = 0 and f(0) = 0. We can write f(x) =

∑n
i=1 xigi(x)
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with smooth gi. Since 0 is a critical value, we have gi(0) = 0. We apply a
similar procedure to gi and obtain a presentation f(x) =

∑n
i,j=1 xixjhij(x)

with smooth functions hij . Without essential restriction we can assume that
hij = hji. The matrix H(x) = (hij(x)) at x = 0 is the Hesse matrix and
regular by assumption. Let Sn(R) the set of symmetric n × n-matrices. The
map Ψ: Mn(R) → Sn(R), X 7→ XtHX is in a neighbourhood of the unit matrix
a submersion. Hence there exists an open neighbourhood U(H) of H in Sn(R)
and a smooth section Θ: U(H) → Mn(R) of Ψ. Let U be a neighbourhood of
zero such that for x ∈ U the matrix H(x) is contained in U(H). Then

Θ(H(x))t ·H ·Θ(H(x)) = H(x)

holds for x ∈ U and hence

f(x) = 〈H(x), x 〉 = 〈H ·Θ(H(x))x,Θ(H(x))x 〉.

The map ϕ : U → Rn, x 7→ Θ(H(x))x has at 0 the differential Θ(H(0)) = E.
Therefore ϕ is in a neighbourhood of zero a coordinate transformation. In the
new coordinates f has the form f(ϕ−1(u)) = 〈Hu, u 〉. Finally we have to
transform H by linear algebra into the correct diagonal form. 2

The previous result is called the Morse-Lemma . It implies that a regular
critical point is an isolated critical point.

We call f a Morse function if all its critical points are regular. Let B
be a compact manifold with boundary ∂B = V + W the disjoint union of
closed manifolds V and W . A smooth function f : B → [a, b] is called a Morse
function of the bordism (B;V,W ) if:

(1) V = f−1(a) and W = f−1(b),
(2) The critical points of f are regular and contained in the interior of B.

We show in a moment the existence of Morse functions. For the proof we need
a few auxiliary results.

(2.7.2) Lemma. Let U ⊂ Rn be open and f : U → R smooth. Then f is
a Morse function if and only if 0 ∈ Hom(Rn,R) is not a critical value of
Df : U → Hom(Rn,R).

Proof. The set K(f) of critical points of f is the pre-image of 0 ∈ Hom(Rn,R)
under Df . Let x ∈ K(f). Then x is a regular critical point if and only if
Df : U → Hom(Rn,R) has at x a bijective differential, i.e., if x is a regular
point of Df . If each x ∈ K(f) is a regular point of Df , then, by definition,
0 ∈ Hom(Rn,R) is a critical value of Df . 2

(2.7.3) Lemma. Let f : U → R be smooth and λ ∈ Hom(Rn,R). The function
fλ : x 7→ f(x)−λ(x) is a Morse function if and only if λ is not a critical value
of Df . For each λ away from a set of measure zero fλ is a Morse function.
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Proof. We have Dfλ = Df − λ. Zero is a regular value of Dfλ if and only if λ
is a regular value of Df . The second assertion is a consequence of the theorem
of Sard. 2

In the next lemma we use the sup-norm of the first and second derivatives
‖Df‖K = max(| ∂f∂xj

(x)| | x ∈ K, 1 ≤ j ≤ n) and ‖D2f‖K = max(| ∂2f
∂xi∂xj

(x)| |
x ∈ K, 1 ≤ i, j ≤ n).

(2.7.4) Lemma. Let K ⊂ U be compact. Suppose f : U → R has only regu-
lar critical points in K.Then there exists a δ > 0 such that smooth functions
g : U → R with

‖Df −Dg‖K < δ, ‖D2f −D2g‖K < δ

have only regular critical points in K.

Proof. Let x1, . . . , xr be the critical points of f in K. There are only a finite
number, since K is compact and regular points are isolated. Since in a regular
critical point det(D2f(xj)) 6= 0, we can choose ε > 0 such that for each x ∈
Dε(xj) the determinant det(D2f(x)) is non-zero. Then there exists a δ > 0
such that for each g with ‖D2f − D2g‖K < δ and each x ∈ Dε(xj) ∩ K
also det(D2g(x)) > 0; hence the critical points of g in K ∩ Dε(xj) are non-
degenerate. Since f has no critical points in L = K r ∪jUε(xj), there exists
c > 0 with ‖Df‖L ≥ c. We require from δ > 0 in addition that for each g with
‖Df − Dg‖K < δ the norm satisfies ‖Dg‖ ≥ c/2; then the critical points of
g|K are contained in ∪jDε(xj). 2

(2.7.5) Theorem. Every bordism (B;V,W ) has a Morse function.

Proof. There exists a smooth function g : B → [0, 1] which has no critical
points in a neighbourhood of ∂B and satisfies V = g−1(0) and W = g−1(1).
A function of this type certainly exists on disjoint collar neighbourhoods of V
and W ; by a partition of unity argument this (??) function is then extended
to B (compare ??).

Let U be an open neighbourhood of ∂B on which g has no critical points.
Let P be an open neighbourhood of ∂B with closure contained in U . Let
(U1, . . . , Ur) be an open covering of BrP by chart domains Uj ⊂ Br ∂B and
(C1, . . . , Cr) a covering of B r P by compact sets Ci with Ci ⊂ Ui.

Suppose that g : B → [0, 1] with g−1(0) = V and g−1(1) = W has on
P ∪ C1 ∪ . . . ∪ Ci for 0 ≤ i < r only regular critical points. We have already
seen that such a function exists in the case that i = 0. Now choose compact
sets Q and R such that

Ci+1 ⊂ Q◦ ⊂ Q ⊂ R◦ ⊂ R ⊂ Ui+1
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and then choose a smooth function λ : B → [0, 1] such that λ(Q) ⊂ {1} and
λ(B r R◦) ⊂ {0}. Let hi+1 : Ui+1 → Vi+1 be a chart and L : Rn → R a linear
map. Now consider

h : B → R, b 7→ g(b) + λ(b)L(hi+1(b)).

The maps h and g only differ on R. In order to study the critical points it
suffices to investigate its composition with h−1

i+1, and then we see by using ??,
that h has for sufficiently small L on (P ∪C1∪ . . .∪Ci)∩R only regular critical
points. Since R has a finite distance from ∂B, we still have for sufficiently small
L that h−1(0) = V , h−1(1) = W , and h(B) ⊂ [0, 1]. Altogether we obtain an
h that has on P ∪ C1 ∪ . . . ∪ Ci only regular critical points. By ?? we can
choose L such that h has on Ci+1 only regular critical points. This finishes the
induction step. 2

(2.7.6) Theorem. Let f be a Morse function for the triple (B;V,W ) with
critical points p1, . . . , pk. Then there exists a Morse function g with the same
critical points such that g(pi) 6= g(pj) for i 6= j.

Proof. We begin by changing f into f1 such that for i 6= 1 the inequalities
f1(p1) 6= f1(pi) hold. For this purpose let N be a compact neighbourhood of
p1 which is contained in B r ∂B and which does not contain the pi for i 6= 1.
Let λ : B → [0, 1] be a smooth function which is 0 away from N and 1 in a
neighbourhood of p1. Choose ε1 > 0 such that for 0 < ε < ε1 the function
f + ελ assumes values in [0, 1] and satisfies f1(p1) 6= f1(pi) for i 6= 1.

With a fixed Riemannian metric on B we form the gradient fields of f and
f1. The zeros of the gradient fields are the critical points. Let K be the closure
of λ−1 ]0, 1[ . Away from K we have grad f1 = grad f and hence the critical
points are the same. They are thus also regular for f1. SinceK does not contain
a critical point of f , there exists c > 0 such that c ≤ ‖grad f(x)‖ for each x ∈ K.
Choose d > 0 such that ‖gradλ(x)‖ ≤ d in K. Let 0 < ε < min(ε1, c/d). Then
on K

‖grad (f + ελ)‖ ≥ ‖grad f‖ − ε‖gradλ‖ ≥ c− εd > 0.

Therefore f1 has onK no further critical points. The other points pi are treated
in a similar manner (induction). 2

The theorems ?? and ?? have the following consequence. Let B be a
bordism between V and W . We choose a Morse function according to ??
and choose an indexing of the critical points such that g(pi) < g(pi+1). Let
g(pi) < ci < g(pi+1). Then

g−1[0, c1], g−1[c1, c2], . . . , g−1[cr−1, 1]

are bordisms which have a Morse function with a single critical point. Thus
each bordism is a “composition” of such elementary bordisms.
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We give another proof for the existence of Morse function for submanifolds
of Euclidean spaces without taking care of boundaries.

(2.7.7) Proposition. Let M ⊂ RN be a smooth n-dimensional submanifold
and f : M → R a smooth function. Then for almost all λ ∈ Hom(RN ,R) the
function fλ : M → R, x 7→ f(x)− λ(x) is a Morse function.

Proof. If (Uν | ν ∈ N) is an open cover of M , then it suffices to verify the
assertion for each restriction f |Unu, since a countable union of sets of measure
zero has measure zero.

We therefore assume that M is the image of a smooth embedding ϕ : U →
RN of an open subset U ⊂ Rn. Then fλ is a Morse function if and only if fλ ◦ϕ
is a Morse function. Set g = f ◦ ϕ. Then fλ ◦ ϕ has the form

x 7→ g(x)−
∑N
j=1 λjϕj(x),

if ϕ = (ϕ1, . . . , ϕN ) and λ(x1, . . . , xn) =
∑
j λjxj .

The critical point of this map are the x for which

Dg(x)−
∑
j λjDϕj(x) = 0.

We asks for the (λ1, . . . , λn) such that zero is a regular value of

U → Hom(Rn,R), x 7→ Dg(x)−
∑
j λjDϕj(x).

So let us consider

F : U × RN → Hom(Rn,R), (x, (λj)) 7→ Dg(x)−
∑
j λjDϕj(x).

We keep x fixed. The linear map (λj) 7→ Dg(x) −
∑
j λjDϕj(x) is surjective,

since Dϕ has rank n. Hence this map is a submersion and therefore also F .
By ?? we see that for all most all λ zero is a regular value of Fλ. 2

(2.7.8) Example. Let a0 < a1 < . . . < an. Then

f : Sn → R, (x0, . . . , xn) 7→
∑
i aix

2
i

is a Morse function. The critical points are the unit vectors (±ej | 0 ≤ j ≤ n),
and the index of ±ej is j. This function induces a Morse function g : RPn → R
with n+ 1 critical points of index 0, 1, . . . , n. 3

2.8 Elementary Bordisms

We show in this section that an elementary bordism is diffeomorphic to a
standard model. We begin by describing the standard model.
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Let V be a (compact) manifold (without boundary) of dimension n − 1.
Suppose a + b = n, a ≥ 1, b ≥ 1. Let ϕ : Sa−1 × Eb → V be a smooth
embedding. In the disjoint sum (V r ϕ(Sa−1 × 0)) + Eb × Sb−1 we identify

ϕ(u,Θv) ∼ (Θu, v), u ∈ Sa−1, v ∈ Sb−1, 0 < Θ < 1.

The quotient has a canonical structure of a smooth manifold (see ??). We
denote the result by χ(V, ϕ) and say: χ(V, ϕ) (or a diffeomorphic manifold V ′)
is obtained from V by elementary surgery of type (a, b). In general the
result depends on the choice of ϕ.

(2.8.1) Remark. One can get back V by an inverse process by an elementary
surgery of type (b, a) applied to χ(V, ϕ). Namely by construction we have an
embedding ϕ̃ : Ea × Sb−1 → χ(V, ϕ) 3

(2.8.2) Proposition. There exists a bordism (H(V, ϕ);V, χ(V, ϕ)) with a
Morse function which has a single critical point of index a.

Proof. We first describe a standard object which is used in the construction of
H(V, ϕ). The map

α : ]0,∞[× ]0,∞[→ ]0,∞[×R, (x, y) 7→ (xy, x2 − y2)

is a diffeomorphism. We denote by (c, t) 7→ (γ(c, t), δ(c, t)) the inverse diffeo-
morphism. We claim that

Ψ : (Ra r 0)× (Ra r 0) → Sa−1 × (Rb r 0)× R,

Ψ(x, y) =
(

x

‖x‖
,

y

2‖y‖
arsinh(2‖x‖‖y‖),−‖x‖2 + ‖y‖2

)
is a diffeomorphism. An inverse is defined by

(u, v, t) 7→
(
uγ(c, t),

v

‖v‖
δ(c, t)

)
with c = 1

2 sinh 2‖u‖‖v‖. For d > 0 we set

La,b(d) = {(x, y) ∈ Ra × Rb | −1 ≤ −‖x‖2 + ‖y‖2 ≤ 1, 2‖x‖‖y‖ < sinh 2d}

and La,b(1) = La,b One verifies that Ψ induces by restriction a diffeomorphism

Ψ: La,b(d) ∩ ((Ra r 0)× (Rb r 0)) → Sa−1 × (Eb(d) r 0)×D1.

In the disjoint sum La,b + (V r ϕ(Sa−1 × 0))×D1 we use the identification

(V r ϕ(Sa−1 × 0))×D1
La,b

Sa−1 × (Eb r 0)×D1

ϕ×id

OO

La,b ∩ ((Ra r 0)× (Rb r 0)).Ψoo

∪

OO
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The result is a bordism H(V, ϕ). This manifold has two boundary pieces V
and χ(V, ϕ). The first piece is given by V → H(V, ϕ)

z 7→
{

(z,−1) z ∈ V r ϕ(Sa−1 × 0)
(u coshΘ, v sinhΘ) ∈ La,b z = ϕ(u,Θv), ‖u‖ = ‖v‖ = 1.

Observe that Ψ(u coshΘ, v sinhΘ) = (u,Θv,−1). The second piece is given by
χ(V, ϕ) → H(V, ϕ)

V r ϕ(Sa−1 × 0) 3 z 7→ (z, 1)
Ea × Sb−1 3 (Θu, v) 7→ (u sinhΘ, v coshΘ).

A Morse function f : H(V ;ϕ) → [−1, 1] with the desired properties is defined
by

f(x, c) = c (x, c) ∈ (V r ϕ(Sa−1 × 0))×D1

f(x, y) = −‖x‖2 + ‖y‖2 (x, y) ∈ La,b.
2

(2.8.3) Proposition. Let f : B → [a, b] be a Morse function with a single
critical point. Then B is diffeomorphic to an elementary bordism H(V, ϕ).

Proof. Without essential restriction we can assume that [a, b] = [−d, d] and
that the critical point p has the value f(p) = 0. By the Morse lemma ?? we
choose a local parametrization α : W → U , centered at p, such that fα(x, y) =
fa,b(x, y) = −‖x‖2 + ‖y‖2 for (x, y) ∈ W ⊂ Ra,b. Let sλ : Rn → Rn be the
scalar multiplication by λ. For sufficiently small λ > 0 the inclusion sλLa,b ⊂W
holds. The function λ−2f : B → [−λ−2d, λ2d] has the critical point p and with
respect to the chart α◦sλ the form fa,b. Hence we can assume without essential
restriction that La,b ⊂ W . Then d ≥ 1 and f−1[0, 1] is diffeomorphic to B.
Therefore we assume d = 1 and set B± = f−1(±1) for the boundary pieces of
B.

Let Ma,b = α(La,b) ⊂ B. This is an open submanifold with boundary of B.
We had constructed a diffeomorphism Ψ in ??. The boundary of La,b consists of
the pieces La,b± = {(x, y) ∈ La,b | fa,b(x, y) = ±1}, and α(La,b± ) = Ma,b

± ⊂ B±.
The coordinates

La,b0 = La,b ∩ (Ra × 0 ∪ 0× Rb)

are contained in the source of Ψ. The intersection La,b0,− = La,b0 ∩ La,b− is the
sphere Sa−1 × 0; and La,b0,+ is the sphere 0 × Sb−1. The images under α are
denoted S± ⊂ B±. We have a diffeomorphism

Sa−1 × Eb → La,b− , (u,Θv) 7→ (u coshΘ, v sinhΘ)

which extends the inverse Ψ−1|Sa−1 × (Eb r 0)× {−1} to Sa−1 ×Eb × {−1}.
We compose it with α and obtain an embedding ϕ : Sa−1 × Eb → B−, and
ϕ(Sa−1 × {0}) = S−.
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We use this embedding to form H(B−, ϕ) and claim that the result is
diffeomorphic to B. We recall that H(B−, ϕ) is defined as a quotient of
(B− r S−)×D1 + La,b. We construct the diffeomorphism D : H(B−, ϕ) → B
separately on the two summands. On La,b we let D be the local parametriza-
tion α. On (B− r S−)×D1 we will obtain D by integrating a suitable vector
field X on B rMa,b

0 (note Ma,b
0 = α(La,b0 )).

We choose on Ma,b(2) = α(La,b(2)) the vector field X0 which corresponds
under Ψ◦α−1 to the constant vector field ∂/∂t of the factorD1. On BrMa,b

0 we
have the normed gradient field X1 of f , i.e., a vector field which satisfies X1f =
1. We choose a smooth partition of unity τ0, τ1 subordinate to the open covering
U0 = Ma,b(2) and U1 = B rM

a,b
and use it to define X = τ0X0 + τ1X1. This

vector field agrees on Ma,brMa,b
0 with X0. For (x, t) ∈ (B−rS−)×D1 we now

set D(x, t) = ku(t+1) where ku is the integral curve of X with initial condition
x = ku(0). We have to verify that these conditions yield a diffeomorphism of
(B− r S−)×D1 with B rMa,b

0 .
The curve ku has interval of definition [0, 2] and ends in B+ r S+. this

holds by construction, if the curve begins in Ma,b
− . The curve stays inside

Ma,b, and this set is covered by such integral curves. The remaining happens
in the compact complement of Ma,b, and we can argue as in ??. 2

We can express ?? with more precision: There exist a diffeomorphisms
B → H(V, ϕ) and [a, b] → [−1, 1] which transform the given Morse function on
B into the Morse function of the standard model ??.

2.9 The Mapping Degree

Let M and N be closed, oriented, smooth n-manifolds (n ≥ 1). We assume
that N is connected. We associate to each map f : M → N an integer d(f),
called the degree of f , which only depends on the homotopy class of f .

Let y ∈ N be a regular value of a smooth map f : M → N . For f(x) = y
we set d(f, x, y) = 1 if the differential Txf respects the orientations; otherwise
d(f, x, y) = −1. We set

(2.9.1) d(f, y) =
∑
x∈f−1(y) d(f, x, y).

We will show that this integer does not depend on the choice of y and is an
invariant of the homotopy class of f .

Let y be a regular value of f . Then, by the inversion theorem of calculus,
there exist open connected neighbourhoods V of y and open neighbourhoods
U(x) of x such that

f−1(V ) =
∐
x∈f−1(y) U(x)
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and f : U(x) → V is a diffeomorphism. This implies:

(2.9.2) Note. There exists an open neighbourhood V of y such that each z ∈ V
is a regular value and satisfies d(f, y) = d(f, z). 2

(2.9.3) Theorem. Let B be a compact smooth oriented manifold B with
boundary M . Let F : B → N be smooth and y a regular value of F and
F |∂B = f . Then d(f, y) = 0.

Proof. Let J = F−1(y). Then J ⊂ B is a compact submanifold of type I
of B with ∂J = J ∩ M = f−1(y). Let J carry the pre-image orientation
and ∂J the induced boundary orientation. The latter is a function ε : ∂J →
{±1}. A component of the compact 1-manifold J with non-empty boundary
is diffeomorphic to [0, 1], see (??). From this fact we see

∑
x∈∂J ε(x) = 0. In

our case we verify from the definitions ε(x) = (−1)nd(f, x, y) for each x ∈ ∂J .
These facts imply the assertion. 2

(2.9.4) Corollary. Let ∂B = M0−M1, F |Mi = fi, and assume the hypothesis
of 2.9.3. Then d(f0, y) = d(f1, y).

(2.9.5) Proposition. Let f0, f1 : M → N be smoothly homotopic. Let y be a
regular value of f0 and f1. Then d(f0, y) = d(f1, y).

Proof. Let H : M × I → N be a smooth homotopy between f0 and f1. By the
theorem of Sard, in each neighbourhood of y there exist regular values z of H
which are also regular values of H|M × ∂I. The assertion, for z instead of y,
follows now from ??, and ?? then implies the assertion for y. 2

In the further development of the mapping degree we use the following two
technical results 2.9.6 and 2.9.7. They will be proved later.

(2.9.6) Proposition. Each continuous map f : M → N is homotopic to a
smooth map. If f0 and f1 are smooth maps and homotopic, then there exists a
smooth homotopy between them. 2

(2.9.7) Proposition. Let N be a connected smooth k-manifold of dimension
k > 1. Let {y1, . . . , yn} and {z1, . . . , zn} be subsets of N with n elements. Then
there exists a smooth homotopy H : N × [0, 1] → N such that:

(1) H0 = id.
(2) Ht is for each t ∈ [0, 1] a diffeomorphism.
(3) H1(yj) = zj for 1 ≤ j ≤ n.
(4) Ht is constant in the complement of a compact set.

In case n = 1, we can also allow k = 1. If N is oriented, then Ht is orientation
preserving. 2

A homotopy H with the properties (1) and (2) of the previous proposition
will be called a smooth isotopy of the identity.
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(2.9.8) Theorem. Let y and z be regular values of f . Then d(f, y) = d(f, z).

Proof. There exists a smooth isotopy H : N × I → N of the identity to a map
h with h(z) = y. Then y is a regular value of hf . We have d(f, z) = d(hf, y),
for we have f−1(z) = (hf)−1(y), and the corresponding sums 2.9.1 are equal,
since Tzh respects the orientation. 2

We now define the degree map

d : [M,N ] → Z

as follows. Let f : M → N be given. Choose a smooth map g which is homo-
topic to f . By ??, the integer d(g, y) does not depend on the the choice of y
and we denote it by g(y). By ?? and ??, a different choice of g leads to the
same integer. Therefore we define the degree d(f) of f as d(g) for a smooth
map g homotopic to f . By construction, d(f) only depends on the homotopy
class of f . This definition of the degree gives also a means of computation; we
just have to find a situation where ?? applies. The next theorem is immediate
from the definitions.

(2.9.9) Theorem. The degree has the following properties:
(1) If we change the orientation in one of the manifolds, then the degree

changes its sign.
(2) d(fg) = d(f)d(g), whenever the three degrees are defined.
(3) A diffeomorphism has degree 1 or −1.
(4) Let t : M × N → N ×M, (x, y) 7→ (y, x). Let the products carries the

product orientation. Then t has the degree (−1)nm, m = dimM , n =
dimN .

(5) ?? and ?? hold for the degree.
(6) If M is the disjoint union of M1 and M2, then d(f) = d(f |M1)+d(f |M2).

We use the notion of degree to define the winding number. Let M be
a closed, connected, oriented n-manifold. Let f : M → Rn+1 be given and
assume that a is not contained in the image of f . The winding number
W (f, a) of f with respect to a is the degree of the map

pf,a = pa : M → Sn, x 7→ N(f(x)− a)

with the norm map N : Rn+1 r 0 → Sn, x 7→ ‖x‖−1x. If ft is a homotopy such
that a 6∈ imageft for all t, then W (ft, a) = W (f0, a).

(2.9.10) Example. The map f : Sn → Rn+1 r0, x 7→ Ax has for each matrix
A ∈ GLn+1(R) the winding number detA. In each path-component of the
group of GLn+1(R) lies an orthogonal matrix. Hence we can assume that pf,0
is homotopic to Sn → Sn, x 7→ Bx for an orthogonal B. Now use the definition
??. 3
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(2.9.11) Theorem. Let M be the oriented boundary of the compact, oriented
manifold B. Suppose F : B → Rn+1 is smooth and has 0 as a regular value.
Then

W (f, 0) =
∑
x∈P ε(F, x), P = F−1(0), f = F |M.

Here ε(F, x) ∈ {±1} is the orientation behaviour of the differential

TxF : TxB → T0Rn+1,

i.e., ε(F, x) = 1 if and only if the differential preserves the orientation.

Proof. For each x ∈ P we choose D(x) ⊂ Br∂B, diffeomorphic to a disk Dn+1

in local coordinates centered at x. We assume that the D(x) are pairwise
disjoint. Set G(x) = NF (x); this is defined on the complement C = B r⋃
x∈P D(x). By (??), we have

d(G|∂B) =
∑
x∈P d(G|∂D(x)).

Thus it suffices to show

d(G|∂D(x)) = ε(F, x).

We use a suitable positive chart about x and reduce the problem to the situation
that D(x) = Dn+1 ⊂ Rn+1 and F : Dn+1 → Rn+1 is smooth with regular value
0 and F−1(0) = {0}. We define a smooth homotopy

H : Sn × I → Rn+1 r 0

by

H(x, t) =
{
t−1F (tx) for t > 0
DF (0)(x) for t = 0

Hence W (F |Sn, 0) = W (DF (0)|Sn, 0). By ??, this integer equals ε(F, 0) =
detDF (0). 2

2.10 The Theorem of Hopf

In this section we prove the theorem of Hopf ?? which states that the degree
of a map into the n-sphere characterizes the homotopy class of this map.

(2.10.1) Theorem. Let M be the oriented boundary of the compact, connected,
oriented manifold B. Let f : M → Sn be a map of degree zero. Then f admits
an extension to B.
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Proof. The inclusion M = ∂B ⊂ B is a cofibration. If we can extend f , then
we can extend any homotopic map. Thus we will assume that f is smooth.

In section one we have seen that we can extent f : M → Sn ⊂ Rn+1 to a
smooth map φ : B → Rn+1. By the isotopy theorem (??), we can assume that 0
is a regular value of φ and that φ−1(0) is contained in an open set U ⊂ Br∂B
which is diffeomorphic to Rn+1. Let Br ⊂ U be the part which is diffeomorphic
to the ball Dr ⊂ Rn+1 of radius r about the origin, and choose r such that
φ−1(0) ⊂ Brr∂Br. By ??, f and ϕ|∂Br have the same winding number. Since
the winding number of maps Sn → Rn+1 r 0 characterizes the homotopy class
of such maps, ϕ|∂Br is null-homotopic and has therefore an extension to Br.

We use this extension and combine it with ϕ|Br
◦
Br to obtain an extension of

f into Rn−1 r 0. We now combine with the norm retraction N and obtain the
desired extension of f . 2

(2.10.2) Theorem. Let M be a closed, oriented, connected, smooth manifold.
Then the degree map d : [M,Sn] → Z is a bijection.

Proof. Suppose f0, f1 : M → Sn have the same degree. Together they yield a
map M +(−M) → Sn of degree zero. By the previous theorem, we can extend
this map to M × I. This argument shows the injectivity of the degree map.
For the surjectivity we have to construct maps of a given degree. We construct
a map of degree 1 as follows. Choose a smooth embedding ψ : Rn → M . Map
the subset ψ(Dn) by ψ−1 and a homeomorphism ϕ : Dn/Sn−1 ∼= Sn to Sn

which is smooth in the interior, and map the complement of ψ(Dn) to the
point ϕ({Sn−1}). The point corresponding to 0 ∈ Dn/Sn−1 has a single pre-
image and is a regular value. Thus this map has degree ±1. If necessary, we
compose with a self-map of Sn and realize the degree 1. The same process
can be applied to several disjoint cells, and thus each integer can be realized
as a degree. Or we compose with a self-map of Sn with given degree and use
??. 2

2.11 One-dimensional Manifolds

(2.11.1) Theorem. A connected smooth one-dimensional manifold M without
boundary is diffeomorphic to R or S1.

We formulate some steps of the proof as a lemma. Since M has a countable
basis, there exists an atlas {(Uj , hj , Vj) | j ∈ J} such that: J is countable;
Vj is an open interval; for i 6= j the intersection Ui ∩ Uj is different from Ui
and Uj . A suitable normalization allows us to choose Vj as a given interval. If
Ui∩Uj 6= ∅, then hi(Ui∩Uj) = V ji is a non-empty open subset of the interval Vi
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and therefore a disjoint union of open subintervals, called components. Suppose
a < b < c; then we call b an interior and c an exterior end of the subinterval
]b, c[ of ]a, c[.

(2.11.2) Lemma. No component of V ji has both of its end points contained in
Vi. Hence V ji has at most two components, and each component has one end
point contained in Vi.

Proof. Ui ∪Uj is homeomorphic to the space Z which is obtained from Vi +Vj
by the identification gji = hjh

−1
i : V ji → V ij . The space Z is a Hausdorff

space. If a component of V ji would have both end points in Vi, then the image
of V ji → Vi × Vj , x 7→ (x, gji (x)) would not be closed, and this contradicts
(??). 2

From the Hausdorff property one also obtains:

(2.11.3) Lemma. The map gji sends each component of V ji diffeomorphic onto
a component of V ij such that an interior end point corresponds to an exterior
end point, and conversely. 2

(2.11.4) Lemma. If V ji and hence V ij has two components, then M = Ui∪Uj,
and M is compact.

Proof. If Ui ∪Uj is compact, then this subset is open and closed and therefore
equals M , since M is connected. Let Ki ⊂ Ui be compact subsets such that
hi(Ki) is a closed interval which intersects both components of V ji . Then
M = K1 ∪K2, and hence M compact. 2

(2.11.5) Lemma. Let α : W → W be an increasing diffeomorphism of W =
]0, 1[ . Let 0 < ε < 1 be fixed. Then there exists η ∈ ]ε, 1[ and a diffeomorphism
δ : W →W such that δ(x) = α(x) for x ≤ ε and δ(x) = x for x ≥ η.

Proof. Let λ : R → R be the C∞-function λ(x) = 0 for x ≤ 0 and λ(x) =
exp(−x−1) for x > 0. For a < b we set

ψa,b(x) =
λ(x− a)

λ(x− a) + λ(b− x)
.

Choose 0 < M < 1 and ε < ζ < 1 such that for x < ζ the inequality α(x) < M
holds. Write η = ψε,ζ . Then β(x) = α(x)(1−η(x))+M(η(x)) is a C∞-function
which coincides for x ≤ ε with α and has constant value M for x ≥ ζ, and for
x < ζ it is strictly increasing. Let max(ζ,M) < η < 1. In a similar manner
one constructs a function γ which is zero for x ≤ ε, equals x −M for x ≥ η,
and is strictly increasing for x ≥ ε. The function δ = β + γ has the desired
properties. 2
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(2.11.6) Lemma. Suppose V ji is connected. After suitable normalization we
can assume that Vi = ]0, 2[ , Vj = ]1, 3[ and V ji = ]1, 2[ . Then there exists a
diffeomorphism Ψ: Ui ∪ Uj → ]0, 3[ which coincides on Ui with hi.

Proof. Ui ∪ Uj is via hi, hj diffeomorphic to A = ]0, 2[∪ϕ ]1, 3[ with ϕ = gji .
Therefore is suffices to find a diffeomorphism A → ]0, 3[ which is on ]0, 2[
the identity. Suppose we have some diffeomorphism α : A→ ]0, 3[ which maps
]0, 2[ onto itself; then we compose it with a diffeomorphism which coincides on
]0, 2[ with α−1. Thus it suffices to find some α. For this purpose we choose an
increasing diffeomorphism Φ: ]1, 2[→ ]1, 2[ which coincides on ]1, 1 + ε[ with
ϕ−1 and is the identity on ]2− η, 2[ . Let Φ2 : ]1, 3[→ ]1, 3[ be the extension of
Φ by the identity and Φ1 : ]0, 2[→ ]0, 2[ the extension of Φ ◦ ϕ by the identity.
Then 〈Φ1,Φ2 〉 factorizes over a diffeomorphism α : ]0, 2[∪ϕ ]1, 3[ ∼= ]0, 3[ . 2

Proof. Suppose M is not compact. Let U1, . . . , Uk be chart domains for which
we have a diffeomorphism ϕk : Wk = U1∪ . . .∪Uk → ]a, a+k+1[. If these chart
domains don’t exhaust M , then there exists a further chart domain, say Uk+1

such that C = Uk ∩ Uk+1 6= ∅ (with suitable indexing). In the case that C is
mapped under ϕk onto the upper end of ]a, a+ k + 1[ , we can by the method
of the previous lemma extend ϕk to a diffeomorphism ϕk+1 of Wk ∪Uk+1 with
]a, a+ k + 2[. This settles, inductively, the case of non-compact M .

Suppose M is compact; then we can assume that J is finite. Repeated
application of (11.6) leads to a situation in which M is obtained in the manner
of (11.4) from two charts. It remains to show that the diffeomorphism type of
M is then uniquely determined. We identify only one of the pairs of subintervals
and apply (11.6). Then we see that M is, up to diffeomorphism, obtained from
]0, 3[ by identifying ]0, 1[ with ]2, 3[ under an increasing diffeomorphism ω.
We show that the result is diffeomorphic to the one obtained from the standard
case ω(x) = x+ 2. For this purpose one uses again the method of (11.6). 2

(2.11.7) Theorem. A connected 1-manifold with non-empty boundary is dif-
feomorphic to [0, 1] or to [0, 1[.

2.12 Homotopy Spheres

A closed (smooth) n-manifold M is called a homotopy sphere , if it is homo-
topy equivalent to the sphere Sn. In the case that M is not diffeomorphic to
Sn, the manifold is called an exotic sphere . The theorem of Hurewicz and
Whitehead imply that for n > 1 a closed manifold is a homotopy sphere if and
only if it is simply connected and H ∗ (M ; Z) is isomorphic to H∗(Sn; Z). From
Hn(M) ∼= Hn(Sn) ∼= Z we see that a homotopy sphere is orientable.
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(2.12.1) Proposition. Let M be a homotopy n-sphere. Then M r p is con-
tractible. And also M r U , if U is homeomorphic to Dn.

Proof. 2

(2.12.2) Example. Twisted spheresLet f : Sn−1 → Sn−1 be a diffeo-
morphism. We use it in order to obtain from Dn + Dn an n-manifold
M(f) = Dn ∪f Dn. It is homeomorphic to Sn. 3

(2.12.3) Proposition. If f, g : Sn−1 → Sn−1 are diffeotopic, then M(f) and
M(g) are diffeomorphic. The connected sum M(f)#M(g) is oriented diffeo-
morphic to M(fg).

Proof. 2

(2.12.4) Proposition. The connected sum of two homotopy spheres is again
a homotopy sphere.

Proof. 2

Let Θn be the set of oriented diffeomorphism classes of homotopy n-spheres.
The connected sum induces on Θn an associative and commutative composition
law with neutral element Sn.

(2.12.5) Proposition. Let M be a homotopy n-sphere. Then M#(−M) is
the boundary of a contractible orientable compact manifold.

Proof. 2

(2.12.6) Example. Let a = (a0, a1, . . . , an), ai ≥ 2 be integers. Let a0 and a1

be co-prime to the remaining integers aj . Then the Brieskorn manifold B(a)
is a Z-homology sphere. In the case that n ≥ 3, B(a) is simply connected and
hence a homotopy sphere. 3

An h-cobordism (B;M0,M1) between closed manifolds Mi is a bordism
B between them such that the inclusions Mi ⊂ B are homotopy equivalences.

(2.12.7) Theorem (h-cobordism theorem). Let n ≥ 5. Let B be an h-
cobordism between n-manifolds Mi. Then there exists a diffeomorphism B →
M0 × [0, 1] which is on M0 the identity. In particular M0 and M1 are diffeo-
morphic.

(2.12.8) Proposition. Let n ≥ 5. Suppose the simply connected closed n-
manifold M is the boundary of a compact contractible manifold W . Then M
is diffeomorphic to Sn.

(2.12.9) Corollary. For n ≥ 5 the element [−M ] is an inverse to [M ] in Θ.
Thus we have the group of homotopy spheres Θn.

(2.12.10) Proposition. For n ≥ 6 each homotopy sphere is a twisted sphere
and in particular homeomorphic to a sphere.
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Plücker coordinates, 13
principal orbit bundle, 21
principal orbit type, 21
projective space, 4

rank theorem, 9
regular point, 9
regular value, 9

section
local, 10

Segre embedding, 14
singular value, 9
slice representation, 19
smooth manifold, 3
sphere, 4

exotic, 76
spray, 58
Stiefel manifold, 13
submanifold, 3

of type I, 25
of type II, 25
open, 3
smooth, 3

submersion, 9
surface, 2

tangent bundle, 29
tangent space, 7
tangent vector, 7

horizontal, 60
pointing inwards, 25
pointing outwards, 25
vertical, 60

theorem
Ehresmann, 37, 52
Sard, 12

transition function, 2
transverse, 41

to a submanifold, 41
tubular map, 31, 61

partial, 62

strong, 62
tubular neighbourhood, 61

vector field
globally integrable, 49
second order, 57

winding number, 72


	Manifolds
	Differentiable Manifolds
	Tangent Spaces and Differentials
	The theorem of Sard
	Examples
	Quotients
	Smooth Transformation Groups
	Slice Representations
	Principal Orbits
	Manifolds with Boundary
	Orientation
	Tangent Bundle. Normal Bundle
	Embeddings
	Approximation
	Transversality
	Gluing along Boundaries

	Manifolds II
	Vector Fields and their Flows
	Proper Submersions
	Isotopies
	Sprays
	The Exponential Map of a Spray
	Tubular Neighbourhoods
	Morse Functions
	Elementary Bordisms
	The Mapping Degree
	The Theorem of Hopf
	One-dimensional Manifolds
	Homotopy Spheres

	Index

