
On the topology of complex surfaces with an
action of the additive group of complex numbers

Tammo tom Dieck

The purpose of this note is to study the topology of some regular affine surfaces
over the complex numbers which carry an algebraic action of the additive group
G = (C,+).

The generating examples of such surfaces are the varieties of Danielewski
[1] which he studied in connection with the cancellation problem. The simplicity
of these varieties makes it desirable to have a detailed picture of them. Here is
one result about Danielewski’s varieties.

Theorem A. Let k ≥ 1 be an integer. The following smooth manifolds are
diffeomorphic preserving the orientation:

(1) The regular affine hypersurface

U(k) = {(x, y, z) ∈ C2 | x2 − 4yzk = 1}.

(2) The orbit manifold V (k) of the free, proper, right C∗–action

(a, b, c, d) · λ = (λka, λ−kb, λc, λ−1d)

on the regular affine hypersurface

W (k) = {
(
a b
c d

)
∈ C4 | adk − bck = 1}.

(3) The quotient D(k) of C2 q C2 under the identification

C∗ × C 3 (x, u) ∼ (x, u+ x−k) ∈ C∗ × C

of the parts C∗ × C in the two copies of C2.
(4) The complex line bundle H(−2k) over the projective line IP1 with Euler

class −2k.
The manifolds (1), (2), and (3) are actually algebraic varieties and they are

isomorphic as varieties. However, the isomorphism of (2) with (4) is not complex
analytic.

From the topological view point, the equivalence with (4) is most interesting,
because it implies immediately the following:
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Theorem B. (1) The manifold D(k) is the interior of a smooth compact man-
ifold B(k) with boundary a lens space L(2k, 1).

(2) The generator of H2(D(k); ZZ) ∼= ZZ has self-intersection number −2k.

From Theorem B we see that D(k) has fundamental group at infinity ZZ/2k.
It had been shown earlier by Fieseler (without the construction of the bound-
ary, by an exhaustion method) that the homology at infinity is ZZ/2k. Another
method of determining the topology at infinity stems from the observation that
the boundary is a Seifert manifold, compare [3]. The interest in these topological
invariants comes from the fact that they distinguish the varieties for different k
topologically and hence algebraically. Part (2) of Theorem B is more interesting,
since it allows to distinguish the manifolds by intrisic invariants.

From part (4) in Theorem A we see moreover that the manifolds H(−2k)⊕ IR
for different k are diffeomorphic. This is due to the fact that the three-
dimensional orientable vector bundle H(−2k) ⊕ IR over IP1 ∼= S2 is trivial
(since π2(BSO(3)) ∼= ZZ/2 and we are dealing with even powers of the Hopf-
bundle). The interesting fact, which was observed by Danielewski [1], is that
the D(k)×C are all isomorphic as affine varieties and hence give simple examples
where cancellation does not hold (see also [3]).

Another feature of our construction is pointed out by the model (2). Obviously,
W (1) ∼= SL(2,C). This provides the manifolds with large symmetry groups. We
present a detailed study from the view point of transformation groups. From
the equivalence with (4) we obtain more subtle and hidden symmetries of the
underlying real manifolds.

The differential topology at infinity of the manifolds in question (in particular
the fundamental group and the homology at infinity) is known once a normal
crossing compactification divisor of the affine variety is determined. The bound-
ary of a tubular neighbourhood of such divisors is the boundary of the variety
as a differentiable manifold. These boundaries are given by a plumbing construc-
tion. By well known techniques, the homology and the fundamental group can
be read off from the weighted dual graph of the compactification divisor.

The analysis of the varieties D(k) leads to a topological description of some
related varieties which were investigated in [3]. The variety V (k) carries a free
involution J : (a, b, c, d) 7→ ((−1)k−1b,−a, d,−c). The orbit space is an affine
variety Z(k). For k = 2l even, Z(k) is the hypersurface x2 − 4yzl+1 = z, see [3].
The Hopf-bundle H(−2k) carries a free involution (x, y;µ) 7→ (ȳ,−x̄; (−)kµ̄).
The quotient is a nonorientable real plane bundle E(k) over the real projective
space IRP 2 with Euler class k, see [2], p. 343.

Theorem C. The variety Z(k) is diffeomorphic to the total space of the bundle
E(k).

From Theorem C we conclude that Z(k) is the interior of a compact smooth
manifold with boundary a quaternionic lens space. This lens space is the orbit
space of the action of the quaternion group

Q(4k) = 〈A,B | Ak = B2, BAB−1〉
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on the three-sphere S3 given by

A · (x, y) = (ζx, ζy), B · (x, y) = (ȳ,−x̄)

with ζ = exp(2πi/2k). In particular, the fundamental group at infinity is Q(4k).
This was also verified in [3], by using compactification divisors or the theory of
Seifert manifolds. In this case, the varieties Z(k) can be distinguished by the
intersection form on the two-dimensional homology with twisted coefficients Z̃Z.

1 The varieties of Danielewski

This section is devoted to the varieties (1), (2), and (3) of Theorem A. We begin
with the transformation group aspect.

For each k ∈ IN we have a regular affine variety W (k) in C4 given by

(1.1) W (k) = {(a, b, c, d) ∈ C4 | adk − bck = 1}.

Note that W (1) = SL(2,C). This fact motivates some of the subsequent con-
structions. The varieties W (k) carry a smooth free right action of C∗

(1.2) (a, b, c, d) · λ = (λka, λ−kb, λc, λ−1d).

The following polynomial functions x, y, and z on W (k) are C∗–invariant:

(1.3)
x = adk + bck

y = ab
z = cd.

They satisfy the equation

(1.4) x2 − 4yzk = 1.

This equation defines a regular affine variety U(k) in C3. Let V (k) = W (k)/C∗

denote the orbit space. The functions (1.3) induce a morphism

(1.5) α : V (k) → U(k), (a, b, c, d) 7→ (adk + bck, ab, cd).

(1.6) Proposition. The space V (k) carries a unique structure of a differen-
tiable manifold such that the quotient map W (k) → V (k) is a submersion. In
this structure, α is a diffeomorphism.

Proof. One verifies that α is bijective. Since U(k) is a Hausdorff space this
implies that the action (1.2) is proper. Now apply [2], I(5.2). By the universal
property of submersions ([2], I(4.9)), α is smooth. In order to see that α is a
submersion it suffices to show that the complex differental of

C4 → C3, (a, b, c, d) 7→ (adk + bck, ab, cd)

has rank three on W (k). This is easy. 2

(1.7) Remark. If we view W (1) = SL(2,C), then the action (1.2) of λ ∈ C∗ on
W (1) amounts to right multiplication by the diagonal matrix Dia(λ, λ−1). Let
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D ⊂ SL(2,C) be the subgroup of such matrices. Then V (1) is the coset variety
SL(2,C)/D. The previous Proposition also gives, by the same proof, V (k) as a
complex manifold and α is a holomorphic isomorphism. ♥

The varieties V (k) have a large symmetry group. This is obvious for V (1) =
SL(2,C)/D because SL(2,C) acts by left translation. Certain subgroups still
acts on V (k) in a similar manner.

Let G(m) denote the semi–direct product C× C∗ with multiplication

(1.8) (a, α) · (b, β) = (a+ αmb, αβ).

If B ⊂ SL(2,C) denotes the group of upper triangular matrices we have an
isomorphism

(1.9) G(2) → B, (a, α) 7→
(
α aα−1

0 α−1

)
.

The group G(m) acts on C by

(a, α) · z = αmz + a.

The resulting G(m)–space C will be denoted C(m). The group G(2m) acts on
W (m) by

(1.10) (u, α)(a, b, c, d) = (αma+ uα−mcm, αmb+ uα−mdm, α−1c, α−1d).

This action commutes with the right C∗–action (1.2) and induces therefore an
action of G(2m) on V (m). We also note:

(1.11) Proposition. The projection

W (k) → IP1, (a, b, c, d) 7→ [c, d]

is a principal G(2k)–bundle. 2

ThisG(2m)–action can be transported by the isomorphism (1.5) into an action
on U(k). There exists an algebraic action of G(2m) on C3 which induces this
action on U(k). One verifies that the following action has this property:

(u, α) · (x, y, z) = (x+ 2uα−2mzm, α2mzm, α2my + ux+ u2α−2mzm, α−2z)

for (u, α) ∈ G(2m), (x, y, z) ∈ C3. The G(2)–action on W (1) corresponds under
(1.9) to the left translation action of B on SL(2,C).

For the following, recall the complex line bundles H(−2k) → IP1, see [2], p.
251.

(1.12) Proposition. The projection h : V (1) → IP1, (a, b, c, d) 7→ (a, c) is
diffeomorphic over IP1 to the line bundle H(−2k) → IP1.

Proof. As we have just seen, the projection h : V (1) → IP1 can be identified
with the canonical quotient map

SL(2,C)/D = SL(2,C)×B B/D → SL(2,C)/B.
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We identify

σ : B/D
∼= - C,

(
λ µ
0 λ−1

)
7→ λµ.

The left translation by
(

α aα−1

0 α−1

)
∈ B on B/D is transformed under σ into the

action z 7→ α2z + a. Thus B/D ∼= C(2). The differential topology of the bundle
above is obtained by restriction to the compact form SL(2,C)/B ∼= SU(2)/T
with maximal torus T = SU(2)∩B. Thus we obtain precisely the description of
the bundleH(−2) over IP1, namely SU(2)×T C(2) → SU(2)/T . The isomorphism
SU(2)×T C(2) → V (2) is given explicitly as follows:

(

(
a −b̄
b ā

)
, µ) 7→

(
a aµ− b̄
b bµ+ ā

)
.

2

We have already explained in [3] that the G(2k)–variety x2 − 4yzk = 1 is
obtained from C2qC2 by the identification C∗×C → C∗×C, (x, u) 7→ (x, u+x−k).
A basic observation of Danielewski is that D(k) is a principal (C,+)–bundle over
the affine line with two origins C̃. This is obvious from the gluing construction (3);
and in [3] we have described the corresponding action on U(k). It is interesting to
see this action in the model V (k). If we restrict the G(2k)–action (1.10) on V (k)
to the normal subgroup G = (C,+), then we obtain a locally trivial G–action on
V (k). The map

W (k) → C2 \ 0, (a, b, c, d) 7→ (c, d)

is equivariant with respect to (1.2) and the C∗–action (c, d) · λ = (λc, λ−1d) on
C2 \ 0. The orbit space (C2 \ 0)/C∗ is C̃ and the orbit map V (k) → C̃ is the
projection of the principal G–bundle. In the SL(2,C)–case the principal bundle

comes from the left U–action on SL(2,C)/D, where U = {
(

1 µ
0 1

)
}.

2 The diffeomorphism type

This section is devoted to the equivalence of (2) and (4) in Theorem A and to
the proof of Theorem C. We begin with the former.

For topological reasons we shall have to use a slightly different definition of
V (k) as a smooth manifold. Let W0(k) denote the intersection of W (k) with
{(a, b, c, d) | |a|2 + |c|2k = 1}. This intersection is transverse. Therefore W0(k) ⊂
W (k) is a closed smooth submanifold. It carries the S1–action (1.2) and, as
smooth manifolds, W0(k)/S

1 ∼= V (k). We use the model W0(k)/S
1 =: V0(k) of

V (k) for the following investigations. Let

pk : V (k) → IP1, (a, b, c, d) 7→ [c, d̄ ].

This is well defined in the new model and a smooth map. We shall see in a
moment that pk is diffeomorphic to a bundle projection. We also use a different
model for the bundles. Let S3(k) = {(x, y) ∈ C | |x|2k + |y|2k = 1}. This manifold
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is diffeomorphic to the sphere S3 and carries the standard S1–action λ · (x, y) =
(λx, λy). We use

H0(−2k) = S3(k)×S1 C(2k)

as a model for the complex line bundle hk : H(−2k) → IP1. The bundle projection
is given by hk(x, y;µ) = [x, y].

The following formulas define an inverse pair of diffeomorphisms σk : V0(k) →
H0(−2k) and τk : H0(−2k) → V0(k):

σk(a, b, c, d) = (Nk(c, d̄), bā+ dkc̄k),

τk(x, y;µ) = (
yk − µ̄x̄k

N
,
−x̄k(1 + |µ|2 + ykµ

N
,
x

k
√
N
,
ȳ

k
√
N

).

We used the notation

Nk : C2 \ 0 → S3(k), (x, y) 7→ (x, y)

|(x, y)|2k

with |(x, y)|2k
2k = |x|2k + |y|2k and N2 = |yk− µ̄x̄k|2 + |xk|2. One verifies hkσk = pk,

hence σk is a morphism over the identity of IP1. The verification that σk and τk
are mutually inverse shows that (2) and (4) in Theorem A are diffeomorphic. 2

The map (a, b, c, d) 7→ (a, b, ck, dk) induces smooth maps

Φk : W (k),W0(k), V (k) → W (1),W0(1), V (1).

Let ϕk : IP1 → IP1, [u, v] 7→ [uk, vk].

(2.1) Proposition. The diagram

(2.2)

V (k) -Φk V (1)

?

pk

?

p1

IP1 -ϕk IP1.

is a pullback.

Proof. The diagram is commutative by construction. The map p1 is a submer-
sion. Therefore the pullback of (ϕk, p1)

V ′(k) = {[u, v], (a, b, c, d) | [uk, vk] = [c, d̄]}

is a smooth closed submanifold of IP1×V (1). By the universal property, (pk,Φk)
induces a smooth map ω : V (k) → V ′(k). An inverse to this map is given as
follows:

Let x = ([u, v], (a, b, c, d)) ∈ V ′(k). There exists a unique λ ∈ C∗ such that
uk = λc and vk = λc̄. This λ depends smoothly on x. Map x to the point
y = (λa, λ−1b, u, v̄) ∈ V (k). One checks that x 7→ y is a well defined smooth
inverse of ω. 2
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Proof of Theorem C. The involution J : (a, b, c, d) 7→ ((−1)k−1b,−a, d,−c) on
V (k) lives, after normalization, on V0(k). The induced involution J ′ = τkJσk on
H0(−2k) is computed to be

(x, y;µ) 7→ (Nk(ȳM(k)−1,−x̄M(k)); (−1)kµ̄).

The number M(k) > 0 is defined by M(k)k = 1 + |µ|2. Let a(k) be the square
root of M(k). The diffeomorphism

H0(−2k) → H0(−2k), (x, y;µ) 7→ (Nk(a(k)x, a(k)
−1y);µ)

transforms J ′ into the involution

(x, y;µ) 7→ (ȳ,−x̄; (−1)kµ̄).

This finishes the proof. 2

There are other simple varieties which have the diffeomorphism type of vector
bundles. For the sake of completeness we mention some.

Consider the divisor in IP1 × IP1 which is given by

C(k) = {[x, y], [xk, yk] | [x, y] ∈ IP1}.

Let Vk be the complement of C(k).

(2.3) Proposition. The manifold Vk is diffeomorphic to H(−2k).

Proof. The following formula yields a diffeomorphism Vk → S3 ×S1 C(2k)

[x, y], [u, v] 7→ (x, y),
ux̄k + vȳk

−uyk + vxk
.

We assume in this formula that |x|2 + |y|2 = 1. 2

(2.4) Remark. There are higher dimensional varieties of the same type. The
variety V = SL(n,C)/D withD the diagonal subgroup has a quotient map to the
flag variety SL(n,C)/B with B the Borel subgroup of upper triangular matrices.
This projection is diffeomorphic to a vector bundle. The unipotent radical U ⊂ B
acts by left translations on V and makes this variety into a principal U–bundle.
Varieties of this type will be studied elsewhere. ♥

3 The local model

This section serves as a preparation for the determination of compactification
divisors.

We denote by G = Ga the additive group (C,+) of complex numbers. Let
k ∈ IN0 and denote by C2(k) the affine space C2 with action

(3.1) G× C2 → C2, t · (x, y) = (x, y + txk).

7



The set F = 0 × C ⊂ C2(k) is the fixed point set (k > 0) and the other
orbits are free. The action on C2(0) is free. The action (3.1) has a canonical
compactification. Let Σ(k) be the Hirzebruch manifold

(3.2) Σ(k) = (C2 \ 0)×C∗ IP1;

it is defined as the C∗–orbit space

(x0, x1), [y0, y1] ∼ (λx0, λx1), [λky0, y1]

for λ ∈ C∗, where [y0, y1] are homogeneous coordinates of points in the projective
line IP1. The compactified action is

(3.3) t · ((x0, x1), [y0, y1]) = ((x0, x1), [y0 + txk
0y1, y1]).

The action (3.1) is contained as the chart x1 = 1 = y1. The complement of C2(k)
in Σ(k) consists of the divisors L = {x1 = 0} and D = {y1 = 0}. The divisor
D is fixed under G and L is G–stable. For k > 0 we have E0 = {x0 = 0} as a
further G–fixed divisor.

We define a standard equivariant expansion of Σ(k). An expansion of Σ(k) =
X0 is a sequence

(3.4) π : Xr
-πr Xr−1 → . . .→ X1

-π1 X0

of σ–processes πj where each πj blows up a point zj−1 ∈ Ej−1 ⊂ Xj−1 to the
exceptional divisor Ej = π−1

j (zj−1). We assume that the exceptional set of π, i.
e. the set

Σπ = {z | π−1(z) is not a point},

consists of a single point in F . Moreover, we assume that zj−1 is not contained
in the proper transforms of the previous Ei, i < j − 1. The pre-image of Σπ in
Xr is a divisor E1 ∪ E2 ∪ . . . ∪ Er where Ej also denotes the proper transform
of Ej ⊂ Xj. The total transform of L ∪ D ∪ E0 in Xr has the following linear
weighted dual graph.

0 −k −1 −2 −2 −1
• • • • · · · • •
L D E0 E1 Er−1 Er

The dotted part consists of (−2)–curves. This finishes the description of the
standard expansion. The next lemma states its equivariance properties.

(3.5) Lemma. Suppose r ≤ k. The expansions are G–equivariant with respect
to an algebraic action on the Xj. The divisors Ej, 0 ≤ j < k consist of fixed
points. The divisor Ek carries a free action on Ek \ (Ek ∩ Ek−1).

Proof. The proof is by induction on r. We show that a single σ–process applied
to a point of F in C2(k) produces a situation which is isomorphic to C2(k − 1)
in a neighbourhood of the exceptional divisor (k > 0).

8



Let X = (C2 \ 0) ×C∗ C with (x, y;u) ∼ (λx, λ−1u) for λ ∈ C∗. We have the
G–action

(3.6) t · (x, y, u) = (x, y + txkuk−1;u)

on X. The map

(3.7) π : X → C2(k), (x, y;u) 7→ (xu, c+ yu)

is equivariant und blows up the point (0, c) ∈ F . The complement of the proper
transform of F is isomorphic to C2(k − 1) under the map

(3.8) (u, y) 7→ (1, y;u). 2

Let Wk denote the G–variety which is the complement of the divisor

L ∪D ∪ E0 ∪ . . . ∪ Ek−1

in Xk. By the previous lemma, Wk carries a free G–action. The restriction of π
to Wk is a G–morphism π : Wk → C2(k).

The next proposition gives complete insight into the model situation.

(3.9) Proposition. There exists an isomorphism ϕ : C×G = C2(0) → Wk of
G–varieties such that ψ = πϕ : C2(0) → C2(k) has the form

ψ(x, u) = (x, pk(x) + uxk)

with a polynomial pk of degree less than k. The polynomials pk are in bijctive
correspondence with the standard expansions.

Proof. Consider the morphism

τ0 : C → C2(k), x 7→ (x, a0 + a1x+ . . .+ ak−1x
k−1).

The coefficient a0 is determined by the fact that π1 blows up (0, a0). The proper
transform of τ0 can be written in terms of the chart (3.8) as

τ1 : C → C2(k − 1), x 7→ (x, a1 + . . .+ ak−1x
k−2).

We continue in this manner. The coefficient aj is determined by πj+1. The proper
transform τk : C → Wk of τ0 is a section of the action, i. e. meets each orbit
exactly once. We obtain an isomorphism ϕ if we set ϕ(x, u) = u · τk(x). 2

We are now going to describe a G(2k)–equivariant compactification of U(k).
We start with the G–action on C2(k) and Σ(k) and apply two standard expan-
sions at the same time. In the generic case, when we start by blowing up two
different points in F , we obtain a compactification divisor B with dual graph
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(3.10)

−2 −2 −1

• · · · • • E ′
k

0 −k −2

• • •
L D E0

• · · · • • Ek

−2 −2 −1












J
J

J
JJ

Divisor B

The dotted parts contain k − 1 curves with self-intersection −2. The com-
plement Uk of B − Ek is isomorphic to a variety Wk as in (3.9). Similarly, the
complement U ′

k of B −E ′
k is a variety W ′

k. The variety D(k) which is defined to
be the complement of B−Ek−E ′

k carries a locally trivial G–action since it is the
union Uk ∪ U ′

k. More precisely: D(k) is obtained by gluing Uk and U ′
k along an

isomorphism γ : Uk \Ek → U ′
k \E ′

k. From (3.9) we can derive an explicit formula
for γ. Suppose

ϕ : C2(0) → Uk, ϕ′ : C2(0) → U ′
k

have been chosen such that

πϕ(x, u) = (x, p(x) + uxk)

and similarly with a polynomial q(x) for ϕ′. Then we have isomorphisms

(C \ 0)×G -ϕ
Uk \ Ek

-π
(C \ 0)×G

and similarly for U ′
k \ E ′

k. The transition function is given by

(3.11) (x, u) 7→ (x, u+
p(x)− q(x)

xk
).

Note that x−k(p(x)− q(x)) has the form

(3.12) g(x) = c−kx
−k + . . .+ c−1x

−1

with c−k 6= 0. The gluing (3.12) is exactly the one used by Danielewski. Thus we
see that the affine variety U(k) is one of the varieties D(k). Therefore we have
shown:

(3.13) Proposition. U(k) has the normal crossing compactification divisor
B − Ek − E ′

k. 2

By tracing the definitions we see that the compactification of U(k) is G(2k)–
equivariant.

If the two standard expansions separate at a higher infinitesimal level, then
we obtain a similar picture. The only difference is that the polynomials p and q
have coefficients of x0, . . . , xl equal so that x−k(p(x)) has a pole of order k − l.
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The resulting compactification divisor has a weighted dual graph of following the
shape:

(3.14)

−2 −2

• · · · •
0 −k −1 −2 −2 −3

• • • • · · · • •

• · · · •
−2 −2

J
J
J








The components of the divisor are, of course, smooth rational curves.

4 The general case

The method of the previous section is easily generalized and yields equivariant
compactifications for affine varieties with locally trivial G–action. We begin with
the constructive side. The method also allows for an algebraic classification of
the resulting varieties. This will be carried out elsewhere.

We assume given the following data:
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(4.1) Data

1. Z compact Riemann surface.

2. p : P → Z holomorphic or algebraic IP1–bundle.

3. s : Z → P a section of p and L1, . . . , Lr fibres of p over z1, . . . , zr such that
U = Z \ {z1, . . . , zr} is affine.

4. Set W = P \(L1∪. . .∪Lr∪s(Z)) and assume that p : W → U is isomorphic
to the projection pr1 : U × C → U .

5. σ : U → C a holomorphic function with isolated zeros.

6. A G–action on P which corresponds to t ·(u, z) = (u, z+σ(u)t) on U×C ∼=
W .

Suppose σ has a zero of order k in u ∈ U . We apply a finite number of k–fold
standard expansions (in the sense of section 3) to points in the fibre over u. Any
such process results in a locally trivial free G–action, as explained in section 3.
This action has a projection onto U . If σ(u) 6= 0, then there is a single orbit
over u. If σ(u) = 0, then there are b orbits over u if we have applied b standard
expansions to the fibre over u. The compactification divisor of this action has
the following structure of the dual graph:

(4.2)

Lr r

L1 r
r

�
�

�
��

@
@

@
@@�

�
�

��

@
@

@
@@

D

B(u)

pppp
p

pppp
p

The box B(u) contains the tree which results from the expansion of the fibre
over u. The generic situation for B(u) is a star-shaped tree with center-weight
−n and n strings of length k consisting of −2–curves if σ has a zero of order k
in u. A typical non-generic case for k = 2 is (3.15).

By standard topology the compactification divisor determines the topology
at infinity. For the fundamental group see e. g. [4]. For H1 one has to use the
intersection matrix of the weighted tree. Each box B(u) contributes a certain
torsion group; the projection onto the surface U is split surjective.

Some of the G–varieties appear as equivariant surfaces in C3. We communicate
some explicit formulas.

Let p(x) ∈ C[x], q(x, y) ∈ C[x, y]. We consider the afffine variety V (p, q) in C3

given by
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(4.3) P (x, y, z) ≡ p(x)z − q(x, y) = 0.

For each a(x) ∈ C[x] we have a factorization

(4.4) q(x, y + a(x))− q(x, y) = a(x)ra(x, y).

This implies that for a(x) = p(x)h(x) ∈ p(x)C[x] the automorphism of C3

(4.5) (x, y, z) 7→ (x, y + a(x), z + b(x, y))

with b(x, y) = h(x)ra(x, y) leaves the polynomial P (x, y, z) and hence V (p, q)
invariant. Thus V (p, q) has a rather large algebraic automorphism group. The
minimal case of this construction gives the G–action

(4.6) c · (x, y, z) = (x, y + cp(x), z + r(x, y, c))

where q(x, y + cp(x))− q(x, y) = p(x)r(x, y, c) and c ∈ C.
When is the action (3.7) free? The orbit of (x, y, z) is obviously free when

p(x) 6= 0. Suppose p(x0) = 0 and q(x, y) =
∑
r
qr(x)y

r. Then r(x0, y, c) =

c
∑
rqr(x0)y

r−1. Therefore the orbit of (x0, y, z) is free if and only if ∂q(x0,y)
∂y

6= 0.

Since p(x0) = 0 implies q(x0, y) = 0, the conditions (x0, y, z) ∈ V (p, q) and
∂q(x0,y)

∂y
= 0 imply that y is a multiple root of q(x0, y). Thus if q(x0, y) has no

multiple roots whenever p(x0) = 0, then V (p, q) carries a free G–action and,
moreover, is a regular surface in C3. Suppose these conditions hold. The projec-
tion

ρ : V (p, q) → C, (x, y, z) 7→ x

is G–invariant. If p(x0) 6= 0, then the fibre is isomorphic to C and a G–orbit. If
p(x0) = 0, then the fibre of ρ over x0 consists of the orbits (x0, yj)×C, where yj

runs through the roots of q(x0, y).
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