
Hyperbolic modifications and acyclic affine
foliations

Tammo tom Dieck

In this note we present a new method for the construction of manifolds and
varieties, called hyperbolic modification. By this method we find new acyclic
affine varieties and affine space forms. Space forms are algebraic varieties which
are diffeomorphic to a Euclidean space. There has been some interest recently
in affine space forms (see e. g. Dimca [7], Kaliman [11], Zaidenberg [22]).
Only a few methods are known for the construction of affine space forms. In
particular, it is usually not easy to verify that the varieties are not isomorphic
to the standard affine space. As a typical application of our methods we show:

Theorem A. For each integer n ≥ 4 there exist complex polynomial functions
q : Cn → C with the following properties:

(1) The polynomial has no singularities.
(2) Each fibre q−1(c) is diffeomorphic to Euclidean space Cn−1.
(3) The polynomial is not isomorphic (by an algebraic coordinate change) to

a projection V × C → C of a product.
(4) Some fibres of q carry an exotic algebraic structure, i. e. are not isomorphic

to an affine space.

We express the situation of Theorem A by saying that q yields an acyclic affine
foliation of Cn. The proof of Theorem A is based on the following construction
and Theorems B and C below.

Let h : Cn → C be a polynomial such that the origin is a regular point of the
affine hypersurface L = h−1(0). Then there exists a unique polynomial

qh = q : C× Cn → C

such that
uq(u, x) = h(ux), u ∈ C, x ∈ Cn.

We call qh the hyperbolic modification of h.

Theorem B. Suppose n ≥ 3. Let h : Cn → C be a polynomial such that h−1(0)
is a regular contractible hypersurface containing the origin. Then the hyperbolic
modification qh : Cn+1 → C is a regular polynomial such that each fibre is diffeo-
morphic to a Euclidean space.
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We find explicit polynomials h to which Theorem B can be applied by starting
with Brieskorn polynomials. The topological fact will be important that a neigh-
bourhood of the isolated singularity has a spherical boundary. A simple example
of a polynomial with the properties of Theorem A is

q(u, x, y, z) = uz2(ux+ 1)3 + 3z(ux+ 1)2 + 3x− z(uy + 1)2 − 2y.

The algebraic nature of the fibres is studied with the help of group actions and
the logarithmic Kodaira dimension κ̄. The basic input into proving part (4) of
Theorem A is the addition theorem of Kawamata [12]. It yields in our case:

Theorem C. Under the assumptions of Theorem B, if κ̄(h−1(0)) ≥ k, then
κ̄q−1(0)) ≥ k.

We can apply Theorem C to the polynomial

h(x, y, z) = z−1
(
(xz + 1)a − (yz + 1)b

)
for coprime integers a, b, since it was shown in [6] that V = h−1(0) is a contractible
variety with κ̄(V ) = 1. The explicit example above is the case (a, b) = (3, 2).

Once we have a situation where Theorems A and B hold we obtain Theorem
A(3) from the cancellation theorem of Iitaka and Fujita [10].

We point out that it is very easy to construct affine space forms X of general
type, i. e. with κ̄(X) = dimX. There are plenty of homology planes W of general
type. By compatibility of κ̄ with products, κ̄(V ) + κ̄(W ) = κ̄(V ×W ). It is a
topological fact (compare the proof of (3.14)) that the product of two homology
planes is diffeomorphic to C4.

1 Hyperbolic modifications

The hyperbolic modification produces new manifolds from a given manifold. The
modified manifold carries a group action. If we start with an acyclic manifold,
then the resulting modification is again acyclic. This section is devoted to the
topological part of the definition.

Let A be a finite-dimensional algebra over the field F of real numbers IR or
complex numbers C. We assume that the group of units G = A∗ in A is open
and dense in the vector space A. We consider G as Lie group over F . Suppose
ρ : A× V → V is a continuous (F = IR) or holomorphic (F = C) map such that
ρa : v 7→ ρ(a, v) is linear, and ρaρb = ρab, ρ0 = 0.

Let U be a star-shaped open neighbourhood of the origin in V . Then the open
subset

Ũ = {(a, v) | av ∈ U} ⊂ A× V

is contractible (by linear connection of v with 0). Set

b : G× (U \ 0) → Ũ , (a, u) 7→ (a, a−1u).
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Suppose ϕ : (U, 0) → (L, x) is a chart of the smooth manifold L which is centered
at x. We consider the pushout diagram

(1.1)

G× (U \ 0)
id× ϕ- G× (L \ x)

?

b
?

B

Ũ -Φ
X.

The maps id×ϕ and b are embeddings onto open subsets. Moreover (id×ϕ, b) is
an embedding onto a closed submanifold of G×(L\x)×Ũ . Therefore ([4], I(1.8))
X carries the structure of a smooth manifold such that B and Φ are embeddings
onto open subsets.

In case F = C and ϕ a holomorphic chart of a complex manifold L, the
resulting manifold X is again a complex manifold. The manifold character of L
is only used via the chart ϕ. Apart from this the object could have singularities.

(1.2) Definition. Any manifold X constructed in the manner above from L is
called a hyperbolic modification of L. ♥

We list some topological properties of hyperbolic modifications. A space is
called acyclic if its reduced integral homology is zero.

(1.3) Proposition. Let X be a hyperbolic modification of the n–dimensional
manifold L. Then the following holds:

(1) If L is acyclic, the X is acyclic.
(2) If n > 2 and π1(L) = 0, the π1(X) = 0.
(3) If n > 2 and L is contractible, then X is contractible.

Proof. We apply the Mayer-Vietoris sequence of homology to the defining di-
agram (1.1). Then (1) follows, because Ũ is contractible and id× ϕ a homology
isomorphism.

In order to prove (2), we apply the theorem of Seifert and van Kampen ([4],
II(5.7)) to (1.1). Since n > 2 and π1(L) = 0, we have π1(L \ 0) = 0.

Finally, (3) follows from (1) and (2) and general results of algebraic topology
([4], II(5.11) and V(6.3)). 2

The hyperbolic modification X carries a smooth right action of G. We let
g ∈ G act on G × (U \ 0) and G × (L \ x) by right multiplication on the first
factor and by g · (a, u) = (ag, g−1u) on Ũ and postulate (1.1) as a pushout in the
category of G–spaces. In the complex case the action is holomorphic.

We have a canonical map

(1.4) t : X → L

which, in terms of (1.1), forgets the first component of G×(L\0) and is given by
(a, u) 7→ ϕ(au) on Ũ . The map t is invariant, hence factors over the orbit space.
The fibres of t over points in L \ x are closed free orbits. The fibre t−1(x) can be
identified with {(a, v) | av = 0} ⊂ A×V . It contains the origin as a closed orbit.
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All other orbits in A× 0∪ 0× V have the origin in its closure This latter fact is
the reason for the name hyperbolic modification: The G–fixed point (0, 0) of the
action g · (a, v) = (ag, g−1v) on A× V is of hyperbolic type.

Let X0 = t−1(L \ x) ∪ b(0, 0). This is a G–stable subset. The map t : X0 → L
has a section. Therefore the following holds:

(1.5) Proposition. The map t induces a homeomorphism of the orbit space
X0/G with L. 2

(1.6) Example. The simplest, but typical, example is A = V = C and G = C∗

with map ρ : A× V → V, (λ, z) 7→ λlz for an integer l ≥ 1. ♥

(1.7) Example. Similarly, A = Mn(C), the complex (n, n)–matrices, G =
GL(n,C), V = Cn and ρ : A× V → V the matrix multiplication. ♥

(1.8) Example. One can consider direct products of the previous examples, e.
g.: A = C× . . .× C, G = C∗ . . .× C∗, V = Cn, and

ρ : A× Cn → Cn, ((λ1, . . . , λn), (x1, . . . , xn)) 7→ (λ
l(1)
1 x1, . . . , λ

l(n)
n xn).

One can show that this case also arises from an n–fold iteration of (1.6). ♥

In the case of example (1.6) and l = 1 we note:

(1.9) Lemma. The complex manifold X is independent of the choice of the
holomorphic chart ϕ about x0.

Proof. It is easy to see that shrinking U leads to the same manifold. There-
fore it suffices to consider charts ϕ, ψ : U → L which differ by a holomorphic
automorphism α : U → U . In this case there exists a commutative diagram

C∗ × (U \ 0) -b Ũ

?

id× α
?

A

C∗ × (U \ 0) -b Ũ

with a holomorphic automorphism A. This uses the fact that (u, x) 7→ u−1α(ux)
has a holomorphic extension to u = 0 by the derivative of α. 2

One can also consider parametrized versions of the hyperbolic modification.
We only treat the case of C∗–actions. Let L be a complex manifold, M ⊂ L a
closed complex submanifold, and τ : U → L a holomorphic tubular map from
an open star-shaped neighbourhood U of the zero section in the normal bundle
E →M of M in L. Let

Ũ = {(λ, u) | λu ∈ U} ⊂ C× E.
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Define the complex manifold X with C∗–action to be the pushout of the diagram

C∗ × (U \M) -id× τ
C∗ × (L \M)

?

b
?

Ũ - X.

As for (1.3) one verifies:

(1.10) Proposition. Suppose L and M are acyclic. Then X is acyclic. 2

2 Affine varieties

We apply the hyperbolic modification with the data of (1.6) to a regular point
of an affine variety L.

Suppose the affine variety L = L(I) is the zero set of the ideal I ⊂
C[x1, . . . , xn]. Let 0 ∈ L be a regular point of L. Consider the ideal

J = q(I) ⊂ C[u, x1, . . . , xn]

which is generated by all polynomials qh such that

(2.1) uqh(u, x) = h(ux), h ∈ I.

Since 0 ∈ L, the equality (2.1) yields for each h ∈ I a well defined polynomial
qh. The polynomial qh has the equivariance property

(2.2) qh(λ
−1u, λx) = λqh(u, x), λ ∈ C∗.

Therefore the affine variety V = V (J) ⊂ C × Cn, the zero locus of J , is stable
under the C∗–action λ · (u, x) = (λ−1u, λx) on C× Cn.

(2.3) Proposition. The C∗–variety V (J) coincides with the hyperbolic modifi-
cation of L at 0, as a complex space.

Proof. We select a holomorphic chart ϕ : U → L centered at 0 and consider
the following diagram

C∗ × (U \ 0) b - Ũ

?

a
?

B

C∗ × (L \ 0) -A
V

with maps
a(u, x) = (u, ϕ(x))
b(u, x) = (u, u−1x)
A(u, x) = (u, u−1x)
B(u, x) = (u, u−1ϕ(ux)).
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The map B has to be interpreted as a holomorphic map: For u = 0 we have to
set B(0, x) = (0, Dϕ(x)) with the differential Dϕ of ϕ at 0. By construction, the
diagram is commutative.

We have to show that the diagram is a pushout. This amounts to the following
verifications: The maps A and B are holomorphic embeddings onto open subsets
Ã and B̃ of V . The intersection Ã ∩ B̃ is as predicted by the diagram.

The image of A is V ∩ {(u, x) | u 6= 0}, hence open in V . An inverse of A is
induced by the morphism A1 : (u, x) 7→ (u, ux).

Suppose r = dimL. Let Φ: W1 → W2 be a holomorphic isomorphism between
open neighbourhoods of zero in Cn such that Φ restricts to

ϕ : 0× U = W1 ∩ (0× Cr) → L ∩W2.

The isomorphism Φ exists since 0 ∈ L was assumed to be a regular point. Let
Z2 = {(u, x) | ux ∈ W2} ⊂ C× Cn .

One verifies that V ∩Z2 is the image of B. An inverse of B is induced by the
morphism (u, x) 7→ (u, pr(u−1Φ−1(ux))) with pr: C × Cn → Cn the projection;
again, for u = 0 one has to use the differential of Φ−1. 2

We consider the group action from an algebraic point of view. The coordinate
rings of L and V are C[x]/I and C[u, x]/J . The C∗–action λ · (u, x) = (λu, λ−1x)
induces an action on C[u, x]/J because J is invariant. Let R denote the ring of
invariants.The homomorphism

j : C[x] → C[u, x], xi 7→ uxi

induces a homomorphism
j∗ : C[x]/I → R.

(2.4) Proposition. The homomorphism j∗ is an isomorphism.

Proof. Suppose p is in the kernel of j∗. Then there exists a relation of the type

p(ux) =
∑

i

ai(u, x)qi(u, x).

We multiply by u, set u = 1 and see that p ∈ I.
Let S be the ring of C∗–invariants in C[u, x]. Then it is easy to see that

j induces an isomorphism j : C[x] → S. Since C∗ is a reductive group, the
surjection C[u, x] → C[u, x]/(q) induces a surjection S → R (compare [21], II).2

One expresses (2.4) by saying that L is the algebraic quotient of V under the
C∗–action (compare [14], p. 96, and [21], p. 14). The map π : V → L, (u, x) 7→ ux
is the quotient map.

If L is a regular hypersurface, then V is again regular. Therefore we can
iterate the hyperbolic modification. Since V carries a C∗–action with fixed point
0 the hyperbolic modification of V at 0 carries a C∗ × C∗–action. The n–fold
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modification L(n) of L carries an action of the n–dimensional torus T (n) =
C∗× . . .×C∗. The hyperbolic modification is transitive: The n–fold modification
can be obtained as a single modification by using (1.8).

(2.5) Proposition. The algebraic quotient L(n)//T (n) is isomorphic to L. 2

The general pattern of the hyperbolic modification in this algebraic setting is:
Let π : X → Y be a morphism and L ⊂ Y a subvariety. Exclude some singular
set S ⊂ Y of π, take π−1(L \S) and form the (Zariski) closure of this pre-image.

3 Acyclic affine foliations

In this section we construct polynomials q : Cn+1 → C with the property that
all fibres q−1(c) are diffeomorphic to Euclidean space. The construction is based
on the hyperbolic modification (section 2). We give a proof of Theorem B of the
introduction.

Let h : Cn → C be a polynomial with h(0) = 0 such that 0 ∈ h−1(0) = L is a
regular point of L. Let q = qh : Cn+1 → C denote the hyperbolic modification of
h.

Notation. In this section, X denotes the Hopf bundle (recalled below) and
V = q−1(1) the general fibre of q.

We blow up the point 0 ∈ L and consider the complement of the proper
transform. This construction will also clarify the conceptual meaning of qh.

Denote by X = C×C∗ (Cn \ 0) the quotient of C× (Cn \ 0) under the relation
(u, x) ∼ (λ−1u, λx) for λ ∈ C∗ (the variety X is the Hopf bundle). The morphism
p : X → Cn, (u, x) 7→ ux blows up the point 0 ∈ Cn and p : X \E → Cn \0, E =
p−1(0) is an isomorphism. Moreover we have:

(3.1) p : X \ p−1(L) → Cn \ L is an isomorphism.

(3.2) p−1(L) = L1 ∪ E with L1 = {(u, x) | q(u, x) = 0}.

We let V = q−1(1). The next result shows that V is the general fibre of q.

(3.3) Lemma. The restriction q : q−1(C∗) → C∗ is a trivial fibration with typi-
cal fibre V , a regular affine hypersurface.

Proof. The regularity of V follows easily from the identity

u
∂q(u, x)

∂u
+ q(u, x) =

n∑
i=1

xi
∂h(ux)

∂xi

.

The map
ϕ : C∗ × V → q−1(C∗), (λ, (u, x)) 7→ (λ−1u, λx)

satisfies q ◦ ϕ = pr. An inverse ψ of ϕ is given by

ψ(u, x) = (q(u, x); q(u, x)u, q(u, x)−1x).
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Therefore ϕ is an algebraic bundle isomorphism. 2

(3.4) Lemma. Suppose h−1(0) ⊂ Cn is a regular variety. Then q is a regular
polynomial.

Proof. (3.3) shows that q is regular in all point of q−1(C∗). If q(u, x) = 0, then
h(ux) = 0. We have

(3.5)
∂q

∂xj

(u, x) =
∂h

∂xj

(ux)

and since h−1(0) is regular there exists j such that (3.5) is non zero. 2

(3.6) Proposition. The complement X \L1 is isomorphic to the regular affine
hypersurface V .

Proof. We have seen in (3.3) that V is regular. Moreover V ⊂ C × (Cn \ 0),
as seen from (3.3) and (3.4). The morphism V ⊂ C × (Cn \ 0) → X induces
the desired isomorphism. The pre-image of X \ L1 in C × (Cn \ 0) is the open
subvariety W = {(u, x) | q(u, x) 6= 0}. The morphism W → V, (u, x) 7→
(q(u, x)u, q(u, x)−1x) factors over X \ L1 and yields an inverse. 2

Because of (3.3), we call q−1(c), c 6= 0, the general fibre of q and q−1(0)
the singular fibre. The singular fibre was investigated in section 2 and studied
under the name of hyperbolic modification. We now deal with the topology of
the general fibre V .

(3.7) Proposition. The differentiable manifold V is obtained from Cn \ L by
attaching an open 2–handle. The homotopy type Y of V is obtained by attaching
a 2–cell D2 to Cn \ L along a small normal 1–sphere about L.

Proof. Set E0 = E\(E∩L1). Set theoretically we haveX\L1 = (X\p−1(0))∪E0

and X \ p−1(0) ∼= Cn \ L =: W . Therefore we have to describe the way E0 is
attached to W . This requires a tubular neighbourhood of E0.

The normal bundle of the exceptional divisor E ∼= IPn−1 inX is the line bundle

π : X → IPn−1, (u, x) 7→ [x].

We have L1 = {(u, x) | q(u, x) = 0} and [x] ∈ E0 is equivalent to q(0, x) 6= 0. If
we fix x, then there exists a neighbourhood Ux of zero, such that q(u, x) 6= 0 for
u ∈ Ux, i. e. (u, x) 6∈ L1 for u ∈ Ux. In other words: Let π0 : X0 = π−1(E0) → E0

denote the restriction of π; then there exists an open cell subbundle U ⊂ X0 → E0

such that (u, x) ∈ U \ E0 implies q(u, x) 6= 0.
The complex manifold X \L1 can therefore be defined by the pushout diagram

U \ E0
-c U

?

j
?

Cn \ L - X \ L1
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where j is the embedding (u, x) 7→ ux.
Let Uz denote the fibre of π0 : U → E0 over z ∈ E0. Then j : Uz → Cn,

(u, x) 7→ ux is transverse to L in 0. Let Dz ⊂ Uz be a closed cell with boundary
Sz. The circle Sz is the normal sphere about L which appears in the statement
of (3.7).

The pushout diagram
Sz

- Dz

?

j
?

Cn \ L - Y

defines the attachment of the 2–cell to Cn\L. The space Y is homotopy equivalent
to X \ L1. In order to see this, consider the commutative diagram

Cn \ L � j
U \ E0

- U
6
=

6
α

6
β

Cn \ L � Sz
- Dz.

The inclusions α and β are homotopy equivalences. The set E0 is the comple-
ment of the projectivized tangent space E0 = IP(Cn) \ IP(T0L), hence an affine
space. Therefore the cell bundle U is contractible. The inclusion α is a mor-
phism of fibrations which is a homotopy equivalence in the base and in the fibre
and therefore a homotopy equivalence ([5], 9.1). Now apply a general result of
homotopy theory ([3], Lemma 1). 2

Proposition (3.7) has some consequences for the homotopy and homology of V .

(3.8) Corollary. Let N ⊂ π1(C
n \ L) be the normal subgroup generated by a

normal sphere of L. Then π1(V ) ∼= π1(C
n \ L)/N .

Proof. The theorem of Seifert and van Kampen implies that attaching a 2–cell
factors out exactly the subgroup N . 2

(3.9) Corollary. Hi(V ) ∼= Hi(C
n \ L) for i 6= 1.

Proof. Let W = Cn \ L. Since Hi(Y,W ) = 0 for i 6= 2, the exact homology
sequence of (Y,W ) shows that the homology groups of Y and W can only differ
for i = 1, 2. In this case we have the exact sequence

0 → H2(W ) → H2(Y ) → H2(Y,W ) -∂
H1(W ) → H1(Y ) → 0

with H2(Y,W ) ∼= ZZ. The map ∂ is injective. In order to see this, consider

s : H1(C
n \ L) ∼= H2(C

n,Cn \ L) -τ ZZ,

where τ gives the intersection number with L (see [4], V.5). Then s ◦ ∂ is an
isomorphism, sinceH2(Y,W ) is generated by a normal disk which has intersection
number one with L. 2
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(3.10) Proposition. Suppose L has only isolated singularities and is a topo-
logical manifold. Then Hi(C

n \ L) ∼= Hi−i(L) for i > 0.

Proof. If L has a tubular neighbourhood in Cn we can apply the exact
homology sequence and the Thom-isomorphism ([20], p. 259) Hi(C

n \ L) ∼=
Hi+1(C

n,Cn \ L) ∼= Hi−1(L) and deduce the claim.
Another argument uses the fact that the sphere S2n−1(r) = {z ∈ Cn | |z| = r}

intersects L transversely for all sufficiently large r. For such r, the space Cn \ L
is homotopy equivalent to the intersection with the disk D2n(r) \ D2n(r) ∩ L.
We therefore study the following situation: D is an m–disk, L ⊂ D a topological
submanifold with ∂D ∩ L = ∂L and transverse intersection of L and ∂D. Let
S = D ∪ D′ be the double of D = D′; this is an m–sphere. Now we have the
following chain of isomorphisms for i > 0:

Hi(D \ L) ∼= Hi+1(D,D \ L)
(1)

∼= Hm−i−1(D′ ∪ L, D′)
(2)

∼= Hm−i−1(∂D ∪ L, ∂D)
(3)

∼= Hm−i−1(L, ∂L)
(4)

∼= Hi−1(L).
(5)

Explanation:
(1) comes from the exact homology sequence.
(2) is Poincaré–Lefschetz duality in S, see [8], VIII.7.2.
(3) and (4) is excision.
(5) is duality in L. 2

(3.11) Theorem. (1) Suppose L is an acyclic topological manifold with isolated
singularities. Then V is acyclic.

(2) If, moreover, π1(C
n \ L) is normally generated by a normal sphere (e. g.

π1(C
n \ L) ∼= ZZ), then V is contractible.

Proof. From (3.10) we see that Hi(C
n\L) is zero except for i = 1. For i = 1 the

argument with intersection numbers in the proof of (3.9) shows that H1(C
n\L) ∼=

ZZ, generated by a normal sphere. The result now follows from (3.7), (3.9), and
(3.10). 2

Altogether we can now deduce the next result (Theorem B).
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(3.12) Theorem. Suppose n ≥ 3. Let h : Cn → C be a polynomial with h(0) =
0 such that h−1(0) is a regular contractible hypersurface. Then the hyperbolic
modification q : Cn+1 → C is a regular polynomial such that each fibre q−1(c),
c ∈ C is diffeomorphic to Euclidean space.

For the proof we need another Lemma.

(3.13) Lemma. Suppose L is regular. Then:

(1) If π1(L) = 0, then π1(V ) = 0.

(2) If L is contractible, then V is contractible.

Proof. (1) Let U be an open tubular neighbourhood of L in Cn. By the theorem
of Seifert and van Kampen, the diagram

π1(U \ L) - π1(U)

? ?

π1(C
n \ L) - π1(C

n)

is a pushout diagram. We have homotopy equivalences L ' U and U \L ' L×S1.
Therefore π1(U) = 0, π1(U \ L) ∼= πi(L × S1) ∼= π1(S

1), and the pushout shows
that π1(C

n \ L) is normally generated by a normal sphere of L. Now we apply
(3.8).

(2) follows from the proof of (1) and (3.11). 2

Proof of (3.12). By (3.4), q is regular. By (3.13), the general fibre of q is con-
tractible. By (1.3), the singular fibre is contractible. Now apply the next (well
known) theorem. 2

(3.14) Theorem. Let V be a contractible regular affine variety over C of di-
mension m ≥ 3. Then V is diffeomorphic to Cm.

Proof. The statement is obtained by combining the next three results. 2

The first one is a consequence of Smale’s h-cobordism theorem, see [16], p.
108.

(3.15) Proposition. Let D be a contractible smooth k–manifold with simply
connected boundary. Then D is diffeomorphic to the k–dimensional unit disk
Dk, provided k ≥ 6. 2

There are important cases in which a simply connected manifold will have
a simply connected boundary. In order to state the result we use the handle
decomposition of a smooth manifold which follows from the existence of a smooth
Morse function.

(3.16) Proposition. Suppose the compact connected m–manifold M has only
handles of index i for i ≤ r ≤ m

2
. Then the relative homotopy groups πj(M,∂M)

are zero for j < m− r.
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Proof. In order to prove this proposition we investigate what happens when a
single handle is attached.

In order to attach an i–handle one has to choose an embedding C = Si−1 ×
Dm−i ⊂ ∂M and form the adjunction space M ′ = M ∪C (Di×Dm−i). The space
M ′ has the homotopy type of M ∪Di, an i–cell Di attached to M along Si−1×0.
Let us consider the following diagram.

(M ′, ∂M ′) α - (M ′, ∂M ′ ∪Dm−i)

?

'

(M ∪ (Di ×Dm−i), ∂M × I ∪ (Di ×Dm−i))
6
'

(M,∂M) -β
(M ∪Di, ∂M ∪Di)

The vertical maps are the obvious homotopy equivalences, whereas α and β are
inclusions. We consider the induced maps on homotopy groups πj. The exact
homotopy sequence shows that α induces an isomorphism for j < m− i. Suppose
πj(M,∂M) = 0 for j < m− r. Then homotopy excision ([4], p. 178) shows that
β induces an isomorphism for j < m− r + i− 2.

Now one uses this information inductively, starting with (Dm, Sm−1), and
attaching successively 1–handles, 2–handles etc. 2

Affine varieties have the following remarkle property; see [15], §7 for a proof.

In order to deal with regular affine varieties V from a topological point of
view it is useful to know that there exists a compact manifold B with boundary
such that V is diffeomorphic to the interior of B. If one realizes V as a regular
subvariety of some CN , then there exists an R > 0 such that for all r > R the
sphere S(r) = {z ∈ CN | |z| = r} is transverse to V . This is proved in [17], Cor.
2.6. Now one can take as B the intersection of V with a large disk in CN .

(3.17) Proposition. Let V be an m–dimensional regular affine variety over C.
Then B has a decomposition into i–handles, i < m. 2

We call regular polynomials p : Cn → C such that all fibres are diffeomorphic
to Euclidean space slice polynomials. Linear forms are trivial slice polynomials.
We now collect some results which imply that q is not isomorphic to a product
projection.

For the next three Propositions we assume that we are in the situation of
(3.12).

(3.18) Proposition. Suppose dimL = 2 and let L(n) denote the n–fold hyper-
bolic modification. If L 6∼= C2, then L(n) 6∼= Cn+2.

Proof. We use (2.5) and apply the characterization of C2 due to Miyanishi
and Sugie [18]. Compare also [13]. 4.2. 2
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(3.19) Proposition. Suppose the logarithmic Kodaira dimension κ̄(L) ≥ k.
Then κ̄(L(n)) ≥.

Proof. This follows from (2.5) by repeated application of the addition theorem
of Kawamata [12] which says: Let f : X → Y be a dominant morphism of
algebraic varieties over C; let the general fibre Xy = f−1(y) be an irreducible
curve; then κ̄(X) ≥ κ̄(Y ) + κ̄(Xy). 2

(3.20) Proposition. Suppose κ̄(q−1(c)) ≥ 0 for some c ∈ C. Then q is not
isomorphic to a product projection.

Proof. By the cancellation theorem of Iitaka and Fujita [10] there is no
isomorphism Cn ∼= C× q−1(c). 2

If remains to find nontrivial examples to which (3.12) applies. This will be the
subject of the next section.

4 Brieskorn varieties

The Brieskorn polynomials are among the simplest polynomials to which the con-
siderations of the previous section can be applied. In particular, we find explicit
examples which prove Theorem A of the introduction.

Let a(1), . . . , a(n) be positive integers. The associated Brieskorn polynomial
is

(4.1) h(x1, . . . , xn) = x
a(1)
1 + . . .+ xa(n)

n .

These polynomials have an isolated singularity at the origin. The Brieskorn man-
ifold is the intersection

(4.2) B = B(a(1), . . . , a(n)) = h−1(0) ∩ S2n−1.

Brieskorn [2] investigated under which condition this manifold is a topological
sphere. The result is as follows (4.3).

Define the graph Γ of the family (a(j)): The vertices are {1, . . . , n}. There is an
edge connecting i and j if and only if the greatest common divisor (a(i), a(j)) > 1.

(4.3) Theorem. B(a(1), . . . , a(n)) is a homology sphere if and only if one of
the following conditions holds:

1. Γ has at least two isolated points.

2. Γ has an isolated point and another connected component Γ′ with an odd
number of vertices such that for different i, j ∈ Γ′ always (ai, aj) = 2. 2

The Brieskorn varieties are simply connected for n ≥ 4. A simple conse-
quence of Smale’s h-cobordism theorem asserts that they are homeomorphic to
the sphere S2n−3, provided they are homology spheres, [19], [16], p. 109. For
further information about Brieskorn manifolds see also [9], [1], and [17].
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(4.4) Theorem. Let q : Cn+1 → C be a hyperbolic modification of h, applied to
a regular point of h−1(0). Suppose the manifold B in (4.2) is homeomorphic to a
sphere. Then V = q−1(1) is a contractible affine variety (n ≥ 2).

Proof. By homogeneity of h, the space L = h−1(0) is homeomorphic to the
open cone over B. Therefore, L is homeomorphic to Euclidean space if B is a
sphere. By (3.11.1), V is acyclic.

In order to show that V is contractible we derive another topological construc-
tion of V . The space Cn \L is homeomorphic to the product of S2n−1 \B with an
open interval J . The inclusion B ⊂ S2n−1 can be considered as a (generalized)
knot. In order to obtain the homotopy type of V we have to attach a 2–cell along
a normal sphere (3.7). Let U ⊂ S2n−1 be an open tubular neighbourhood of B.
Up to homotopy, attaching a 2–cell amounts to adding a fibre over x ∈ B of
the tubular neighbourhood to S2n−1 \U . The result is the sphere S2n−1 with the
tubular neighbourhood W of B \ x deleted. Since B is assumed to be a sphere,
W is an open cell and its complement is a disk. The resulting homotopy type is
therefore contractible. 2

Instead of Brieskorn polynomials one can use other weighted homogeneous
polynomials with appropriate topological properties.

The simplest case of (4.4) arises for the polynomial h(x, y) = xa − yb for
coprime integers a, b. If we apply the hyperbolic modification to the regular
point (1,1) we obtain the polynomial

(4.5) P (x, y, z) = z−1
(
(xz + 1)a − (yz + 1)b

)
.

These polynomials have been studied in [6]. There it is shown that the affine
variety P (x, y, z) = 1 has logarithmic Kodaira dimension one. Therefore we can
apply the results of the previous section. The case (a, b) = (3, 2) leads to the
contractible hypersurface in C3

(4.6) z2x3 + 3zx2 + 3x− zy2 − 2y = 1.

We can use this polynomial as input for (3.12). If we apply the hyperbolic mod-
ification at the point (1,1,0) we obtain the slice polynomial

(4.7) q(u, x, y, z) = uz2(ux+ 1)3 + 3z(ux+ 1)2 + 3x− (uy + 1)2 − 2y

which we mentioned in the introduction. Other simple Brieskorn polynomials to
which (4.4) can be applied are

(4.8) xp + yq + z2
2 + . . .+ z2

n

for coprime odd integers p, q and zd
0 + z2

1 + . . . + z2
n for d and n odd. These

polynomials are interesting because they have large symmetry groups.

(4.9) Example. The group O(n− 1) acts by matrix multiplication on the co-
ordinates (z1, . . . , zn) and leaves (4.8) invariant. We apply the hyperbolic modi-
fication to the point (1,−1, 0, . . . , 0). The resulting variety X carries an induced
O(n− 1)–action. The fixed point set is a surface of type (4.6) for (a, b) = (p, q).
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Since the fixed point set is not homeomorphic to a Euclidean space, the action
on X is topologically non linear. ♥
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