
Ramified coverings of acyclic varieties

Tammo tom Dieck

A cyclic ramified covering of complex affine n–space along a hyperplane is again
the affine n–space. This makes is plausible that such a covering of an acyclic
variety along an acyclic hypersurface is again acyclic. We study this situation
from a topological viewpoint and give some applications to the construction
of acyclic affine varieties. Exotic algebraic structures on Euclidean spaces have
recently attracted some attention, see e. g. [8] [11] [17] [4].

One of our applications is to ramified coverings of homology planes. The ho-
mology planes of logarithmic Kodaira dimension one contain a contractible curve
[10]. We investigate under which conditions the ramified covering along such a
contractible curve is again a homology plane. Moreover we determine which ho-
mology planes result from this construction. The result is necessarily somewhat
technical and is stated as Theorem (4.9). By this method we are able to find
new homology planes which are surfaces in affine three-space. These surfaces are
actually equivariantly embedded with respect to the group of covering transfor-
mations. No such examples were known before. They are given by the following
polynomials, see Theorem (4.1) and section 3 for the terminology.

Theorem A Suppose a ≥ b > 0 and k > 0 are pairwise coprime integers.
Consider the polynomial

Pa,b,k(x, y, z) = z−k((zkx+ 1)a − (zky + 1)b).

Then the affine surface

X(a, b, k) = {(x, y, z) | Pa,b,k(x, y, z) = 1}

is a homology plane. The map (x, y, z) 7→ (x, y, zk) is a k–fold cyclic ramified
covering

Π: X(a, b, k) → X(a, b, 1).

The basic condition to insure the existence of an acyclic ramified covering is the
possibility to fibre the complement of the hypersurface with finite monodromy.
As a typical example for the affine space forms which arise from this construction
we mention:
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Theorem B Let n ≥ 2 and let p: Cn → C be a quasi-invariant polynomial of
weight l such that p−1(a) = La is a regular hypersurface for a = 0 and connected
for a 6= 0. Let r and s be coprime natural numbers which are prime to l. Then

X = {(x, y, u) | xr + ys + p(u) = 0}

is diffeomorphic to Cn+1. The general fibre

Xa = {(x, y, u) | xr + ys + p(u) = a 6= 0}

has the homotopy type of ZZ/r ∗ ZZ/s ∗ La, hence is not contractible if La is not
contractible.

We remark that the polynomial in Theorem B cannot be transformed into a
linear polynomial if the general fibre is not contractible. Polynomials of this type
have been considered by dimca [8] and Kaliman [11]. Our proof of Theorem B
only uses standard results and methods.

Sections one and two present the general theory and section four gives the
application to homology planes. The proof of Theorem B can be found at the of
section 3. The general theory further develops some ideas of Kaliman [11]. In
fact we reprove in Theorem (3.8) one of his theorems.

1 Ramified coverings

We begin by recalling the basic definition.

(1.1) Definition. A k–fold cyclic ramified covering of smooth manifolds con-
sists of a continuous map p: X → Y between smooth oriented manifolds of the
same dimension and a smooth orientation preserving action of the cyclic group
G = ZZ/k on X such that the following holds:

(1) The map p is G–invariant and induces a homeomorphism of the orbit space
X/G with Y .

(2) The fixed point set V = XG has codimension 2 in X. The image p(V ) = W
is a smooth submanifold of Y of codimension 2.

(3) The restriction p: X\V → Y \W is a k–fold smooth covering (submersion).
The covering transformations are given by the G–action.

(4) The restriction p: V → W is a diffeomorphism. ♥

(1.2) Lemma. Suppose given a smooth orientation preserving action of G on
X with fixed point set V of codimension 2 and free action on X \ V . Then there
is a smooth structure on the orbit space Y = X/G such that the orbit map is a
cyclic k–fold ramified covering.

Proof. We have the subspace W = p(V ) ⊂ Y . There is a unique smooth
structure on Y \W such that p: X \ V → Y \W is a submersion. Let ν: E → V
denote the G–equivariant normal bundle of V in X and let τ : U → X denote
an equivariant tubular map for V ⊂ X from an open equivariant disk bundle
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U ⊂ E. The bundle ν carries the structure of a complex line bundle such that
the G–action on U , given by scalar multiplication of G ⊂ S1 ⊂ C∗, makes τ
equivariant. Let νk: E(k) → V denote the k–fold tensor-power of the complex
line bundle ν. Then there is a canonical diffeomorphism α: (E\V )/G→ E(k)\V .
We use the pushout

(U \ V )/G
τ/G- (X \ V )/G

?

α
?

UE(k) - Y

to define a smooth structure of Y in a neighbourhood of p(V ) = W . Here UE(k)
denotes the disk bundle in E(k) which consists of the image of α together with
the zero section. 2

Suppose, conversely, that we are given a smooth oriented manifold Y with a
smooth oriented closed submanifold W of codimension 2. A k–fold cyclic covering
of Y \W is determined by a surjective homomorphism of the fundamental group
π1(Y \W ) → G. Since G is abelian we need only specify a surjection of the first
homology group ρ: H1(Y \W ) → G. Let p#: X# → Y \W denote the covering
associated to a given surjection ρ. We want to make X = X#qW into a smooth
manifold such that the map p: X → Y which is p# on X# and the identity on
W becomes a k–fold cyclic ramified covering in the sense of (1.1). When this is
possible we say: (Y,W, ρ) admits a k–fold ramified covering.

Let t: T → W denote the unit sphere bundle of the normal bundle of W ⊂ Y
and let σ: T → Y \W be a restriction to T of a tubular map for W ⊂ Y . The
covering p# induces via σ a covering q: S → T . In order to attach W as the fixed
point set, we need that s: = tq: S → W is again a sphere bundle. A necessary
condition is that s has connected fibres. This condition is also sufficient. The
next Proposition states the relevant topological fact without proof.

(1.3) Proposition. Let t: T → W be a principal S1–bundle and q: S → T
a principal ZZ/k–bundle. Suppose the pre-image under q of each fibre of t is
connected. Then s := tq: S → W has the structure of a principal S1–bundle such
that q satisfies q(xz) = q(x)zk for x ∈ S and z ∈ S1. For the associated complex
line bundles Es and Et of s and t the map q induces an isomorphism E⊗k

s
∼= Et.2

In order to apply (1.3) in our context, we state:

(1.4) Proposition. Let W be connected. The connectivity condition in (1.3) on
q is equivalent to: The element in H1(Y \W ) which is represented by a fibre of
t is mapped under ρ onto a generator of G. 2

Consider the exact homology sequence

H2(Y ) → H2(Y, Y \W ) ∂ - H1(Y \W ) → H1(Y ).
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By the Thom isomorphism and the connectedness ofW the groupH2(Y, Y \W ) ∼=
ZZ is generated by a fibre of the normal bundle. This shows:

(1.5) Proposition. Suppose W is connected, H1(Y ) a torsion group with order
prime to k and ∂ injective. Then (Y,W, ρ) admits a k–fold ramified covering. 2

The main problem which we address in this note is:

(1.6) Problem. Suppose (Y,W, ρ) admits a k–fold ramified covering p: X → Y .
When is X acyclic or contractible? ♥

The next section describes conditions under which this question can be an-
swered.

2 Fibred manifolds

We assume given a cyclic group L = ZZ/l ⊂ S1 ⊂ C∗ and a connected oriented S1–
manifold F with orientation preserving right action (x, λ) 7→ x·λ of L. Consider
the following diagram. Its details will be explained in a moment.

(2.1)

X0 = F (k)×L C∗ Π - F ×L C∗ = Y0

?

P
?

p

C∗ -π
C∗

Let k > 1 be a natural number which is prime to l. The space Y0 is the quotient
of F×C∗ under the relation (x, z) ∼ (x·λ, λ−1z) for λ ∈ L; and X0 is the quotient
under the relation (x, z) ∼ (x·λk, λ−1z); here F (k) stands for F with the twisted
action. The maps in the diagram are defined as follows:

Π(x, z) = (x, zk)

π(z) = zk

P (x, z) = zl

p(x, z) = zl.

The maps are well-defined and the diagram is commutative. The map π is a
cyclic covering of degree k and Π is the induced covering. We have an action of
G = ZZ/k on X0 given by

(2.2) µ·(x, z) = (x·µk, µ−1z), µkl = 1.

The action is free. It induces a homeomorphism X0/K ∼= Y0. Therefore this
action is the group of covering transformations of Π.

We compare the homology of X0 and Y0.

(2.3) Proposition. Let C be a finite field. If Hi(Y0;C) = 0 for i ≥ 2, then
Hi(X0;C) = 0 for i ≥ 2.
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Proof. We use the fibre bundles P and p of (2.1). The homology of the total
space of such bundles can be computed by using the Wang sequence (see [12], p.
67 and [16], p. 456). The Wang sequence for X0 has the following form:

→ Hi(F ) α∗ − id- Hi(F ) → Hi(X0) → Hi−1(F ) → .

The map α: F → F is the monodromy of the fibration P . It is given by right
multiplication with exp(2πik/l) ∈ L. The Wang sequence holds for homology
with an arbitrary coefficient group. We use C–coefficients. Since we are then
working with finite homology groups it suffices for the proof to verify that α∗− id
is injective on Hj(F ) for j ≥ 1. We compare with the Wang sequence of p with
monodromy β. By construction α = βk. Since Hi(Y0) = 0 for i ≥ 2, we know
from the Wang sequence of p that β∗ − id is injective, i. e. β∗ does not have
the eigenvalue one. Since β has period l and k is prime to l we have β = αj if
jk ≡ 1 mod l. Therefore α∗ does not have the eigenvalue one. 2

By transfer theory of transformation group theory (see [1], III.2 or [2], II.9),
we obtain:

(2.4) Proposition. Let R = ZZ[k−1]. Supppose the K–action on H∗(X0;R) is
trivial. Then the map P induces an isomorphism P∗: H∗(X0;R) → H∗(Y0;R). 2

We now combine the considerations above with the situation of the previous
section and assume Y \W = Y0, for an oriented smooth manifold Y and a closed
connected oriented smooth submanifold W of codimension 2.

For the rest of this section we suppose that P : (X,W ) → (Y,W ) is a cyclic
ramified covering with ramification locus W such that the restriction P : X \W =
X0 → Y0 = Y \W is the covering just constructed. Then we have:

(2.5) Proposition. Supppose the G–action on H∗(X0;R) is trivial. Then the
map P : X → Y induces an isomorphism P∗: H∗(X;R) → H∗(Y ;R).

Proof. By the five-lemma and the previous Proposition, it suffices to show that

P∗: H∗(X,X \W ;R) → H∗(Y, Y \W ;R)

is an isomorphism. By excision, we can restrict to suitable tubular neighbour-
hoods of W in X and Y . Then we use the Thom isomorphism and notice that
P∗ maps the Thom class of (X,W ) to k–times the Thom class of (Y,W ). Since
k ∈ R is invertible, the claim follows. 2

(2.6) Lemma. Consider homology with integral coefficients. Suppose H1(Y ) ∼=
0 ∼= H2(Y ). Then the exact sequence

0 → H2(X,X0)
∂ - H2(X0) → H1(X) → 0

splits.
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Proof. We have a commutative diagram

ZZ ∼= H2(X,X0)
∂ - H1(X0)

?

P∗
?

P∗

ZZ ∼= H2(Y, Y0) -
∼=

H1(Y0).

The left P∗ is multiplication by k (see the proof of (2.5)).
Since F is connected, the homotopy sequence of the fibrations Π and π

yield surjections π1(X0) → π1(C
∗) and π1(Y0) → π1(C

∗). Therefore the map
π∗: H1(Y0) → H1(C

∗) is an isomorphism and the commutativity of (2.1) shows
that P∗(H1(X0)) ⊂ kZZ. The diagram above now shows that ∂ is an injection as
a direct summand. 2

If C is a coefficient group, then a space Z is called C–acyclic if H̃∗(Z;C) = 0.

(2.7) Theorem. Let C be a finite field. Suppose Y and W are C–acyclic. Then
X is C–acyclic.

Proof. We use homology with coefficients in C. The exact homology sequence
of (Y, Y0) and the Thom isomorphism Hi−2(W ) ∼= Hi(Y, Y0) show Hi(Y0) = 0 for
i ≥ 2. Hence, by (2.3), Hi(X0) = 0 for i ≥ 2. The exact homology sequence of
(X,X0) now shows Hi(X) = 0 for i ≥ 3. The cases i = 1, 2 follow if we show
that the boundary map ∂: H2(X,X0) → H1(X0) is an isomorphism. The Wang
sequence proof of (2.3) shows that H1(X0) ∼= C. If we use this fact together with
(2.6) we see that ∂ is an isomorphism. 2

(2.8) Corollary. Suppose Y and W are ZZ–acyclic. Then X is ZZ–acyclic. 2

Suppose H1(Y ; ZZ) ∼= 0 ∼= H2(Y ; ZZ). Then Y admits a unique k–fold cyclic
ramified covering with ramification locus W ; see (1.4).

(2.9) Theorem. Suppose the G–action on H∗(X0;R) is trivial. Suppose Y is
ZZ–acyclic and W is ZZ/k–acyclic. Then X is acyclic.

Proof. Taking (2.5) into account, the proof is similar to the proof of (2.7). 2

We now deal with the fundamental group of X.

(2.10) Proposition. Suppose F , W , and Y are simply connected. Then X is
simply connected.

Proof. Since F is simply connected, the homotopy sequences of the fibrations
P and p yield isomorphisms

p∗: π1(Y0) ∼= π1(C
∗), P∗: π1(X0) ∼= π1(C

∗).
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Let U be a tubular neighbourhood of W in Y . The theorem of Seifert and van
Kampen, applied to the pushout

U \W - Y \W

? ?

U - Y,

and our assumptions imply that π1(U \ W ) → π1(Y \ W ) is an isomorphism.
Hence π1(Y \W ) ∼= ZZ is generated by a normal 1–sphere to W . Since W has
codimension 2 inX, the inclusionX\W → X induces a surjection of fundamental
groups (transversality theorem). The normal sphere of W in X is mapped under
Π: X0 → Y0 to k–times the normal sphere of W in Y . Therefore, if we apply the
fundamental group functor to (2.1), we conclude that π1(X \W ) is generated by
a normal sphere. A normal sphere is contractible in X, therefore π1(X) = 0. 2

3 Affine varieties

We apply the topological results of the previous section to affine varietes. The
aim is to construct acyclic or contractible varieties.

We assume given an action C∗×Cn → Cn, (λ, x) 7→ λ·x of C∗ on Cn. For the
time being, the action is assumed to be continuous, if we are just dealing with
topological properties. But in an algebraic context it seems more reasonable to
assume that left translations x 7→ λ·x are polynomial automorphisms.

A polynomial q: Cn → C (or any function) is called quasi-invariant of weight
l ∈ ZZ with respect to the given action if

q(λ·x) = λlq(x), x ∈ Cn, λ ∈ C∗

holds.
We assume given a quasi-invariant polynomial q of weight l. We denote the

fibre q−1(c) by Fc. The k–fold ramified covering of Cn along q−1(0) is the affine
variety

X = {(u, x) ∈ C× Cn | uk + q(x) = 0}, k ≥ 1.

We shall exhibit conditions on q under which X will be diffeomorphic to Eu-
clidean space.

We begin with some elementary remarks about ramified coverings.

(3.1) Lemma. If F0 is regular, then X is regular.

Proof. Compute the partial derivatives of p(u, x) = uk + q(x). 2

(3.2) Lemma. The map σ: X → Cn, (u, x) 7→ x is a k–fold ramified covering
with ramification locus F0.
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Proof. Given x ∈ Cn, there exists u such that uk + q(x) = 0. Therefore σ is
surjective. Consider the ZZ/k–action µ·(u, x) = (µu, x) on X. Then σ induces a
homeomorphism of the orbit space X/(ZZ/k) with Cn. 2

(3.3) Lemma. F0 = {(u, x) | u = 0, q(x) = 0} is a regular submanifold of X.
The intersection of X with {u = 0} in Cn+1 is transverse. 2

(3.4) Proposition. The map q: Cn \F0 → C∗ is locally trivial with typical fibre
F1 and structure group ZZ/l.

Proof. The quasi-invariance of q implies that (ω, x) 7→ ω·x is a ZZ/l–action on
Fc. We use this action to form C∗×L F1, (λ, x) ∼ (λω, ω−1·x), ω ∈ L = ZZ/l. The
map ϕ: C∗×LF1 → Cn \F0, (λ, x) 7→ λ·x is well-defined and satisfies q ◦ϕ = pr1.
Let Y = {(λ, x) | λl = q(x)} ⊂ C∗ × (Cn \ F0). Then pr2: Y → Cn \ F0 is a
quotient map. The morphism Y → C∗ ×L F1, (λ, x) 7→ (λ, λ−1 ·x) induces an
inverse to ϕ. 2

(3.5) Proposition. Suppose π1(C
n \ F0) ∼= ZZ and F1 is connected. Then

π1(Fc) = 0.

Proof. Consider the exact homotopy sequence of the fibration (3.4)

0 → π1(F1) → π1(C
n \ F0) -q∗ π1(C

∗) → 0.

The hypothesis implies that q∗ is an isomorphism. 2

We study the topology of X via γ: X → C, (u, x) 7→ u. Let Γc = γ−1(c).

(3.6) Proposition. The morphism γ: X \Γ0 → C∗ is locally trivial with typical
fibre F1 and structure group ZZ/l.

Proof. The fibre Γc = {(u, x) | q(x) = −uk, u = c} is isomorphic to Fck . We
have the ZZ/l–action ω ·(1, x) = (1, ω ·x) on Γ1. The map ϕ′: C∗ × Γ1 → X \ Γ0,
(λ, (1, x)) 7→ (λl, λk ·x) is well-defined. Let jk ≡ 1 mod l. Then (λ, (1, x)) and
(ωjλ, (1, ω−1 ·x)) have the same image under ϕ′ for ω ∈ ZZ/l = L. We therefore
use the ZZ/l–action (ω, λ) 7→ ωjλ on C∗ in order to form C∗ ×L Γ1 and obtain
from ϕ′ a morphism ϕ: C∗ ×L Γ1 → X \ Γ0 which satisfies γ ◦ ϕ = p with
p: C∗ ×L Γ1 → C∗, (λ, x) 7→ λl. We obtain an inverse to ϕ as follows. Write
X \ Γ0 as quotient of

Z = {(v, u, x) | vl = u, (u, x) ∈ X \ Γ0}

and define
Z → C∗ ×L Γ1, (v, u, x) 7→ (v, (1, v−k ·x)).

If we replace v by ωjv, ω ∈ L, the resulting element has the same image under
this map. Thus we obtain an induced map ψ: X \ Γ0 → C∗ ×L Γ1 which is the
inverse of ϕ. 2

(3.7) Proposition. Under the hypothesis of (3.5) we have π1(X) = 0.
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Proof. This is an application of (2.10). We remark that the diagram (2.1)
corresponds in the present context to the diagram

X \ Γ0
-σ

Cn \ F0

?

γ

?

q

C∗ -τ C∗

with τ(z) = −zk. 2

We can now verify the hypothesis of (2.4) in the present situation. We have the
orbit map σ: X → Cn of the ZZ/k–action µ·(u, x) = (µu, x), see (3.2). This action
can be exended to an S1–action, up to an automorphism of ZZ/k. The S1–action
λ(u, x) := (λlu, λk·x) restricts to a ZZ/k–action, which coincides with the original
action up to λ 7→ λl. This uses that k and l are coprime. As a consequence of
this S1–action we see that ZZ/k = G acts trivially on Hi(X; ZZ).

The next result is a direct consequence of (2.9), (3.4), (3.5), and (3.7). It is
due to Kaliman [11].

(3.8) Theorem. We assume the following:

(1) q: Cn → C is quasi-invariant of weight l.

(2) F0 = q−1(0) is regular and ZZ/k–acyclic. The integers k and l are coprime.

(3) Fc = q−1(c) for c 6= 0 is connected.

Then
X = {(x, u) ∈ Cn × C | uk + q(x) = 0}

is acyclic. If, moreover, π1(C
n \ F0) ∼= ZZ, then X is contractible. 2

Proof of Theorem B.
(The proof in this case is actually somewhat simpler and more transparent than
the one for (3.8).) The hypersurface {(y, u) | ys + p(u) = 0} = Y carries a
ZZ/s–action λ ·(y, u) = (λy, u) which can be extended to an S1–action since p
is quasi-invariant and s prime to l. The orbit space of this ZZ/s–action is Cn.
By transfer theory of transformation group theory as before, Y is ZZ/s–acyclic.
Applying the same reasoning once more, we see that X is acyclic. There is a
Milnor fibration µ: Cn+1 \ Y → C∗. The fibre has the homotopy type of the join
ZZ/s∗La for a 6= 0; this follows along the lines of the join-theorem of Sebastiani
and Thom [15] or Oka [14]. Since La is connected, the space ZZ/s ∗La is simply
connected. The homotopy sequence of µ now yields π1(C

n+1\Y ) ∼= ZZ. From (3.7)
we conclude that X is contractible. The statement about the homotopy type of
Xa follows again from the join-theorem. 2

(3.9) Remark. In connection with (3.8) we mention without proof the follow-
ing useful fact. Let p: Cn → C be a polynomial. Then there exists a finite set
S ⊂ C such that p: Cn \ p−1(S) → C \S is a locally trivial fibration with general
fibre Fa = p−1(a), a /∈ S. If Fa is connected, then π1(C

n \ Fa) ∼= ZZ. ♥
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4 Homology planes

The general results can be applied to construct homology planes which are ram-
ified coverings of other homology planes. In particular, we find new homology
planes which are surfaces in C3 and carry, moreover, a group action which ex-
tends to C3. No such examples were known before. The construction is based on
the surfaces which were found in [5]. For details about homology planes see [6],
[7].

(4.1) Theorem. Suppose a ≥ b > 0 and k > 0 are pairwise coprime integers.
Consider the polynomial

Pa,b,k(x, y, z) = z−k((zkx+ 1)a − (zky + 1)b).

Then the affine surface

X(a, b, k) = {(x, y, z) | Pa,b,k(x, y, z) = 1}

is a homology plane. The map (x, y, z) 7→ (x, y, zk) is a k–fold cyclic ramified
covering

Π: X(a, b, k) → X(a, b, 1).

Proof. LetM(a, b) denote the complement in C2 of the curve C(a, b) = {(x, y) |
xa = yb}. The variety M(a, b) carries the C∗–action λ ·(x, y) = (λbx, λay). The
map

p: M → C∗, (x, y) 7→ xa − yb

is quasi-invariant of weight ab.
A homology plane X(a, b) is obtained as follows: Blow up C2 in a regular

point of C(a, b) and take the complement of the proper transform of C(a, b). The
contractible curve W is the part of the exceptional divisor in X(a, b). Moreover,

X(a, b) \W ∼= M(a, b)

carries a C∗–action and a quasi-invariant map p of weight ab. As explained in
section 3, we can write M(a, b) as a fibration over C∗ with monodromy of fi-
nite order ab. By Theorem (3.8), the k–fold ramified covering of (X(a, b),W ) is
acyclic. We verify that the map Π of (4.1) is this covering.

By computing partial derivatives one verifies thatX(a, b, k) is a regular surface
in C3. It was shown in [5] that X(a, b) equals X(a, b, 1). The curve W corresponds
to the divisor W ′ given by z = 0 in X(a, b, 1). Thus Π is a ramified covering of
(X(a, b, 1),W ′) with the correct properties. 2

In order to place Theorem (4.1) into a wider context, we recall that a ho-
mology plane Y of logarithmic Kodaira dimension κ̄(Y ) = 1 contains a regular
contractible curve W (C–curve for short) and this curve is actually unique; see
[9], [10]. Thus we ask for ramified coverings of (Y,W ). We can apply the results
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of section 2 if we have a fibration p: Y \ W → C∗ with monodromy of finite
order. In view of section 3, it is natural to look for C∗–actions on Y \W and
quasi-invariant polynomials.

(4.2) Theorem. Let Y be a homology plane of logarithmic Kodaira dimension
one with regular contractible curve W ⊂ Y . Then Y \W carries a C∗–action and
there exists a fibration p: Y \W → C∗ with monodromy of finite order.

In the course of proving this theorem we determine the order of the mon-
odromy. We recall the construction of homology planes, following [9]. We also
use the terminology of [7] and add further details to these sources. In accordance
with [7] the letter V will later denote a homology plane.

Consider the projective bundle

σ: Σ(b) := (C2 \ 0)×C∗ IP1 → IP1.

Here the Hirzebruch variety Σ(b) is defined by the equivalence relation

(x, y;u, v) ∼ (λx, λy;λbu, v)

for (x, y) ∈ C2, [u, v] ∈ IP1, and λ ∈ C∗. Moreover, σ(x, y;u, v)) = [x, y]. We have
the standard sections of σ

E0 = {v = 0}, E∞ = {u = 0}.

We single out a finite set of points

z0 = [1, 0], z1 = [x1, 1], . . . , zr = [xr, 1]

in IP1. Let Fj denote the fibre of σ over zj. Consider the divisor

(4.3) D = E0 + E∞ +
r∑

j=0

Fj.

Let ζt = E∞ ∩ Ft. The homology planes in question are constructed from the
map σ: Σ(b) \ D → IP1 by adding singular fibres over zj. The fibre over ζ0 is
isomorphic to C and the remaining singular fibres are isomorphic to C∗. For our
purpose it is useful to add the singular fibres by a patching procedure.

Let the commutative diagram

C2 -χj Σ(b) \ E∞

?

pr1

?

σ

C - IP1

be an affine chart such that χj(C × 0) ⊂ E0 and χj(0 × C) = Fj \ ζj. Choose
coprime natural numbers (mj, nj) with mj > nj and consider the matrix

Mj =

(
uj mj

vj nj

)
∈ SL(2,ZZ)
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with 0 < uj < mj and vj ≥ 0. This matrix is uniquely determined by (mj, nj)

and called a multiplicity matrix. For each matrix A =
(

a b
c d

)
∈ SL(2,ZZ) let

A: C∗ × C∗ → C× C, (u, v) 7→ (uavb, ucvd).

Consider the Zariski open sets

Uj = χ−1
j (Σ(a) \D) ⊂ C∗ × C∗

and
Vj = M−1

j (Uj) ∪ C∗ × 0 ⊂ C∗ × C.

Define a variety V (M) from Σ(b)\D by simultaneous patching with the diagrams

Vj

M−1
j� Uj

χj - Σ(b) \D.

Here M refers to the family {Mj | 0 ≤ j ≤ r}. We have Σ(b) \D ⊂ V (M) and
σ can be extended canonically to V (M). The effect of passing from Σ(b) \ D
to V (M) is the addition of a singular fibre Ej over zj which corresponds to
C∗× 0 ⊂ Vj. It can be shown that, in the terminology of [7], the variety V (M) is
obtained from Σ(b) by cutting cycles of the dual graph of D at the points Es∩Fj

with multiplicities (mj, nj). The patching with the matrix Mj is also called the
standard expansion Mj.

Next we apply an h–fold sprouting expansion to V (M) in a point of E0. Again
we describe a sprouting expansion in terms of a patching procedure. This is based
on the morphism

π: C2 → C2, (x, u) 7→ (xuh + p(u), u),

where p(u) is a polynomial of degree at most h − 1 with p(0) 6= 0. We set
P (x, u) = xuh + p(u) and A(P ) = {(x, u) | P (x, u) = 0}. Then π induces an
isomorphism

π0: C× C∗ \ A(P ) → C∗ × C∗.

We use this isomorphism for the patching

C× 0 ∪ π−1
0 (V ′

0) ⊃ π−1
0 (V ′

0) -π0 V ′
0 ⊂ V (M) \ E0

with V ′
0 = V0 \C∗× 0. Let V denote the result. The effect of passing from V (M)

to V is to remove E0 and replace it by the curve W which corresponds to C× 0
under the last patching. We still have a canonical morphism σ: V → IP1 and W
is now the fibre over z0.

The discriminant ∆(V ) of V (in the sense of [7]) is the integer

(4.4) ∆(V ) := bm−
r∑

j=0

nj

mj

m, with m =
r∏

j=0

mj.

The order of the first homology group H1(V ; ZZ) is |∆(V )|, provided ∆(V ) 6= 0.
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The variety V is called a homology plane if |∆(V )| = 1 and a Q–homology plane
if ∆(V ) 6= 0.

We recall from the construction above, that V is specified by the following
data, called invariants.

(4.5) Invariants of V .

(1) The twisting integer b.

(2) The singular locus S = {z0, . . . , zr} ⊂ IP1.

(3) The multiplicities M = {(m0, n0), . . . , (mr, nr)}.

(4) The sprouting parameter P .

These invariants are slightly redundant; this will not be discussed here.

The next Theorem determines the k–fold cyclic ramified covering of (V,W ).
In order to state it, we need more notation. We set:

(4.6) kqj − nj = djmj, 0 ≤ dj, for j ≥ 1.

(4.7) ak =
r∑

j=1

dj + s+ b, 0 ≤ s < k.

We assume that k is prime to m1 . . .mr. Then the equalities above determine qj,
dj and s, a.

(4.8) Lemma. Let p(u) be a polynomial of degree at most h− 1 with p(0) 6= 0
and let l ≥ 0 be an integer. Then there exists a unique polynomial q(u) of degree
at most h− 1 with q(0) 6= 0 such that q(u) ≡ p(ql(u)u) mod (uh).

Proof. Write q(u) = αh−1u
h + . . . + α0 and p(u) = βh−1u

h + . . . + β0. The
required congruence leads to relations of the type

αj = βjβ
l
0 + rj

where rj is a polynomial which only involves α0, . . . αj−1. 2

We write qp,l for the polynomial q in (4.8) to show the dependence on the
initial data.

(4.9) Theorem. Suppose k is prime to ∆(V )m1 . . .mr. Then a k–fold cyclic
ramified covering of (V,W ) exists and has the following invariants:

(1) The twisting integer a.

(2) The singular locus S.

(3) The multiplicities (km0, u0 + sm0), (m1, q1), . . . , (mr, qr).

(4) The sprouting parameter xukh + qh,l(x
k).
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Here we have to use the integer l in (4.13) which is determined by m0, n0, k, s,
and (4.11).

In order to prove this Theorem we construct a variety X with the data of the
Theorem together with an action of ZZ/k and a morphism κ: X → V such that
the action realizes the deck transformations. The proof will be finished at 22.

The morphism κ arises from a rational morphism

ϕ: Σ(a) → Σ(b), (x, y;u, v) 7→ (x, y;
uk

R(x, y)
, vk)

with the polynomial

R(x, y) = ys
r∏

j=1

(x− cjy)
dj .

This definition is compatible with the defining equivalence relations when (4.7)
is satisfied. Note that ϕ is defined on Σ \D and is a fibrewise map of degree k.
We look for conditions on multiplicities and sprouting parameters such that a
lifting

X -κ
V

? ?

Σ(a) -ϕ
Σ(b)

to the singular fibres exists. The next Lemma deals with the local situation.

(4.10) Lemma. Suppose

ϕ = (ϕ1, ϕ2): C∗ × C∗ → C∗ × C∗

is a rational morphism of the form

ϕj(x, y) = xa(j)yb(j)pj(x, y)

with pj(0, 0) 6= 0. Then ϕ extends over the standard expansions

σ =

(
a b
c d

)
∈ SL(2ZZ), τ =

(
u v
w z

)
∈ SL(2,ZZ)

to a rational map Φ: C∗ × C → C∗ × C which is defined in a neighbourhood of
(0, 0) if and only if

β ≡ (b, d)

(
a(1) b(1)
a(2) b(2)

)(
z
−v

)
= 0.

Proof. One computes τ−1ϕσ. It has a first component of the form xαyβr1(x, y)
with r1(0, 0) 6= 0. Therefore β = 0 is a necessary and sufficient condition for Φ
to exist. 2
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We apply this Lemma in the case(
a(1) b(1)
a(2) b(2)

)
=

(
1 0
−dj k

)
.

Then the condition of this Lemma is satisfied for

σ =

(
kuj − ljmj mj

vj + djuj − ljqj qj

)
, τ =

(
uj mj

vj nj

)
=: Mj

if lj is suitably chosen so that σ is a multiplicity matrix. The resulting morphism
Φ has the form

(x, y) 7→ (xkr1(x, y), x
−ljyr2(x, y)).

This is an ordinary k–fold covering of C∗×C and maps the singular fibre to the
singular fibre. This consideration yields already the desired morphism κ over the
points zj for j ≥ 1.

It remains to deal with z0. We apply again the previous Lemma, this time to

σ =

(
a(1) b(1)
a(2) b(2)

)
=

(
1 0
−s k

)
, τ =

(
u0 m0

v0 n0

)
.

The conditions of the Lemma call for the relation −b(n0 + sm0) + (km0)d = 0.
We can solve this with

(4.11) σ =

(
µ0 km0

ν0 n0 + sm0

)
,

provided the integers km0 and n0 + sm0 are coprime.

(4.12) Lemma. Under the hypotheses of Theorem (4.9) the integers km0 and
n0 + sm0 are coprime.

Proof. We substitute kqj − nj = djmj for j ≥ 1 into

∆(V ) = bm−
r∑

j=1

nj

mj

m

and obtain

m(b+
r∑

j=1

dj)− n0m1 . . .mr ≡ ∆ mod k.

Since, by (4.7), b+
∑
dj ≡ −smod k we obtain

(sm0 + n0)m1 . . .mr ≡ −∆ mod k.

Therefore, if k is prime to ∆ and m1 . . .mr, then sm0 + n0 is prime to k. It is
prime to m0 because m0 and n0 are coprime. 2

Thus, by the last two Lemmas, we obtain a lifting Φ of ϕ over the standard
expansions σ and τ , and Φ has the form

(x, y) 7→ (xr1(x, y), x
lykr2(x, y))
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with

(4.13) l = u0ν0k − µ0v0 − µ0su0.

Finally, we have to lift Φ over the sprouting expansion. We disregard r1 and r2
in the following notations. The lifting of Φ requires to write (x, y) 7→ (Q,Qluk)
with Q = xukh + qh,l(x

k) in the form (z, w) 7→ (zwh + p(w), w) with a suitable
morphism (x, u) 7→ (z, w). This leads exactly to the conditions of Lemma (4.8)
for the definition of qh,l. For the lifting of Φ note that we are working on a set
where Q 6= 0. This finishes the construction of the morphism κ.

It remains to verify that κ is the desired covering. We use the fibrewise ZZ/k–
action λ·(x, y;u, v) = (x, y;λu, v) on Σ(a). It can be verified that this action lifts
to an action on X, free on X \W , and with fixed point set W . Moreover, κ is
the orbit map with respect to this action. 22

We remark that group actions of the type above have also been considered by
Miyanishi and Sugie [13].

Proof of Theorem (4.2).
We use the construction of the homology plane (V,W ) above. The variety V \W
is isomorphic to the variety which is obtained from Σ\D by applying the standard
expansion over the points z1, . . . , zr. We consider the morphism

ψ: Σ(b) \D → C∗, (x, y;u, v) 7→ (u/v)µ

S(x, y)

with µ = m1 . . .mr and

S(x, y) = yt
r∏

j=1

(x− cjy)
µnj/mj .

This is well-defined if we have

bµ− t−
r∑

j=1

µnj/mj = 0.

The morphism ψ is quasi-invariant with weight µ if we use the fibrewise C∗–action
λ(x, y;u, v) = (x, y;λu, v). It remains to extend ψ equivariantly over V \W ⊃
Σ(b) \ D. This uses the following computation: The standard expansion with
multiplicities (m,n) transforms

C2 → C, (x, y) 7→ xmc/yncf(x, y)

with f(0, 0) 6= 0 into

C∗ × C → C, (x, y) 7→ xcg(x, y)

with g(0, 0) 6= 0. Thus the latter map is still defined for y = 0, i. e. for the
singular fibre. Since the multiplicity matrix is(

u m
v n

)
∈ SL(2,ZZ)
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it is easy to lift the C∗–action. The singular fibre obtains the action (λ, z) 7→ λmz
and the slice representation of the singular fibre is given by λ−u. 2

(4.14) Remark. From Theorem (4.9) it is easy to determine a normal crossing
divisor for the hypersurfaces of Theorem (4.1). One just has to recall the effect
of the sprouting expansion and the cutting of cycles. See [7] for details. ♥
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