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1 Algebraic space forms

An n–dimensional affine hypersurface V over the complex numbers C is the zero
set of a polynomial f ∈ C[z0, . . . , zn]:

V = V (f) = {z ∈ Cn+1 | f(z) = 0}.

The variety V (f) is called regular if 0 is a regular value of the holomorphic map
f : Cn+1 → C, i. e. if for each z ∈ V (f) some partial derivative ∂f/∂zi is non
zero.

A classical problem is: Relate the geometry and topology of V (f) with the
algebraic properties of f . Here are two view points:

1. Given f , derive the topological properties of V (f).

2. Given a topological type, find f such that V (f) has this type.



Here “topological type” can refer to different categories: homology or homotopy
type, diffeomorphism type etc.

Similar questions can be asked for affine varieties or algebraic varieties in
general.

A distinguished situation occurs when the underlying geometrical object is Eu-
clidean space. We therefore consider the following properties of an n–dimensional
algebraic variety V over the complex numbers:

(0.1) V is diffeomorph or homeomorphic to Cn.

(0.2) V is contractible.

(0.3) For a subring R of the rational numbers Q we have a homology isomor-
phism H∗(V ;R) ∼= H∗(C

n;R).

In case (1.1) we call V an (algebraic) space form. In case (1.3) we call V an R–
homology space form or R–acyclic (in case R = ZZ we do not specify R). In the
case (1.3) of complex surfaces (n = 2) the term R–homology plane was introduced
in tom Dieck–Petrie [1989].

(0.4) Example. Let m,n be coprime natural numbers. The affine variety

V = {(x, y) | xm = yn} ⊂ C2

is homeomorphic to C. The map t 7→ (tn, tm) is a homeomorphism. But V is not
regular at the origin and not a smooth submanifold of C2.

The following examples were studied in tom Dieck – Petrie [1990]. The
corresponding abstract surfaces were first constructed by Gurjar – Miyanishi
[1987].

(0.5) Theorem. Let a ≥ b > 0 be coprime integers. Define a polynomial P =
Pa,b by

P (x, y, z) = z−1
(
(xz + 1)a − (yz + 1)b

)
.

Then the variety
V (a, b) = {(x, y, z) | P (x, y, z) = 1}

is a regular contractible affine hypersurface in C3. If V (a, b) and V (a′, b′) are
homeomorphic, then (a, b) = (a′, b′). 2

Later we come back to these surfaces and study natural generalizations. In
dimension two one cannot find exotic affine space forms. This is a consequence
of a result of Ramanujam [1971]:

(0.6) Theorem. If the regular affine variety V is homeomorphic to C2, then
the variety is isomorphic to the standard affine plane C2. 2

Ramanujam also gave the first example of a contractible affine surface which
is not homeomorphic to C2. A basic tool for the study of affine varieties are
compactifications. One has two different (but related) possibilities:
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(0.7) An algebraic conpactification of V is a projective variety X such that
V is isomorphic to the complement X \ D of a divisor D in X. We call D a
boundary divisor or compactification divisor of V . The compactification divisor
is called a normal crossing divisor if it is the sum (= union) of irreducible regular
subvarieties D1, . . . , Dr with transverse intersection.

(0.8) A topological compactification of the (regular) variety V is a compact
smooth manifold B with boundary ∂B such that V is diffeomorphic to the in-
terior of B. The fundamental group π1(∂B) is called the fundamental group at
infinity of V . The topology of ∂B is called the topology ov V at infinity. If D is
a normal crossing divisor as in (1.7), then B can be taken to be the complement
of a suitable tubular neighbourhood of D. Thus knowledge of a nice algebraic
compactification implies knowledge of a topological compactification.

Here is a trivial example to illustrate these concepts.

(0.9) Example. Affine space C2 is compactified by projective space IP2. The
compactification divisor is a projective line L in IP2. Also C2 is diffeomorphic to
the interior of the 4–dimensional unit disk D4 = {z ∈ C2 | |z| ≤ 1}.

Because of Ramanujam’s theorem (1.6), the contractible surfaces are a natural
class of varieties to be studied in this context. They can be used to produce space
forms in higher dimensions as we shall demonstrate later. The basic input from
differential topology is the h–cobordism theorem of Smale [1962] which leads
to a characterization of the unit disk as a differentiable manifold in terms of
algebraic topology (see also Milnor [1965], p. 108).

(0.10) Theorem. Let D be a k–dimensional compact contractible smooth man-
ifold with contractible boundary ∂D. Then D is diffeomorphic to the unit disk Dk

in IRk, provided k ≥ 6. 2

By the Hurewicz and Whitehead theorems of algebraic topology, the con-
tractibility of a manifold can be detected by algebraic invariants:

(0.11) Proposition. Let D be a simply connected, acyclic manifold. Then D
is contractible. 2

A contractible manifold can have a boundary which is not simply connected
(see Mazur [1961], Gordon [1975] for examples). A similar phenomenon cannot
happen for homology:

(0.12) Proposition. Suppose the compact oriented (n + 1)–manifold B is R–
acyclic. Then ∂B is an R–homology n–sphere.

Proof. The exact homology sequence (coefficient ring R) gives Hi+1(B, ∂B) ∼=
Hi(∂B) for i > 0. Poincaré duality Hi+1(B, ∂B) ∼= Hn−i(B) then shows
Hi(∂B) = 0 for n > i > 0. Similarly, we see Hn(∂B) ∼= R and H0(∂B) ∼= R
(for n > 0). 2
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It is an interesting topological problem to determine which homology spheres
are boundaries of contractible or acyclic manifolds (compare Casson–Harer
[1981]). More generally, one wants to find the “smallest” manifold which bounds
a given homology sphere.

In view of (1.11) and (1.12) we can say:

(0.13) Proposition. Let D be a contractible smooth k–manifold with simply
connected boundary. Then D is diffeomorphic to Dk, provided k ≥ 6. 2

There are important cases in which a simply connected manifold will have
a simply connected boundary. In order to state the result we use the handle
decomposition of a smooth manifold which follows from the existence of a smooth
Morse function, see Milnor [19??].

(0.14) Proposition. Suppose the compact connected m–manifold M has only
handles of index i for i ≤ r ≤ m

2
. Then the relative homotopy groups πj(M,∂M)

are zero for j < m− r.

Proof. In order to prove this proposition we investigate what happens when a
single handle is attached.

In order to attach an i–handle one has to choose an embedding C = Si−1 ×
Dm−i ⊂ ∂M and form the adjunction space M ′ = M ∪C (Di×Dm−i). The space
M ′ has the homotopy type of M ∪Di, an i–cell Di attached to M along Si−1×0.
Let us consider the following diagram.

(M ′, ∂M ′) α - (M ′, ∂M ′ ∪Dm−i)

?

'

(M ∪ (Di ×Dm−i), ∂M × I ∪ (Di ×Dm−i))
6
'

(M,∂M) -β
(M ∪Di, ∂M ∪Di)

The vertical maps are the obvious homotopy equivalences, whereas α and β are
inclusions. We consider the induced maps on homotopy groups πj. The exact
homotopy sequence shows that α induces an isomorphism for j < m− i. Suppose
πj(M,∂M) = 0 for j < m− r. Then homotopy excision (tom Dieck [19??], p.
178) shows that β induces an isomorphism for j < m− r + i− 2.

Now one uses this information inductively, starting with (Dm, Sm−1), and
attaching successively 1–handles, 2–handles etc. 2

Affine varieties have the following remarkle property (1.15); see Milnor
[1963], §7 for a proof.

In order to deal with regular affine varieties V from a topological point of
view it is useful to know that there exists a compact manifold B with boundary
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such that V is diffeomorphic to the interior of B. If one realizes V as a regular
subvariety of some CN , then there exists an R > 0 such that for all r > R the
sphere S(r) = {z ∈ CN | |z| = r} is transverse to V . This is proved in Milnor
[1968], Cor 2.6. Now one can take as B the intersection of V with a large disk in
CN .

(0.15) Proposition. Let V be an m–dimensional regular affine variety over C.
Then B has a decomposition into i–handles, i < m. 2

Combining (1.13), (1.14), and (1.15) we obtain:

(0.16) Theorem. Let V be a contractible regular affine variety over C of di-
mension m ≥ 3. Then V is diffeomorphic to Cm.

Proof. From (1.14) and (1.15) we obtain that ∂B is simply connected. Now
apply (1.13). 2

The h–cobordism theorem has another interesting consequence.

(0.17) Proposition. Let B denote a compact contractible manifold of dimen-
sion n ≥ 4. Then B ×D2 is diffeomorphic to Dn+2.

2 The embedding problem

Suppose the affine variety V ⊂ Cn is isomorphic to Ck. Can V be transformed
into a linear subspace by an algebraic automorphism of Cn?

The answer is yes in case (n, k) = (2, 1). This was proved by Abhyankar
and Moh [1975] and Suzuki [1974]; compare also Lin–Zǎidenberg [1983] and
Neumann [1989a]. The answer is also yes for high codimension (??), see Kali-
man [19??]. Apparently no exotic ambedding of Ck into Cn is known.

In the case of hypersurfaces the problem can be rephrased in the following way.
Given a polynomial function f : Cn → C. Suppose V (f) is isomorphic to Cn−1.
Does there exist a polynomial automorphism ϕ : Cn → Cn such that f = p1 ◦ ϕ,
with p1(z1, . . . , zn) = z1?

Here is a view point: Suppose ϕ as above exists. Then there exists a large
automorphism group of Cn under which the polynomial f is invariant. In order
to find ϕ try to construct invariants of f . We demonstrate this view point at
length by an example which has also been considered by Dimca [1990].

Let d ≥ 1 and k ≥ 1 be natural numbers. Consider the polynomial

(0.18) p(x, y, z) = x+ xdy + ykz.

For c ∈ C and (x, y, z) ∈ C3 we set

(0.19) c · (x, y, z) = (x+ cyk, y, z − c− y−k((x+ cyk)dy − xdy))

The right most term is a polynomial in (x, y, z). One verifies:
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(0.20) Lemma. (1) The map

C× C3 → C3, (c, (x, y, z)) 7→ c · (x, y, z)

is a free action of the additive group C on C3.

(2) The polynomial p is invariant under this action: p(c·(x, y, z)) = p(x, y, z).2

By construction, the second component of C3 is also invariant under the action
(2.3).

(0.21) Proposition. The map

γ : C3 → C3, (x, y, z) 7→ (p(x, y, z), y)

is the orbit map of the action (2.3).

Proof. Each orbit through a point with y 6= 0 contains a unique point with
first coordinate zero. We can then compute z from the value p(x, y, z). We have
p(x, y, z) = x, hence γ(x, 0, z) = (x, 0). In this case c · (x, 0, z) = (x, 0, z − c).
Therefore {(x, 0, z) | z ∈ C} is an orbit. This shows that γ induces a bijec-
tion of the orbit space onto C2. The full statement will follow from the further
investigations. 2

We want to exhibit γ as a trivial principal bundle. This requires to find a
polynomial section. (We remark that locally trivial C–bundles over affine varieties
are trivial.) If we set

(0.22) γ(x, y, z) = (x+ xdy + ykz, y) =: (a, b),

then we have

(0.23) z =
a− x− xdb

bk
.

Therefore we show:

(0.24) Proposition. There exist polynomials x(a, b) ∈ ZZ[a, b] such that the
polynomial a− x(a, b)− (x(a, b))db is divisible by bk.

Proof. Induction over k. For k = 1 we can set a − x = b. For the induction
step we show: Let q ∈ ZZ[u, a, b], r ∈ ZZ[a]. There exists u = u(a, b) ∈ ZZ[a, b] such
that

(0.25) u− r(a)− bq(u, a, b)

is divisible by bk if we substitute u = u(a, b). For the proof of this statement we
set u = r(a) = vb. We substitute into (2.8) and obtain

b−1(vb− bq(vb+ r(a), a− b)) = v − q(vb+ r(a), a, b).

The right side is a polynomial of the form (2.8), if v is replaced with u. By
induction, we can find v(a, b) ∈ ZZ[a, b] such that this polynomial is divisible by
bk−1. Then u = r(a) + bv(a, b) has the desired property. 2
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Using (2.7), we obtain a section s of γ

s : C2 → C3, (a, b) 7→ (x, b, b−k(a− x− xdb))

with x = x(a, b). This finally leads to a bijective morphism

Φ : C× C2 → C3, (c, (a, b)) 7→ c · s(a, b).

In order to exhibit Φ as an algebraic isomorphism we begin by showing that the
action (2.3) is proper, in an algebraic sense. The relation of the action

R = {(x, y, z), c · (x, y, z)} ⊂ C3 × C3

is contained in the variety W of those ((x, y, z), (x1, y1, z1)) ∈ C3 × C3 which
satisfy

(0.26)
y = y1

x1 − x = (z − z1)y
k − y(xd

1 − xd).

(0.27) Lemma. The map τ : R→ C, (α, c · α) 7→ c is a morphism.

Proof. If y 6= 0, then we can compute c

(0.28) c = y−k(x1 − x).

If 1 + y(xd−1
1 + xd−2

2 x+ . . .+ xd−1) 6= 0, then we can again compute c

(0.29) c =
z − z1

1 + y(xd−1
1 + . . .+ xd−1)

.

Because of (2.9), the right hand sides of (2.11) and (2.12) define the same regular
function on the intersection of their domain of definition. Therefore τ is regular
on Zariski open sets which cover the variety. 2

An inverse to Φ is now given by

Ψ : C3 → C× C2, α 7→ (τ(sγ(α)), α), sγ(α)).

Finally, we remark that Φ is defined over ZZ and can therefore be used to study
the diophantine properties of (2.1).

3 Hyperbolic modifications.

In this section we present an inductive construction of acyclic varieties. The
construction is called hyperbolic modification. It produces manifolds (varieties)
with an action of the multiplicative group C∗.

We start whith an n–dimensional complex manifold L. Let U ⊂ Cn be a
connected open neighbourhood of the origin and let ϕ : U → L be a holomorphic
chart. Set ϕ(0) = x0. We also use the open set

Ũ = {(u, x) ∈ C× Cn | ux ∈ U}.
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It contains C× 0 ∪ 0× Cn. The holomorphic map

b : C∗ × (U \ 0) → Ũ , (u, x) 7→ (u, u−1x)

is a holomorph embedding onto an open subset of Ũ .
We define the complex manifold V to be the pushout of the diagram

C∗ × (L \ x0) � a
C∗ × (U \ 0) -b Ũ

with a(u, x) = (u, ϕ(x)). Since a and b are holomorphic embeddings onto open
subspaces and the pushout is seen to be a Hausdorff space V is a complex man-
ifold. It is called the hyperbolic modification of L at x0. If we let C∗ act on
C∗ × (L \ x0) and C∗ × (U \ 0) by scalar multiplication on the first component
and on Ũ by λ · (u, x) = (λu, λ−1x), then V inherits a holomorphic C∗–action.

There is a canonical holomorphic projection t : V → L which forgets the
first component of C∗ × (L \ x0) and is given by (u, y) 7→ ϕ(uy) on Ũ . It is
invariant under the C∗–action. The fibres of t over L \ x0 are closed free orbits.
The fibre t−1(x0) is isomorphic to C× 0∪ 0×Cn in Ũ . It contains the origin as a
single closed orbit: A fixed point of hyperbolic type. All other orbits of this fibre
have the origin in its closure. The manifold L is the orbit space of the subset
of closed orbits. In the algebraic category this is called the algebraic quotient
V//C∗, compare Kraft [1989], p. 96, and Springer [1989], p. 14. We explain
this with (3.9).

(0.30) Lemma. The complex manifold V is independent of the choice of the
holomorphic chart ϕ about x0.

Proof. It is easy to see that shrinking U leads to the same manifold. There-
fore it suffices to consider charts ϕ, ψ : U → L which differ by a holomorphic
automorphism α : U → U . In this case there exists a commutative diagram

C∗ × (U \ 0) -b Ũ

?

id× α
?

A

C∗ × (U \ 0) -b Ũ

with a holomorphic automorphism A. This uses the fact that (u, x) 7→ u−1α(ux)
has a holomorphic extension to u = 0 by the derivative of α. 2

(0.31) Remark. The definition of V uses only that x0 ∈ L is a regular point.
Apart from x0 the object L could have singularities. Moreover the construction
itself is meaningful for differentiable manifolds. But then there is no analogue of
(3.1). ♥

(0.32) Definition. Let h : Cn+1 → C be a polynomial with the following
property: 0 ∈ h−1(0) =: L is a regular point of the affine hypersurface L. There
exists a unique polynomial

qh = q : C× Cn+1 → C
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such that:

(0.33) uq(u, x) = h(ux), u ∈ C∗, x ∈ Cn.

(0.34) q(0, x) is a nonzero linear polynomial.

(0.35) q(λ−1u, λx) = λq(u, x), λ ∈ C∗.

We call qh the hyperbolic modification of h. ♥

(0.36) Proposition. The affine variety q−1(0) =: V together with the C∗– ac-
tion induced by (3.6) is the hyperbolic modification of (L, 0).

Proof. We have to show that V , as a complex space, arises by the pushout
construction described above.

We select a holomorphic chart ϕ : U → L centered at 0 and consider the
following diagram

C∗ × (U \ 0) b - Ũ

?

a
?

B

C∗ × (L \ 0) -A
V

with maps
a(u, x) = (u, ϕ(x))
b(u, x) = (u, u−1x)
A(u, x) = (u, u−1x)
B(u, x) = (u, u−1ϕ(ux)).

The map B has to be interpreted as a holomorphic map — compare the proof
of (3.1). By construction, the diagram is commutative.

We have to show that the diagram is a pushout. This amounts to the following
verifications: The maps A and B are holomorphic embeddings onto open subsets
Ã and B̃ of V . The intersection Ã ∩ B̃ is as predicted by the diagram.

The image of A is V ∩ {(u, x) | u 6= 0}, hence open in V . An inverse of A is
induced by the morphism A1 : (u, x) 7→ (u, ux).

Let Φ : W1 → W2 be a holomorphic isomorphism between open neighbour-
hoods of zero in Cn+1 such that Φ restricts to ϕ : 0×U = W1∩(0×Cn) → L∩W2.
Let Z2 = {(u, x) | ux ∈ W2} ⊂ C× Cn.

One verifies that V ∩Z2 is the image of B. An inverse of B is induced by the
morphism (u, x) 7→ (u, pr(u−1Φ−1(ux))) with pr: C× Cn → Cn the projection.2

(0.37) Proposition. (1) Let V be a hyperbolic modification of the n–
dimensional manifold L. Then the following holds: If L is acyclic, then V is
acyclic.
(2) If n > 2 and π1(L) = 0, then π1(V ) = 0.
(3) If n > 2 and L is contractible, then V is contractible.

Proof. (1) follows by applying the Mayer–Vietoris sequence to the defining
pushout. (2) follows similarly from the theorem of Seifert and van Kampen. (3)
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follows from (1) and (2) and general results of algebraic topology [tD], III (5.11)
and V (6.3)). 2

The hyperbolic modification can be applied to a regular point of an arbitrary
affine variety. The result is again an affine variety with C∗–action.

Suppose the affine variety L = L(I) is the zero set of the ideal I ⊂
C[x1, . . . , xn]. Let 0 ∈ Cn be a regular point of L. Let J ⊂ C[u, x1, . . . , xn]
be the ideal generated by all polynomials qh such that qh(u, x) = uh(u, x) for
h ∈ I. Then the variety V = V (J) is the hyperbolic modification of L at zero.
The proof is similar to the proof of (3.7). It uses the following fact. Suppose
L ⊂ Cn has codimension k. Since 0 ∈ L is a regular point there exist k polyno-
mials h1, . . . , hk ∈ I such that the Jacobi matrix of (h1, . . . , hk) has rank k at
the origin. Let

π : C× Cn → Cn, (u, x) 7→ ux.

Then π−1(L\0) ⊂ V and π−1(L\0) is isomorphic to C∗× (L\0) as a C∗–variety.
Let W be an open neighbourhood of zero such that

L ∩W = {x ∈ W | h1(x) = . . . = hk(x) = 1}.

Finally, let ϕ : U → L ∩ W be a holomorphic chart of L about 0. Then the
complex space V is isomorphic to the pushout of

C∗ × (L \ 0)
id× ϕ� C∗ × (U \ 0) b - π−1(U)

with b(u, x) = (u, u−1x).

There are several natural generalizations of the hyperbolic modifications which
yield acyclic manifolds when applied to acyclic manifolds.

Firstly, one can introduce hyperbolic fixed points with different weights. This
replaces the map b : (u, x) 7→ (u, u−1x) by bk,l : (u, x) 7→ (uk, u−lx) for a pair
(k, l) of coprime natural numbers. The proof of (3.8) also applies to this case.
Later we will deal with this more general construction.

Secondly, one can contemplate using other groups than C∗. Consider GL(n,C)
as open subset of the vector space Mn(C) of complex (n, n)–matrices. Let π :
Mn(C)× Cn → C, (A, x) 7→ Ax and Ũ = π−1(U). Define b : (A, x) 7→ (A,A−1x)
and consider the pushout of

GL(n,C)× (L \ 0)
id× ϕ� GL(n,C)× (U \ 0) b - Ũ .

The maps id×ϕ and b are holomorphic embeddings onto open subsets. Moreover
(id× ϕ, b) is a closed embedding. Therefore the pushout is a Hausdorff complex
manifold with holomorphic GL(n,C)–action.

We return to the hyperbolic modification V of an affine hypersurface L defined
by h. The coordinate ring of V is C[u, x]/(q). It carries the C∗–action λ · (u, x) =
(λu, λ−1x). Let R ⊂ C[u, x]/(q) denote the ring of invariants. The homomorphism

j : C[x] → C[u, x], xi 7→ uxi
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induces a homomorphism
J : C[x]/(h) → R.

(0.38) Proposition. The homomorphism J is an isomorphism.

Proof. Suppose p is in the kernel of J . Then there exists a relation of the type
p(ux) = a(u, x)q(u, x). We multiply by u and set u = 1. This yields p(x) =
α(x)h(x). This shows J to be injective.

Let S be the ring of C∗–invariant in C[u, x]. Then it is easy to see that j induces
an isomorphism j : C[x] → S. Since C∗ is a reductive group, the surjection
C[u, x] → C[u, x]/(q) induces a surjection S → R (compare Springer [1989],
II). 2

One expresses (3.9) by saying that L is the algebraic quotient of V under the
C∗–action. The map π : V → V, (u, x) 7→ ux is the quotient map.

If L is a regular hypersurface, then V is again regular. Therefore we can
iterate the hyperbolic modification. Since V carries a C∗–action with fixed point
0 the hyperbolic modification of V at 0 carries a C∗ × C∗–action. The n–fold
modification L(n) of L carries an action of the n–dimensional torus T (n) =
C∗ × . . .× C∗.

(0.39) Proposition. The algebraic quotient L(n)//T (n) is isomorphic to L.2

The general pattern of the hyperbolic modification is: Let π : X → Y be a
morphism and L ⊂ Y a subvariety. Exclude some singular set S ⊂ Y of π, take
π−1(L \ S) and form the closure of this pre–image.

4 Acyclic affine foliations

In this section we construct polynomials q : Cn+1 → C with the property that
all fibres q−1(c) are diffeomorphic to Euclidean space. The construction is based
on the hyperbolic modification (section 3).

Let again h : Cn → C be a polynomial with h(0) = 0 such that 0 ∈ h−1(0) = L
is a regular point of L. Let q = qh : Cn+1 → C denote the hyperbolic modification
of h.

We blow up the point 0 ∈ L and consider the complement of the proper
transform. This construction will also clarify the conceptual meaning of qh.

Denote by X = C×C∗ (Cn \ 0) the quotient of C× (Cn \ 0) under the relation
(u, x) ∼ (λ−1u, λx) for λ ∈ C∗. The morphism p : X → Cn, (u, x) 7→ ux blows
up the point 0 ∈ Cn and

p : X \ E → Cn \ 0, E = p−1(0)

is an isomorphism. Moreover we have:

(0.40) p : X \ p−1(L) → Cn \ L is an isomorphism.
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(0.41) p−1(L) = L1 ∪ E with L1 = {(u, x) | q(u, x) = 0}.

We let V = q−1(1).

(0.42) Lemma. The restriction q : q−1(C∗) → C∗ is a trivial fibration with
typical fibre V .

Proof. The map

ϕ : C∗ × V → q−1(C∗), (λ;u, x) 7→ (λ−1u, λx)

satisfies q ◦ ϕ = pr. An inverse ψ of ϕ is given by

ψ(u, x) = (q(u, x); q(u, x)u, q(u, x)−1x).

Therefore ϕ is an algebraic bundle isomorphism. 2

(0.43) Lemma. Suppose h−1(0) ⊂ Cn is a regular variety. Then q is a regular
polynomial.

Proof. (4.3) shows that q is regular in all point of q−1(C∗). If q(u, x) = 0, then
h(ux) = 0. We have

(0.44)
∂q

∂xj

(u, x) =
∂h

∂xj

(ux)

and since h−1(0) is regular there exists j such that (4.5) is non zero. 2

(0.45) Proposition. The complement X\L1 is isomorphic to the regular affine
hypersurface V .

Proof. We have seen in (4.3) that V is regular. Moreover V ⊂ C × (Cn \ 0),
as seen from (3.3) and (3.4). The morphism V ⊂ C × (Cn \ 0) → X induces
the desired isomorphism. The pre-image of X \ L1 in C × (Cn \ 0) is the open
subvariety W = {(u, x) | q(u, x) 6= 0}. The morphism W → V, (u, x) 7→
(q(u, x)u, q(u, x)−1x) factors over X \ L1 and yields an inverse. 2

Because of (4.3), we call q−1(c), c 6= 0, the general fibre of q and q−1(0)
the singular fibre. The singular fibre was investigated in section 3 and studied
under the name of hyperbolic modification. We now deal with the topology of
the general fibre V .

(0.46) Proposition. The differentiable manifold V is obtained from Cn \L by
attaching an open 2–handle. The homotopy type Y of V is obtained by attaching
a 2–cell D2 to Cn \ L along a small normal 1–sphere about L.

Proof. Set E0 = E\(E∩L1). Set theoretically we haveX\L1 = (X\p−1(0))∪E0

and X \ p−1(0) ∼= Cn \ L =: W . Therefore we have to describe the way E0 is
attached to W . This requires a tubular neighbourhood of E0.

The normal bundle of the exceptional divisor E ∼= IPn−1 inX is the line bundle

π : X → IPn−1, (u, x) 7→ [x].
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We have L1 = {(u, x) | q(u, x) = 0} and [x] ∈ E0 is equivalent to q(0, x) 6= 0. If
we fix x, then there exists a neighbourhood Ux of zero, such that q(u, x) 6= 0 for
u ∈ Ux, i. e. (u, x) 6∈ L1 for u ∈ Ux. In other words: Let π0 : X0 = π−1(E0) → E0

denote the restriction of π; then there exists an open cell subbundle U ⊂ X0 → E0

such that (u, x) ∈ U \ E0 implies q(u, x) 6= 0.
The complex manifold X \L1 can therefore be defined by the pushout diagram

U \ E0
-c U

?

j
?

Cn \ L - X \ L1

where j is the embedding (u, x) 7→ ux.
Let Uz denote the fibre of π0 : U → E0 over z ∈ E0. Then j : Uz → Cn,

(u, x) 7→ ux is transverse to L in 0. Let Dz ⊂ Uz be a closed cell with boundary
Sz. The circle Sz is the normal sphere about L which appears in the statement
of (4.7).

The pushout diagram
Sz

- Dz

?

j
?

Cn \ L - Y

defines the attachment of the 2–cell to Cn\L. The space Y is homotopy equivalent
to X \ L1. In order to see, this consider the commutative diagram

Cn \ L � j
U \ E0

- U
6
=

6
α

6
β

Cn \ L � Sz
- Dz.

The inclusions α and β are homotopy equivalences. The set E0 is the complement
of the projectivized tangent space E0 = IP(Cn) \ IP(T0L), hence an affine space.
Therefore the cell bundle U is contractible. The inclusion α is a morphism of
fibrations which is a homotopy equivalence in the base and in the fibre and
therefore a homotopy equivalence. Now apply a general result of homotopy theory
(tom Dieck [1971]). 2

Proposition (4.7) has some consequences for the homotopy and homology of
V .

(0.47) Corollary. Let N ⊂ π1(C
n \ L) be the normal subgroup generated by a

normal sphere of L. Then π1(V ) ∼= π1(C
n \ L)/N .

Proof. The theorem of Seifert and van Kampen implies that attaching a 2–cell
factors out exactly the subgroup N . 2

13



(0.48) Corollary. Hi(V ) ∼= Hi(C
n \ L) for i 6= 1.

Proof. Let W = Cn \ L. Since Hi(Y,W ) = 0 for i 6= 2, the exact homology
sequence of (Y,W ) shows that homology groups of Y and W can only differ for
i = 1, 2. In this case we have the exact sequence

0 → H2(W ) → H2(Y ) → H2(Y,W ) -∂
H1(W ) → H1(Y ) → 0

with H2(Y,W ) ∼= ZZ. The map ∂ is injective. In order to see this, consider

s : H1(C
n \ L) ∼= H2(C

n,Cn \ L) -τ ZZ,

where τ gives the intersection number with L (see tom Dieck [1991], V.5). Then
s ◦ ∂ is an isomorphism, since H2(Y,W ) is generated by a normal disk which has
intersection number one with L. 2

(0.49) Proposition. Suppose L has only isolated singularities and is a topo-
logical manifold. Then Hi(C

n \ L) ∼= Hi−i(L) for i > 0.

Proof. If L has a tubular neighbourhood in Cn we can apply the exact ho-
mology sequence and the Thom–Isomorphism (Spanier [1966]), Hi(C

n \ L) ∼=
Hi+1(C

n,Cn \ L) ∼= Hi−1(L) and deduce the claim.
Another argument uses the fact that the sphere S2n−1(r) = {z ∈ Cn | |z| = r}

intersects L transversely for all sufficiently large r. For such r, the space Cn \ L
is homotopy equivalent to the intersection with the disk D2n(r) \ D2n(r) ∩ L.
We therefore study the following situation: D is an m–disk, L ⊂ D a topological
submanifold with ∂D ∩ L = ∂L and transverse intersection of L and ∂D. Let
S = D ∪ D′ be the double of D = D′; this is an m–sphere. Now we have the
following chain of isomorphisms for i > 0:

Hi(D \ L) ∼= Hi+1(D,D \ L)
(1)

∼= Hm−i−1(D′ ∪ L, D′)
(2)

∼= Hm−i−1(∂D ∪ L, ∂D)
(3)

∼= Hm−i−1(L, ∂L)
(4)

∼= Hi−1(L).
(5)

Explanation:
(1) comes from the exact homology sequence.
(2) is Poincaré–Lefschetz duality in S, see Dold [1972], VIII.7.2.
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(3) and (4) is excision.
(5) is duality in L. 2

(0.50) Theorem. (1) Suppose L is an acyclic topological manifold with isolated
singularities. Then V is acyclic.

(2) If, moreover, π1(C
n \ L) is normally generated by a normal sphere (e. g.

π1(C
n \ L) ∼= ZZ), then V is contractible.

Proof. From (4.10) we see that Hi(C
n\L) is zero except for i = 1. For i = 1 the

argument with intersection numbers in the proof of (4.9) shows that H1(C
n\L) ∼=

ZZ, generated by a normal sphere. The result now follows from (4.7), (4.9), and
(4.10). 2

Altogether we can now deduce the next result.

(0.51) Theorem. Suppose n ≥ 3. Let h : Cn → C be a polynomial with h(0) =
0 such that h−1(0) is a regular contractible hypersurface. Then the hyperbolic
modification q : Cn+1 → C is a regular polynomial such that each fibre q−1(c),
c ∈ C is diffeomorphic to Euclidean space.

For the proof we need another Lemma.

(0.52) Lemma. Suppose L is regular. Then:

(1) If π1(L) = 0, then π1(V ) = 0.

(2) If L is contractible, then V is contractible.

Proof. (1) Let U be an open tubular neighbourhood of L in Cn. By the theorem
of Seifert and van Kampen, the diagram

π1(U \ L) - π1(U)

? ?

π1(C
n \ L) - π1(C

n)

is a pushout diagram. We have homotopy equivalences L ' U and U \L ' L×S1.
Therefore π1(U) = 0, π1(U \ L) ∼= πi(L × S1) ∼= π1(S

1), and the pushout shows
that π1(C

n \ L) is normally generated by a normal sphere of L. Now we apply
(4.8).

(2) follows from the proof of (1) and (4.11). 2

Proof of (4.12). By (4.4), q is regular. By (4.13), the general fibre of q is con-
tractible. By (3.8), the singular fibre is contractible. Now apply (1.??). 2

We call regular polynomials p : Cn → C such that all fibres are diffeomorphic
to Euclidean space slice polynomials. Linear forms are trivial slice polynomials.
If remains to find nontrivial examples to which (4.12) applies. This will be the
subject of the next section.
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5 Brieskorn varieties

The Brieskorn polynomials are among the simplest polynomials to which the
considerations of the previous section can be applied.

Let a(1), . . . , a(n) be positive integers. The associated Brieskorn polynomial
is

(0.53) h(x1, . . . , xn) = x
a(1)
1 + . . .+ xa(n)

n .

These polynomials have an isolated singularity at the origin. The Brieskorn man-
ifold is the intersection

(0.54) B = B(a(1), . . . , a(n)) = h−1(0) ∩ S2n−1.

Brieskorn [1966] investigated under which condition this manifold is a topo-
logical sphere. The result is as follows (5.3).

Define the graph Γ of the family (a(j)): The vertices are {1, . . . , n}. There is an
edge connecting i and j if and only if the greatest common divisor (a(i), a(j)) > 1.

(0.55) Theorem. B(a(1), . . . , a(n)) is a homology sphere if and only if one of
the following conditions holds:

1. Γ has at least two isolated points.

2. Γ has an isolated point and another connected component Γ′ with an odd
number of vertices such that for different i, j ∈ Γ′ always (ai, aj) = 2. 2

The Brieskorn varieties are simply connected for n ≥ 4. A simple consequence
of the h–cobordism theorem asserts that they are homeomorphic to the sphere
S2n−3, provided they are homology spheres, Smale [1956], Milnor [1968], p.
109. For further information see also Hirzebruch–Mayer [1968], Bredon
[1972], and Milnor [1968].

(0.56) Theorem. Let q : Cn+1 → C be a hyperbolic modification of h, applied
to a regular point of h−1(0). Suppose the manifold B in (5.2) is homeomorphic
to a sphere. Then V = q−1(1) is a contractible affine variety (n ≥ 2).

Proof. By homogeneity of h, the space L = h−1(0) is homeomorphic to the
open cone over B. Therefore, L is homeomorphic to Euclidean space if B is a
sphere. By (4.11.1), V is acyclic.

In order to show that V is contractible we derive another topological construc-
tion of V . The space Cn \L is homeomorphic to the product of S2n−1 \B with an
open interval J . The inclusion B ⊂ S2n−1 can be considered as a (generalized)
knot. In order to obtain the homotopy type of V we have to attach a 2–cell along
a normal sphere (4.7). Let U ⊂ S2n−1 be an open tubular neighbourhood of B.
Up to homotopy, attaching a 2–cell amounts to adding a fibre over x ∈ B of
the tubular neighbourhood to S2n−1 \U . The result is the sphere S2n−1 with the
tubular neighbourhood W of B \ x deleted. Since B is assumed to be a sphere,
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W is an open cell and its complement is a disk. The resulting homotopy type is
therefore contractible. 2

Instead of Brieskorn polynomials one can use other weighted homogeneous
polynomials with appropriate topological properties.

The simplest case of (5.4) arises for the polynomial h(x, y) = xa − yb for
coprime integers a, b. If we apply the hyperbolic modification to the regular
point (1,1) we obtain the polynomial (1.5)

P (x, y, z) = z−1
(
(xz + 1)a − (yz + 1)b

)
.

The case (a, b) = (3, 2) leads to the contractible hypersurface in C3

z2x3 + 3zx2 + 3x− zy2 − 2y = 1.

We can use this polynomial as input for (4.12). If we apply the hyperbolic mod-
ification at the point (1,1,0) we obtain the slice polynomial

q(u, x, y, z) = uz2(ux+ 1)3 + 3z(ux+ 1)2 + 3x− (uy + 1)2 − 2y.

Other simple Brieskorn polynomials to which (5.4) can be applied are

xp + yq + z2
2 + . . .+ z2

n

for coprime odd integers p, q and

zd
0 + z2

1 + . . .+ z2
n

for d and n odd. These polynomials are interesting because they have large
symmetry groups.

We now verify that some of the contractible varieties carry an exotic algebraic
structure, i. e. are not isomorphic as varieties to affine space.

6 Ramified coverings

Ramified coverings can be used to construct acyclic varieties.
We assume given an action

C∗ × Cn → Cn, (λ, x) 7→ λ · x

of C∗ on Cn. For the time being, the action is just assumed to be continuous,
if we are just dealing with topological properties. But in an algebraic context it
seems more reasonable to assume that left translations x 7→ λ · x are polynomial
automorphisms.

A polynomial q : Cn → C (or any function) is called quasi– invariant of weight
l ∈ ZZ with respect to the given action if

q(λ · x) = λlq(x), x ∈ Cn, λ ∈ C∗
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holds.
We assume given a quasi–invariant polynomial q of weight l. We denote the

fibre q−1(c) by Fc. The k–fold ramified covering of Cn along q−1(0) is the affine
variety

X = {(u, x) ∈ C× Cn | uk + q(x) = 0}, k ≥ 1.

We shall exhibit conditions on q under which X will be diffeomorphic to Eu-
clidean space.

We begin with some elementary remarks about ramified coverings.

(0.57) Lemma. If F0 is regular, then X is regular.

Proof. Compute the partial derivatives of p(u, x) = uk + q(x). 2

(0.58) Lemma. The map σ : X → Cn, (u, x) 7→ x is a k–fold ramified covering
with ramification locus F0.

Proof. Given x ∈ Cn, there exists u such that uk + q(x) = 0. Therefore σ is
surjective. Consider the ZZ/k–action µ · (u, x) = (µu, x) on X. Then σ induces a
homeomorphism of the orbit space X/(ZZ/k) with Cn. 2

(0.59) Lemma. F0 = {(u, x) | u = 0, q(x) = 0} is a regular submanifold of X.
The intersection of X with {u = 0} in Cn+1 is transverse. 2

(0.60) Proposition. The map q : Cn \ F0 → C∗ is locally trivial with typical
fibre F1 and structure group ZZ/l.

Proof. Let Fc = q−1(c). The quasi–invariance of q implies that (ω, x) 7→ ω ·x is
a ZZ/l–action on Fc. We use this action to form C∗ ×G F1, (λ, x) ∼ (λω, ω−1 · x),
ω ∈ G = ZZ/l. The map ϕ : C∗ ×G F1 → Cn \ F0, (λ, x) 7→ λ · x is well–defined
and satisfies q ◦ ϕ = pr1. Let Y = {(λ, x) | λl = q(x)} ⊂ C∗ × (Cn \ F0).
Then pr2 : Y → Cn \ F0 is a quotient map. The morphism Y → C∗ ×G F1,
(λ, x) 7→ (λ, λ−1 · x) induces an inverse to ϕ. 2

(0.61) Proposition. Suppose π1(C
n \ F0) ∼= ZZ and F1 is connected. Then

π1(Fc) = 0.

Proof. Consider the exact homotopy sequence of the fibration q : Cn\F0 → C∗

0 → π1(F0) → π1(C
n \ F0) -q∗ π1(C

∗) → 0.

The hypothesis implies that q∗ is an isomorphism. 2

We study the topology of X via γ : X → C, (u, x) 7→ u. Let Γc = γ−1(c).

(0.62) Proposition. The morphism γ : X \ Γ0 → C∗ is locally trivial with
typical fibre F1 and structure group ZZ/l.

Proof. The fibre Γc = {(u, x) | q(x) = −uk, u = c} is isomorphic to Fck . We
have the ZZ/l–action ω · (1, x) = (1, ω · x) on Γ1. The map ϕ′ : C∗×Γ1 → X \Γ0,
(λ, (1, x)) 7→ (λl, λk · x) is well–defined. Let jk ≡ 1 mod l. Then (λ, (1, x)) and
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(ωjλ, (1, ω−1 ·x)) have the same image under ϕ′ for ω ∈ ZZ/l. We therefore use the
ZZ/l–action (ω, λ) 7→ ωjλ on C∗ in order to form C∗ ×G Γ1 and obtain from ϕ′ a
morphism ϕ : C∗×GΓ1 → X\Γ0 which satisfies γ◦ϕ = 0 with p : C∗×GΓ1 → C∗,
(λ, x) 7→ λl. We obtain an inverse to ϕ as follows. Write X \ Γ0 as quotient of

Z = {(v, u, x) | vl = u, (u, x) ∈ X \ Γ0}

and define
Z → C∗ ×G Γ1, (v, u, x) 7→ (v, (1, v−k · x)).

If we replace v by ωjv, ω ∈ G, the resulting element has the same image under
this map. Thus we obtain an induced map ψ : X \ Γ0 → C∗ ×G Γ1 which is the
inverse of ϕ. 2

(0.63) Proposition. Under the hypothesis of (6.5) we have π1(X) = 0.

Proof. The exact homotopy sequence of γ gives

0 → π1(Γ1) → π1(X \ Γ0) -γ∗ π1(C
∗) → 0,

because Γ1
∼= F1 is connected. By (4.5) π1(Γ1) = 0, hence γ∗ is an isomorphism.

By (6.3) and the transversality theorem (?.?) the inclusion X \ Γ0 → X is gen-
erated by a normal sphere about Γ0. In order to see, this consider the covering
σ : X \ Γ0 → Cn \ F0. A normal sphere of Γ0 is mapped to k times a normal
sphere of F0. The diagram

X \ Γ0
-σ

Cn \ F0

?

γ

?

q

C∗ -τ C∗

with τ(z) = −zk is commutative. Let U be a tubular neighbourhood of F0 in
Cn. The theorem of Seifert and van Kampen, applied to U,Dn \ F0, shows that
π1(C

n \ F0) is generated by a normal sphere of F0.
A normal sphere of γ0 is contractible in X. 2

The following Theorem is the main result of this section.

(0.64) Theorem. We assume the following:

(1) q : Cn → C is quasi–invariant of weight l.

(2) F0 = q−1(0) is regular and ZZ/k–acyclic.

(3) π1(C
n \ F0) ∼= ZZ,

(4) Fc = q−1(c) for c 6= 0 is connected. Then X = {(x, u) ∈ Cn×C | uk+q(x) =
0} is contractible.
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In the sequel we work under the hypotheses of (6.8). The proof of (6.8) uses (6.9)
– (6.11).

(0.65) Lemma. The groups Hi(X; ZZ), i > 0, are annihilated by k.

Proof. We have the orbit map σ : X → Cn of the ZZ/k–action µ · (u, x) =
(µu, x), see (6.2). This action can be exended to an S1–action, up to an auto-
morphism of ZZ/k. The S1–action λ(u, x) := (λlu, λk · x) restricts a ZZ/k–action,
which coincides with the original action up to λ 7→ λl. This uses that k and l are
coprime. As a consequence of this S1–action we see that ZZ/k = K acts trivially
on Hi(X; ZZ). We use the transfer t : Hi(X/K) → Hi(X). In our case t ◦ σ∗ and
σ∗ ◦ t are multiplication by k, see ??. Since X/K ∼= Cn is acyclic we obtain the
desired result. 2

(0.66) Lemma. The inclusion X \ Γ0 → X induces an isomorphism

Hi(X \ Γ0; ZZ/k) → Hi(X; ZZ/k)

for i ≥ 2.

Proof. We use the exact sequence, the Thom isomorphism and the acyclicity
of Γ0

∼= F0. The diagram (coefficients in ZZ/k)

Hi+1(X,X \ Γ0) → Hi(X \ Γ0) → Hi(X) → Hi(X,X \ Γ0)
6∼=

6∼=

Hi−1(Γ0) Hi−2(Γ0)

gives the claim for i ≥ 3. For i = 2 we use in addition the isomorphism

∂ : ZZ ∼= H2(X,X \ Γ0; ZZ) → H1(X \ Γ0; ZZ) ∼= ZZ

which follows from the fact that H1(X \ Γ0) is generated by a normal sphere. 2

In order to show that Hi(X \ Γ0; ZZ/k) is zero, we use the Wang sequences of
the bundles q and γ, or rather their restrictions to the part over S1:

q : A→ S1, γ : B → S1.

The Wang sequence of q : A→ S1 has the form

. . .→ Hi(F ) -α∗ − id
Hi(F ) → Hi(A) → . . .

where α : F → F is the monodromy of a typical fibre F . Similarly for γ with
monodromy β : Γ → Γ. The monodromy α : F → F is defined by a pullback
diagram

A �H
[0, 1]× F

?

q

?

pr

S1 � e
[0, 1]
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with H(0, x) = x, H(1, x) = α(x), F = q−1(1), e(t) = exp(2πi t).

(0.67) Lemma. The monodromies α and β are given by

α : F1 → F1, x 7→ ω · x

β : Γ1 → Γ1, x 7→ ωk · x
with ω = exp(2πi/l).

Proof. Define H : I×F1 → S1×GF1 by (t, x) 7→ (exp(2πit/l), x), and similarly
for γ. (Compare the proof of (6.4) and (6.6).) 2

Proof of (6.8). We show that X is acyclic. By (6.7), (6.9) and (6.10) it suffices
to show that Hi(X \ Γ0; ZZ/k) ∼= 0 for i ≥ 2. We use the Wang sequences with
ZZ/k–coefficients.

For q : A→ S1 we know the structure of the Wang sequence because:

Hi(A) ∼= Hi(C
n \ F0) ∼= Hi+1(C

n,Cn \ F0) ∼= Hi−1(F0);

the left most isomorphism is the Thom isomorphism. By hypothesis these groups
are zero. Hence α∗ − id is an isomorphism for i ≥ 2. Since we are dealing with
finite groups, bijectivity of β∗− id is equivalent to injectivity. By (6.11) β∗ = αk

∗.
Moreover α∗ has order l. Suppose (β∗ − id)(x) = 0. Let kj ≡ 1 mod l. Then
β∗(x) = αk

∗(x) = x and α∗(x) = αkj
∗ (x) = αk

∗ ◦ . . . ◦αk
∗(x) = x. Since α∗− id is an

isomorphism, x = 0. Therefore β∗− id is an isomorphism and the Wang sequence
implies Hi(X \ Γ0) = 0 for i ≥ 2. 2

(0.68) Remark. The proof of (6.8) does not really use that q is a polynomial.
We leave it to the reader to formulate the corresponding result in the differen-
tiable or holomorphic category.

7 Complements of divisors

This section is devoted to the homological properties of affine surfaces. We study
the surfaces together with their compactifications.

Let X be a closed, connected, oriented, smooth 4–manifold. We consider the
complement V = X \D of a compact, non–empty subset D. By Poincaré duality,
we have for each subring T of the rational numbers Q an isomorphism

(0.69) Hi(V ;T ) ∼= H4−i(X,D;T );

see Dold [1972], VIII.7.2. We are mainly interested in the case when D is a
union of two–dimensional submanifolds (with singularities). Therefore we make
the following assumptions.

(0.70) Assumptions.

(1) H4(D) ∼= H4(D) ∼= 0.
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(2) H3(D) ∼= H3(D) ∼= 0.

(3) H∗(D) is finitely generated. The coefficient ring for co–homology is ZZ,
unless otherwise specified.

(0.71) Proposition. Under the assumptions (8.2) the following hold

(1) H0(V ) ∼= H0(V ) ∼= ZZ

(2) H4(V ) ∼= H4(V ) ∼= 0.

(3) H3(V ) and H1(V ) are free abelian.

(4) H∗(V ) and H∗(V ) are finitely generated.

Proof. We use exact sequences of the pair (X,D), Poincaré duality and uni-
versal coefficient formulas. For the purposes of duality one has to use Čech co-
homology.

The exact sequence

H3(D) → H4(X,D) → H4(D) → H4(X)

and (8.2) yield H4(X,D) ∼= H4(X). Since X is oriented and connected, H4(X) ∼=
ZZ. By duality H4(X,D) ∼= H0(V ) ∼= ZZ. Hence V is connected. It is a general
fact that for a connected, non–compact 4–manifold V the groups Hj(V ) are zero
for j ≥ 4, see Dold [1972], VIII.3. The exact sequence

H0(X) → H0(D) → H1(X,D) → H1(X)

and duality H1(X,D) ∼= H3(V ) shows H3(V ) to be free abelian. The universal
coefficient isomorphism yields H0(V ) ∼= Hom(H0(V ),ZZ) ∼= ZZ.

The cohomology H∗(X) of a compact manifold X is finitely generated, since
X is a retract of a finite simplicial complex, see Dold [1972], IV.8.10. The exact
sequence of the pair (X,D) and (8.2.3.) shows H∗(X,D) to be finitely generated.
By duality (8.1), H∗(V ) is finitely generated and then, by the universal coefficient
formula for V , the groups H∗(V ) are finitely generated. A manifold has the
homotopy type of a CW–complex. Therefore singular and Čech cohomology for
V agree. Since H1(V ) ∼= Hom(H1(V ),ZZ), the group H1(V ) is free abelian. 2

We are interested in T–acyclic complements V , this means:

(0.72) H̃∗(V ;T ) = 0 or equivalently: H̃∗(V ;T ) = 0).

Proposition (8.3.3) has the following consequence:

(0.73) Corollary. Under the assumptions of (8.3) the following holds:

(1) H3(V ;T ) = 0 implies H3(V ) = 0.
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(2) H1(V ;T ) = 0 implies H1(V ) = 0, H1(V ) finite. 2

(0.74) Proposition. Suppose (8.2) and (8.4) hold. Then we have:

(1) H3(X) ∼= H1(X) ∼= 0.

(2) H1(X;T ) ∼= H3(X;T ) ∼= 0.

(3) H1(D;T ) ∼= 0.

Proof. By duality, Hj(X,D;T ) = 0 for j < 4. The exact sequence
H3(X,D;T ) → H3(X;T ) → H3(D;T ) and (8.2) show H3(X;T ) = 0 and duality
then gives H1(X;T ) ∼= 0.

By universal coefficients we conclude H1(X;T ) = 0 and, since H1(X) ∼=
Hom(H1(X),ZZ) is free and H1(X;T ) ∼= H1(X) ⊗ZZ T , we obtain H1(X) = 0
and finally H3(X) = 0 by duality. The exact cohomology sequence of (X,D) and
Hj(X,D;T ) = 0 imply H1(D;T ) ∼= H1(X;T ) = 0. 2

Affine varieties have special properties.

(0.75) Proposition. Let V be diffeomorphic to a regular affine surface over
C. Then the following holds:

(1) V has the homotopy type of a finite two–dimensional CW–complex.

(2) Hi(V ) = 0 for i > 2.

(3) H2(V ) is free abelian.

(4) D is connected.

Proof. (2), (3) and (4) follow immediately from (1). For (1) see Milnor [1963],
§7. 2

We now assume that D is a union of closed, connected, oriented, two–
dimensional, smooth submanifolds D1, . . . , Dr. We say that D1, . . . , Dr have nor-
mal crossings, if the following holds:

(0.76)

(1) Di and Dj have transverse intersection for i 6= j.

(2) For i 6= j 6= h 6= i the intersection Di ∩Dj ∩Dk is empty.

If D1, . . . , Dr have normal crossings we associate to D the dual graph

Γ(D) = (Γ0(D),Γ1(D)).

The set Γ0(D) of vertices is {D1, . . . , Dr}. Each intersection point in Di∩Dj, i 6=
j, is an edge connecting the vertices Di and Dj; thus Γ1(D) is

∐
i6=j

Di∩Dj. We do
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not distinguish notationally between a graph Γ and its geometric realization. We
apply a geometric terminology to Γ, like: cycle, subdivision, Euler characteristic.

(0.77) Lemma. Let D = D1∪. . .∪Dr have normal crossings. Then H1(D; Q) =
0 (or H1(D; Q) = 0) if and only if the Dj are spheres and Γ(D) is a tree.

Proof. Suppose H1(D; Q) = 0. If Dj is not a sphere, then H1(Dj; Q) is non–
zero of rank twice the genus of Dj. Moreover, H1(Dj; Q) is a direct summand of
H1(D; Q). Therefore the space D is obtained from a collection of spheres

∐
Dj by

identifying isolated points of different spheres. By a geometric construction one
shows that Γ(D) is a retract of D. Therefore H1(Γ(D); Q) is a direct summand of
H1(D; Q). Since the rank of H1(Γ(D); Q) is the number of (independent) cycles
of Γ(D) we conclude that Γ(D) is a tree.

Conversely, if Γ(D) is a tree of spheres one shows by induction on r that
H1(D) = 0. 2

(0.78) Theorem. Suppose D = D1 ∪ . . .∪Dr has normal crossings. Then the
following are equivalent:

(1) V = X \D is T–acyclic.

(2) The Dj are spheres and Γ(D) is a tree. The inclusion j : D → X induces
an isomorphism j∗ : H2(D;T ) → H2(X;T ) and H1(X;T ) = 0.

Proof. (1) ⇒ (2). By (8.6.3) H1(D;T ) = 0 and hence, by (8.9), the Dj are
spheres and Γ(D) is a tree.

The exact sequence

H2(X,D;T ) → H2(X;T ) -j∗
H2(D;T ) → H1(X,D;T ),

duality Hj(X,D;T ) ∼= H4−j(V ;T ) and (1) show, that j∗ is an isomorphism.
From the universal coefficient theorem Spanier [1966], p. 248, Theorem 12,

we conclude that j∗ : H2(D;T ) → H2(X;T ) is an isomorphism.

(2)⇒ (1). The conditionH1(X;T ) = 0 impliesH3(X;T ) ∼= 0 andH1(X;T ) ∼=
0. Moreover j∗ is an isomorphism on H2(−;T ) if and only if j∗ is an isomorphism
on H2(−;T ). From (8.3) we know already that H0(V ) ∼= H0(V ) and H4(V ) ∼=
H4(V ) ∼= 0. The sequence (cohomology with coefficients in T )

H1(D) → H2(X,D) → H2(X) → H2(D) → H3(X,D) → H3(X)

shows H3(X,D;T ) ∼= H1(V ;T ) ∼= 0 and H2(X,D;T ) ∼= H2(V ;T ) ∼= 0. The
sequence

H0(X;T ) → H0(D;T ) → H1(X,D;T ) → H1(X;T )

shows H1(X,D;T ) ∼= H3(V ;T ) ∼= 0. 2

We now collect the information about integral co–homology in the case when
V = X \D and D is a union of spheres with normal crossings.

(0.79) Proposition. Suppose V is T–acyclic. Then the following holds:
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(1) H0(V ) ∼= H0(V ) ∼= ZZ.

(2) H4(V ) ∼= H4(V ) ∼= 0.

(3) H3(V ) ∼= H1(V ) ∼= 0.

(4) H1(V ) ∼= H2(V ) ∼= coker(H2(D) → H2(X)). This is a finite T–torsion
group.

(5) H2(V ) ∼= H3(V ) is a finite T–torsion group. If V is an affine variety, this
group is zero.

Proof. (1) and (2) are given by (8.3), and (3) is given by (8.5). Since V is
T–acyclic, we have H1(D) = 0 by (8.9) and the exact sequence and duality show

coker(H2(X) → H2(X)) ∼= H2(X,D) ∼= H2(V ).

Also, by (8.5), this is a finite T–torsion group. By universal coefficients, H2(V ) ∼=
Ext(H1(V ),ZZ) ∼= H1(V ).

Since V is T–acyclic, H2(V ) and H3(V ) are finite T–torsion groups. Exact
sequence and duality shows H3(V ) ∼= H1(X) and universal coefficients H3(V ) ∼=
Ext(H2(V ),ZZ) ∼= H2(V ). The final statement follows from (8.7.1). 2

8 Homology spheres

Let B denote a compact, connected, oriented 4–manifold with boundary S =
∂B 6= ∅.

(0.80) Proposition. Suppose B is Q–acyclic. Then S is Q–homology sphere.
More precisely, H2(S) = 0 and

|H1(S)| = | ker i : H1(B) → H1(B, S)|2.

Proof. Consider the exact sequence

H2(B, S; Q) → H1(S; Q) → H1(B; Q).

By duality H2(B, S; Q) ∼= H2(B; Q) = 0. Hence H1(S; Q) = 0 and H1(S) is
therefore a finite group. This gives, by duality and universal coefficients,

H2(S) ∼= H1(S) ∼= Hom(H1(S),ZZ) ∼= 0.

Duality and universal coefficients again yield the commutative diagram

Ext(H1(B, S),ZZ) ∼= H2(B, S) ∼= H2(B)

?

i∗

? ?

j

Ext(H1(B),ZZ) ∼= H2(B) ∼= H2(B, S).
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By algebra, coker i∗ ∼= ker i and the exact sequence of the pair (B, S) yields the
short exact sequence 0 → coker j → H1(S) → ker i→ 0. 2

Now suppose we are in a situation of the previous section: D is a union of
embedded spheres D1. . . . , Dr in X with normal crossing and V = X \D. There
exists a suitable tubular neighbourhood U of D in X such that X \ U is dif-
feomorphic to V and B = X \ U◦ is a smooth manifold with boundary S and
interior V = B \S. In this case H1(B, S) ∼= H3(V ) by duality. In case H3(V ) = 0
we obtain from (9.1)

(0.81) |H1(S)| = |H1(V )|2.

We recall the plumbing construction for the tubular neighbourhood U of D. We
assume thatD1, . . . , Dr has normal crossings and that Γ(D) is a tree. One chooses
closed tubular neighbourhoods Ui of Di as smooth images ti : Ei → Ui of 2–cell
bundles Ei → Di. The sets Ui and Uj intersect if and only if Di ∩ Dj 6= ∅. Fix
(i, j) with Di∩Dj = {x}. There exist embeddings τi : D2 → Di and τj : D2 → Dj

about x and trivializations σi : D2 ×D2 → t−1
i (Ui ∩ Uj) =: Eij over τi such that

D2 ×D2 -σi Eij
-ti Ui ∩ Uj

� tj Eji
�σj D2 ×D2

is the switching map (u, v) 7→ (v, u). Thus U can be obtained from the bundles
Ei by a suitable gluing process along the Eij, called plumbing.

The exact sequence

H1(S) → H2(U, S) -s H2(U) → H2(S) → H3(U, S)

shows that H2(S) ∼= H1(S) is isomorphic to the cokernel of s. Let ei ∈ ZZ denote
the Euler number of the oriented normal bundle Ei. The graph Γ becomes a
weighted graph if we assign to each vertex Di ∈ Γ0(D) the weight ei. The Euler
number ei is also called the self intersection number of Di in U or in X. The
matrix w : Γ0(D)× T0(D) → ZZ with w(Di, Di) = ei and w(Di, Dj) = |Di ∩Dj|
is called the intersection matrix of the weighted tree Γ(D).

The inclusion D → U and S → U \D are homotopy equivalences (tom Dieck
[1991], II.1.5). Let x′i ∈ H2(Di) be dual to the fundamental class.

(0.82) Lemma. H2(U) is free abelian with basis x1, . . . , xr such that under the
map induced by the inclusion Di → U the element xj is mapped to δijx

′
i.

Proof. This is seen by calculating H2(D) inductively from the H2(Di) via the
Mayer–Vietoris sequence. 2

We use H2(U,U \D) for the calculation of H2(U, S). By excision we have

H2(U,U \Di) ∼= H2(Ui, Ui \Di)

and, by the Thom Isomorphism, the latter group is generated by the Thom
class Φi. Let yi ∈ H2(U,U \ D) be the image of Φi under the canonical map
H2(U,U \Di) → H2(U,U \D).
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(0.83) Lemma. H2(U, S) is a free abelian group with basis y1, . . . , yr.

Proof. The proof is by induction on r using the relative Mayer–Vietoris se-
quence (Dold [1972], III.8.).

(0.84) Proposition. The matrix of s : H2(U, S) → H2(U) with respect to the
bases (8.3) and (8.4) is the intersection matrix of the weighted tree Γ(D).

Proof. The Euler number ei can be defined as follows: The image of the Thom
class Φi under the map

H2(Ui, Ui \Di) → H2(Ui) → H2(Di)

is eix
′
i. The construction of the elements xi, yi now shows directly, that the diag-

onal elements of the matrix are the ei.
We now suppose i 6= j and Di ∩Dj = {x}. The fibre Fi of Ui over x is then

part of Dj. We therefore have a commutative diagram induced by inclusions

yi ∈ H2(U,U \D) -

?

H2(Fi, Fi \ x)�
∼=

H2(U)

?

H2(Dj) 3 xj

?

H2(Dj, Dj \ x).

The Thom class Φi has the characteristic property that its restriction to a fi-
bre H2(Fi, Fi \ x) is the canonical generator. Similarly, the fundamental class
of H2(Dj) is mapped to the canonical generator of H2(Dj, Dj \ x). Since the
orientations of Fi and Dj agree, we see that the image of yi in H2(Dj) is xj.

Finally, we have to show that yi maps to zero in H2(Dj) if Di ∩Dj = ∅. But
in this case we have a commutative diagram

H2(U,U \Di) - H2(U)

? ?

0 = H2(Uj, Uj) - H2(Uj) - H2(Dj)

which yields the claim. 2

We make the following general remarks. Let U be a compact, connected, ori-
ented 4–manifold with boundary S. Assume H2(S) = 0 and H1(U) = 0. Then
we have an exact sequence

0 → H2(U) -s H2(U, S) → H1(S) → 0.

By duality and universal coefficients H2(U, S) ∼= H2(U) ∼= Hom(H2(U),ZZ) is
free abelian. The map s translates into a map H2(U) → Hom(H2(U),ZZ) and
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thus into a bilinear form H2(U)×H2(U) → ZZ on the free abelian group H2(U).
This bilinear form is known as the intersection form. In (9.3)–(9.5) above we
have made explicit what this means in our case.

From (9.2) and (9.5) we obtain the following:

(0.85) Corollary. Let V = X \ D be Q–acyclic. The order of H1(S) is the
absolute value of the determinant of the intersection matrix. This order is always
the square of an integer. 2

If (Γ, w) is any weighted tree with weight function w : Γ0 → Q we have the
matrix (wxy) with wxx = w(x, x) and wxy = 1 for x 6= y if and only if x, y are
connected by an edge. Call det(wxy) the determinant det(Γ) = det(Γ, w) of the
weighted tree. One computes det(Γ, w) inductively via a generalized continued
fraction algorithm as follows. Assume the following situation: Let e ∈ Γ1 be an
edge with weights b and c at its boundary vertices X and Y . Let the vertex with
weight b 6= 0 be a terminal vertex of the tree Γ. We obtain a new weighted tree
Γ′ by removing e and X from Γ and replacing the weight c of Y by c− b−1. Then
the following holds:

(0.86) Proposition. det(Γ) = b det(Γ′).

Proof. We expand the determinant∣∣∣∣∣∣∣∣∣
b 1

1 c
0

0 A

∣∣∣∣∣∣∣∣∣
with respect to the first row and get

b

∣∣∣∣∣ c 0
0 A

∣∣∣∣∣− |A| = b

∣∣∣∣∣ c− b−1 0
0 A

∣∣∣∣∣ .
2

It is also easy to compute what happens if b = 0 (compare Eisenbud–
Neumann [1985], p. 153).

9 Combinatorial properties

Let M be a closed, connected, oriented, differentiable 4–manifold. Let
(C1, . . . , Cn) be a set of immersed closed, connected, oriented surfaces Ci in M .

(0.87) Definition. A point x ∈ C := ∪Ci is called tidy, if the following holds:

(1) There exists an oriented C∞–chart ϕ : (U, 0) → (M,x), U ⊂ C2 open,
about x such that ϕ−1(M ∩ C) is a union of complex submanifolds
B1, . . . , Br wich have pairwise transverse intersection in 0.
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(2) Each ϕ(Bj) is contained in exactly one Ci and ϕ|Bj : Bj → Ci is orientation
preserving.

Here U and the Bj carry the canonical orientation induced from the complex
structure. We can express (10.1) by saying that the intersection pattern of C in
M is locally holomorphic. We call C ⊂M tidy if all points of C are tidy. A chart
ϕ : (U, 0) → (M,x) exhibiting x as a tidy point is called adapted to C.

A particularly interesting example arises from a non–singular projective sur-
face M over C and algebraic curves C1, . . . , Cn in M such that C = ∪Ci has
only ordinary multiple point singularities (number of tangents = multiplicity of
the point). An arrangement of projective lines L1, . . . , Ln in projective space IP2

over C is always tidy.
The main point for giving this definition is that the process of blowing up a

point, known from algebraic geometry or complex analysis, still makes sense in
this context.

Let C = (C1, . . . , Cn) be a tidy arrangement of immersed oriented spheres
Ci in the complex projective plane IP2. Let M be the set of its singular points.
We call the number m(x) of local branches through x ∈ M the valence of x.
We denote by tr the number of points in M with valence r. We also use the
abbreviations

(0.88) f0 =
∑
r≥2

tr = |M |, f1 =
∑
r≥2

rtr.

We have H2(IP
2) ∼= ZZ and the generator 1 corresponds to a cycle represented

by a complex projective line with its natural orientation. Since each sphere Ci

is oriented it defines an element z(Ci) ∈ H2(IP
2) and a corresponding integer di,

called the degree of Ci. Set d =
n∑

i=1
di.

(0.89) Proposition. For the tidy arrangement C = (C1, . . . , Cn) the following
identity holds:

∑
r≥2

(
r

2

)
tr =

∑
i<j

didj +
∑

i

(
di − 1

2

)
=

(
d− 1

2

)
+ n− 1.

If all di = 1, then the right hand side equals
(

n
2

)
.

Proof. The left hand side counts the intersection points (with multiplicity)
geometrically and the right hand side homologically.

Let fi : S2 → IP2 be an immersion with image Ci. If we deform the immersion

〈fj〉 : S =
∐
j

S2 → IP2

by a regular homotopy in a neighbourhood of a multiple point into an immersion
with transverse intersections in the usual sense of differential topology, then a
point of valence r unfolds into

(
r
2

)
points of valence 2. The right hand side of
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(3.1) is invariant under regular homotopies. So let us assume that f : S → IP2 is
an immersion which has only transverse intersections with intersection number
+1. Then the number of intersection points equals

(0.90)
1

2
(s2 − e(νf )).

Here νf is the normal bundle of f and e(νf ) its Euler class (= the sum of the
Euler classes of the bundles over the components); and s2 is the self–intersection
number of the cycle s defined by f . The counting (10.4) is a general fact of
differential topology, see Wall [1970], Theorem 5.2 (iii). We evaluate (10.4) in
the case at hand. We obtain

(0.91)
∑
i<j

CiCj +
1

2

∑
i

(C2
i − e(νi)).

The intersection number CiCj equals didj. Let D = Ci and let f : D → IP2 have
degree k. Let ηs be the canonical line bundle over IPs. Then νf is isomorphic to

f ∗(T IP2 ⊕ ε)/f∗(T IP2 ⊕ ε) = f ∗(3η2)/2η1 = (3k − 2)η1.

(T = tangent bundle, ε = trivial line bundle.)

Hence e(νf ) = 3k − 2. We arrive at

1

2
(D2 − e(νf )) =

1

2
(k2 − (3k − 2)) =

(
k − 1

2

)
.

2

In the case of algebraic curves (10.3) can also be proved by a counting argu-
ment and a formula of M. Noether (Brieskorn–Knörrer [1986]).
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