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Abstract. The purpose of this paper is to introduce a new structure into the rep-
resentation theory of quantum groups. The structure is motivated by braid and
knot theory. Representations of quantum groups associated to classical Lie alge-
bras have an additional symmetry which cannot be seen in the classical limit. We
first explain the general formalism of these symmetries (called cylinder forms) in
the context of comodules. Basic ingredients are tensor representations of braid
groups of type B derived from standard R-matrices associated to so-called four
braid pairs. These are applied to the Faddeev-Reshetikhin-Takhtadjian construc-
tion of bialgebras from R-matrices. As a consequence one obtains four braid pairs
on all representations of the quantum group. In the second part of the paper we
study in detail the dual situation of modules over the quantum enveloping alge-
bra Uq(sl2). The main result here is the computation of the universal cylinder
twist.

1. Cylinder forms

Let A = (A, m, e, µ, ε) be a bialgebra1 (over the commutative ring K) with mul-
tiplication m, unit e, comultiplication µ, and counit ε. Let r: A ⊗ A → K be a
linear form. We associate to left A-comodules M, N a K-linear map2

zM,N : M ⊗N → N ⊗M, x⊗ y 7→
∑

r(y1 ⊗ x1)y2 ⊗ x2,

where we have used the formal notation3 x 7→ ∑
x1 ⊗ x2 for a left A-comodule

structure µM : M → A⊗M on M . (See [7, p. 186] formula (5.9) for our map zM,N

and also formula (5.8) for a categorical definition.) We call r a braid form on A,
if the zM,N yield a braiding on the tensor category A-COM of left A-comodules.

1We prefer Latin-Greek duality; thus the comultiplication is not ∆.
2A notation like f : A → B, a 7→ f(a) is used in two different ways. Either the symbols

a 7→ f(a) define f : A → B, or they specify a notation for an already defined morphism. For
typographical reasons it often seems better not to obscure and interrupt formulas by inserting
phrases like ‘defined by’.

3In the literature, notations of this type are attributed to Heyneman and Sweedler. Also the
name sigma notation is used. We refer to this notation as the µ-convention. In this paper, we use
superscripts for comodule actions and supscripts for comultiplications. The reader may notice
that by proper use of the µ-convention summation indices are redundant. Strings of super- or
supscripts have to be lexicographic sequences without gaps, and associativity amounts to the
rule that any such string can be replaced by another one of the same length.
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We refer to [7, Def. VIII.5.1 on p. 184] for the properties of r which make it into
a braid form and (A, r) into a cobraided bialgebra. (What we call braid form is
called universal R-form in [7].)

Let (C, µ, ε) be a coalgebra. Examples of our µ-convention for coalgebras are
µ(a) =

∑
a1 ⊗ a2 and (µ⊗ 1)µ(a) =

∑
a11 ⊗ a12 ⊗ a2; if we set µ2(a) = (µ⊗ 1)µ,

then we write µ2(a) =
∑

a1 ⊗ a2 ⊗ a3. The counit axiom reads in this notation∑
ε(a1)a2 = a =

∑
ε(a2)a1. The multiplication in the dual algebra C∗ is denoted

by ∗ and called convolution: If f, g ∈ C∗ are K-linear forms on C, then the
convolution product f ∗g is the element of C∗ defined by a 7→ ∑

f(a1)g(a2). The
unit element of the algebra C∗ is ε. Therefore g is a (convolution) inverse of f ,
if f ∗ g = g ∗ f = ε. We apply this formalism to the coalgebras A and A⊗ A. If
f and g are linear forms on A, we denote their exterior tensor product by f⊗̂g;
it is the linear form on A⊗ A defined by a⊗ b 7→ f(a)g(b). The twist on A⊗ A
is τ(a⊗ b) = b⊗ a.

Here is the main definition of this paper. Let (A, r) be a cobraided bialgebra
with braid form r. A linear form f : A → K is called a cylinder form for (A, r), if
it is convolution invertible and satisfies

(1.1) f ◦m = (f⊗̂ε) ∗ rτ ∗ (ε⊗̂f) ∗ r = rτ ∗ (ε⊗̂f) ∗ r ∗ (f⊗̂ε).

In terms of elements and the µ-convention, (1.1) assumes the following form:

(1.2) Proposition. For any two elements a, b ∈ A the identities

f(ab) =
∑

f(a1)r(b1 ⊗ a2)f(b2)r(a3 ⊗ b3) =
∑

r(b1 ⊗ a1)f(b2)r(a2 ⊗ b3)f(a3)

hold.

Proof. Note that a four-fold convolution product is computed by the formula

(f1 ∗ f2 ∗ f3 ∗ f4)(x) =
∑

f1(x1)f2(x2)f3(x3)f4(x4).

We apply this to the second term in (1.1). The value on a⊗ b is then

(f(a1) · ε(b1)) · r(b2 ⊗ a2) · (ε(a3) · f(b3)) · r(a4 ⊗ b4).

By the counit axiom, we can replace
∑

ε(b1) · b2 ⊗ b3 ⊗ b4 by
∑

b1 ⊗ b2 ⊗ b3

(an exercise in the µ-convention), and
∑

a1 ⊗ a2 ⊗ ε(a3) · a4 can be replaced by∑
a1⊗ a2⊗ a3. This replacement yields the second expression in (1.2). The third

expression is verified in a similar manner. The first value is obtained from the
definition of f ◦m. 2

A cylinder form f (in fact any linear form) yields for each left A-comodule M
a K-linear endomorphism

tM : M → M, x 7→
∑

f(x1)x2.

If ϕ: M → N is a morphism of comodules, then ϕ ◦ tM = tN ◦ ϕ. Since tM is
in general not a morphism of comodules we express this fact by saying: The tM
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constitute a weak endomorphism of the identity functor of A-COM. We call tM
the cylinder twist on M . The axiom (1.1) for a cylinder form has the following
consequence.

(1.3) Proposition. The linear map tM is invertible. For any two comodules
M, N the identities

tM⊗N = zN,M(tN ⊗ 1M)zM,N(tM ⊗ 1N) = (tM ⊗ 1N)zN,M(tN ⊗ 1M)zM,N

hold.

Proof. Let g be a convolution inverse of f . Define the endomorphism sM : M →
M via x 7→ ∑

g(x1)x2. Then

sM tM(x) =
∑

f(x1)g(x21)x22 =
∑

ε(x1)x2 = x,

by the definition of a convolution inverse and the counit axiom. Hence sM is
inverse to tM .

In order to verify the second equality, we insert the definitions and see that
the second map is

x⊗ y 7→
∑

f(x1)r(y1 ⊗ x21)f(y21)r(y221 ⊗ x221)y222 ⊗ x222

while the third map is

x⊗ y 7→
∑

r(y1 ⊗ x1)f(y21)r(y21 ⊗ x221)f(x221)y222 ⊗ x222.

The coassociativity of the comodule structure yields a rewriting of the form∑
y1 ⊗ y21 ⊗ y221 ⊗ y222 =

∑
(y1)1 ⊗ (y1)2 ⊗ (y1)3 ⊗ y2

and one has a similar formula for x. We now apply (1.2) in the case where
(a, b) = (x1, y1).

By definition of the comodule structure of M⊗N , the map tM⊗N has the form
x⊗ y 7→ ∑

f(x1y1)x2 ⊗ y2. Again we use (1.2) in the case where (a, b) = (x1, y1)
and obtain the first equality of (1.3). 2

We also mention dual notions. Let A be a bialgebra with a universal R-matrix
R ∈ A⊗A. An element v ∈ A is called a (universal) cylinder twist for (A, R), if
it is invertible and satisfies

(1.4) µ(v) = (v ⊗ 1) · τR · (1⊗ v) ·R = τR · (1⊗ v) ·R · (v ⊗ 1).

The R-matrix R =
∑

ar ⊗ br induces the braiding

zM,N : M ⊗N → N ⊗M, x⊗ y 7→
∑

bry ⊗ arx.

Let tM : M → M be the induced cylinder twist defined by x 7→ vx. Again the tM
form a weak endomorphism of the identity functor. If v is not central in A, then
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the tM are not in general A-module morphisms. The relations (1.3) also holds in
this context.

In practice one has to consider variants of this definition. The universal R-
matrix for the classical quantum groups A is not contained in the algebra A⊗A,
but rather is an operator on suitable modules. The same phenomenon will occur
for the cylinder twist. Will see an example of this situation in Section 8.

If a ribbon algebra is defined as in [7, p. 361], then the element θ−1, loc. cit.,
is a cylinder twist in the sense above.

2. Tensor representations of braid groups

The braid group ZBn associated to the Coxeter graph Bn

r r r r
t g1 g2 gn−1

p p p p p p p p p p4
Bn

with n vertices has generators t, g1, . . . , gn−1 and relations (2.1).

(2.1)

tg1tg1 = g1tg1t
tgi = git for i > 1

gigj = gjgi for |i− j| ≥ 2
gigjgi = gjgigj for |i− j| = 1

We recall: The group ZBn is the group of braids with n strings in the cylinder
(C\0)×[0, 1] from {1, . . . , n}×0 to {1, . . . , n}×1. This topological interpretation
is the reason for using the cylinder terminology. For the relation between the root
system Bn and ZBn see [2].

Let V be a K-module. Suppose X: V ⊗V → V ⊗V and F : V → V are K-linear
automorphisms with the following properties:

(1) X is a Yang-Baxter operator, i. e., X satisfies the equation

(X ⊗ 1)(1⊗X)(X ⊗ 1) = (1⊗X)(X ⊗ 1)(1⊗X)

on V ⊗ V ⊗ V .
(2) With Y = F ⊗ 1V , the four braid relation Y XY X = XY XY is satisfied.

If (1) and (2) hold, we call (X, F ) a four braid pair. For the construction
of four braid pairs associated to standard R-matrices see [4]. For a geometric
interpretation of (2) in terms of symmetric braids with 4 strings see [3].

Given a four braid pair (X, F ), we obtain a tensor representation of ZBn on
the n-fold tensor power V ⊗n of V by the following assignment:

(2.2)
t 7→ F ⊗ 1⊗ · · · ⊗ 1

gi 7→ Xi = 1⊗ · · · ⊗X ⊗ · · · ⊗ 1.

The X in Xi acts on factors i and i + 1.
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These representations give raise to further operators if we apply them to spe-
cial elements in the braid groups. We set

t(1) = t, t(j) = gj−1gj−2 · · · g1tg1g2 · · · gj−1, tn = t(1)t(2) · · · t(n),

g(j) = gjgj+1 · · · gj+n−1, xm,n = g(m)g(m− 1) · · · g(1).

The elements t(j) pairwise commute. We denote by Tn: V ⊗n → V ⊗n and by
Xm,n: V ⊗m ⊗ V ⊗n → V ⊗n ⊗ V ⊗m, respectively, the operators induced by tn and
by xm,n.

(2.3) Proposition. The following identities hold

Tm+n = Xn,m(Tn ⊗ 1)Xm,n(Tm ⊗ 1) = (Tm ⊗ 1)Xn,m(Tn ⊗ 1)Xm,n.

Proof. We use some facts about Coxeter groups [1, CH. IV, §1]. If we adjoin the
relations t2 = 1 and g2

j = 1 to (2.1) we obtain the Coxeter group CBn. The
element tn is given as a product of n2 generators t, gj. The uniquely determined
element of CBn has length n2 and is equal to tn. The element xn,mtnxm,ntm of
CBm+n has length (m + n)2 and therefore equals tm+n in CBm+n. By a fun-
damental fact about braid groups [1, CH. IV, §1.5, Prop. 5], the corresponding
elements in the braid group are equal. We now apply the tensor representation
and obtain the first equality of (2.3). 2

For later use we record:

(2.4) Proposition. The element tn is contained in the center of ZBn. 2

3. Cylinder forms from four braid pairs

Let V be a free K-module with basis {v1, . . . , vn}. Associated to a Yang-Baxter
operator X: V ⊗ V → V ⊗ V is a bialgebra A = A(V, X) with braid form r,
obtained via the FRT-construction (see [7, VIII.6 for the construction of A and
r). We show that a four braid pair (X, F ) induces a canonical cylinder form on
(A, r).

Recall that A is a quotient of a free algebra Ã. We use the model

Ã :=
∞⊕

n=0

Hom(V ⊗n, V ⊗n).

The multiplication of Ã is given by the canonical identification Ek ⊗ El
∼=

Ek+l, furnishedbyf ⊗ g 7→ f ⊗ g where Ek = Hom(V ⊗k, V ⊗k). The canonical
basis of E, given by T j

i : vk 7→ δi,kvj of E1, induces the basis

T j
i = T j1

i1 ⊗ · · · ⊗ T jk
ik

of Ek, where, in multi-index notation, i = (i1, . . . , ik) and j = (j1, . . . , jk). The
comultiplication of Ã is given by µ(T j

i ) =
∑

k T k
i ⊗ T j

k while the counit of Ã is
given by ε(T j

i ) = δj
i .
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In Section 2 we defined an operator Tk ∈ Ek from a given four braid pair
(X, F ). We express Tk in terms of our basis

Tk(vi) =
∑
j

F j
i vj

again using the multi-index notation vi = vi1 ⊗ · · · ⊗ vik when i = (i1, . . . , ik).
We use these data in order to define a linear form

f̃ : Ã → K, T j
i 7→ F j

i .

(3.1) Theorem. The linear form f̃ factors through the quotient map Ã → A
and induces a cylinder form f for (A, r).

Proof. Suppose the operator X = Xm,n: V ⊗m ⊗ V ⊗n → V ⊗n ⊗ V ⊗m has the
form X(vi ⊗ vj) =

∑
ab Xab

ij va ⊗ vb. We define a form r̃: Ã⊗ Ã → K by defining

r̃: Ek ⊗ El → K, T a
i ⊗ T b

j 7→ Xab
ji .

The form r̃ factors through the quotient A⊗ A and induces r.

Claim: The forms r̃ and f̃ satisfy (1.1) and (1.2). Proof of the Claim: In the
proof we use the following summation convention: Summation occurs over an
upper-lower index. We can then write µ2(T

c
i ) = T k

i ⊗ T a
k ⊗ T c

a and µ2(T
d
j ) =

T l
j ⊗ T b

l ⊗ T d
b . The equality (1.2) amounts to

F cd
ij = F k

i X la
kjF

b
l Xcd

ba = X lk
ij F b

l Xad
bk F c

a .

These equations are also a translation of (2.3) into matrix form. This completes
the proof of the claim.

We have to show that f̃ maps the kernel I of the projection Ã → A to zero.
But this is a consequence of (1.2), applied in the case b = 1, since one of the
terms a1, a2, a3 is contained in I and r̃ is the zero map on I ⊗ Ã and Ã⊗ I.

It remains to show that f is convolution invertible. The pair (X−1, F−1) is a
four braid pair. Let r̄ and f̄ be the induced operators on Ã. Then f̃ ∗f̄ = ε = f̄ ∗f̃
on Ã, and (1.2) holds for (f̄ , r̄) in place of (f, r). The Yang-Baxter operator X−1

defines the same quotient A of Ã as X. Hence the kernel ideal obtained from
X−1 equals I; therefore f̄(I) = 0. 2

We have the comodule structure map V → A⊗V defined via vi 7→
∑

j T j
i ⊗vj.

One has a similar formula for V ⊗k using multi-index notation. By construction
we have:

(3.2) Proposition. The cylinder form f induces on V ⊗k the cylinder twist
tV ⊗k = Tk. 2

6
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4. Tensor categories with cylinder braiding

We may summarize the results of the previous section from the following cate-
gorical perspective:

(1) B is a category;

(2) A is a subcategory with the same objects;

(3) The category A carries the structure of a tensor category with a braiding
zM,N ;

(4) B is a right tensor module category over A;

(5) For each object V an automorphism tV : V → V in B is given. The tV
constitute a weak endomorphism of the identity functor of A.

(6) For each pair M, N of objects the identities (1.3) hold.

The meaning of (4) is the following: There is given a functor ⊗: B×A → B and
a natural associativity isomorphism a: A⊗ (B ⊗ C) → (A⊗ B)⊗ C of functors
B × A × A → B. The pentagon axiom of tensor category theory (which still
makes sense in this context) is also assumed. The tensor product functor and the
associativity a restrict to the given tensor product and associativity in the tensor
category A. The unit object of A is a left and right unit for ⊗: B ×A → B and
the triangle axiom holds. An example of this type of module category arises from
a tensor category B and a tensor subcategory A. (See [7, XI.2] for such notions.)

We considered the case where B was the category of A-comodules and K-linear
maps and A the category of A-comodules and A-linear maps. (5) is induced by
a cylinder form.

The prototype is given by the braid categories themselves. The objects are
the natural numbers n ≥ 0. The morphisms in B from n to n are the elements in
ZBn with composition the group multiplication. There are no morphisms from
m to n for m 6= n. The morphisms in A from n to n are the elements of the
Artin braid group ZAn−1, the subgroup of ZBn generated by g1, . . . , gn−1. The
tensor product is given on objects as m ⊗ n = m + n and on morphisms as the
following homomorphism ZBm × ZBn → ZBm+n

t, g1, . . . , gm−1 ∈ ZBm 7→ t, g1, . . . , gm−1 ∈ ZBm+n

t, g1, . . . , gn−1 ∈ ZBn 7→ gmgm−1 . . . g1tg1g2 . . . gm, gm+1, . . . , gm+n−1 ∈ ZBm+n.

The braiding is given by the morphisms xm,n of section 2 and the morphisms tn
are also specified in that section. By (2.4), the tn constitute an endomorphism
of the identity of B.

There is a natural quotient category of this braid category (when K-linearized),
namely the Temperley-Lieb category of type B via the Kauffman functor (see
[3]).

For an elaboration of the categorical viewpoint and applications to knot theory
along the lines of [9] see [5] and [6].
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5. The example SLq(2)

We illustrate the theory with the quantum group associated to SL2. For simplic-
ity we work over the function field Q(q1/2) = K.

Let V be a two-dimensional K-module with basis {v1, v2}. In terms of the basis
{v1 ⊗ v1, v1 ⊗ v2, v2 ⊗ v1, v2 ⊗ v2} the matrix

(5.1) X = q−1/2


q

q − q−1 1
1 0

q


defines a Yang-Baxter operator. The FRT-construction associates to X the alge-
bra A generated by a, b, c, and d (corresponding, respectively, to T 1

1 , T 2
1 , T 1

2 , and
T 2

2 in the general setting) with relations

ab = qba bd = qdb

ac = qca cd = qdc

bc = cb

ad− da = (q − q−1)bc.

The matrix

(5.2) F =

(
0 β
α θ

)

yields a four braid pair (X, F ) for arbitrary parameters with invertible αβ.
(See [4], also for an n-dimensional generalization.) The quantum plane P =
K{x, y}/(xy − qyx) is a left A-comodule via the map µP : P → A⊗ P given by

µP (xiyj) =
i∑

r=0

j∑
s=0

q−s(i+j−r−s)−r(i−r)
[
i

r

] [
j

s

]
arbi−rcsdj−s ⊗ xr+syi+j−r−s

where
[

i
r

]
is a q-binomial coefficient

[
i

r

]
=

[i]!

[r]![i− r]!
, [i]! = [1][2] · · · [i], [i] =

qi − q−i

q − q−1
.

(Compare with [7, IV], where different conventions are used.) The operator T2 =
(F ⊗ 1)X(F ⊗ 1)X on V ⊗ V has the matrix (with δ = q − q−1)


0 0 0 β2

0 αβδ αβ qβθ
0 αβ 0 βθ
α2 qαθ αθ αβδ + qθ2

 =


F 11

11 F 11
12 F 11

21 F 11
22

F 12
11 F 12

12 F 12
21 F 12

22

F 21
11 F 21

12 F 21
21 F 21

22

F 22
11 F 22

12 F 22
21 F 22

22
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with respect to the basis {v1⊗v1, v1⊗v2, v2⊗v1, v2⊗v2}. This is also the matrix
of values of the cylinder form f

f


aa ac ca cc
ab ad cb cd
ba bc da dc
bb bd db dd

 .

(The notation means: If we apply f to entries of the matrix we obtain the matrix
for T2 diplayed above.) Let detq = ad − qbc be the quantum determinant. It is
a group-like central element of A. The quotient of A by the ideal generated by
detq is the Hopf algebra SLq(2).

(5.3) Proposition. The form f has the value −q−1αβ on detq. If −q−1αβ = 1,
then f factors over SLq(2).

Proof. The stated value of f(detq) is computed from the data above. We use
the fact that

r(x⊗ detq) = r(detq ⊗ x) = ε(x).

(See [7, p. 195].) From (1.2) we obtain, for a ∈ A and b = detq, that

f(ab) =
∑

f(a1)r(b1 ⊗ a2)f(b2)r(a3 ⊗ b3)

=
∑

f(a1)ε(a2)f(detq)ε(a3)

= f(a),

by using the assumption that f(detq) = 1 together with the counit axiom. 2

We consider the subspace W = V2 of the quantum plane generated by x2, xy,
and y2. We have

µP (x2) = b2 ⊗ y2 + (1 + q−2)ab⊗ xy + a2 ⊗ x2

µP (xy) = bd⊗ y2 + (ad + q−1bc)⊗ xy + ac⊗ x2

µP (y2) = d2 ⊗ y2 + (1 + q−2)cd⊗ xy + c2 ⊗ x2.

This yields the following matrix for tW with respect to the basis {x2, xy, y2}: 0 0 β2

0 qαβ (q + q−1)βθ
α2 qαθ αβδ + qθ2

 .

In the Clebsch-Gordan decomposition V ⊗ V = V2 ⊕ V0 the subspace V0 (the
trivial irreducible module) is spanned by u = v2 ⊗ v1 − q−1v1 ⊗ v2. This is the
eigenvector of X with eigenvalue −q−3/2. It is mapped by T2 to −q−1αβu. If we
require this to be the identity we must have αβ = −q. We already obtained this
condition by considering the quantum determinant.

The matrix of tW with respect to the basis {w1 = x2, w2 =
√

1 + q−2xy, w3 =
y2} is

9
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(5.4) F2 =

 0 0 β2

0 qαβ
√

1 + q2βθ
α2

√
1 + q2αθ αβδ + qθ2

 .

In case α = β this matrix is symmetric.
The R-matrix X on W ⊗W with respect to the lexicographic basis consisting

of elements wi ⊗ wj with w1 = x2, w2 =
√

1 + q−2xy, and w3 = y2 has the form

(5.5) X2 =

q2

δ∗ 1
µ λ q−2

1 0
λ 1

δ∗ 1
q−2 0

1 0
q2

It makes use of the identities δ∗ = q2 − q−2, µ = δ∗(1− q−2), and λ = q−1δ∗. By
construction, (X2, F2) is a four braid pair.

One has the the problem of computing tW on irreducible comodules W . We
treat instead the more familiar dual situation of modules over the quantized
universal enveloping algebra.

6. The cylinder braiding for U-modules

The construction of the cylinder form is the simplest method to produce a uni-
versal operator for the cylinder twist. In order to compute the cylinder twist
explicitly we pass to the dual situation of the quantized universal enveloping
algebra U . One can formally dualize comodules to modules and thus obtain a
cylinder braiding for suitable classes of U -modules from the results of the previ-
ous sections. But we rather start from scratch.

We work with the Hopf algebra U = Uq(sl2) as in [8]. As an algebra, it is
the the associative algebra over the function field Q(q1/2) = K generated4 by
K, K−1, E, and F subject to the relations KK−1 = K−1K = 1, KE = q2EK,
KF = q−2FK, and EF −FE = (K −K−1)/(q− q−1). Its coalgebra structure is
defined by setting µ(K) = K⊗K, µ(E) = E⊗1+K⊗E, µ(F ) = F⊗K−1+1⊗F ,
ε(K) = 1, and ε(E) = ε(F ) = 0. A left U -module M is called integrable if the
following condition holds:

(1) M =
⊕

Mn is the direct sum of weight spaces Mn on which K acts as
multiplication by qn for n ∈ ZZ.

(2) E and F are locally nilpotent on M .
Let U -INT denote the category of integrable U-modules and U -linear maps.
(It would be sufficient to consider only finite dimensional such modules.) An

4There is another use of the letter F . It has nothing to do with the 2× 2-matrix F in (5.2).

10
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integrable U -module M is semi-simple: It has a unique isotypic decomposi-
tion M =

⊕
n≥0 M(n) with M(n) isomorphic to a direct sum of copies of

the irreducible module Vn. The module Vn has a K-basis x0, x1, . . . , xn with
F (xi) = [i + 1]xi+1, E(xi) = [n − i + 1]xi−1, x−1 = 0, xn+1 = 0; moreover,
xi ∈ V n−2i

n . The category of integrable U -modules is braided. The braiding is
induced by the universal R-matrix R = κ ◦Ψ with

(6.1) Ψ =
∑
n≥0

qn(n−1)/2 (q − q−1)n

[n]!
F n ⊗ En

and κ = qH⊗H/2. Note that Ψ is a well-defined operator on integrable U -modules.
(This operator is called Θ̄ in [8, section 4.1] and L′i in [8, p. 46].) The operator
κ acts on Mm ⊗ Nn as multiplication by qmn/2. If we view H as the operator
H: Mm → Mm given by x 7→ mx, then qH⊗H/2 is a suggestive notation for κ.
The braiding zM,N : M ⊗N → N ⊗M is τ ◦R, i. e., the action of R followed by
the interchange operator τ : x⊗ y 7→ y ⊗ x.

A four braid pair (X, F ) on the vector space V yields a tensor representation
of ZBn on V ⊗n. We start with the standard four braid pair determined by (5.1)
and (5.2) on the two-dimensional U -module V = V1. Let Tn: V ⊗n → V ⊗n be
the associated cylinder twist as defined in Section 2. By the Clebsch-Gordan
decomposition, Vn is contained in V ⊗n with multiplicity 1. Similarly, Vm+n ⊂
Vm ⊗ Vn with multiplicity one [7, VII.7].

(6.2) Lemma. There exists a projection operator en: V ⊗n → V ⊗n whose image,
Vn, commutes with Tn.

Proof. Let Hn be the Hecke algebra over K generated by x1, . . . , xn−1 with
braid relations xixjxi = xjxixj for |i− j| = 1 and xjxi = xixj for |i− j| > 1 and
quadratic relations (xi+1)(xi−q2) = 0. Since X satisfies (X−q1/2)(X +q−3/2) =
0, we obtain an action of Hn from the action of ZAn−1 ⊂ ZBn on V ⊗n if we let xi

act as q3/2gi. Since Tn comes from a central element of ZBn as noted in (2.4), the
Hn-action commutes with Tn. It is well known that there exists an idempotent
en ∈ Hn for which enV

⊗n = Vn. (This is quantized Schur-Weyl duality.) This
fact implies the assertion of the Lemma. 2

(6.3) Corollary. The subspace Vn ⊂ V ⊗n is Tn-stable. 2

A similar proof shows that all summands in the isotypic decomposition of V ⊗n

are Tn-stable.

We denote by τn the restriction of Tn to Vn; and we denote by τm,n = zn,m(τn⊗
1)zm,n(τm⊗ 1) the induced operator on Vm⊗Vn where zm,n denotes the braiding
on Vm ⊗ Vn.

(6.4) Lemma. The subspace Vm+n ⊂ Vm⊗Vn is τm,n-stable. The induced mor-
phism equals τm+n.

Proof. Consider Vm ⊗ Vn ⊂ V ⊗m ⊗ V ⊗n = V ⊗(m+n). The projection operator
em ⊗ en is again obtained from the action of a certain element of the Hecke

11
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algebra Hm+n. Hence Vm ⊗ Vn is Tm+n-stable and the action on the subspace
Vm+n is τm+n. We now use the equality (2.3)

Tm+n = Xn,m(Tn ⊗ 1)Xm,n(Tm ⊗ 1).

The essential fact is that Xm,n is the braiding on V ⊗m ⊗ V ⊗n. It induces, by
naturality of the braiding, the braiding zm,n on Vm ⊗ Vn. 2

Let A(n) = (αj
i (n)) be the matrix of τn with respect to x0, . . . , xn. In the next

theorem we derive a recursive description of A(n). We need more notation to
state it. Define inductively polynomials γk by γ−1 = 0, γ0 = 1 and, for k > 0,

(6.5) αγk+1 = qkθγk + βqk−1δ[k]γk−1.

Here δ = q − q−1, and γk = γk(θ, q, α, β) is a polynomial in θ with coefficients in
ZZ[q, q−1, α−1, β]. Let D(n) denote the codiagonal matrix with αkβn−kqk(n−k) in
the k-th row and (n − k)-th column and zeros otherwise. (We enumerate rows
and columns from 0 to n.) Let B(n) be the upper triangular matrix

(6.6) B(n) =



γ0

[
n
1

]
γ1

[
n
2

]
γ2 · · · γn

γ0

[
n−1

1

]
γ1 · · · γn−1

· · · · · · · · ·
γ0 γ1

γ0

 .

Thus the (n− k)-th row of B(n) is

0, . . . , 0,

[
k

0

]
γ0,

[
k

1

]
γ1,

[
k

2

]
γ2, . . . ,

[
k

k − 1

]
γk−1,

[
k

k

]
γk.

(6.7) Theorem. The matrix A(n) is equal to the product D(n)B(n).

Proof. The proof is by induction on n. We first compute the matrix of τn,1 on
Vn ⊗ V1 and then restrict to Vn+1. In order to display the matrix of τn,1 we use
the basis

x0 ⊗ x0, . . . , xn ⊗ x0, x0 ⊗ x1, . . . , xn ⊗ x1.

The matrix of τn,1 has the block form(
0 βA(n)

αA(n) A′(n)

)
.

The matrix A′(n) is obtained from A(n) in the following manner: Let α0, . . . , αn

denote the columns of A(n) and β0, . . . , βn the columns of A′(n). We claim that

βi = αq2i−nθαi + βq2i−n−1δ[n− i + 1]αi−1 + αδ[i + 1]αi+1,

with α−1 = αn+1 = 0.

12
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Recall that τn,1 = (τn ⊗ 1)z1,n(τ1 ⊗ 1)zn,1. In our case the universal R-matrix
has the simple form

R = κ ◦ (1 + (q − q−1)F ⊗ E).

For the convenience of the reader we display the four steps in the calculation of
τn,1, separately for xi ⊗ x0 and xi ⊗ x1.

xi ⊗ x0 7→ q(n−2i)/2x0 ⊗ xi

7→ αq(n−2i)/2x1 ⊗ xi

7→ αxi ⊗ x1

7→
∑
j

ααj
ixj ⊗ x0.

xi ⊗ x1 7→ q−(n−2i)/2x1 ⊗ xi + δ[i + 1]q(n−2i−2)/2x0 ⊗ xi+1

7→ q−(n−2i)/2(βx0 + θx1)⊗ xi + αδ[i + 1]q(n−2i−2)/2x1 ⊗ xi+1

7→ βxi ⊗ x0 + βq−n+2i−1δ[n− i + 1]xi−1 ⊗ x1

+q2i−nθxi ⊗ x1 + αδ[i + 1]xi+1 ⊗ x1

7→
∑
j

αj
ixi ⊗ x0 +

∑
j

βq2i−n+1δ[n− i + 1]αj
i−1xj ⊗ x1

+
∑
j

q2i−nθαj
ixj ⊗ x1 +

∑
j

αδ[i + 1]αj
i+1xj ⊗ x1.

This proves the claim about the matrix for τn,1.

We now use the following fact about the Clebsch-Gordan decomposition (it is
easily verified in our case, but see e. g. [7, VII.7] for more general results): In the
Clebsch-Gordan decomposition Vn⊗V1 = Vn+1⊕Vn−1 a basis of Vn+1 is given by

yj =
F j

[j]!
(x0 ⊗ x0) = q−jxj ⊗ x0 + xj−1 ⊗ x1.

We apply τn,1 to the yj. Since there are no overlaps between the coordinates of
the yj, we can directly write τn,1(yj) as a linear combination of the yk.

We assume inductively that A(n) has bottom-right triangular form, i. e., zero
entries above the codiagonal, with codiagonal as specified by D(n). Then A′(n)
has a nonzero line one step above the codiagonal and is bottom-right triangular
otherwise. From the results so far we see that the columns of A(n + 1), enu-
merated from 0 to n + 1, are obtained inductively as follows: The 0-th row is
(0, . . . , 0, βn+1). Below this 0-th row the j-th column, for 0 ≤ j ≤ n + 1, has the
form

(6.8) αqjαj + q2j−n−2θαj−1 + βq2j−n−3δ[n− j + 2]αj−2.

From this recursive formula one derives immediately that the codiagonal of A(n)
is given by D(n).

13
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Finally, we prove by induction that A(n) is as claimed. The element in row k
and column n− k + j equals

αkβn−kqk(n−k)

[
k

j

]
γj.

For n = 1, we have defined τ1 as A(1). For the inductive step we use (6.8) in
order to determine the element of A(n) in column n− k + j and row k + 1. The
assertion is then equivalent to the following identity:

αkβn−kqk(n−k)

(
α

[
k

j

]
γj + qn−2k+2j−2θ

[
k

j − 1

]
γj−1

+βqn−2k+2j−3δ[k − j + 2]

[
k

j − 2

]
γj−2

)

= αk+1βn−kq(n−k)(k+1)

[
k + 1

j

]
γj.

We cancel α-, β-, and q-factors, use the Pascal formula

(6.9)

[
a + 1

b

]
= qb

[
a

b

]
+ q−a+b−1

[
a

b− 1

]

and the identity

δ[k − j + 2]

[
k

j − 2

]
=

[
k

j − 1

]
[j − 1]

and see that the identity in question is equivalent to the recursion formula (6.5)
defining the γ-polynomials. This completes the proof. 2

We now formulate the main result of this section in a different way. First, we
note that it was not essential to work with the function field K. In fact, K could
have been any commutative ring and q, α, and β could have been any suitable
parameters in it. We think of θ as being an indeterminate.

Let L(α, β) be the operator on integrable U -modules which acts on Vn via

xj 7→ αn−jβjqj(n−j)xn−j.

Let

(6.10) T (α, β) =
∞∑

k=0

γk
Ek

[k]!
;

T (α, β) is well-defined as an operator on integrable U -modules. Then (6.7) can
be expressed as follows:

(6.11) Theorem. The operator t(α, β) defined by setting t(α, β) = L(α, β) ◦
T (α, β) acts on Vn as τn. 2

14
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In Section 8 we give another derivation of this operator from the universal
point of view.

One can develop a parallel theory by starting with the four braid pair
(X−1, F−1). This leads to matrices which are top-left triangular, i. e., zero entries
below the codiagonal. By computing the inverse of (5.1) and of (5.2) we see that,
in the case (α, β) = (1, 1), we have to replace (q, θ) by (q−1,−θ).

The following proposition may occasionally be useful. Introduce a new basis
u0, . . . , un in Vn by

xi = q−i(n−i)/2

√√√√[n
i

]
ui.

Then a little computation shows:

(6.12) Proposition. Suppose α = β. With respect to the basis (ui) the R-
matrix and the matrix for τn are symmetric. 2

7. The γ-polynomials

For later use we derive some identities for the γ-polynomials of the previous
section. A basic one, (7.1), comes from the compatibility of the cylinder twist
with tensor products. Again we use δ = q − q−1. We give two proofs of (7.1).

(7.1) Theorem. The γ-polynomials satisfy the product formula

γm+n =
min(m,n)∑

k=0

α−kβkqmn−k(k+1)/2δk[k]!

[
m

k

][
n

k

]
γm−kγn−k.

First proof of (7.1). The first proof is via representation theory. We have a
unique U -submodule of Vm ⊗ Vn which is isomorphic to Vm+n (Clebsch-Gordan
decomposition). We use the symbol Vm+n also for this module. The vector xm⊗xn

is contained in this module and satisfies F (mm ⊗ xn) = 0. The latter property
characterizes xm⊗xn inside Vm+n up to a scalar (lowest weight vector, F -primitive
vector).

We consider

τm,n = (τm ⊗ 1)zn,m(τn ⊗ 1)zm,n

on Vm+n ⊂ Vm⊗Vn where it equals τm+n. We first express this equality formally in
terms of matrices and then evaluate the formal equation by a small computation.
We already have intruced the matrices for τm in Section 6

τm(xj) =
∑
k

αk
j (m)xk.

We write

zn,m(xj ⊗ xm) =
∑
u,v

ruv
jmxu ⊗ xv.
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From the form of the action of E and F on the modules Vt and from the form of
the universal R-matrix we see that the sum is over (u, v) with u+v = j+m. Since
Fxm = 0 for xm ∈ Vm, we also observe directly zm,n(xm ⊗ xn) = qmn/2xn ⊗ xm.
The two expressions for τm+n, applied to xm ⊗ xn ∈ Vm+n ⊂ Vm ⊗ Vn, now yield
the formal identity

αm+n
m+n(m + n) =

∑
k≥0

qmn/2αn−k
n (n)rm−k,n

n−k,mαm
m−n(n).

By (6.7) we have

αm+n
m+n(m + n) = αm+nγm+n,

αn−k
n (n) = αn−kβkq(n−k)kγn−k, and

αm
m−k(m) = αm

[
m

k

]
γm−k.

This already yields a relation of type (7.1). It remains to compute the coefficient
rm−k,n
n−k,m. For this purpose we use the definition zn,m = τ ◦ κ ◦ Ψ of the braiding,

the action of E and F on vectors xj, and the explicit form (6.1) of the operator
Ψ. Put together, this yields

zn,m(xj ⊗ xm) =
∑
k≥0

v•(k)δk[j + 1] · · · [j + k]xm−k ⊗ xj+k

with
•(k) = k(k − 1)/2 + (n− 2j − 2k)(2k −m)/2.

We now have enough data to rewrite the formal identity above and give it the
form (7.1). 2

The dependence of γk on the parameters α and β is not essential. Define,
inductively, polynomials γ′k in θ over ZZ[q, q−1] by setting γ′−1 = 0, γ′0 = 1 and,
for k ≥ 0,

γ′k+1 = qkθγ′k + qk−1δ[k]γ′k−1,

i. e., by setting γ′k(θ, q) = γk(θ, q, 1, 1). A simple rewriting of the recursion formula
then yields the identity

(7.2) γk(θ, q, α, β) = γ′k

(
θ√
αβ

, q

)(
β

α

)k/2

.

Note that γ′k contains only powers θl with l ≡ k mod 2.
Normalize the γ′ to obtain monic polynomials βk(θ) = q−k(k−1)/2γ′k(θ). The

new polynomials are determined by the recursion relation

(7.3) β−1 = 0, β0 = 1, and βk+1 = θβk + (1− q−2k)βk−1 for k ≥ 0.

In order to find an explicit expression for the βk, we introduce a new variable ρ
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via the quadratic relation θ = ρ− ρ−1. We then consider the recursion formally
over the ring ZZ[q, q−1, ρ, ρ−1]. Let us set

Bn(ρ) =
n∑

j=0

(−1)jq−j(n−j)

[
n

j

]
ρn−2j.

(7.4) Proposition. The polynomials β satisfy the identity

βk(ρ− ρ−1) = Bk(ρ).

Proof. We verify the recursion (7.3) with θ replaced by ρ−ρ−1 and βk replaced
by Bk. We use the definition of the Bk in the right hand side of (7.3). Then the
coefficient of ρk+1−2j, for 1 ≤ j ≤ k, turns out to be

(−1)jq−j(k−j

([
k

j

]
+ qk−2j+1

[
k

j − 1

]
− q−jδ[k]

[
k − 1

j − 1

])
.

We use the identity

[k]

[
k − 1

j − 1

]
= [k − j + 1]

[
k

j − 1

]
and arrive at

(−1)jq−j(k−j

([
k

j

]
+ q−k−1

[
k

j − 1

])
.

The Pascal formula (6.9) now shows that this is the coefficient of ρk+1−2j in Bk+1.
It is easy to check that the coefficients of ρ±(k+1) on both sides coincide. 2

We can write ρk+(−1)kρ−k as an integral polynomial Pk in θ where θ = ρ−ρ−1.
That polynomial satisfies the recursion relation

θPk = Pk+1 − Pk−1.

It is possible to write Pk in terms of Tschebischev- or Jacobi-polynomials. The
last proposition says that

βn(θ) =
[n/2]∑
j=0

(−1)jq−j(n−j)

[
n

j

]
Pn−2j(θ).

The product formula (7.1) was a consequence of representation theory. In view
of the applications to be made in Section 8 it is desirable to have a proof which
uses only the recursive definition of the γ-polynomials. We now give such a proof.
By (7.2), it suffices to consider the case α = β = 1.

Second proof of (7.1). We write

Cm,n
k = qmn−k(k+1)/2δk[k]!

[
m

k

][
n

k

]
,
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and want to show that

γm+n =
min(m,n)∑

k=0

Cm,n
k γm−kγn−k.

Denote the right hand side by γ(m, n). Then γ(m, n) = γ(n, m). We will use
the recursion (6.5) and the Pascal formula (6.9), with q replaced by q−1, to
show γ(m + 1, n) = γ(m, n + 1). Since γ(m + n, 0) = γm+n the proof will then
be complete. Set γk = 0 for k < 0. We can then sum just over k ≥ 0. The
C-coefficients satisfy the following Pascal type relation

(7.5) Cm+1,n
k = qn−kCm,n

k + δqn−k+1qm−k[n− k + 1]Cm,n
k−1.

The verification that this is so uses the Pascal formula for
[
m+1

k

]
and a little

rewriting. Next we apply this relation in the sum γ(m + 1, n) and obtain (with
an index shift k → k + 1 in the second summand) the identity

γ(m + 1, n) =
∑
k

qn−kCm,n
k γm−k+1γn−k

+
∑
k

(
δ[n− k]qn−k−1γn−k−1

)
qm−kCm,n

k γm−k.

In the second sum apply the recursion to the factor in parentheses to obtain the
identity

γ(m+1, n) =
∑
k

Cm,n
k (qn−kγm−k+1γn−k +qm−kγm−kγn−k+1−qn+m−2kθγm−kγn−k).

Since γ(m, n) = γ(n, m), we obtain γ(m, n+1) upon interchanging m and n in the
foregoing identity: That interchanges the first two summands in the parentheses
and leaves the third fixed. 2

8. The universal cylinder twist

In this section we work with operators on integrable U -modules. These are K-
linear weak endomorphisms of the category U -INT. Left multiplication by x ∈ U
is such an operator; it will be denoted by x or by lx. If t is an operator, then µ(t)
is the operator on U -INT × U -INT which is given by the action of t on tensor
products of modules. If τ denotes the twist operator, then we define τ(t) = τ◦t◦τ .
We have the compatibilities µ(lx) = lµ(x) and τµ(lx) = lτµ(x). The operators µ(t)
and τ(t) are again weak endomorphisms of the categories involved.

Typical examples of such operators which are not themselves elements of U
are the universal R-matrix R and its factors κ and Ψ, (See (6.1).) as are the
operators L = T ′

i,1 and L# = T ′′
i,1 of Lusztig [8, p. 42].

Since R acts by U -linear maps each operator t satisfies the standard relation

(8.1) R ◦ µ(t) = τµ(t) ◦R
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of a braiding.

An operator t is called a universal cylinder twist on U -INT if it is invertible
and satisfies the analogue of (1.4), namely,

(8.2) µ(t) = τR(1⊗ t)R(t⊗ 1) and

(8.3) τR(1⊗ t)R(t⊗ 1) = (t⊗ 1)τR(1⊗ t)R.

We denote by tV the action of t on the module V . Then (1.3) holds if we use R
to define the braiding. Recall the operator t(α, β) defined at the end of Section
6. Here is the main result, proved following (8.6).

(8.4) Theorem. Suppose αβ = −q. Then t(α, β) is a universal cylinder twist.

We treat the case (α, β) = (−q, 1) in detail and reduce the general case for-
mally to this one. We skip the notation α, β and work with t = LT . Note that
L is Lusztig’s operator referred to above. We collect a few properties of L in the
next lemma.

(8.5) Lemma. The operator L satisfies the following identities:

(1) LEL−1 = −KF , LFL−1 = −EK−1, LKL−1 = K−1.

(2) µ(L) = (L⊗ L)Ψ = τR(L⊗ L)κ−1.

(3) κ(L⊗ 1) = (L⊗ 1)κ−1, κ(1⊗ L) = (1⊗ L)κ−1.

(4) (L⊗ L)Ψ(L⊗ L)−1 = κ ◦ τΨ ◦ κ−1.

Proof. For (1), in the case L#, see [8, Proposition 5.2.4.]. A simple computa-
tion from the definitions yields (3) and (4). For the first equality in (2) see [8,
Proposition 5.3.4]; the second one follows by using (3) and (4). 2

In the universal case one of the axioms for a cylinder twist is redundant,
namely:

(8.6) Proposition. If the operator t satisfies (8.2), then it also satisfies (8.3).

Proof. Apply τ to (8.2) and use (8.1). 2

Proof of theorem (8.4). The operator L is invertible. The operator T is invertible
since its constant term is 1. Thus it remains to verify (8.2). We show that (8.2)
is equivalent to

(8.7) µ(T ) = κ(1⊗ T )κ−1 ◦ (L−1 ⊗ 1)Ψ(L⊗ 1) ◦ (T ⊗ 1),

given the relations of Lemma (8.5). Given (8.2), we have

µ(T ) = µ(L−1)τ(R)(1⊗ LT )κΨ(LT ⊗ 1).

We use (8.5.2) for µ(L−1), cancel τ(R) and its inverse, and then use (8.5.3); (8.7)
drops out. In like manner, (8.2) follows from (8.1).
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In order to prove (8.7), one verifies the following identities from the definitions:

κ(1⊗ T )κ−1 =
∞∑

k=0

γk

[k]!
(Kk ⊗ Ek) and

(L−1 ⊗ 1)Ψ(L⊗ 1) =
∞∑

k=0

(−1)kq−k(k−1)/2 δk

[k]!
KkEk ⊗ Ek.

Using this information, we compute the coefficient of KrEs ⊗ Er on the right
hand side of (8.7) to be

min(r,s)∑
n=0

(−1)nq−n(n−1)/2 δn

[n]![s− n]![r − n]!
γs−nγr−n.

The coefficient of the same element in µ(T ) is, by the q-binomial formula, equal
to

q−rs 1

[s]![r]!
γr+s.

Equality of these coefficients is exactly the product formula (7.1) in the case
where (α, β) = (−q, 1). This finishes the proof of the theorem in this special
case.

A similar proof works in the general case. Specifically, a formal reduction to
the special case uses the following observation. Write α = qζ . Then, formally,
L(α, β) = KζL in case αβ = −q. This fact is used to deduce similar properties
for L# = L(α, β) from lemma (8.5), in particular

L−1
# FL# = α−1βqKE.

The final identity leads to (7.1) in the general case. 2

We point out that the main identity in the construction of the universal twist
involves only the Borel subalgebra of U generated by E and K. Of course, there
is a similar theory based on F and K and another braiding. The constructions
of section 6 show that the universal twist is determined by its action on the
2-dimensional module V1. Hence our main theorem gives all possible universal
cylinder twists associated to the given braided category U -Int.
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