The Fundamental Problem

Rational Points on Hypersurfaces in Projective Space

Jörg Jahnel

Mathematisches Institut der Universität Göttingen

19.07.2006

joint work with Andreas-Stephan Elsenhans

Jörg Ja

> < 돌> . 을 · 이 익 (? 19.07.2006 1 / 44

44

Problem (Diophantine equation) Given $f \in \mathbb{Z}[X_0, ..., X_n]$, describe the set

 $\{(x_0,...,x_n)\in\mathbb{Z}^{n+1}\mid f(x_0,...,x_n)=0\},\$

2 / 44

 (≥)
 ≥
 ()
 ()

 19.07.2006
 4 / 44

explicitly.

The Fundamental Problem

More realistic from computational point of view:

Problem (Diophantine equation – search for solutions) Given $f \in \mathbb{Z}[X_0, ..., X_n]$ and B > 0, describe the set $\{(x_0, ..., x_n) \in \mathbb{Z}^{n+1} \mid f(x_0, ..., x_n) = 0, |x_i| \le B\},$ explicitly.

B is usually called the search limit.

Jörg Jahnel

Geometric Meaning

· Integral points on an *n*-dimensional hypersurface in \mathbf{A}^{n+1} .

Geometric Meaning

- · Integral points on an *n*-dimensional hypersurface in \mathbf{A}^{n+1} .
- · If f is homogeneous: Rational points on an (n-1)-dimensional hypersurface V_f in \mathbf{P}^n .

44

14

A statistical forecast

 $Q(B) := \{(x_0, ..., x_n) \in \mathbb{Z}^{n+1} \mid |x_i| \le B\}$

 $\#Q(B) = (2B+1)^{n+1} \sim C_1 \cdot B^{n+1}.$

On the other hand,

Thus,

Jörg

 $\max_{(x_0,\ldots,x_n)\in Q(B)} |f(x_0,\ldots,x_n)| \sim C_2 \cdot B^{\deg f}.$

Assuming equidistribution of the values of f on Q(B), we are therefore led to expect the asymptotics

 $\#\{(x_0,\ldots,x_n)\in V_f(\mathbb{Q})\mid |x_0|,\ldots,|x_n|\leq B\}\sim C\cdot B^{n+1-\deg f}$

5 / 44

for the number of solutions.

Examples

- The statistical projection explains the following well-known examples. $n+1 - \deg f < 0$: Very few solutions. Example: $x^k + y^k = z^k$ for $k \ge 4$.

Examples

- The statistical projection explains the following well-known examples.
- $n+1 \deg f < 0$: Very few solutions. Example: $x^k + y^k = z^k$ for $k \ge 4$.
- $n + 1 \deg f = 0$: A few solutions. Example: $y^2 z = x^3 + 8xz^2$. Elliptic curves.
- Another Example: $x^4 + 2y^4 = z^4 + 4w^4$. More generally, surfaces of type K3.

Examples

The statistical projection explains the following well-known examples.

44

14

- $n+1 \deg f < 0: \text{ Very few solutions.}$ Example: $x^k + y^k = z^k$ for $k \ge 4$.
- $n+1 \deg f = 0$: A few solutions. Example: $y^2 z = x^3 + 8xz^2$. Elliptic curves. Another Example: $x^4 + 2y^4 = z^4 + 4w^4$. More generally, surfaces of type K3.
- $n+1 \deg f > 0$: Many solutions. Example: $x^2 + y^2 = z^2$. Conics. Another Example: $x^3 + y^3 + z^3 + w^3 = 0$. Cubic surfaces.

A few complications

- Unsolvability

 - Solvability in reals, $x^2 + y^2 + z^2 = 0.$ $\cdot p$ -adic unsolvability, $u^3 + 2v^3 + 7w^3 + 14x^3 + 49y^3 + 98z^3 = 0.$

 - Obstructions against the Hasse principle (Brauer-Manin obstruction, unknown obstructions?).

A few complications

- Unsolvability Unsolvability in reals, $x^2 + y^2 + z^2 = 0.$

 - $\begin{array}{l} p \text{-adic unsolvability,} \\ u^3 + 2v^3 + 7w^3 + 14x^3 + 49y^3 + 98z^3 = 0. \end{array}$

 - Obstructions against the Hasse principle (Brauer-Manin obstruction, unknown obstructions?).
- · "Accumulating" subvarieties: $x^3 + y^3 = z^3 + w^3$ defines a cubic surface V in \mathbf{P}^3 .

 $\#\{(x_0,...,x_n) \in V(\mathbb{Q}) \mid |x_0|,...,|x_n| \le B\} \sim C \cdot B$

is predicted.

However, V contains the line given by $x=z,\;y=w,$ on which there is quadratic growth, already.

The conjectures

Let V_f be a smooth hypersurface in \mathbf{P}^n .

 $\cdot \ n+1-\deg f <$ 0: Then, V_f is a variety of general type. Conjecture (Lang)

All \mathbb{Q} -rational points on V_f are contained in finitely many closed subvarieties $V_1, \ldots, V_l \subsetneq V_f$.

	The conjectures				
_	Let V_f be a smooth hypersurface in \mathbf{P}^n .				
	· $n+1 - \deg f < 0$: Then, V_f is a variety of general type.				
	Conjecture (Lang)				
	All Q-rational points on V_f are contained in finitely many closed subvarieties $V_1,\ldots,V_l\subsetneq V_f.$				
	$\cdot n + 1 - \deg f = 0$: Then, V_f is a variety of intermediate type.				
	Conjecture (Batyrev-Manin)				
	For each $\varepsilon>0,$ there are finitely many closed subvarieties $V_1,\ldots,V_l\subsetneq V_f$ such that				
	$\#\{(x_0,\ldots,x_n)\in V^\circ(\mathbb{Q})\mid x_0 ,\ldots, x_n \leq B\}\ll C\cdot B^\varepsilon,$				
	$V^{\circ} := V_f \setminus (V_1 \cup \cdots \cup V_l).$				

The conjectures II

 \cdot $n+1-\deg f>0$: Then, V_f is a Fano variety.

Conjecture (Manin) $\#\{(x_0, \ldots, x_n) \in V^{\circ}(\mathbb{Q}) \mid |x_0|, \ldots, |x_n| \le B\} \sim C \cdot B^k \log^{r-1} B,$

 $k := n + 1 - \deg f$, $r = \operatorname{rk} \operatorname{Pic} V$. C is an explicit constant (Peyre).

9/44

What is known?

For curves, all the conjectures above are proven (Lang's conjecture: Faltings, Batyrev-Manin conjecture: Mordell-Weil, Manin's conjecture: Fano curves are rational, i.e. isomorphic to **P**¹).

What is known?

- For curves, all the conjectures above are proven (Lang's conjecture: Faltings, Batyrev-Manin conjecture: Mordell-Weil, Manin's conjecture: Fano curves are rational, i.e. isomorphic to \mathbf{P}^1). Manin's conjecture is true for $n \gg 2^{\deg f}$ (circle method). [Birch, B. J.: *Forms in many variables*, Proc. Roy. Soc. Ser. A **265** (1961/1962), 245–263]

14

What is known?

- For curves, all the conjectures above are proven (Lang's conjecture: Faltings, Batyrev-Manin conjecture: Mordell-Weil,
- Manin's conjecture: Fano curves are rational, i.e. isomorphic to ${\bf P}^1).$
- Main's conjecture is true for $n \gg 2^{\deg f}$ (circle method). [Birch, B. J.: Forms in many variables, Proc. Roy. Soc. Ser. A **265** (1961/1962), 245–263]
- If Manin's conjecture is true for X and Y then for $X \times Y$, too (Franke, Manin, Tschinkel).

4

14

What is known? II

Manin's conjecture is established in many particular cases of low dimension, e.g.

- sion, e.g. generalized flag varieties (Franke, Manin, Tschinkel), projective smooth toric varieties (Batyrev and Tschinkel), certain toric fibrations over generalized flag varieties (Strauch and Tschinkel).
- $\begin{array}{l} \mbox{Schinkel}),\\ \mbox{smooth equivariant compactifications of affine spaces (Chambert-Loir and Tschinkel),}\\ P^2_Q \mbox{ blown-up in four points in general position (Salberger, la Brèteche).} \end{array}$

What is known? II

- Manin's conjecture is established in many particular cases of low dimension, e.g.

 - ision, e.g. generalized flag varieties (Franke, Manin, Tschinkel), projective smooth toric varieties (Batyrev and Tschinkel), certain toric fibrations over generalized flag varieties (Strauch and Tschinkel).
 - $_{1}$ scuttment, smooth equivariant compactifications of affine spaces (Chambert-Loir and Tschinkel), $P_{\rm Q}^2$ blown-up in four points in general position (Salberger, la Brèteche).
- The simplest case where Manin's conjecture is open are smooth cu-bic surfaces. (There is, however, a lot of numerical evidence in this case [Peyre-Tschinkel, Heath-Brown].)

Numerical evidence for Manin's Conjecture

Experimental Result (E.+J.)

There is numerical evidence for Manin's Conjecture in the case of the hy persurfaces in $\mathbf{P}^4_{\mathbb{Q}}$ given by $ax^e = by^e + z^e + v^e + w^e$ for e = 3 and 4.

This requires algorithms to

solve Diophantine equations,

Numerical evidence for Manin's Conjecture

Experimental Result (E.+J.)

There is numerical evidence for Manin's Conjecture in the case of the hypersurfaces in $\mathbf{P}_{\mathbb{Q}}^4$ given by $ax^e = by^e + z^e + v^e + w^e$ for e = 3 and 4.

4

14

This requires algorithms to

- $\cdot\,$ solve Diophantine equations,
- · compute Peyre's constant,

Numerical evidence for Manin's Conjecture

Experimental Result (E.+J.)

There is numerical evidence for Manin's Conjecture in the case of the hypersurfaces in \mathbf{P}_Q^4 given by $ax^e = by^e + z^e + v^e + w^e$ for e = 3 and 4.

This requires algorithms to

- solve Diophantine equations,
- compute Peyre's constant,
- detect accumulating subvarieties.

An algorithm to solve Diophantine equations I

The following example was our starting point.

Example (Sir P. Swinnerton-Dyer, 2002)

The equation $x^4+2y^4=z^4+4w^4$ defines a K3 surface S in ${\bf P}^3.$ (1:0:1:0) and (1:0:(-1):0) are Q-rational points on S, the two *obvious* points. Is there another Q-rational point on S?

An algorithm to solve Diophantine equations II

Algorithm (A naive algorithm)

Write $x^4 + 2y^4 - 4w^4 = z^4$ and let x, y, and w run in a triple loop.

Complexity: $C \cdot B^3$. Realistic search bound: 50 000. (We did a trial run with search bound 10 000.) An algorithm to solve Diophantine equations III

Detection of solutions of Diophantine equations – Hashing

$\label{eq:algorithm} \begin{array}{l} \mbox{Algorithm} & \mbox{Algorithm} \\ \mbox{The two sets } \{x^4 + 2y^4 \mid |x|, |y| \leq B\} \mbox{ and } \{z^4 + 4w^4 \mid |z|, |w| \leq B\} \mbox{ have } \\ \sim B^2 \mbox{ elements each. List them and form their intersection.} \end{array}$

Facts $O(B^2 \log B)$ (use sorting, D. Bernstein), $O(B^2)$ (assuming uniform hashing, E.+J.). Complexity: Memory Usage: $O(B^2)$ (naively), O(B) (D. Bernstein's Algorithm - generates the sets in sorted order.)

Our method works for Diophantine equations of the form $f(x_1,\ldots,x_k)=g(y_1,\ldots,y_l).$

Detection of solutions of Diophantine equations -Hashing II

Writing

We store the vectors (x_1,\ldots,x_k) in a hash table (with space for up to 2^{27} entries). The hash function $H: \mathbb{Z} \to [0, 2^{27} - 1]$ is given by a selection of bits, i.e. H(z) := a selection of bits of $(z \mod 2^{64})$.

For each vector (x_1, \ldots, x_k) , the expression $H(f(x_1, \ldots, x_k))$ defines its position in the hash table.

Besides (x_1, \ldots, x_k) , we also write a *control value* $K(f(x_1, \ldots, x_k))$, K(z) := a selection of the remaining bits of $(z \mod 2^{64})$.

Reading

Then, we search for vectors (y_1,\ldots,y_l) such that hash value and control value do fit.

Detection of solutions of Diophantine equations -Hashing III

Remarks

 Assuming uniform hashing (which implies there are not too many so-lutions), the expected running time is O(B^{max(k,l)}). Congruence conditions might help to reduce the O-factor.

Detection of solutions of Diophantine equations -Hashing III

Remarks

- Assuming uniform hashing (which implies there are not too many so-lutions), the expected running time is $O(B^{max(k,l)})$. Congruence conditions might help to reduce the $\ensuremath{\mathcal{O}}\xspace$ factor.
- · The algorithm actually detects pseudo-solutions where a coincidence of the control values and an "almost coincidence" of the hash values occurs.

Some *post processing* with an exact multiprecision calculation is necessary (ARIBAS, GMP).

14

How to reduce memory usage when hashing?

Idea (Paging) Choose $m \in \mathbb{Z}$ sufficiently large. Form the sets

 $L_c := \{ f(x_1, \dots, x_k) \mid |x_1|, \dots, |x_k| \le B, f(x_1, \dots, x_k) \equiv c \pmod{m} \}$ and

 $R_c := \{g(y_1, \ldots, y_l) \mid |y_1|, \ldots, |y_l| \le B, g(y_1, \ldots, y_l) \equiv c \pmod{m}\}.$

Memory usage: $B^{\max(k,l)}/m$ (assuming equidistribution).

Optimization through congruence conditions I

x and z are odd. y and w are even

- Case 1: 5|y, w ($\Longrightarrow 5|x, z$). Then, $x^4 \equiv z^4$ (mod 625). We write pairs (x, z) and hash $x^4 z^4$. We read $4w^4 2y^4$.
- Case 2: $5|x, y \quad (\Longrightarrow 5 \nmid z, w)$. Then, $z^4 + 4w^4 \equiv 0 \pmod{625}$.

Here, we write pairs (z, w) and hash $z^4 + 4w^4$. We read $x^4 + 2y^4$.

These congruences are particularly strong. They reduce the number of writing steps to 0.512% and the number of reading steps to 4%

Optimization through congruence conditions ${\sf II}$

Further congruences:

step.

- · Some congruences modulo small powers of 2: In Case 1, we always have $32|4w^4 - 2y^4$. But $32|x^4 - z^4$ implies $x \equiv \pm z \pmod{8}$. This saves on writing.
- No such optimization for Case 2.
- Some congruences modulo 81:
- In Case 1, $2y^4 4w^4$ represents (0 mod 3) only trivially. Therefore, we do not need to write (x, z) when $x^4 \equiv z^4 \pmod{3}$ but $x^4 \not\equiv z^4 \pmod{3}$.
- In Case 2, there is a similar congruence which saves on the reading

A new solution -

Answer to Sir P. Swinnerton-Dyer's question I

Calculation ==> 1484801**4 + 2 * 1203120**4. -: 90509_10498_47564_80468_99201

==> 1169407**4 + 4 * 1157520**4. -: 90509_10498_47564_80468_99201

Theorem (E.+J.)

Up to changes of sign, (1484 801 : 1203120 : 1169407 : 1157520) is the only non-obvious Q-rational point of height $\leq 10^8$ on Sir P. Swinnerton-Dyer's surface S. This means, on S there exist precisely ten $\mathbbm{Q}\text{-}rational \ points \ of \ height \leq 10^8.$

A new solution -

Answer to Sir P. Swinnerton-Dyer's question II

Remarks

- The new solution was found on December 2, 2004 by an intermediate version of our programs for search bound $2.5\cdot 10^6.$
- The final version of the programs (for search bound 10^8) took almost exactly 100 days of CPU time on an AMD Opteron 248 processor. This time is composed almost equally of 50 days for Case 1 and 50 days for Case 2.
- The main computation was executed in parallel on two machines in February and March, 2005.

A new solution -

Answer to Sir P. Swinnerton-Dyer's question III

Question What is the asymptotics of $\#\{(x,y,z,w)\in S(\mathbb{Q}))\mid H_{\mathsf{naive}}(p)\leq B\}$ for $B \rightarrow \infty$?

A wild guess:

 $\#\{(x,y,z,w)\in S\mid H_{\mathsf{naive}}(p)\leq B\}\sim (\log B)^{\alpha}$ (similarly to abelian surfaces where $\alpha = \mathsf{rk}(S(\mathbb{Q}))/2$.)

An even wilder guess: $\alpha = 1/2$.

Manin's Conjecture – Peyre's constant I

Recall, we consider the hypersurfaces in $\boldsymbol{\mathsf{P}}^4_{\mathbb{Q}}$ given by

 $ax^e - by^e = z^e + v^e + w^e$

for e = 3 and 4.

Remarks

- * Search for Q-rational points is obviously of complexity O(B³).
- When considering O(B) varieties (differing only by a and b), simultaneously, then the running-time is still $O(B^3)$. We considered the varieties with a, $b=1,\ldots,100$ (5000 cubics, 10000 quartics) with a search bound of 5000 (cubics) and 100000 (quartics).

Manin's Conjecture – Peyre's constant II

Conjecture (Manin's Conjecture – Version for hypersurfaces in \mathbf{P}^n) Let the smooth variety $V_f \subset \mathbf{P}^n$ be given by f = 0. Then, $\#\{(x_0, \dots, x_n) \in V^{\circ}(\mathbb{Q}) \mid |x_0|, \dots, |x_n| \le B\} \sim C \cdot B^k \log^{r-1} B$,

for $k = n + 1 - \deg(f)$ and $r = rk \operatorname{Pic} V$.

Here, C is an explicit constant (due to E. Peyre), [Peyre, E.: Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J. **79** (1995), 101–218, Définition 2.3]

26 / 44

14

Manin's Conjecture – Peyre's constant III

Definition (Peyre's constant)
For
$$n \ge 4$$
, Peyre's constant is the Tamagawa-type number

$$C = \prod_{p \in \mathbb{P} \cup \{\infty\}} \left(1 - \frac{1}{p}\right) \tau_p$$
where

$$\tau_p = \lim_{m \to \infty} \frac{\# V(\mathbb{Z}/p^m \mathbb{Z})}{p^{m \dim(V)}} \quad \text{for } p \in \mathbb{P}$$
and

$$\tau_{\infty} = \frac{1}{2} \int_{\substack{I \mid (v_0, \dots, v_0) = 0 \\ |v_i| \le 1}} \frac{1}{\frac{\partial I}{\partial y_i}} dx_0 \dots dx_j \dots dx_n.$$

An algorithm to *count* solutions I

To compute Peyre's constant, the main work to be done is to *count* solutions of the same equation $f(x_0, \ldots, x_n) = 0$ but over finite fields \mathbb{F}_p instead of \mathbb{Z} .

Consider an equation of the form

$$(+)$$

$$\sum_{i=0}^n f_i(x_i) = 0.$$

Denote by $d^{(i)}(k) := \#\{x \in \mathbb{F}_p \mid f_i(x) = k\}$ the numbers of representations. Then, the number of solutions of (+) is equal to $(d^{(0)} * d^{(1)} * \dots * d^{(n)})(0).$

Use FFT convolution to compute $d^{(0)} * d^{(1)} * \ldots * d^{(n)}$.

An algorithm to *count* solutions II

Remarks (Complexity)

· We need to compute n convolutions of vectors of length p.

• A convolution takes $O(p \log p)$ steps.

An algorithm to compute Peyre's constant

Algorithm (FFT point counting on						
$V^e_{a,b}: ax^e = by^e + z^e + v^e + w^e,$						
$e=3,4$ over $\mathbb{F}_p)$						
• Initialize a vector $X[0 \dots p]$ with zeroes.						

44

44

An algorithm to compute Peyre's constant

Algorithm (FFT point counting on $V^e_{a,b} \colon ax^e = by^e + z^e + v^e + w^e,$ $e=3,4 \text{ over } \mathbb{F}_p)$

Initialize a vector X[0 ... p] with zeroes.

• Let r run from 0 to p-1 and increase $X[r^e \mod p]$ by 1.

An algorithm to compute Peyre's constant

Algorithm (FFT point counting on

$V^e_{a,b}$: $ax^e = by^e + z^e + v^e$

e = 3, 4 over \mathbb{F}_p)

- Initialize a vector X[0 ... p] with zeroes.
- Let $r \text{ run from 0 to } p-1 \text{ and increase } X[r^e \mod p] \text{ by 1}.$
- * Calculate $\tilde{Y} := X * X * X$ by FFT convolution.

An algorithm to compute Peyre's constant

Jörg Jahnel

Algorithm (FFT point counting on $V_{a,b}^e$; $ax^e = by^e + z^e + v^e + w^e$, e = 3, 4 over \mathbb{F}_p) \circ Initialize a vector $X[0 \dots p]$ with zeroes. \circ Let r run from 0 to p - 1 and increase $X[r^e \mod p]$ by 1.

- Calculate $\tilde{Y} := X * X * X$ by FFT convolution. • Normalize by putting $Y[i] := \tilde{Y}[i] + \tilde{Y}[i + p] + \tilde{Y}[i + 2p]$ for $i = 0, \ldots, p - 1$.
- (Now, Y[i] is the number of solutions of $z^e + v^e + w^e \equiv i \pmod{p}$.)

0 / 44

Algorithm to compute Peyre's constant II

4

44

Initialize N as zero.

Algorithm to compute Peyre's constant II

Initialize N as zero.

^a (Counting points with $x \neq 0$) Let *j* run from 0 to p - 1 and increase *N* by $Y[(a - bj^4) \mod p]$.

Algorithm to compute Peyre's constant II

Initialize N as zero.

- Initialize N as zero.
 (Counting points with x ≠ 0) Let j run from 0 to p 1 and increase N by Y[(a bj⁴) mod p].
 (Adding points with x = 0 and y ≠ 0) Increase N by Y[(-b) mod p].

Algorithm to compute Peyre's constant II

Initialize N as zero.

- Initialize N as zero.
 (Counting points with x ≠ 0) Let j run from 0 to p − 1 and increase N by Y[(a − bj⁴) mod p].
 (Adding points with x = 0 and y ≠ 0) Increase N by Y[(−b) mod p].
 (Adding points with x = y = 0) Increase N by (Y[0] − 1)/(p − 1).

Algorithm to compute Peyre's constant II

Initialize N as zero.

- Initiatize N as zero.
 (Counting points with x ≠ 0) Let j run from 0 to p 1 and increase N by Y[(a bj⁴) mod p].
 (Adding points with x = 0 and y ≠ 0) Increase N by Y[(-b) mod p].
- * (Adding points with x = y = 0) Increase N by (Y[0] 1)/(p 1).
- * Return N as the number of all \mathbb{F}_{p} -valued points on $V_{a,b}^{e}$.

Algorithm to compute Peyre's constant III

Remarks · For the running-time, step 3 is dominant. Therefore, the running-time of the algorithm is $O(p \log p)$.

Algorithm to compute Peyre's constant III

Remarks

- · For the running-time, step 3 is dominant. Therefore, the running-time of the algorithm is $O(p \log p)$.
- To count, for fixed e and p, \mathbb{F}_{p} -rational points on $V_{a,b}^{a}$ with varying a and b, one needs to execute the first four steps only once. Afterwards, one may perform steps 5 through 9 for all pairs (a, b) of elements from a system of representatives for $\mathbb{F}_{p}^{*}/(\mathbb{F}_{p}^{*})^{e}$ (i.e. at most e^{2} times). Note that steps 5 through 9 alone are of complexity O(p).

Algorithm to compute Peyre's constant $\ensuremath{\mathsf{III}}$

Remarks

- · For the running-time, step 3 is dominant. Therefore, the running-time of the algorithm is $O(p \log p)$.
- To count, for fixed e and p, \mathbb{F}_{p} -rational points on $V_{a,b}^{s}$ with varying a and b, one needs to execute the first four steps only once. Afterwards, one may perform steps 5 through 9 for all pairs (a, b) of elements from a system of representatives for $\mathbb{F}_{p}^{*}/(\mathbb{F}_{p}^{*})^{e}$ (i.e. at most e^{2} times). Note that steps 5 through 9 alone are of complexity O(p).
- For $p \equiv 2 \pmod{3}$, one has $\#V^3_{a,b}(\mathbb{F}_p) = p^3 + p^2 + p + 1$. Analogously, for $p \equiv 3 \pmod{4}$, $\#V^4_{a,b}(\mathbb{F}_p) = p^3 + p^2 + p + 1$.

Algorithm to compute Peyre's constant III

Remarks

- For the running-time, step 3 is dominant. Therefore, the running-time of the algorithm is O(p log p).
- To count, for fixed e and p, \mathbb{F}_{p} -rational points on $V_{a,b}^{e}$ with varying a and b, one needs to execute the first four steps only once. Afterwards, one may perform steps 5 through 9 for all pairs (a, b) of elements from a system of representatives for $\mathbb{F}_{p}^{*}/(\mathbb{F}_{p}^{*})^{e}$ (i.e. at most e^{2} times). Note that steps 5 through 9 alone are of complexity O(p).
- For $p \equiv 2 \pmod{3}$, one has $\#V_{a,b}^3(\mathbb{F}_p) = p^3 + p^2 + p + 1$. Analogously, for $p \equiv 3 \pmod{4}$, $\#V_{a,b}^4(\mathbb{F}_p) = p^3 + p^2 + p + 1$.
- We ran this algorithm for all primes $p \le 10^6$ (such that $p \equiv 1 \pmod{3}$ and $p \equiv 1 \pmod{4}$, respectively,) and stored the cardinalities in a file. This took several days of CPU time.

Algorithm to compute Peyre's constant ${\sf IV}$

Examples
• $x^4 = y^4 + z^4 + v^4 + w^4$
defines a smooth quartic threefold V in $\mathbb{F}_p,p=269117.$ We find
$\#V(\mathbb{F}_p) = p^3 + p^2 + p + 1 + 7028p.$
• $11x^4 = 13y^4 + z^4 + v^4 + w^4$
defines a smooth quartic threefold V in $\mathbb{F}_p,p=269089.$ We find
$\#V(\mathbb{F}_p) = p^3 + p^2 + p + 1 - 840p.$

Note that both examples are within the Weil bound which says $\#V(\mathbb{F}_p)=p^3+p^2+p+1+C$ with $|C|\leq 60p^{3/2}$ in the case of a smooth quartic threefold.

Algorithm to compute Peyre's constant ${\sf V}$

Algorithm (Compute an approximate value for $au^3_{a,b,fin}$ $(au^4_{a,b,fin}))$

• Let p run over all prime numbers such that $p \equiv 2 \pmod{4}$ ($p \equiv 3 \pmod{4}$) and $p \leq N$ and calculate the product of all values of $(1 - 1/p^4)$.

Algorithm to compute Peyre's constant V Algorithm (Compute an approximate value for $\tau^3_{a,b,fin}$ ($\tau^4_{a,b,fin}$))

- Let p run over all prime numbers such that $p \equiv 2 \pmod{3}$ ($p \equiv 3 \pmod{4}$) and $p \leq N$ and calculate the product of all values of $(1 - 1/p^4)$.
- Compute the factor corresponding to p = 3 (p = 2).

Algorithm to compute Peyre's constant V

Algorithm (Compute an approximate value for $au_{a,b, \mathit{fin}}^3\left(au_{a,b, \mathit{fin}}^4 ight)$

- · Let p run over all prime numbers such that $p \equiv 2 \pmod{3}$ $(p \equiv 3 \pmod{4})$ and $p \leq N$ and calculate the product of all values of $(1 1/p^4)$.
- Compute the factor corresponding to p = 3 (p = 2).
- Let p run over all prime numbers such that $p \equiv 1 \pmod{3}$ ($p \equiv 1 \pmod{4}$) and $p \leq N$. If $p \mid ab$ then start a separate function for the case of bad reduction. Otherwise, compute the *e*-th power residue-symbols of *a* and *b* and look

up the precomputed factor for this $\mathbb{F}_{p^{-1}}$ isomorphism class of varieties in the list.

Algorithm to compute Peyre's constant V

Algorithm (Compute an approximate value for $au_{a,b,fin}^3\left(au_{a,b,fin}^4 ight)$)

- * Let p run over all prime numbers such that $p\equiv 2 \pmod{3}$ $(p\equiv 3 \pmod{4})$ and $p\leq N$ and calculate the product of all values of $(1-1/p^4).$
- Compute the factor corresponding to p = 3 (p = 2).
- Let p run over all prime numbers such that $p \equiv 1 \pmod{3}$ ($p \equiv 1 \pmod{4}$) and $p \leq N$. If p|ab then start a separate function for the case of bad reduction. Otherwise, compute the e-th power residue-symbols of a and b and look
 - Utherwise, compute the e-th power residue-symbols of a and b and look up the precomputed factor for this \mathbb{F}_{p} -isomorphism class of varieties in the list.
- Multiply the two products from steps i) and iii) and the factor from step ii) with each other. Correct the product by taking the bad primes $p \equiv 2 \pmod{p} \equiv 3 \pmod{p}$ into consideration.

Investigation of the cubic threefolds I

We determined all Q-rational points of height less than 5000 on the cubic threefolds $V^3_{a,b}$ given by

 $ax^3 = by^3 + z^3 + v^3 + w^3$

for $a, b = 1, \ldots, 100$ and $b \leq a$.

Points lying on a Q-rational line in $V_{a,b}$ were excluded from the count. The smallest number of points found is 3930278 for (a, b) = (98, 95). The largest numbers of points are 332137752 for (a, b) = (7, 1) and 355689300 in the case that a = 1 and b = 1.

On the other hand, for each threefold $V^3_{a,b}$ where $a, b = 1, \ldots, 100$ and $b + 3 \leq a$, we calculated the number of points expected (according to Manin-Peyre) and the quotients

 $\# \ \{ \ {\rm points \ of \ height} < B \ {\rm found} \ \} \ / \ \# \ \{ \ {\rm points \ of \ height} < B \ {\rm expected} \ \}.$

Let us visualize the quotients by two histograms.

Investigation of the cubic threefolds $\ensuremath{\mathsf{II}}$

Investigation of the cubic threefolds III

Table: Parameters of the distribution in the cubic case $B = 1\,000$ $B = 2\,000$ $B = 5\,000$ mean value 0.98179 0.98854 0.99383 standard deviation 0.01274 0.00823 0.00455

44

44

Investigation of the quartic threefolds I

We determined all Q-rational points of height less than 100 000 on the quartic threefolds $V^4_{a,b}$ given by

$$ax^4 = by^4 + z^4 + v^4 + w^4$$

for $a, b = 1, \dots, 100$.

Jörg Jahnel (Univ

It turns out that on 5015 of these varieties, there are no Q-rational points occurring at all as the equation is unsolvable in Q_p for p = 2, 5, or 29. In this situation, Manin's conjecture is true, trivially. For the remaining varieties, the points lying on a known Q-rational conic in V_{a,b} were excluded from the count.

0

> < ≥> ≥ ⊙ Q O 19.07.2006 38 / 44

Investigation of the quartic threefolds II

Table: Numbers of points of height < 100000 on the quartics.							
	а	Ь	# points	# not on conic	# expected		
					(by Manin-Peyre)		
	29	29	2	2	135		
	58	87	288	288	272		
	58	58	290	290	388		
	87	87	386	386	357		
	÷	:	:	:			
	34	1	9 938 976	5 691 456	5 673 000		
	17	64	5 708 664	5 708 664	5 643 000		
	1	14	7 205 502	6 361 638	6 483 000		
	3	1	12 657 056	7 439 616	7 526 000		
				•			

Investigation of the quartic threefolds $\ensuremath{\mathsf{III}}$

Figure: Distribution of the quotients for B = 1000 and B = 10000.

0 / 44

Investigation of the quartic threefolds IV

Figure: Distribution of the quotients for $B = 50\,000$ and $B = 100\,000$.

41 / 44

Remark In the cubic case, the standard deviation was by far smaller than in the case of the quartics. This is not very surprising as on a cubic there tend to be much more rational points than on a quartic. Thus, in the case of the cubic the sample is more reliable.

44

44

Investigation of the quartic threefolds VI

search limit 50000 - color represents quotient at limit 10000

Figure: number of solutions and quotients for $B = 50\,000$.

44

Summary Summary

Jörg Ja

Summary • To search systematically for solutions of Diophantine equations like $x^4 + 2y^4 = z^4 + 4w^4$ or $7x^3 = 11y^3 + z^3 + v^3 + w^3$ ($n \ge 4$ variables), there are faster ways than the obvious (n - 1)-times iterated loop. (Essentially in $O(B^{\lceil n/2 \rceil})$ steps).

Summary Summary

- To search systematically for solutions of Diophantine equations like $x^4 + 2y^4 = z^4 + 4w^4$ or $7x^3 = 11y^3 + z^3 + w^3$ ($n \ge 4$ variables), there are faster ways than the obvious (n 1)-times iterated loop. (Essentially in $O(B^{\lceil n/2 \rceil})$ steps).
- To count solutions over \mathbb{F}_p (not determining all of them) is even faster ($O(np \log p)$ steps).

4

Summary

- - To count solutions over \mathbb{F}_p (not determining all of them) is even faster ($O(np \log p)$ steps).
- These two observations together may be used to test Manin's conjecture, numerically.

Summary

- $\label{eq:summary} \begin{array}{l} \hline \textbf{Summary} \\ \hline \textbf{Sometry} & \textbf{Sometrically for solutions of Diophantine equations like $$x^4+2y^4=z^4+4w^4$ or $7x^3=11y^3+z^3+v^3+w^3$ ($n\geq4$ variables$), there are faster ways than the obvious ($n-1$)-times iterated loop. (Essentially in $O(B^{[n/2]})$ steps). \end{array}$
- To count solutions over \mathbb{F}_p (not determining all of them) is even faster (O(np log p) steps).
- These two observations together may be used to test Manin's conjecture, numerically.

Remark (Conclusion)

The results suggest that Manin's conjecture should be true for the two families of threefolds considered.