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The Fundamental Problem

Problem (Diophantine equation)

Given f ∈ Z[X0, . . . ,Xn], describe the set

{(x0, . . . , xn) ∈ Z
n+1 | f (x0, . . . , xn) = 0},

explicitly.
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The Fundamental Problem

More realistic from computational point of view:

Problem (Diophantine equation – search for solutions)

Given f ∈ Z[X0, . . . ,Xn] and B > 0, describe the set

{(x0, . . . , xn) ∈ Z
n+1 | f (x0, . . . , xn) = 0, |xi | ≤ B},

explicitly.

B is usually called the search limit.
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Geometric Meaning

Integral points on an n-dimensional hypersurface in A
n+1.
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Geometric Meaning

Integral points on an n-dimensional hypersurface in An+1.

If f is homogeneous: Rational points on an (n− 1)-dimensional hyper-
surface Vf in Pn.
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A statistical forecast

Q(B) := {(x0, . . . , xn) ∈ Z
n+1 | |xi | ≤ B}

Thus,
#Q(B) = (2B + 1)n+1 ∼ C1 ·B

n+1.

On the other hand,

max
(x0,...,xn)∈Q(B)

|f (x0, . . . , xn)| ∼ C2 ·B
deg f .

Assuming equidistribution of the values of f on Q(B), we are therefore led
to expect the asymptotics

#{(x0, . . . , xn) ∈ Vf (Q) | |x0|, . . . , |xn| ≤ B} ∼ C ·Bn+1−deg f

for the number of solutions.
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Examples

The statistical projection explains the following well-known examples.

n + 1 − deg f < 0: Very few solutions.
Example: xk + yk = zk for k ≥ 4.
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Examples

The statistical projection explains the following well-known examples.

n + 1 − deg f < 0: Very few solutions.
Example: xk + yk = zk for k ≥ 4.

n + 1 − deg f = 0: A few solutions.
Example: y2z = x3 + 8xz2.
Elliptic curves.

Another Example: x4 + 2y4 = z4 + 4w4.
More generally, surfaces of type K3.
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Examples

The statistical projection explains the following well-known examples.

n + 1 − deg f < 0: Very few solutions.
Example: xk + yk = zk for k ≥ 4.

n + 1 − deg f = 0: A few solutions.
Example: y2z = x3 + 8xz2.
Elliptic curves.

Another Example: x4 + 2y4 = z4 + 4w4.
More generally, surfaces of type K3.

n + 1 − deg f > 0: Many solutions.
Example: x2 + y2 = z2.
Conics.

Another Example: x3 + y3 + z3 + w3 = 0.
Cubic surfaces.
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A few complications

Unsolvability

Unsolvability in reals,
x2 + y2 + z2 = 0.

p-adic unsolvability,
u3 + 2v3 + 7w3 + 14x3 + 49y3 + 98z3 = 0.

Obstructions against the Hasse principle
(Brauer-Manin obstruction, unknown obstructions?).

Q
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A few complications

Unsolvability

Unsolvability in reals,
x2 + y2 + z2 = 0.

p-adic unsolvability,
u3 + 2v3 + 7w3 + 14x3 + 49y3 + 98z3 = 0.

Obstructions against the Hasse principle
(Brauer-Manin obstruction, unknown obstructions?).

“Accumulating” subvarieties:

x3 + y3 = z3 + w3 defines a cubic surface V in P3.

#{(x0, . . . , xn) ∈ V (Q) | |x0|, . . . , |xn| ≤ B} ∼ C ·B

is predicted.

However, V contains the line given by x = z , y = w , on which there
is quadratic growth, already.
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The conjectures

Let Vf be a smooth hypersurface in Pn.

n + 1 − deg f < 0: Then, Vf is a variety of general type.

Conjecture (Lang)

All Q-rational points on Vf are contained in finitely many closed subvarieties
V1, . . . ,Vl ( Vf .

Q
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The conjectures

Let Vf be a smooth hypersurface in Pn.

n + 1 − deg f < 0: Then, Vf is a variety of general type.

Conjecture (Lang)

All Q-rational points on Vf are contained in finitely many closed subvarieties
V1, . . . ,Vl ( Vf .

n + 1 − deg f = 0: Then, Vf is a variety of intermediate type.

Conjecture (Batyrev-Manin)

For each ε > 0, there are finitely many closed subvarieties V1, . . . ,Vl ( Vf

such that

#{(x0, . . . , xn) ∈ V ◦(Q) | |x0|, . . . , |xn| ≤ B} ≪ C ·Bε,

V ◦ := Vf \ (V1 ∪ · · · ∪ Vl).
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The conjectures II

n + 1 − deg f > 0: Then, Vf is a Fano variety.

Conjecture (Manin)

#{(x0, . . . , xn) ∈ V ◦(Q) | |x0|, . . . , |xn| ≤ B} ∼ C ·Bk logr−1 B,

k := n + 1 − deg f , r = rk Pic V . C is an explicit constant (Peyre).

Jörg Jahnel (Universität Göttingen) Rational Points on Hypersurfaces 19. 07. 2006 9 / 44

What is known?

For curves, all the conjectures above are proven
(Lang’s conjecture: Faltings,
Batyrev-Manin conjecture: Mordell-Weil,
Manin’s conjecture: Fano curves are rational, i.e. isomorphic to P1).
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What is known?

For curves, all the conjectures above are proven
(Lang’s conjecture: Faltings,
Batyrev-Manin conjecture: Mordell-Weil,
Manin’s conjecture: Fano curves are rational, i.e. isomorphic to P1).

Manin’s conjecture is true for n ≫ 2deg f (circle method).
[Birch, B. J.: Forms in many variables, Proc. Roy. Soc. Ser. A 265

(1961/1962), 245–263]
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What is known?

For curves, all the conjectures above are proven
(Lang’s conjecture: Faltings,
Batyrev-Manin conjecture: Mordell-Weil,
Manin’s conjecture: Fano curves are rational, i.e. isomorphic to P1).

Manin’s conjecture is true for n ≫ 2deg f (circle method).
[Birch, B. J.: Forms in many variables, Proc. Roy. Soc. Ser. A 265

(1961/1962), 245–263]

If Manin’s conjecture is true for X and Y then for X ×Y , too (Franke,
Manin, Tschinkel).
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What is known? II

Manin’s conjecture is established in many particular cases of low di-
mension, e.g.

generalized flag varieties (Franke, Manin, Tschinkel),
projective smooth toric varieties (Batyrev and Tschinkel),
certain toric fibrations over generalized flag varieties (Strauch and
Tschinkel),
smooth equivariant compactifications of affine spaces (Chambert-Loir
and Tschinkel),
P2
Q blown-up in four points in general position (Salberger, la Brèteche).
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What is known? II

Manin’s conjecture is established in many particular cases of low di-
mension, e.g.

generalized flag varieties (Franke, Manin, Tschinkel),
projective smooth toric varieties (Batyrev and Tschinkel),
certain toric fibrations over generalized flag varieties (Strauch and
Tschinkel),
smooth equivariant compactifications of affine spaces (Chambert-Loir
and Tschinkel),
P2
Q blown-up in four points in general position (Salberger, la Brèteche).

The simplest case where Manin’s conjecture is open are smooth cu-
bic surfaces. (There is, however, a lot of numerical evidence in this case
[Peyre-Tschinkel, Heath-Brown].)
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Numerical evidence for Manin’s Conjecture

Experimental Result (E.+J.)

There is numerical evidence for Manin’s Conjecture in the case of the hy-
persurfaces in P4

Q given by axe = by e + ze + v e + w e for e = 3 and 4.

This requires algorithms to

solve Diophantine equations,
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Numerical evidence for Manin’s Conjecture

Experimental Result (E.+J.)

There is numerical evidence for Manin’s Conjecture in the case of the hy-
persurfaces in P4

Q given by axe = by e + ze + v e + w e for e = 3 and 4.

This requires algorithms to

solve Diophantine equations,

compute Peyre’s constant,

detect accumulating subvarieties.
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An algorithm to solve Diophantine equations I

The following example was our starting point.

Example (Sir P. Swinnerton-Dyer, 2002)

The equation
x4 + 2y4 = z4 + 4w4

defines a K3 surface S in P3.

(1 : 0 : 1 : 0) and (1 : 0 : (−1) : 0) are Q-rational points on S , the two
obvious points.

Is there another Q-rational point on S?
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An algorithm to solve Diophantine equations II

Algorithm (A naive algorithm)

Write x4 + 2y4 − 4w4 = z4 and let x , y , and w run in a triple loop.

Complexity: C ·B3.

Realistic search bound: 50 000.
(We did a trial run with search bound 10 000.)
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An algorithm to solve Diophantine equations III

Algorithm (A better algorithm)

The two sets {x4 + 2y4 | |x |, |y | ≤ B} and {z4 + 4w4 | |z |, |w | ≤ B} have
∼B2 elements each. List them and form their intersection.

Facts

Complexity: O(B2 log B) (use sorting, D. Bernstein),
O(B2) (assuming uniform hashing, E.+J.).

Memory Usage: O(B2) (naively),
O(B) (D. Bernstein’s Algorithm

– generates the sets in sorted order.)
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Detection of solutions of Diophantine equations – Hashing

Our method works for Diophantine equations of the form

f (x1, . . . , xk) = g(y1, . . . , yl).
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Detection of solutions of Diophantine equations –
Hashing II

Writing

We store the vectors (x1, . . . , xk) in a hash table (with space for up to 227

entries).

The hash function H : Z → [0, 227 − 1] is given by a selection of bits, i.e.
H(z) := a selection of bits of (z mod 264).

For each vector (x1, . . . , xk), the expression H(f (x1, . . . , xk)) defines its po-
sition in the hash table.

Besides (x1, . . . , xk), we also write a control value K (f (x1, . . . , xk)),
K (z) := a selection of the remaining bits of (z mod 264).

Reading

Then, we search for vectors (y1, . . . , yl) such that hash value and control
value do fit.
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Detection of solutions of Diophantine equations –
Hashing III

Remarks
1 Assuming uniform hashing (which implies there are not too many so-

lutions), the expected running time is O(Bmax(k,l)).

Congruence conditions might help to reduce the O-factor.
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Detection of solutions of Diophantine equations –
Hashing III

Remarks
1 Assuming uniform hashing (which implies there are not too many so-

lutions), the expected running time is O(Bmax(k,l)).

Congruence conditions might help to reduce the O-factor.

2 The algorithm actually detects pseudo-solutions where a coincidence of
the control values and an “almost coincidence” of the hash values oc-
curs.

Some post processing with an exact multiprecision calculation is nec-
essary (ARIBAS, GMP).
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How to reduce memory usage when hashing?

Idea (Paging)

Choose m ∈ Z sufficiently large. Form the sets

Lc := {f (x1, . . . , xk) | |x1|, . . . , |xk | ≤ B, f (x1, . . . , xk) ≡ c (mod m)}

and

Rc := {g(y1, . . . , yl) | |y1|, . . . , |yl | ≤ B, g(y1, . . . , yl) ≡ c (mod m)}.

Memory usage: Bmax(k,l)/m (assuming equidistribution).
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Optimization through congruence conditions I

x and z are odd. y and w are even.

Case 1: 5|y , w (=⇒ 5 ∤ x , z).
Then, x4 ≡ z4 (mod 625).
We write pairs (x , z) and hash x4 − z4. We read 4w4 − 2y4.

Case 2: 5|x , y (=⇒ 5 ∤ z ,w).
Then, z4 + 4w4 ≡ 0 (mod 625).
Here, we write pairs (z , w) and hash z4 + 4w4. We read x4 + 2y4.

These congruences are particularly strong. They reduce the number of
writing steps to 0.512% and the number of reading steps to 4%.
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Optimization through congruence conditions II

Further congruences:

Some congruences modulo small powers of 2:

In Case 1, we always have 32|4w4 − 2y4. But 32|x4 − z4 implies
x ≡ ±z (mod 8). This saves on writing.

No such optimization for Case 2.

Some congruences modulo 81:

In Case 1, 2y4 − 4w4 represents (0 mod 3) only trivially. There-
fore, we do not need to write (x , z) when x4 ≡ z4 (mod 3) but
x4 6≡ z4 (mod 81).

In Case 2, there is a similar congruence which saves on the reading
step.
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A new solution –
Answer to Sir P. Swinnerton-Dyer’s question I

Calculation
==> 1484801**4 + 2 * 1203120**4.

-: 90509 10498 47564 80468 99201

==> 1169407**4 + 4 * 1157520**4.

-: 90509 10498 47564 80468 99201

Theorem (E.+J.)

Up to changes of sign, (1 484 801 : 1 203 120 : 1 169 407 : 1 157 520) is the
only non-obvious Q-rational point of height ≤ 108 on Sir P. Swinnerton-
Dyer’s surface S.

This means, on S there exist precisely ten Q-rational points of height ≤ 108.
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A new solution –
Answer to Sir P. Swinnerton-Dyer’s question II

Remarks

The new solution was found on December 2, 2004 by an intermediate
version of our programs for search bound 2.5 · 106.

The final version of the programs (for search bound 108) took almost
exactly 100 days of CPU time on an AMD Opteron 248 processor.
This time is composed almost equally of 50 days for Case 1 and 50 days
for Case 2.

The main computation was executed in parallel on two machines in
February and March, 2005.
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A new solution –
Answer to Sir P. Swinnerton-Dyer’s question III

Question

What is the asymptotics of #{(x , y , z ,w) ∈ S(Q)) | Hnaive(p) ≤ B} for
B → ∞?

A wild guess:

#{(x , y , z , w) ∈ S | Hnaive(p) ≤ B} ∼ (log B)α

(similarly to abelian surfaces where α = rk(S(Q))/2.)

An even wilder guess: α = 1/2.
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Manin’s Conjecture – Peyre’s constant I

Recall, we consider the hypersurfaces in P4
Q given by

axe − by e = ze + v e + w e

for e = 3 and 4.

Remarks

1 Search for Q-rational points is obviously of complexity O(B3).

2 When considering O(B) varieties (differing only by a and b), simulta-
neously, then the running-time is still O(B3).

We considered the varieties with a, b = 1, . . . , 100 (5 000 cubics, 10 000
quartics) with a search bound of 5 000 (cubics) and 100 000 (quartics).
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Manin’s Conjecture – Peyre’s constant II

Conjecture (Manin’s Conjecture – Version for hypersurfaces in Pn)

Let the smooth variety Vf ⊂ Pn be given by f = 0. Then,

#{(x0, . . . , xn) ∈ V ◦(Q) | |x0|, . . . , |xn| ≤ B} ∼ C ·Bk logr−1 B,

for k = n + 1 − deg(f ) and r = rk Pic V .

Here, C is an explicit constant (due to E. Peyre),
[Peyre, E.: Hauteurs et mesures de Tamagawa sur les variétés de Fano,
Duke Math. J. 79 (1995), 101–218, Définition 2.3]
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Manin’s Conjecture – Peyre’s constant III

Definition (Peyre’s constant)

For n ≥ 4, Peyre’s constant is the Tamagawa-type number

C =
∏

p∈P∪{∞}

(
1 −

1

p

)
τp

where

τp = lim
m→∞

#V (Z/pm
Z)

pm dim(V )
for p ∈ P

and

τ∞ =
1

2

∫

f (x0,...,xn)=0
|xi |≤1

1
∂f
∂xj

dx0 . . . d̂xj . . . dxn.
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An algorithm to count solutions I

To compute Peyre’s constant, the main work to be done is to count solutions
of the same equation f (x0, . . . , xn) = 0 but over finite fields Fp instead of Z.

Consider an equation of the form

(+)

n∑

i=0

fi (xi ) = 0.

Denote by d (i)(k) := #{x ∈ Fp | fi (x) = k} the numbers of representa-
tions. Then, the number of solutions of (+) is equal to

(d (0) ∗ d (1) ∗ . . . ∗ d (n))(0).

Use FFT convolution to compute d (0) ∗ d (1) ∗ . . . ∗ d (n).
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An algorithm to count solutions II

Remarks (Complexity)

We need to compute n convolutions of vectors of length p.

A convolution takes O(p log p) steps.
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An algorithm to compute Peyre’s constant

Algorithm (FFT point counting on

V e
a,b : axe = by e + ze + v e + w e

,

e = 3, 4 over Fp)

1 Initialize a vector X [0 . . . p] with zeroes.
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,

e = 3, 4 over Fp)
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2 Let r run from 0 to p − 1 and increase X [r e mod p] by 1.
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An algorithm to compute Peyre’s constant

Algorithm (FFT point counting on

V e
a,b : axe = by e + ze + v e + w e

,

e = 3, 4 over Fp)

1 Initialize a vector X [0 . . . p] with zeroes.

2 Let r run from 0 to p − 1 and increase X [r e mod p] by 1.

3 Calculate Ỹ := X ∗ X ∗ X by FFT convolution.

4 Normalize by putting Y [i ] := Ỹ [i ] + Ỹ [i + p] + Ỹ [i + 2p] for
i = 0, . . . , p − 1.

(Now, Y [i ] is the number of solutions of ze + v e + w e ≡ i (mod p).)
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Algorithm to compute Peyre’s constant II

5 Initialize N as zero.

F
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Algorithm to compute Peyre’s constant II

5 Initialize N as zero.

6 (Counting points with x 6= 0)
Let j run from 0 to p − 1 and increase N by Y [(a − bj4) mod p].

F
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Algorithm to compute Peyre’s constant II

5 Initialize N as zero.

6 (Counting points with x 6= 0)
Let j run from 0 to p − 1 and increase N by Y [(a − bj4) mod p].

7 (Adding points with x = 0 and y 6= 0)
Increase N by Y [(−b) mod p].

F
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Algorithm to compute Peyre’s constant II

5 Initialize N as zero.

6 (Counting points with x 6= 0)
Let j run from 0 to p − 1 and increase N by Y [(a − bj4) mod p].

7 (Adding points with x = 0 and y 6= 0)
Increase N by Y [(−b) mod p].

8 (Adding points with x = y = 0)
Increase N by (Y [0] − 1)/(p − 1).

F
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Algorithm to compute Peyre’s constant II

5 Initialize N as zero.

6 (Counting points with x 6= 0)
Let j run from 0 to p − 1 and increase N by Y [(a − bj4) mod p].

7 (Adding points with x = 0 and y 6= 0)
Increase N by Y [(−b) mod p].

8 (Adding points with x = y = 0)
Increase N by (Y [0] − 1)/(p − 1).

9 Return N as the number of all Fp-valued points on V e
a,b.
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Algorithm to compute Peyre’s constant III

Remarks
1 For the running-time, step 3 is dominant. Therefore, the running-time

of the algorithm is O(p log p).

F

F F

F

F
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Algorithm to compute Peyre’s constant III

Remarks
1 For the running-time, step 3 is dominant. Therefore, the running-time

of the algorithm is O(p log p).

2 To count, for fixed e and p, Fp-rational points on V e
a,b with varying

a and b, one needs to execute the first four steps only once. After-
wards, one may perform steps 5 through 9 for all pairs (a, b) of elements
from a system of representatives for F∗

p /(F∗
p )e (i.e. at most e2 times).

Note that steps 5 through 9 alone are of complexity O(p).

F

F
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Algorithm to compute Peyre’s constant III

Remarks
1 For the running-time, step 3 is dominant. Therefore, the running-time

of the algorithm is O(p log p).

2 To count, for fixed e and p, Fp-rational points on V e
a,b with varying

a and b, one needs to execute the first four steps only once. After-
wards, one may perform steps 5 through 9 for all pairs (a, b) of elements
from a system of representatives for F∗

p /(F∗
p )e (i.e. at most e2 times).

Note that steps 5 through 9 alone are of complexity O(p).

3 For p ≡ 2 (mod 3), one has #V 3
a,b(Fp) = p3 + p2 + p + 1.

Analogously, for p ≡ 3 (mod 4), #V 4
a,b(Fp) = p3 + p2 + p + 1.
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Algorithm to compute Peyre’s constant III

Remarks
1 For the running-time, step 3 is dominant. Therefore, the running-time

of the algorithm is O(p log p).

2 To count, for fixed e and p, Fp-rational points on V e
a,b with varying

a and b, one needs to execute the first four steps only once. After-
wards, one may perform steps 5 through 9 for all pairs (a, b) of elements
from a system of representatives for F∗

p /(F∗
p )e (i.e. at most e2 times).

Note that steps 5 through 9 alone are of complexity O(p).

3 For p ≡ 2 (mod 3), one has #V 3
a,b(Fp) = p3 + p2 + p + 1.

Analogously, for p ≡ 3 (mod 4), #V 4
a,b(Fp) = p3 + p2 + p + 1.

4 We ran this algorithm for all primes p ≤ 106 (such that p ≡ 1 (mod 3)
and p ≡ 1 (mod 4), respectively,) and stored the cardinalities in a file.
This took several days of CPU time.
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Algorithm to compute Peyre’s constant IV

Examples

1 x4 = y4 + z4 + v4 + w4

defines a smooth quartic threefold V in Fp, p = 269 117. We find

#V (Fp) = p3 + p2 + p + 1 + 7 028p.

2 11x4 = 13y4 + z4 + v4 + w4

defines a smooth quartic threefold V in Fp, p = 269 089. We find

#V (Fp) = p3 + p2 + p + 1 − 840p.

Note that both examples are within the Weil bound which says
#V (Fp) = p3 + p2 + p + 1 + C with |C | ≤ 60p3/2 in the case of a smooth
quartic threefold.
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Algorithm to compute Peyre’s constant V

Algorithm (Compute an approximate value for τ
3
a,b,fin (τ 4

a,b,fin))

1 Let p run over all prime numbers such that p ≡ 2 (mod 3)
(p ≡ 3 (mod 4)) and p ≤ N and calculate the product of all values
of (1 − 1/p4).

F
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Algorithm to compute Peyre’s constant V

Algorithm (Compute an approximate value for τ
3
a,b,fin (τ 4

a,b,fin))

1 Let p run over all prime numbers such that p ≡ 2 (mod 3)
(p ≡ 3 (mod 4)) and p ≤ N and calculate the product of all values
of (1 − 1/p4).

2 Compute the factor corresponding to p = 3 (p = 2).

3 Let p run over all prime numbers such that p ≡ 1 (mod 3)
(p ≡ 1 (mod 4)) and p ≤ N. If p|ab then start a separate function for
the case of bad reduction.
Otherwise, compute the e-th power residue-symbols of a and b and look
up the precomputed factor for this Fp-isomorphism class of varieties in
the list.
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Algorithm to compute Peyre’s constant V

Algorithm (Compute an approximate value for τ
3
a,b,fin (τ 4

a,b,fin))

1 Let p run over all prime numbers such that p ≡ 2 (mod 3)
(p ≡ 3 (mod 4)) and p ≤ N and calculate the product of all values
of (1 − 1/p4).

2 Compute the factor corresponding to p = 3 (p = 2).

3 Let p run over all prime numbers such that p ≡ 1 (mod 3)
(p ≡ 1 (mod 4)) and p ≤ N. If p|ab then start a separate function for
the case of bad reduction.
Otherwise, compute the e-th power residue-symbols of a and b and look
up the precomputed factor for this Fp-isomorphism class of varieties in
the list.

4 Multiply the two products from steps i) and iii) and the factor from
step ii) with each other. Correct the product by taking the bad primes
p ≡ 2 (mod 3) (p ≡ 3 (mod 4)) into consideration.
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Investigation of the cubic threefolds I

We determined all Q-rational points of height less than 5 000 on the cubic
threefolds V 3

a,b given by

ax3 = by3 + z3 + v3 + w3

for a, b = 1, . . . , 100 and b ≤ a.

Points lying on a Q-rational line in Va,b were excluded from the count.
The smallest number of points found is 3 930 278 for (a, b) = (98, 95).
The largest numbers of points are 332 137 752 for (a, b) = (7, 1) and
355 689 300 in the case that a = 1 and b = 1.

On the other hand, for each threefold V 3
a,b where a, b = 1, . . . , 100

and b + 3 ≤ a, we calculated the number of points expected (according
to Manin-Peyre) and the quotients

# { points of height < B found } / # { points of height < B expected }.

Let us visualize the quotients by two histograms.
Jörg Jahnel (Universität Göttingen) Rational Points on Hypersurfaces 19. 07. 2006 35 / 44

Investigation of the cubic threefolds II
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Figure: Distribution of the quotients for B = 1000 and B = 5000.

Jörg Jahnel (Universität Göttingen) Rational Points on Hypersurfaces 19. 07. 2006 36 / 44



Investigation of the cubic threefolds III

Table: Parameters of the distribution in the cubic case

B = 1000 B = 2000 B = 5000

mean value 0.981 79 0.988 54 0.993 83
standard deviation 0.012 74 0.008 23 0.004 55
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Investigation of the quartic threefolds I

We determined all Q-rational points of height less than 100 000 on the
quartic threefolds V 4

a,b given by

ax4 = by4 + z4 + v4 + w4

for a, b = 1, . . . , 100.

It turns out that on 5 015 of these varieties, there are no Q-rational
points occurring at all as the equation is unsolvable in Qp for p = 2,
5, or 29. In this situation, Manin’s conjecture is true, trivially.

For the remaining varieties, the points lying on a known Q-rational conic
in Va,b were excluded from the count.
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Investigation of the quartic threefolds II

Table: Numbers of points of height < 100 000 on the quartics.

a b # points # not on conic # expected
(by Manin-Peyre)

29 29 2 2 135
58 87 288 288 272
58 58 290 290 388
87 87 386 386 357

...
...

...
...

...
34 1 9 938 976 5 691 456 5 673 000
17 64 5 708 664 5 708 664 5 643 000
1 14 7 205 502 6 361 638 6 483 000
3 1 12 657 056 7 439 616 7 526 000
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Investigation of the quartic threefolds III
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Figure: Distribution of the quotients for B = 1000 and B = 10 000.
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Investigation of the quartic threefolds IV
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Figure: Distribution of the quotients for B = 50 000 and B = 100 000.
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Investigation of the quartic threefolds V

Table: Parameters of the distribution in the quartic case

B = 1000 B = 10 000 B = 100 000

mean value 0.9853 0.9957 0.9982
standard deviation 0.3159 0.1130 0.0372

Remark

In the cubic case, the standard deviation was by far smaller than in the case
of the quartics. This is not very surprising as on a cubic there tend to be
much more rational points than on a quartic. Thus, in the case of the cubic
the sample is more reliable.
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Investigation of the quartic threefolds VI
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Figure: number of solutions and quotients for B = 50 000.
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Summary

Summary

To search systematically for solutions of Diophantine equations like
x4 + 2y4 = z4 + 4w4 or 7x3 = 11y3 + z3 + v3 + w3 (n ≥ 4 variables),
there are faster ways than the obvious (n − 1)-times iterated loop.
(Essentially in O(B⌈n/2⌉) steps).

F
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To count solutions over Fp (not determining all of them) is even faster
(O(np log p) steps).
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ture, numerically.
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Summary

Summary

To search systematically for solutions of Diophantine equations like
x4 + 2y4 = z4 + 4w4 or 7x3 = 11y3 + z3 + v3 + w3 (n ≥ 4 variables),
there are faster ways than the obvious (n − 1)-times iterated loop.
(Essentially in O(B⌈n/2⌉) steps).

To count solutions over Fp (not determining all of them) is even faster
(O(np log p) steps).

These two observations together may be used to test Manin’s conjec-
ture, numerically.

Remark (Conclusion)

The results suggest that Manin’s conjecture should be true for the two
families of threefolds considered.
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