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Saito’s result

Theorem (K. Saito 1971): Let (X, 0) be the germ of an isolated
hypersurface singularity. The following conditions are equivalent:

(X, 0) is quasi-homogeneous.

µ(X, 0) = τ(X, 0).

The Poincaré complex of (X, 0) is exact.
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Saito’s result

Theorem (K. Saito 1971): Let (X, 0) be the germ of an isolated
hypersurface singularity. The following conditions are equivalent:

(X, 0) is quasi-homogeneous.

µ(X, 0) = τ(X, 0).

The Poincaré complex of (X, 0) is exact.

We wanted to generalize this theorem to the case of
isolated complete intersection singularities.
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Poincaré complex

Let (Xl,k, 0) be the germ of the unimodal space curve singularity
FTk,l of the classification of Terry Wall defined by the equations

xy + zl−1 = 0

xz + yz2 + yk−1 = 0

4 ≤ l ≤ k, 5 ≤ k.
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Poincaré complex

Let (Xl,k, 0) be the germ of the unimodal space curve singularity
FTk,l of the classification of Terry Wall defined by the equations

xy + zl−1 = 0

xz + yz2 + yk−1 = 0

4 ≤ l ≤ k, 5 ≤ k.
The Poincaré complex

0 −→ C −→ OXl,k,0 −→ Ω1
Xl,k,0 −→ Ω2

Xl,k,0 −→ Ω3
Xl,k,0 −→ 0

is exact.
But (Xl,k, 0) is not quasi-homogeneous:

µ(X, 0) = τ(X, 0) + 1 = k + l + 2.
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µ and τ

Let (X, 0) be a germ of a space curve singularity defined by
f = g = 0, with f, g ∈ C{x, y, z}

µ(X, 0) = dimC(Ω1
X,0/dO(X,0))
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µ(X, 0) = dimC(Ω1
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τ(X, 0) = dimC(C{x, y, z}/ < f, g, M1, M2, M3 >)

here the Mi are the 2-minors of the Jacobian matrix of f, g.
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µ and τ

Let (X, 0) be a germ of a space curve singularity defined by
f = g = 0, with f, g ∈ C{x, y, z}

µ(X, 0) = dimC(Ω1
X,0/dO(X,0))

τ(X, 0) = dimC(C{x, y, z}/ < f, g, M1, M2, M3 >)

here the Mi are the 2-minors of the Jacobian matrix of f, g.

Reiffen: The Poincaré complex is exact if and only if

< f, g > Ω3
C3,0 ⊂ d(< f, g > Ω2

C3,0)

and
µ(X, 0) = dimC(Ω2

X,0) − dimC(Ω3
X,0)
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Zar iski’s conjecture
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Zar iski’s conjecture

Conjecture (Zariski 1971) :
A µ–constant deformation of an iso-
lated hypersurface singularity is a de-
formation with constant multiplicity.
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Zar iski’s conjecture

Ft = xa + yb + z3c + xc+2yc−1 + xc−1yc−1z3 + xc−2yc(y2 + tx)2
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Zar iski’s conjecture

Ft = xa + yb + z3c + xc+2yc−1 + xc−1yc−1z3 + xc−2yc(y2 + tx)2

(a, b, c) = (40, 30, 8)
µ(F0) = 10661
µ(Ft) = 10655
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Computeralgebra and finiteGroups

Problem: Characterize the class of finite solvable groups G by
2–variable identities.
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Computeralgebra and finiteGroups

Problem: Characterize the class of finite solvable groups G by
2–variable identities.

Example:

G is abelian ⇔ xy = yx ∀ x, y ∈ G

(Zorn, 1930) A finite group G is nilpotent ⇔ ∃ n ≥ 1, such that
vn(x, y) = 1 ∀ x, y ∈ G

(Engel Identity)

v1 := [x, y] = xyx−1y−1 (commutator)
vn+1 := [vn, y]
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nilpotent Groups

Let G be a finite group

G(1) := [G, G] = 〈aba−1b−1 | a, b ∈ G〉 .

Let G(i) := [G(i−1), G], then G is called nilpotent, if G(m) = {e} for
some m.

SINGULAR and Applications – p.

nilpotent Groups

Let G be a finite group

G(1) := [G, G] = 〈aba−1b−1 | a, b ∈ G〉 .

Let G(i) := [G(i−1), G], then G is called nilpotent, if G(m) = {e} for
some m.

abelian groups are nilpotent.

groups of order of a prime power are nilpotent.

G is nilpotent ⇔ it is a direct product of its Sylow groups.

S3 is not nilpotent.
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solvableGroups

Let

G(i) := [G(i−1), G(i−1)],

then G is called solvable, if G(m) = {e} for some m.
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solvableGroups

Let

G(i) := [G(i−1), G(i−1)],

then G is called solvable, if G(m) = {e} for some m.

nilpotent groups are solvable.

S3, S4 are solvable.

groups of odd order are solvable.

S5, A5 are not solvable.
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Main result

Theorem (T. Bandman, G.-M. Greuel, F. Grunewald, B. Kunyavsky,
G. Pfister, E. Plotkin)

U1 = U1(x, y) := x2y−1x,

Un+1 = Un+1(x, y) = [xUnx−1, yUny−1].

A finite group G is solvable ⇔ ∃ n, such that Un(x, y) = 1 ∀ x, y ∈ G.
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Main result

Theorem (T. Bandman, G.-M. Greuel, F. Grunewald, B. Kunyavsky,
G. Pfister, E. Plotkin)

U1 = U1(x, y) := x2y−1x,

Un+1 = Un+1(x, y) = [xUnx−1, yUny−1].

A finite group G is solvable ⇔ ∃ n, such that Un(x, y) = 1 ∀ x, y ∈ G.

U1(x, y) = 1 ⇔ y = x−1

U1(x, y) = U2(x, y)

⇔ x−1yx−1y−1x2 = yx−2y−1xy−1

Let x, y ∈ G such that y 6= x−1 and
U1(x, y) = U2(x, y) ⇒ Un(x, y) 6= 1 ∀ n ∈ N.
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Proof

G solvable ⇒ Identity is true (by definition).
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Proof

G solvable ⇒ Identity is true (by definition).
Idea of ⇐

Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

PSL(2, Fp), p a prime number ≥ 5

PSL(2, F2p), p a prime number

PSL(2, F3p), p a prime number
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G solvable ⇒ Identity is true (by definition).
Idea of ⇐

Theorem (Thompson, 1968)
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Proof

G solvable ⇒ Identity is true (by definition).
Idea of ⇐

Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

PSL(2, Fp), p a prime number ≥ 5

PSL(2, F2p), p a prime number

PSL(2, F3p), p a prime number

PSL(3, F3)

Sz(2p) p a prime number.
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Proof

G solvable ⇒ Identity is true (by definition).
Idea of ⇐

Theorem (Thompson, 1968)
Let G minimally not solvable. Then G is one of the following groups:

PSL(2, Fp), p a prime number ≥ 5

PSL(2, F2p), p a prime number

PSL(2, F3p), p a prime number

PSL(3, F3)

Sz(2p) p a prime number.

If is enough to prove (for G in Thompson’s list): ∃ x, y ∈ G, such that
y 6= x−1 and U1(x, y) = U2(x, y).
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PSL

PSL(2, K) = SL(2, K)/
{

( a 0
0 a )

∣

∣ a2 = 1
}
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PSL

PSL(2, K) = SL(2, K)/
{

( a 0
0 a )

∣

∣ a2 = 1
}

especially

PSL(2, F5) = {[( a11 a12
a21 a22

)] , a11a22 − a21a12 = 1}
[( a11 a12

a21 a22
)] =

{

( a11 a12
a21 a22

) ,
(

4a11 4a12
4a21 4a22

)}

.
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PSL

PSL(2, K) = SL(2, K)/
{

( a 0
0 a )

∣

∣ a2 = 1
}

especially

PSL(2, F5) = {[( a11 a12
a21 a22

)] , a11a22 − a21a12 = 1}
[( a11 a12

a21 a22
)] =

{

( a11 a12
a21 a22

) ,
(

4a11 4a12
4a21 4a22

)}

.

It holds:

PSL(2, F5) ∼= PSL(2, F4) ∼= A5
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Motivation of theChoiceof theWord

Let w be a word in X, Y, X−1, Y −1 and

U1 = w

Un+1 = [XUnX−1, Y UnY −1].
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Motivation of theChoiceof theWord

Let w be a word in X, Y, X−1, Y −1 and

U1 = w

Un+1 = [XUnX−1, Y UnY −1].

A computer–search through the 10,000 shortest words in
X, X−1, Y, Y −1 found the following four words, such that the equation
U1 = U2 has a non-trivial solution in PSL(2, p) for all p < 1000:

w1 = X−2Y −1X

w2 = X−1Y XY −1X

w3 = Y −2X−1

w4 = XY −2X−1Y X−1
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Translation to algebraic Geometry

Let us consider G = PSL(2,FpFpFp), p ≥ 5
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Translation to algebraic Geometry

Let us consider G = PSL(2,FpFpFp), p ≥ 5

Consider the matrices

x =

(

t 1

−1 0

)

y =

(

1 b

c 1 + bc

)

x−1 =
(

0 −1
1 t

)

implies y 6= x−1 for all (b, c, t) ∈ F3
p.
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Translation to algebraic Geometry

Let us consider G = PSL(2,FpFpFp), p ≥ 5

Consider the matrices

x =

(

t 1

−1 0

)

y =

(

1 b

c 1 + bc

)

x−1 =
(

0 −1
1 t

)

implies y 6= x−1 for all (b, c, t) ∈ F3
p.

It is enough to prove that the equation
U1(x, y) = U2(x, y), i.e.

x−1yx−1y−1x2 = yx−2y−1xy−1

has a solution (b, c, t) ∈ F
3
p.
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The equations

The entries of U1(x, y) − U2(x, y) are the following polynomials in
Z[b, c, t]:

p1 = b3c2t2 + b2c2t3 − b2c2t2 − bc2t3 − b3ct + b2c2t + b2ct2 + 2bc2t2

+bct3 + b2c2 + b2ct + bc2t − bct2 − c2t2 − ct3 − b2t + bct + c2t

+ct2 + 2bc + c2 + bt +2 ct + c + 1

p2 = −b3ct2 − b2ct3 + b2c2t + bc2t2 + b3t − b2ct − 2bct2 − b2c + bct

+c2t + ct2 − bt − ct − b − c − 1

p3 = b3c3t2 + b2c3t3 − b2c2t3 − bc2t4 − b3c2t + b2c3t +2 b2c2t2

+2bc3t2 +2 bc2t3 + b2c2t +2 b2ct2 + bc2t2 − c2t3 − ct4 − 2b2ct

+bc2t + c3t + bct2 + 2c2t2 + ct3 − b2c − b2t + bct + c2t + bt2

+3ct2 + bc − bt − b − c + 1

p4 = −b3c2t2 − b2c2t3 + b2c2t2 + bc2t3 + b3ct − b2c2t − b2ct2 − 2bc2t2

−bct3 − 2b2ct + c2t2 + ct3 + b2t − bct − c2t − ct2 + b2 − bt

−2ct − b − t + 1
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Hasse–Weil–Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for
singulare curves):
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Hasse–Weil–Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for
singulare curves):
Let C ⊆ A

n be an absolutely irreducible affine curve defined over
the finite field Fq and C ⊂ Pn its projective closure ⇒

#C(Fq) ≥ q + 1 − 2pa
√

q − d

(d = degree, pa = arithmetic genus of C).
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Hasse–Weil–Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for
singulare curves):
Let C ⊆ A

n be an absolutely irreducible affine curve defined over
the finite field Fq and C ⊂ Pn its projective closure ⇒

#C(Fq) ≥ q + 1 − 2pa
√

q − d

(d = degree, pa = arithmetic genus of C).

The Hilbert–polynomial of C, H(t) = d · t − pa + 1, can be computed
using the ideal Ih of C:
We obtain H(t) = 10t − 11 ⇒ d = 10, pa = 12.
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Hasse–Weil–Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for
singulare curves):
Let C ⊆ A

n be an absolutely irreducible affine curve defined over
the finite field Fq and C ⊂ Pn its projective closure ⇒

#C(Fq) ≥ q + 1 − 2pa
√

q − d

(d = degree, pa = arithmetic genus of C).

The Hilbert–polynomial of C, H(t) = d · t − pa + 1, can be computed
using the ideal Ih of C:
We obtain H(t) = 10t − 11 ⇒ d = 10, pa = 12.
Since p + 1 − 24

√
p − 10 > 0 if p > 593, we obtain the result.
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absolute irreducibli ty

Propo sition: V (I(p)) is absolutely irreduzibel for all primes p ≥ 5.
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Using SINGULAR we prove:

〈f1, f2〉 : h2 = I.
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absolute irreducibli ty

Propo sition: V (I(p)) is absolutely irreduzibel for all primes p ≥ 5.
Beweis:

Using SINGULAR we prove:

〈f1, f2〉 : h2 = I.

f1 = t2b4 + (t4 − 2t3 − 2t2)b3 − (t5 − 2t4 − t2 − 2t − 1)b2

−(t5 − 4t4 + t3 + 6t2 + 2t)b + (t4 − 4t3 + 2t2 + 4t + 1)

f2 = (t3 − 2t2 − t)c + t2b3 + (t4 − 2t3 − 2t2)b2

−(t5 − 2t4 − t2 − 2t − 1)b − (t5 − 4t4 + t3 + 6t2 + 2t)

h = t3 − 2t2 − t
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We give explicitely matrices M and N with entries in Z[b, c, t] such

that
M









p1

...
p4









=

(

f1

f2

)

and
N

(

f1

f2

)

=









h2p1

...
h2p4








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We give explicitely matrices M and N with entries in Z[b, c, t] such

that
M









p1

...
p4









=

(

f1

f2

)

and
N

(

f1

f2

)

=









h2p1

...
h2p4









We obtain for all fields K

IK[b, c, t] =
(

〈f1, f2〉K[b, c, t]
)

: h2 .
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Step 2

f2 is linear in c , it is enough to show, that f1 is absolutely
irreducibel.
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Step 2

f2 is linear in c , it is enough to show, that f1 is absolutely
irreducibel.

algebraically the following is equivalent:

IK[b, c, t] is prime

〈f1, f2〉K(t)[b, c] prime

f1 irreducibel in K(t)[b] resp. in K[t, b].
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Step 2

f2 is linear in c , it is enough to show, that f1 is absolutely
irreducibel.

algebraically the following is equivalent:

IK[b, c, t] is prime

〈f1, f2〉K(t)[b, c] prime

f1 irreducibel in K(t)[b] resp. in K[t, b].

geometrically:
Curve V (I) is irreducibel, if the projection to the b, t–plane is
irreducibel.

SINGULAR and Applications – p. 19



Let P (x) := t2J [1]|b=x/t then P is monic of degree 4.
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Let P (x) := t2J [1]|b=x/t then P is monic of degree 4.

x4 + (t3 − 2t2 − 2t)x3 − (t5 − 2t4 − t2 − 2t − 1)x2−
(t6 − 4t5 + t4 + 6t3 + 2t2)x + (t6 − 4t5 + 2t4 + 4t3 + t2).

We prove, that the induced polynomial P ∈ Fp[t, x] is absolutely
irreducibel for all primes p ≥ 2.
(Using the lemma of Gauß this is equivalent to P being irreducibel in
Fp(t)[x].)
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Ansatz

(∗) P = (x2 + ax + b)(x2 + gx + d)

a, b, g, d polynomials in t with variable coefficients

a(i), b(i), g(i), d(i) .
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Ansatz

(∗) P = (x2 + ax + b)(x2 + gx + d)

a, b, g, d polynomials in t with variable coefficients

a(i), b(i), g(i), d(i) .

The decomposition (∗) with a(i), b(i), g(i), d(i) ∈ Fp does
not exist iff the ideal C generated by the coefficients with respect to
x, t of P − (x2 + ax + b)(x2 + gx + d) has no solution in Fp . This is
equivalent to the fact that 1 ∈ C.

SINGULAR and Applications – p. 21



The ideal of the coefficients of C:C[1℄=-b(5)*d(3)C[2℄=-b(5)*g(2)C[3℄=-b(4)*d(3)-b(5)*d(2)C[4℄=-b(4)*g(2)-b(5)*g(1)-d(3)-1C[5℄=-b(3)*d(3)-b(4)*d(2)-b(5)*d(1)+1C[6℄=-b(5)-g(2)-1C[7℄=a(0)*b(5)-a(2)*d(3)-b(3)*g(2)-b(4)*g(1)-d(2)+4C[8℄=-a(0)^2*b(5)+b(0)*b(5)-b(2)*d(3)-b(3)*d(2)-b(4)*d(1)-b(5)-4C[9℄=-a(2)*g(2)-b(4)-g(1)+2C[10℄=a(0)*b(4)-a(1)*d(3)-a(2)*d(2)-b(2)*g(2)-b(3)*g(1)-d(1)-1C[11℄=-a(0)^2*b(4)+b(0)*b(4)-b(1)*d(3)-b(2)*d(2)-b(3)*d(1)-b(4)+2C[12℄=a(0)-a(1)*g(2)-a(2)*g(1)-b(3)-d(3)C[13℄=-a(0)^2+a(0)*b(3)-a(0)*d(3)-a(1)*d(2)-a(2)*d(1)+b(0)-b(1)*g(2)-b(2)*g(1)-7C[14℄=-a(0)^2*b(3)+b(0)*b(3)-b(0)*d(3)-b(1)*d(2)-b(2)*d(1)-b(3)+4C[15℄=-a(2)-g(2)-2C[16℄=a(0)*a(2)-a(0)*g(2)-a(1)*g(1)-b(2)-d(2)+1C[17℄=-a(0)^2*a(2)+a(0)*b(2)-a(0)*d(2)-a(1)*d(1)+a(2)*b(0)-a(2)-b(0)*g(2)-b(1)*g(1)-2C[18℄=-a(0)^2*b(2)+b(0)*b(2)-b(0)*d(2)-b(1)*d(1)-b(2)+1C[19℄=-a(1)-g(1)-2C[20℄=a(0)*a(1)-a(0)*g(1)-b(1)-d(1)+2C[21℄=-a(0)^2*a(1)+a(0)*b(1)-a(0)*d(1)+a(1)*b(0)-a(1)-b(0)*g(1)C[22℄=-a(0)^2*b(1)+b(0)*b(1)-b(0)*d(1)-b(1)C[23℄=-a(0)^3+2*a(0)*b(0)-a(0)C[24℄=-a(0)^2*b(0)+b(0)^2-b(0)
SINGULAR and Applications – p. 22

Schr itt 2

Using SINGULAR, one shows that over
Z
[

{a(i)}, {b(i)}, {g(i)}, {d(i)}
]

4 =

24
∑

i=1

Mi C[i] .
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PSL: The caseq = p = 5, . . . ,593

p Pts. in V (p)

5 (1,2,2)
7 (0,1,4)

11 (1,9,1)
13 (1,1,8)
17 (0,7,7)
19 (3,2,10)
23 (0,11,19)
29 (2,12,8)
31 (1,18,26)
37 (1,25,22)
41 (1,4,19)
43 (1,15,3)
47 (0,2,8)
53 (2,16,12)
59 (3,33,39)
61 (2,21,49)
67 (1,11,63)
71 (0,18,60)
73 (1,44,49)
79 (0,17,71)
83 (1,54,39)
89 (0,19,26)
97 (0,10,15)

101 (2,1,47)
103 (0,23,39)
107 (1,61,26)
109 (1,69,102)

p Pts. in V (p)

113 (0,37,52)
127 (0,10,112)
131 (1,14,22)
137 (0,5,32)
139 (1,19,109)
149 (1,87,63)
151 (1,99,108)
157 (1,22,62)
163 (1,67,8)
167 (0,3,14)
173 (1,101,119)
179 (1,11,71)
181 (1,3,75)
191 (0,7,58)
193 (0,45,142)
197 (1,18,145)
199 (0,67,180)
211 (1,51,92)
223 (5,6,157)
227 (1,118,74)
229 (3,220,92)
233 (0,19,149)
239 (1,179,126)
241 (0,67,220)
251 (3,15,112)
257 (3,97,135)
263 (0,47,154)

p Pts. in V (p)

269 (2,205,73)
271 (0,64,97)
277 (4,21,7)
281 (0,98,150)
283 (1,188,250)
293 (1,26,270)
307 (1,100,10)
311 (2,56,162)
313 (0,45,194)
317 (2,34,146)
331 (1,197,323)
337 (0,138,312)
347 (1,252,267)
349 (2,314,255)
353 (0,142,187)
359 (0,80,20)
367 (0,28,80)
373 (1,82,336)
379 (2,9,197)
383 (0,149,138)
389 (1,27,379)
397 (3,271,169)
401 (0,48,349)
409 (0,50,98)
419 (1,121,65)
421 (2,331,151)
431 (0,100,189)

p Pts. in V (p)

433 (0,67,228)
439 (0,4,22)
443 (2,213,143)
449 (2,215,286)
457 (0,63,378)
461 (5,5,267)
463 (0,62,204)
467 (1,70,461)
479 (0,202,293)
487 (0,9,92)
491 (1,31,439)
499 (1,275,40)
503 (0,12,158)
509 (7,424,256)
521 (0,219,250)
523 (3,8,369)
541 (1,220,80)
547 (2,264,122)
557 (2,42,261)
563 (1,317,485)
569 (0,269,369)
571 (1,443,422)
577 (2,169,514)
587 (1,45,229)
593 (1,240,5).
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PSL: The casesq = 2n and q = 3n

n point in V (q)

2 (a, 0, 1)

3 (a, a2, a2)

4 (a3, a12, a5)

5 (a3, a20, a22)

6 (a9, a9, a54)

7 (a, a62, a48)

8 (a, a70, a200)

9 (a, a191, a121).

n point in V (q)

2 (a, 0, a)

3 (a, a3, a10)

4 (a,−1, a66)

5 (a2, a10, a2).
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PSL(3,3)

Die Grupp e PSL(3,3)

One easily checks that x =
(

0 0 1
0 1 0
1 0 1

)

und y =
(

2 0 2
0 1 1
2 1 1

)

x−1yx−1y−1x2 = yx−2y−1xy−1

i.e. for
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PSL(3,3)

Die Grupp e PSL(3,3)

One easily checks that x =
(

0 0 1
0 1 0
1 0 1

)

und y =
(

2 0 2
0 1 1
2 1 1

)

x−1yx−1y−1x2 = yx−2y−1xy−1

i.e. for
w = x2y−1x

and
U1 = w, U2 = [xU1x

−1, yU1y
−1]

holds
U1(x, y) = U2(x, y).
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Suzuki groups

This case is much more complicated.
We have to prove that on a surface U any odd power of a certain
endomorphism θ has fixed points.
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Suzuki groups

This case is much more complicated.
We have to prove that on a surface U any odd power of a certain
endomorphism θ has fixed points.
Here we use the Lefschetz–Weil–Grothendieck trace formulae
generalized by Deligne–Lusztig, Th. Zink, Pink, Katz and
Adolphson–Sperber:

2n − b1(U) · 2
3
4n − b2(U) · 2

1
2n ≤ # Fix (θn, U)

for n sufficientely large.
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Suzuki Groups

Let n = 2m + 1, q = 2n and consider the automorphism

π : Fq −→ Fq, π(a) = a2m+1

.

Note: π2 is the Frobenius.
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Suzuki Groups

Let n = 2m + 1, q = 2n and consider the automorphism

π : Fq −→ Fq, π(a) = a2m+1

.

Note: π2 is the Frobenius.

Sz(q) =
〈

U(a, b), M(c), T | a, b, c ∈ Fq, c 6= 0
〉

U(a, b) =











1 0 0 0

a 1 0 0

aπ(a) + b π(a) 1 0

a2π(a) + ab + π(b) b a 1










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Suzuki Groups

M(c) =











c1+2m

0 0 0

0 c2m

0 0

0 0 c−2m

0

0 0 0 c−1−2m











T =











0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0











.
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Suzuki Groups

Recall,
U1(x, y) = U2(x, y)

if and only if
x−1yx−1y−1x2 = yx−2y−1xy−1.
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Suzuki Groups

Recall,
U1(x, y) = U2(x, y)

if and only if
x−1yx−1y−1x2 = yx−2y−1xy−1.

We fix two matrices

x = TU(a, b), y = TU(c, d) ∈ Sz(q).

The equations of the variety V (n) defined by U1 = U2 depend on n
(q = 2n) .
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Suzuki Groups

Aim: We show that the variety V (n) ⊂ F4
q is not empty.

Problem: We cannot work with infinetely many systems of
equations.
To be independent on n we replace the expressions
π(a), π(b), π(c), π(d) by the variables a0, b0, c0, d0.
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Suzuki Groups

Aim: We show that the variety V (n) ⊂ F4
q is not empty.

Problem: We cannot work with infinetely many systems of
equations.
To be independent on n we replace the expressions
π(a), π(b), π(c), π(d) by the variables a0, b0, c0, d0.

S(a, b, a0, b0) :=











1 0 0 0

a 1 0 0

aa0 + b a0 1 0

a2a0 + ab + b0 b a 1











then

U(a, b) = S
(

a, b, π(a), π(b)
)

.
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Suzuki Groups

We consider the matrices

x = TS(a, b, a0, b0)

y = TS(c, d, c0, d0)

and obtain from

U1(x, y) = U2(x, y)

a system of equations, defining a variety V ⊂ F8
2, not depending on

n.
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Suzuki Groups

The ideal of an irreducible component of V :J[1℄=d2+adv+
dv+a2v2+
2v2+abx+b
x+wx+
2x2+vy+xy+
2;J[2℄=a2b+a
d+a2
v+aw+a3x+a2
x+a
2x+ay+av+
x;J[3℄=b
w+a
vw+w2+a2wx+a
wx+b2+bd+d2+abv+b
v+
2v2+b
x+adx+a4+a3
+vx+x2+a
+1;J[4℄=adv2+
dv2+d2x+abvx+b
vx+advx+
dvx+vwx+abx2+b
x2+wx2+
2x3+v2y+vxy+x2y+ab+
d+a
v+
2v+w+a2x+a
x+
2x+y;J[5℄=abd+ab
v+b
2v+a2dv+dw+avw+
vw+b
2x+
2dx+a
2vx+awx+a2
x2+a
2x2+
3x2+by+
xy+dv+av2+
v2+bx+
x2+a
2+a+
;J[6℄=b
d+
d2+a2bv+ab
v+a2dv+
2dv+bw+avw+
vw+a2dx+
2dx+
3vx+a3x2+a2
x2+a
2x2+by+dy+
vy+axy+bv+dv+
v2+dx+
vx+ax2+a3+a+
;J[7℄=a3v2+a2
v2+
2dx+a3vx+a
2vx+a2
x2+a
2x2+
3x2+
xy+
x2;J[8℄=d2v+a
v3+
2v3+
dvx+a2vx2+a
vx2+a2b
+a
2d+a
3v+a
w+a3
x+vx2+a
y+a2v+a
x+v;J[9℄=advx+
dvx+a2v2x+
2v2x+abx2+b
x2+a2vx2+
2vx2+wx2+vxy+
3d+a3
v+a2
2v+a3
x+a2
2x+
4x+
2y+
d+a2v+
2v+
2x+y;J[10℄=a2vw+a
vw+
2vw+w2+a
2dx+
3dx+a3
vx+a
3vx+a
wx+
2wx+a3
x2+
4x2+aby+a
xy+
2xy+a2v2+a
v2+abx+adx+
dx+a2vx+a
vx+
2vx+a2x2+
2x2+a4+a2
2+v2+1;

SINGULAR and Applications – p. 33

Suzuki Groups

As in the PSL(2)–Fall, we will prove, that this componet is absolutey
irreducible.

Problem: V is a surface and the equations are much more
complicated.

SINGULAR and Applications – p. 34

Suzuki Groups

On V ⊂ F8
2 we consider the endomorphism

θ : V −→ V
θ(a, b, c, d, a0, b0, c0, d0) = (a0, b0, c0, d0, a

2, b2, c2, d2).
Then is θ2 the Frobenius.
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Suzuki Groups

On V ⊂ F8
2 we consider the endomorphism

θ : V −→ V
θ(a, b, c, d, a0, b0, c0, d0) = (a0, b0, c0, d0, a

2, b2, c2, d2).
Then is θ2 the Frobenius.

The following holds for p = (a, b, c, d) ∈ F
4

2:
p ∈ V (n) ⊂ F4

q

m
(1) (a, b, c, d, a2m+1

, b2m+1

, c2m+1

, d2m+1

) ∈ V

‖ ‖ ‖ ‖
π(a) π(b) π(c) π(d)

(2) aq = a, . . . , dq = d, d.h. a, . . . , d ∈ Fq.

We use this property to obtain V (n) as fixed point set of the n–th
power of θ in V .
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Suzuki Groups

Let (a, b, c, d, a0, b0, c0, d0) ∈ V ⊂ F
8

2 and
θn(a, . . . , d0) = (a, . . . , d0) (n = 2m + 1)
⇒

a0 = a2m+1

= π(a), . . . , d0 = d2m+1

= π(d)

a = aq, . . . , dq = d.
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Suzuki Groups

Let (a, b, c, d, a0, b0, c0, d0) ∈ V ⊂ F
8

2 and
θn(a, . . . , d0) = (a, . . . , d0) (n = 2m + 1)
⇒

a0 = a2m+1

= π(a), . . . , d0 = d2m+1

= π(d)

a = aq, . . . , dq = d.

We obtain:

If (a, b, c, d, a0, b0, c0, d0) ∈ V is a fixed point of θn , then
(a, b, c, d) ∈ V (n).

Problem: We have to show that for all primes n, θn has fixed points
in V .
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Suzuki Gruppen

We show that θn has fixed points for all odd n .
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Suzuki Gruppen

We show that θn has fixed points for all odd n . To prove that θn has
fixed points we use the Lefschetz–Weil–Grothendieck trace
formulae generalized by Deligne–Lusztig, Th. Zink, Pink, Katz and
Adolphson–Sperber:

We obtain an affine, open, smooth and invariant sub-set U of V ,
such that:

∣

∣

∣

∣

Fix (θn, U) − 2n

∣

∣

∣

∣

≤ b1(U) · 2
3
4n + b2(U) · 2

1
2n

for n sufficientely large.
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Suzuki Groups

For the Betti numbers b1 and b2 we obtain

b1(U) < 29, b2(U) < 223.

To obtain fixed points we need

2n > 29 · 2
3
4n + 223 · 2

n
2 ,

which is true for n > 52 .
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