

Theorem (K. Saito 1971): Let (X, 0) be the germ of an isolated hypersurface singularity. The following conditions are equivalent: **SINGULAR and Applications** (X,0) is quasi-homogeneous. Gerhard Pfister $\mu(X,0) = \tau(X,0).$ 9 pfister@mathematik.uni-kl.de **•** The Poincaré complex of (X, 0) is exact. **Departement of Mathematics** We wanted to generalize this theorem to the case of University of Kaiserslautern isolated complete intersection singularities. SINGULAR and Applications - p SINGULAR and Applications - p. **Poincaré complex** Saito's result Theorem (K. Saito 1971): Let (X, 0) be the germ of an isolated Let $(X_{l,k}, 0)$ be the germ of the unimodal space curve singularity $FT_{k,l}$ of the classification of Terry Wall defined by the equations hypersurface singularity. The following conditions are equivalent: (X,0) is quasi-homogeneous. $\begin{aligned} xy+z^{l-1} &= 0\\ xz+yz^2+y^{k-1} &= 0 \end{aligned}$ $(X,0) = \tau(X,0).$ **•** The Poincaré complex of (X, 0) is exact. 4 < l < k, 5 < k.

Let (X,0) be a germ of a space curve singularity defined by f = g = 0, with $f, g \in \mathbb{C}\{x, y, z\}$

- $\mu(X,0) = dim_{\mathbb{C}}(\Omega^1_{X,0}/d\mathcal{O}_{(X,0)})$
- $\ \, \bullet \ \ \, \tau(X,0)=dim_{\mathbb C}(\mathbb C\{x,y,z\}/<f,g,M_1,M_2,M_3>)$

here the M_i are the 2-minors of the Jacobian matrix of f, g.

 μ and τ

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

SINGULAR and Applications - p

Let (X,0) be a germ of a space curve singularity defined by f = g = 0, with $f, g \in \mathbb{C}\{x, y, z\}$

- $\mu(X,0) = dim_{\mathbb{C}}(\Omega^1_{X,0}/d\mathcal{O}_{(X,0)})$
- $\ \, \bullet \ \ \, \tau(X,0)=dim_{\mathbb C}(\mathbb C\{x,y,z\}/< f,g,M_1,M_2,M_3>)$

here the M_i are the 2-minors of the Jacobian matrix of f, g.

Reiffen: The Poincaré complex is exact if and only if

$$\begin{split} < f,g > \Omega^3_{\mathbb{C}^3,0} \subset d(< f,g > \Omega^2_{\mathbb{C}^3,0}) \\ & \text{and} \\ \mu(X,0) = \dim_{\mathbb{C}}(\Omega^2_{X,0}) - \dim_{\mathbb{C}}(\Omega^3_{X,0}) \end{split}$$

Let $(X_{l,k}, 0)$ be the germ of the unimodal space curve singularity $FT_{k,l}$ of the classification of Terry Wall defined by the equations

$$\begin{aligned} xy+z^{l-1} &= 0\\ xz+yz^2+y^{k-1} &= 0 \end{aligned}$$

 $4 \leq l \leq k, 5 \leq k.$

The Poincaré complex

$$0 \longrightarrow \mathbb{C} \longrightarrow \mathcal{O}_{X_{l,k},0} \longrightarrow \Omega^1_{X_{l,k},0} \longrightarrow \Omega^2_{X_{l,k},0} \longrightarrow \Omega^3_{X_{l,k},0} \longrightarrow 0$$

is exact. But $(X_{l,k}, 0)$ is not quasi-homogeneous: $\mu(X, 0) = \tau(X, 0) + 1 = k + l + 2.$

SINGULAR and Applications - p.

 μ and au

Let (X,0) be a germ of a space curve singularity defined by f=g=0, with $f,g\in\mathbb{C}\{x,y,z\}$

• $\mu(X,0) = \dim_{\mathbb{C}}(\Omega^1_{X,0}/d\mathcal{O}_{(X,0)})$

Zariski's conjecture

Zariski's conjecture

SINGULAR and Applications - p.

$$F_{\pmb{t}} = x^a + y^{\pmb{b}} + z^{3c} + x^{c+2}y^{c-1} + x^{c-1}y^{c-1}z^3 + x^{c-2}y^c(y^2 + {\pmb{t}} x)^2$$

(a, b, c) = (40, 30, 8) $\mu(F_0) = 10661$ $\mu(F_t) = 10655$

Zariski's conjecture

SINGULAR and Applications - p.

Zariski's conjecture

Conjecture (Zariski 1971) : A μ -constant deformation of an isolated hypersurface singularity is a deformation with constant multiplicity.

TECHNISCHE UNIVERSITÄT

Let G be a finite group

 $G^{(1)} := [G, G] = \langle aba^{-1}b^{-1} \mid a, b \in G \rangle.$

Let $G^{(i)} := [G^{(i-1)}, G]$, then G is called nilpotent, if $G^{(m)} = \{e\}$ for some m.

Problem: Characterize the class of finite solvable groups G by 2-variable identities.

SINGULAR and Applications - p.

nilpotent Groups

Let G be a finite group

$$G^{(1)} := [G, G] = \langle aba^{-1}b^{-1} \mid a, b \in G \rangle.$$

Let $G^{(i)} := [G^{(i-1)}, G]$, then G is called nilpotent, if $G^{(m)} = \{e\}$ for some m.

- abelian groups are nilpotent.
- groups of order of a prime power are nilpotent.
- **9** *G* is nilpotent \Leftrightarrow it is a direct product of its Sylow groups.
- \blacksquare S_3 is not nilpotent.

Computeralgebra and finite Groups

Problem: Characterize the class of finite solvable groups G by 2-variable identities.

Example:

- (Zorn, 1930) A finite group G is nilpotent $\Leftrightarrow \exists n \ge 1$, such that $v_n(x,y) = 1 \ \forall x, y \in G$ (Engel Identity)

 $v_1 := [x, y] = xyx^{-1}y^{-1}$ (commutator) $v_{n+1} := [v_n, y]$

Theorem (T. Bandman, G.-M. Greuel, F. Grunewald, B. Kunyavsky, G. Pfister, E. Plotkin)

 $U_1 = U_1(x, y) := x^2 y^{-1} x,$ $U_{n+1} = U_{n+1}(x, y) = [x U_n x^{-1}, y U_n y^{-1}].$

A finite group G is **solvable** $\Leftrightarrow \exists n$, such that $U_n(x, y) = 1 \forall x, y \in G$.

Main result

Theorem (T. Bandman, G.-M. Greuel, F. Grunewald, B. Kunyavsky, G. Pfister, E. Plotkin)

 $U_1 = U_1(x, y) := x^2 y^{-1} x,$ $U_{n+1} = U_{n+1}(x, y) = [x U_n x^{-1}, y U_n y^{-1}].$

A finite group *G* is **solvable** $\Leftrightarrow \exists n$, such that $U_n(x, y) = 1 \forall x, y \in G$.

- $U_1(x,y) = 1 \Leftrightarrow y = x^{-1}$
- $U_1(x,y) = U_2(x,y)$ $\Leftrightarrow x^{-1}yx^{-1}y^{-1}x^2 = yx^{-2}y^{-1}xy^{-1}$
- Let $x, y \in G$ such that $y \neq x^{-1}$ and $U_1(x, y) = U_2(x, y) \Rightarrow U_n(x, y) \neq 1 \forall n \in \mathbb{N}.$

Let

$$G^{(i)} := [G^{(i-1)}, G^{(i-1)}],$$

then G is called solvable, if $G^{(m)} = \{e\}$ for some m.

SINGULAR and Applications - p.

TECHNISCHE UNIVERSITÄT

solvable Groups

Let

 $G^{(i)} := [G^{(i-1)}, G^{(i-1)}],$

then G is called solvable, if $G^{(m)} = \{e\}$ for some m.

- nilpotent groups are solvable.
- S_3, S_4 are solvable.
- groups of odd order are solvable.
- S_5, A_5 are not solvable.

G solvable \Rightarrow Identity is true (by definition). Idea of \Leftarrow

Theorem (Thompson, 1968)

Let *G* minimally not solvable. Then *G* is one of the following groups:

PSL $(2, \mathbb{F}_p)$, *p* a prime number ≥ 5

G solvable \Rightarrow Identity is true (by definition).

SINGULAR and Applications - p. 11

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Proof

G solvable \Rightarrow Identity is true (by definition).

Idea of \Leftarrow

Theorem (Thompson, 1968) Let *G* minimally not solvable. Then *G* is one of the following groups:

- **PSL** $(2, \mathbb{F}_p)$, *p* a prime number ≥ 5
- **9 PSL** $(2, \mathbb{F}_{2^p})$, *p* a prime number
- **PSL** $(2, \mathbb{F}_{3^p})$, *p* a prime number

G solvable \Rightarrow Identity is true (by definition). Idea of \Leftarrow

Theorem (Thompson, 1968)

Let G minimally not solvable. Then G is one of the following groups:

SINGULAR and Applications - p. 11

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Proof

Idea of ⇐

PSL $(3, \mathbb{F}_3)$

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

SINGULAR and Applications - p. 11

G solvable \Rightarrow Identity is true (by definition).

Idea of \Leftarrow

Proof

Theorem (Thompson, 1968)

Let *G* minimally not solvable. Then *G* is one of the following groups:

- **9** $\mathsf{PSL}(2, \mathbb{F}_p)$, p a prime number ≥ 5
- **PSL** $(2, \mathbb{F}_{2^p})$, *p* a prime number
- **PSL** $(2, \mathbb{F}_{3^p})$, *p* a prime number
- **9 PSL** $(3, \mathbb{F}_3)$

If is enough to prove (for *G* in Thompson's list): $\exists x, y \in G$, such that $y \neq x^{-1}$ and $U_1(x, y) = U_2(x, y)$.

Let *G* minimally not solvable. Then *G* is one of the following groups:

G solvable \Rightarrow Identity is true (by definition).

PSL $(2, \mathbb{F}_p)$, p a prime number ≥ 5

PSL $(2, \mathbb{F}_{2^p})$, *p* a prime number

PSL $(2, \mathbb{F}_{3^p})$, *p* a prime number

Sz (2^p) *p* a prime number.

Theorem (Thompson, 1968)

 $\mathsf{PSL}(2,K) = \operatorname{\mathsf{SL}}(2,K) / \left\{ \left(\begin{smallmatrix} a & 0 \\ 0 & a \end{smallmatrix}\right) \ \Big| \ a^2 = 1 \right\}$

G solvable \Rightarrow Identity is true (by definition).

$\mathsf{Idea} \: \mathsf{of} \Leftarrow$

Theorem (Thompson, 1968)

Let G minimally not solvable. Then G is one of the following groups:

- **9** $\mathsf{PSL}(2,\mathbb{F}_p)$, p a prime number ≥ 5
- **9 PSL** $(2, \mathbb{F}_{2^p})$, *p* a prime number
- **PSL** $(2, \mathbb{F}_{3^p})$, *p* a prime number
- **9** $\mathsf{PSL}(3,\mathbb{F}_3)$
- **S** $\mathbf{S}\mathbf{z}(2^p) p$ a prime number.

SINGULAR and Applications - p. 12

SINGULAR and Applications - p. 11

 $U_1 = w$

 $U_{n+1} = [XU_n X^{-1}, YU_n Y^{-1}].$

Let w be a word in X, Y, X^{-1}, Y^{-1} and

$$\mathsf{PSL}(2,K) = \left. \mathsf{SL}(2,K) / \left\{ \left(\begin{smallmatrix} a & 0 \\ 0 & a \end{smallmatrix}\right) \ \right| \ a^2 = 1 \right\}$$

especially

PSL

$$\mathsf{PSL}(2, \mathbb{F}_5) = \{ \left[\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \right], \ a_{11}a_{22} - a_{21}a_{12} = 1 \} \\ \left[\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \right] = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \begin{pmatrix} 4a_{11} & 4a_{12} \\ 4a_{21} & 4a_{22} \end{pmatrix} \right\}.$$

Motivation of the Choice of the Word

Let w be a word in X, Y, X^{-1}, Y^{-1} and

$$U_1 = w$$

 $U_{n+1} = [XU_n X^{-1}, YU_n Y^{-1}].$

A computer–search through the 10,000 shortest words in X, X^{-1}, Y, Y^{-1} found the following four words, such that the equation $U_1 = U_2$ has a non-trivial solution in PSL(2, p) for all p < 1000:

$$w_{1} = X^{-2}Y^{-1}X$$

$$w_{2} = X^{-1}YXY^{-1}X$$

$$w_{3} = Y^{-2}X^{-1}$$

$$w_{4} = XY^{-2}X^{-1}YX^{-1}$$

SINGULAR and Applications – p. 13

PSL

$$PSL(2, K) = SL(2, K) / \left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} \mid a^{2} = 1 \right\}$$
especially
$$PSL(2, \mathbb{F}_{5}) = \left\{ \begin{bmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \right\}, a_{11}a_{22} - a_{21}a_{12} = 1 \right\}$$

$$\begin{bmatrix} \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \right\}.$$
It holds:

$$\mathsf{PSL}(2,\mathbb{F}_5)\cong \mathsf{PSL}(2,\mathbb{F}_4)\cong A_5$$

SINGULAR and Applications - p. 13

SINGULAR and Applications - p. 12

Consider the matrices

$$x = \begin{pmatrix} t & 1 \\ -1 & 0 \end{pmatrix} \qquad y = \begin{pmatrix} 1 & b \\ c & 1 + bc \end{pmatrix}$$

Let us consider $G = \mathsf{PSL}(\mathbf{2}, \mathbb{F}_p), \ \mathbf{p} \geq \mathbf{5}$

 $x^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & t \end{pmatrix}$ implies $y \neq x^{-1}$ for all $(b, c, t) \in \mathbb{F}_p^3$. It is enough to prove that the equation

$$U_1(x,y) = U_2(x,y)$$
, i.e.
 $x^{-1}yx^{-1}y^{-1}x^2 = yx^{-2}y^{-1}xy^{-1}y^{$

has a solution $(b, c, t) \in \mathbb{F}_p^3$.

The equations

SINGULAR and Applications - p. 14

The entries of $U_1(x, y) - U_2(x, y)$ are the following polynomials in $\mathbb{Z}[b, c, t]$:

- $\begin{aligned} p_1 = & b^3 c^2 t^2 + b^2 c^2 t^3 b^2 c^2 t^2 b c^2 t^3 b^3 c t + b^2 c^2 t + b^2 c t^2 + 2 b c^2 t^2 \\ & + b c t^3 + b^2 c^2 + b^2 c t + b c^2 t b c t^2 c^2 t^2 c t^3 b^2 t + b c t + c^2 t \\ & + c t^2 + 2 b c + c^2 + b t + ^2 c t + c + 1 \end{aligned}$
- $p_2 = -b^3 ct^2 b^2 ct^3 + b^2 c^2 t + bc^2 t^2 + b^3 t b^2 ct 2bct^2 b^2 c + bct \\ + c^2 t + ct^2 bt ct b c 1$
- $\begin{array}{rl} p_{3}=&b^{3}c^{3}t^{2}+b^{2}c^{3}t^{3}-b^{2}c^{2}t^{3}-bc^{2}t^{4}-b^{3}c^{2}t+b^{2}c^{3}t+^{2}b^{2}c^{2}t^{2}\\ &+2bc^{3}t^{2}+^{2}bc^{2}t^{3}+b^{2}c^{2}t+^{2}b^{2}ct^{2}+bc^{2}t^{2}-c^{2}t^{3}-ct^{4}-2b^{2}ct\\ &+bc^{2}t+c^{3}t+bct^{2}+2c^{2}t^{2}+ct^{3}-b^{2}c-b^{2}t+bct+c^{2}t+bt^{2}\\ &+3ct^{2}+bc-bt-b-c+1 \end{array}$

$$p_4 = -b^3c^2t^2 - b^2c^2t^3 + b^2c^2t^2 + bc^2t^3 + b^3ct - b^2c^2t - b^2ct^2 - 2bc^2t^2 - bct^3 - 2b^2ct + c^2t^2 + ct^3 + b^2t - bct - c^2t - ct^2 + b^2 - bt - 2ct - b - t + 1$$

Translation to algebraic Geometry

SINGULAR and Applications - p. 14

Let us consider
$$G = \mathsf{PSL}(\mathbf{2}, \mathbb{F}_p), \ \mathbf{p} \geq \mathbf{5}$$

Consider the matrices

$$x = \begin{pmatrix} t & 1 \\ -1 & 0 \end{pmatrix} \qquad y = \begin{pmatrix} 1 & b \\ c & 1 + bc \end{pmatrix}$$

$$x^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & t \end{pmatrix}$$
 implies $y \neq x^{-1}$ for all $(b, c, t) \in \mathbb{F}_p^3$.

singulare curves):

using the ideal I_h of \overline{C} :

SINGULAR and Applications - p. 16

Theorem von Hasse–Weil (generalized by Aubry and Perret for singulare curves):

SINGULAR and Applications - p. 16

Hasse-Weil-Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for singulare curves):

Theorem von Hasse-Weil (generalized by Aubry and Perret for

the finite field \mathbb{F}_a and $\overline{C} \subset \mathbb{P}^n$ its projective closure \Rightarrow

 $(d = \text{degree}, p_a = \text{arithmetic genus of } \overline{C}).$

We obtain $H(t) = 10t - 11 \Rightarrow d = 10, p_a = 12$.

Let $C \subseteq \mathbb{A}^n$ be an absolutely irreducible affine curve defined over

 $#C(\mathbb{F}_q) \ge q + 1 - 2p_a\sqrt{q} - d$

The Hilbert–polynomial of \overline{C} , $H(t) = d \cdot t - p_a + 1$, can be computed

Let $C \subseteq \mathbb{A}^n$ be an absolutely irreducible affine curve defined over the finite field \mathbb{F}_a and $\overline{C} \subset \mathbb{P}^n$ its projective closure \Rightarrow

 $#C(\mathbb{F}_q) \ge q + 1 - 2p_a\sqrt{q} - d$

(d = degree, p_a = arithmetic genus of \overline{C}).

The Hilbert–polynomial of \overline{C} , $H(t) = d \cdot t - p_a + 1$, can be computed using the ideal I_h of \overline{C} : We obtain $H(t) = 10t - 11 \Rightarrow d = 10$, $p_a = 12$. Since $p + 1 - 24\sqrt{p} - 10 > 0$ if p > 593, we obtain the result. Hasse-Weil-Theorem

Theorem von Hasse–Weil (generalized by Aubry and Perret for singulare curves):

Let $C \subseteq \mathbb{A}^n$ be an absolutely irreducible affine curve defined over the finite field \mathbb{F}_q and $\overline{C} \subset \mathbb{P}^n$ its projective closure \Rightarrow

 $#C(\mathbb{F}_q) \ge q + 1 - 2p_a\sqrt{q} - d$

($d = \text{degree}, p_a = \text{arithmetic genus of } \overline{C}$).

Proposition: $V(I^{(p)})$ is absolutely irreduzibel for all primes $p \ge 5$. Beweis:

Using **SINGULAR** we prove:

 $\langle f_1, f_2 \rangle : h^2 = I.$

$$f_{1} = t^{2}b^{4} + (t^{4} - 2t^{3} - 2t^{2})b^{3} - (t^{5} - 2t^{4} - t^{2} - 2t - 1)b^{2}$$

$$-(t^{5} - 4t^{4} + t^{3} + 6t^{2} + 2t)b + (t^{4} - 4t^{3} + 2t^{2} + 4t + 1)$$

$$f_{2} = (t^{3} - 2t^{2} - t)c + t^{2}b^{3} + (t^{4} - 2t^{3} - 2t^{2})b^{2}$$

$$-(t^{5} - 2t^{4} - t^{2} - 2t - 1)b - (t^{5} - 4t^{4} + t^{3} + 6t^{2} + 2t)$$

$$h = t^{3} - 2t^{2} - t$$

SINGULAR and Applications - p. 17

We give explicitly matrices M and N with entries in $\mathbb{Z}[b, c, t]$ such

that
$$M\begin{pmatrix} p_1\\ \vdots\\ p_4 \end{pmatrix} = \begin{pmatrix} f_1\\ f_2 \end{pmatrix}$$
 and $N\begin{pmatrix} f_1\\ f_2 \end{pmatrix} = \begin{pmatrix} h^2p_1\\ \vdots\\ h^2p_4 \end{pmatrix}$

SINGULAR and Applications – p. 17

absolute irreduciblity

Proposition: $V(I^{(p)})$ is absolutely irreduzibel for all primes $p \ge 5$. Beweis:

Using SINGULAR we prove:

 $\langle f_1, f_2 \rangle : h^2 = I.$

 f_2 is linear in c, it is enough to show, that f_1 is absolutely irreducibel.

algebraically the following is equivalent:

- IK[b, c, t] is prime
- $\langle f_1, f_2 \rangle K(t)[b, c]$ prime
- f_1 irreducibel in K(t)[b] resp. in K[t,b].

We give explicitely matrices M and N with entries in $\mathbb{Z}[b, c, t]$ such

that $M\begin{pmatrix} p_1\\ \vdots\\ p_4 \end{pmatrix} = \begin{pmatrix} f_1\\ f_2 \end{pmatrix}$ and $N\begin{pmatrix} f_1\\ f_2 \end{pmatrix} = \begin{pmatrix} h^2p_1\\ \vdots\\ h^2p_4 \end{pmatrix}$

We obtain for all fields K

$$IK[b,c,t] = \left(\langle f_1, f_2 \rangle K[b,c,t] \right) : h^2.$$

SINGULAR and Applications - p. 18

Step 2

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

SINGULAR and Applications - p. 19

 f_2 is linear in c, it is enough to show, that f_1 is absolutely irreducibel.

algebraically the following is equivalent:

- IK[b, c, t] is prime
- $\langle f_1, f_2 \rangle K(t)[b, c]$ prime
- f_1 irreducibel in K(t)[b] resp. in K[t,b].

geometrically:

Curve V(I) is irreducibel, if the projection to the b, t-plane is irreducibel.

Step 2

 f_2 is linear in c , it is enough to show, that f_1 is absolutely irreducibel.

p	Pts. in $V^{(p)}$						
5	(1,2,2)	113	(0,37,52)	269	(2,205,73)	433	(0,67,228)
7	(0,1,4)	127	(0,10,112)	271	(0,64,97)	439	(0,4,22)
11	(1,9,1)	131	(1,14,22)	277	(4,21,7)	443	(2,213,143)
13	(1,1,8)	137	(0,5,32)	281	(0,98,150)	449	(2,215,286)
17	(0,7,7)	139	(1,19,109)	283	(1,188,250)	457	(0,63,378)
19	(3,2,10)	149	(1,87,63)	293	(1,26,270)	461	(5,5,267)
23	(0,11,19)	151	(1,99,108)	307	(1,100,10)	463	(0,62,204)
29	(2,12,8)	157	(1,22,62)	311	(2,56,162)	467	(1,70,461)
31	(1,18,26)	163	(1,67,8)	313	(0,45,194)	479	(0,202,293)
37	(1,25,22)	167	(0,3,14)	317	(2,34,146)	487	(0,9,92)
41	(1,4,19)	173	(1,101,119)	331	(1,197,323)	491	(1,31,439)
43	(1,15,3)	179	(1,11,71)	337	(0,138,312)	499	(1,275,40)
47	(0,2,8)	181	(1,3,75)	347	(1,252,267)	503	(0,12,158)
53	(2,16,12)	191	(0,7,58)	349	(2,314,255)	509	(7,424,256)
59	(3,33,39)	193	(0,45,142)	353	(0,142,187)	521	(0,219,250)
61	(2,21,49)	197	(1,18,145)	359	(0,80,20)	523	(3,8,369)
67	(1,11,63)	199	(0,67,180)	367	(0,28,80)	541	(1,220,80)
71	(0,18,60)	211	(1,51,92)	373	(1,82,336)	547	(2,264,122)
73	(1,44,49)	223	(5,6,157)	379	(2,9,197)	557	(2,42,261)
79	(0,17,71)	227	(1,118,74)	383	(0,149,138)	563	(1,317,485)
83	(1,54,39)	229	(3,220,92)	389	(1,27,379)	569	(0,269,369)
89	(0,19,26)	233	(0,19,149)	397	(3,271,169)	571	(1,443,422)
97	(0,10,15)	239	(1,179,126)	401	(0,48,349)	577	(2,169,514)
101	(2,1,47)	241	(0,67,220)	409	(0,50,98)	587	(1,45,229)
103	(0,23,39)	251	(3,15,112)	419	(1,121,65)	593	(1,240,5).
107	(1,61,26)	257	(3,97,135)	421	(2,331,151)	ļ	
109	(1,69,102)	263	(0,47,154)	431	(0,100,189)	ļ	
			-				

SINGULAR and Applications - p. 24

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

PSL: The cases
$$q = 2^n$$
 and $q = 3^n$

n	point in $V^{(q)}$
2	(a, 0, 1)
3	(a, a^2, a^2)
4	(a^3, a^{12}, a^5)
5	(a^3, a^{20}, a^{22})
6	(a^9, a^9, a^{54})
7	(a, a^{62}, a^{48})
8	(a, a^{70}, a^{200})
9	$(a, a^{191}, a^{121}).$
n	point in $V^{(q)}$
2	(a,0,a)
3	(a, a^3, a^{10})
4	$(a, -1, a^{66})$
5	$(a^2, a^{10}, a^2).$

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

The ideal of the coefficients of C:

C[1] = -b(5) * d(3)	
C[2] = -b(5)*g(2)	
C[3] = -b(4)*d(3)-b(5)*d(2)	
C[4] = -b(4)*g(2)-b(5)*g(1)-d(3)-1	
C[5] = -b(3)*d(3)-b(4)*d(2)-b(5)*d(1)+1	
C[6] = -b(5) - g(2) - 1	
C[7] = a(0)*b(5)-a(2)*d(3)-b(3)*g(2)-b(4)*g(1)-d(2)+4	
$C[8] = -a(0)^{2} + b(5) + b(0) + b(5) - b(2) + d(3) - b(3) + d(2) - b(4) + d(1) - b(5) - 4$	
C[9] = -a(2)*g(2)-b(4)-g(1)+2	
C[10] = a(0)*b(4)-a(1)*d(3)-a(2)*d(2)-b(2)*g(2)-b(3)*g(1)-d(1)-1	
$C[11] = -a(0)^{2}+b(4)+b(0)+b(4)-b(1)+a(3)-b(2)+a(2)-b(3)+a(1)-b(4)+2$	
C[12]=a(0)-a(1)*g(2)-a(2)*g(1)-b(3)-d(3)	
$C[13] = -a(0)^{2}+a(0)*b(3)-a(0)*d(3)-a(1)*d(2)-a(2)*d(1)+b(0)-b(1)*g(2)-b(2)*g(1)-7$	
$C[14] = -a(0)^{2} + b(3) + b(0) + b(3) - b(0) + d(3) - b(1) + d(2) - b(2) + d(1) - b(3) + 4$	
C[15] = -a(2) - g(2) - 2	
C[16] = a(0)*a(2)-a(0)*g(2)-a(1)*g(1)-b(2)-d(2)+1	
$C[17] = -a(0)^{2}*a(2) + a(0)*b(2) - a(0)*d(2) - a(1)*d(1) + a(2)*b(0) - a(2) - b(0)*g(2) - b(1)*g(1) - 2$	
$C[18] = -a(0)^{2} + b(0) + b(0) + b(0) + d(2) - b(0) + d(1) - b(2) + 1$	
C[19] = -a(1) - g(1) - 2	
C[20] = a(0)*a(1)-a(0)*g(1)-b(1)-d(1)+2	
$C[21] = -a(0)^{2}a(1) + a(0) + b(1) - a(0) + d(1) + a(1) + b(0) - a(1) - b(0) + g(1)$	
$C[22] = -a(0)^{2} + b(0) + b(0) + b(0) + d(1) - b(0)$	
$C[23] = -a(0)^{3}+2*a(0)*b(0)-a(0)$	
$C[24] = -a(0)^{2} + b(0) + b(0)^{2} - b(0)$	

SINGULAR and Applications - p. 22

Schritt 2

Using SINGULAR, one shows that over $\mathbb{Z}[\{a(i)\}, \{b(i)\}, \{g(i)\}, \{d(i)\}]$

$$4 = \sum_{i=1}^{24} M_i \ \mathrm{C}[i]$$

This case is much more complicated.
We have to prove that on a surface U any odd power of a certain
endomorphism # has fixed points.
Survive groups
Survive groups
This case is much more complicated.
We have to prove that on a surface U any odd power of a certain
endomorphism # has fixed points.
Here we use the Lefschetz-Weil-Grothendieck trace formulae
generalized by Deligne-Luszig. Th. Zink, Pink, Katz and
Adolphson-Sperber:

$$2^{n} - b_{1}(U) \cdot 2^{\frac{1}{2}n} - b_{2}(U) \cdot 2^{\frac{1}{2}n} \le # Fix (0^{n}, U)$$

Tor a sufficientely large.
 $Die Gruppe PSL(3.3)$
One easily checks that $x = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ on $y = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
 $x^{-1}yx^{-1}y^{-1}x^{2} = yx^{-2}y^{-1}xy^{-1}$
i.e. for
 $x^{-1}yx^{-1}y^{-1}x^{2} = yx^{-2}y^{-1}xy^{-1}$
i.e. for
 $y = x^{2}y^{-\frac{1}{2}x}$
and
 $U_{1} = w, U_{2} = [xU_{1}x^{-1}, yU_{1}y^{-1}]$
holds
 $U_{1}(x,y) = U_{2}(x,y)$.

$$M(c) = \begin{pmatrix} c^{1+2^m} & 0 & 0 & 0 \\ 0 & c^{2^m} & 0 & 0 \\ 0 & 0 & c^{-2^m} & 0 \\ 0 & 0 & 0 & c^{-1-2^m} \end{pmatrix}$$
$$T = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

 $\pi: \mathbb{F}_q \longrightarrow \mathbb{F}_q, \qquad \pi(a) = a^{2^{m+1}}.$

Note: π^2 is the Frobenius.

SINGULAR and Applications – p. 28

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Suzuki Groups

Recall,

$$U_1(x,y) = U_2(x,y)$$

if and only if

$$x^{-1}yx^{-1}y^{-1}x^{2} = yx^{-2}y^{-1}xy^{-1}.$$

Suzuki Groups

Let n = 2m + 1, $q = 2^n$ and consider the automorphism

$$\pi: \mathbb{F}_q \longrightarrow \mathbb{F}_q, \qquad \pi(a) = a^{2^{m+1}}.$$

Note: π^2 is the Frobenius.

$$\mathbf{Sz}(q) = \left\langle U(a,b), M(c), T \mid a, b, c \in \mathbb{F}_q, c \neq 0 \right\rangle$$
$$U(a,b) = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ a & 1 & 0 & 0 \\ a\pi(a) + b & \pi(a) & 1 & 0 \\ a^2\pi(a) + ab + \pi(b) & b & a & 1 \end{array} \right)$$

SINGULAR and Applications - p. 30

Suzuki Groups

TECHNISCHE UNIVERSITÄT

Recall,

Suzuki Groups

 $U_1(x, y) = U_2(x, y)$

$$x^{-1}yx^{-1}y^{-1}x^2 = yx^{-2}y^{-1}xy^{-1}$$

$$x = TU(a, b), y = TU(c, d) \in \mathbf{Sz}(q).$$

The equations of the variety V(n) defined by $U_1 = U_2$ depend on n $(q = 2^n)$.

SINGULAR and Applications - p. 30

TECHNISCHE UNIVERSITÄT

Aim: We show that the variety $V(n) \subset \mathbb{F}_q^4$ is not empty.

Problem: We cannot work with infinetely many systems of equations.

To be independent on n we replace the expressions $\pi(a), \pi(b), \pi(c), \pi(d)$ by the variables a_0, b_0, c_0, d_0 .

 $y = TS(c, d, c_0, d_0)$

and obtain from

 $U_1(x, y) = U_2(x, y)$

 $x = TS(a, b, a_0, b_0)$

a system of equations, defining a variety $V \subset \mathbb{F}_2^8$, not depending on n.

Then is θ^2 the Frobenius

TECHNISCHE UNIVERSITÄT

On $V \subset \mathbb{F}_2^8$ we consider the endomorphism The ideal of an irreducible component of V: $\theta: V \longrightarrow V$ $\theta(a, b, c, d, a_0, b_0, c_0, d_0) = (a_0, b_0, c_0, d_0, a^2, b^2, c^2, d^2).$ J[1] = d2 + adv + cdv + a2v2 + c2v2 + abx + bcx + wx + c2x2 + vy + xy + c2;J[2]=a2b+acd+a2cv+aw+a3x+a2cx+ac2x+av+av+cx;J[3]=bcw+acvw+w2+a2wx+acwx+b2+bd+d2+abv+bcv+c2v2+bcx+adx+a4+a3c+vx+x2+ac+1;+c2v+w+a2x+acx+c2x+v; J[5] = abd+abcv+bc2v+a2dv+dw+avw+cvw+bc2x+c2dx+ac2vx+awx+a2cx2+ac2x2+c3x2+by+cxy+dv+av2+cv2+bx+cx2+ac2+a+c;J[6] = bcd+cd2+a2bv+abcv+a2dv+c2dv+bw+avw+cvw+a2dx+c2dx+c3vx+a3x2+a2cx2+ac2x2+by+dy+cvy+axy+by+dy+cy2+dx+cyx+ax2+a3+a+c; $J[7] = a_3v_2 + a_2c_v_2 + c_2d_x + a_3v_x + a_2c_x_2 + a_2c_x_2 + c_3x_2 + c_x_y + c_x_2;$ J[8] = d2v + acv3 + c2v3 + cdvx + a2vx2 + acvx2 + a2bc + ac2d + ac3v + acw + a3cx + vx2 + acy + a2v + acx + v;+c2y+cd+a2v+c2v+c2x+y;J[10] = a2vw+acvw+c2vw+w2+ac2dx+c3dx+a3cvx+ac3vx+acwx+c2wx+a3cx2+c4x2+aby+acxy+c2xy+a2v2+acv2+abx+adx+cdx+a2vx+acvx+c2vx+a2x2+c2x2+a4+a2c2+v2+1; SINGULAR and Applications - p. 35 Suzuki Groups On $V \subset \mathbb{F}_2^8$ we consider the endomorphism As in the PSL(2)-Fall, we will prove, that this componet is absolutey $\theta: V \longrightarrow V$ irreducible. **Problem:** V is a surface and the equations are much more complicated.

Suzuki Groups

Suzuki Groups

 $\theta(a, b, c, d, a_0, b_0, c_0, d_0) = (a_0, b_0, c_0, d_0, a^2, b^2, c^2, d^2).$ Then is θ^2 the Frobenius. The following holds for $p = (a, b, c, d) \in \overline{\mathbb{F}}_2^4$: $p \in V(n) \subset \mathbb{F}_q^4$ (1) $(a, b, c, d, a^{2^{m+1}}, b^{2^{m+1}}, c^{2^{m+1}}, d^{2^{m+1}}) \in V$ $\| \| \| \| \| \|$ $\pi(a) \pi(b) \pi(c) \pi(d)$ (2) $a^q = a, \ldots, d^q = d, \mathsf{d.h.} a, \ldots, d \in \mathbb{F}_q.$

We use this property to obtain V(n) as fixed point set of the *n*-th power of θ in V.

We show that θ^n has fixed points for all odd n.

Let $(a, b, c, d, a_0, b_0, c_0, d_0) \in V \subset \overline{\mathbb{F}}_2^8$ and $\theta^n(a, \dots, d_0) = (a, \dots, d_0) \qquad (n = 2m + 1)$ \Rightarrow

$$a_0 = a^{2^{m+1}} = \pi(a), \dots, d_0 = d^{2^{m+1}} = \pi(d)$$

 $a = a^q, \dots, d^q = d.$

SINGULAR and Applications - p. 36

Suzuki Gruppen

We show that θ^n has fixed points for all odd n. To prove that θ^n has fixed points we use the **Lefschetz–Weil–Grothendieck trace** formulae generalized by Deligne–Lusztig, Th. Zink, Pink, Katz and Adolphson–Sperber:

We obtain an affine, open, smooth and invariant sub-set U of V, such that:

Fix
$$(\theta^n, U) - 2^n \bigg| \le b_1(U) \cdot 2^{\frac{3}{4}n} + b_2(U) \cdot 2^{\frac{1}{2}n}$$

for n sufficientely large.

Suzuki Groups

Let $(a, b, c, d, a_0, b_0, c_0, d_0) \in V \subset \overline{\mathbb{F}}_2^8$ and $\theta^n(a, \dots, d_0) = (a, \dots, d_0) \qquad (n = 2m + 1)$ \Rightarrow

$$a_0 = a^{2^{m+1}} = \pi(a), \dots, d_0 = d^{2^{m+1}} = \pi(d)$$

 $a = a^q, \dots, d^q = d.$

We obtain:

If $(a, b, c, d, a_0, b_0, c_0, d_0) \in V$ is a fixed point of θ^n , then $(a, b, c, d) \in V(n)$.

Problem: We have to show that for all primes n, θ^n has fixed points in V.

Suzuki Groups

For the Betti numbers b_1 and b_2 we obtain

 $b_1(U) < 2^9, \quad b_2(U) < 2^{23}.$

To obtain fixed points we need

$$2^n > 2^9 \cdot 2^{\frac{3}{4}n} + 2^{23} \cdot 2^{\frac{n}{2}},$$

which is true for n > 52.