From the number-theoretic point of view, there are two kinds of rational surface:

- Pencils of conics, given by an equation
 \[a_0(U, V)X_0^2 + a_1(U, V)X_1^2 + a_2(U, V)X_2^2 = 0 \]
 where the \(a_i(U, V) \) are homogeneous polynomials of the same degree.

- Del Pezzo surfaces of degree \(d \), obtained over \(\mathbb{C} \) by blowing up \((9—d)\) points of \(\mathbb{P}^2 \) in general position. The Del Pezzo surfaces of degree 3 are the nonsingular cubic surfaces, which have an enormous but largely irrelevant literature; and those of degree 4 are the nonsingular intersections of two quadrics in \(\mathbb{P}^4 \).

In both these cases the main conjecture, due to Colliot-Thélène and Sansuc, is that the only obstruction to either the Hasse principle or weak approximation is the Brauer-Manin obstruction.
Suppose we are given finitely many polynomials $F_1(X), \ldots, F_n(X)$ in $\mathbb{Z}[X]$ with positive leading coefficients, is there an arbitrarily large integer x at which they all take prime values? There are two obvious obstructions to this:

- One or more of the $F_i(X)$ may factorize in $\mathbb{Z}[X]$.

- There may be a prime p such that for any value of $x \mod p$ at least one of the $F_i(x)$ is divisible by p.

Schinzel’s Hypothesis is that these are the only obstructions: in other words, if neither of them happens then we can choose an arbitrarily large x so that every $F_i(x)$ is a prime.
Let $\mathcal{N}^2 = \mathcal{N}^2(k)$ be the set of $\alpha \times \beta$ where α, β are integers in k coprime outside \mathcal{B}. Provided $F(\alpha, \beta)$ and $G(\alpha, \beta)$ are nonzero, we define the Legendre function $L(\mathcal{B}; F, G; \alpha, \beta)$:

$$
\alpha \times \beta \mapsto \prod_{p}(F(\alpha, \beta), G(\alpha, \beta))_p
$$

on \mathcal{N}^2, where the outer bracket is the multiplicative Hilbert symbol and the product is taken over all primes p of k outside \mathcal{B} which divide $G(\alpha, \beta)$. Here \mathcal{B} will contain all primes dividing the resultant of F and G, so $F(\alpha, \beta)$ is a unit at every prime in the product.

Lemma 1 Suppose that $(\deg F)(\deg G)$ is even; then L is continuous in the topology induced on \mathcal{N}^2 by \mathcal{B}.
Theorem 1 Assume Schinzel’s Hypothesis. Let \(A \subset \mathcal{N} \) be the subset of \(\mathbb{P}^1(k) \) at which all the Legendre conditions hold and

\[
a_0(U, V)X_0^2 + a_1(U, V)X_1^2 + a_2(U, V)X_2^2 = 0
\]

is locally soluble at each place in \(\mathcal{B} \). Then the points \((U, V)\) in \(\mathbb{P}^1(k) \) at which this conic is solvable form a dense subset of \(A \) in the topology induced by \(\mathcal{B} \).
Theorem 2 Let $N \geq \deg(a_0a_1a_2)$ be a fixed integer. Let a be a positive 0-cycle of degree N on \mathbb{P}^1 defined over k, and for each place v of k suppose that the pencil of conics

$$a_0(U, V)X_0^2 + a_1(U, V)X_1^2 + a_2(U, V)X_2^2 = 0$$

contains a positive 0-cycle b_v of degree N defined over k_v; for v in B suppose further that b_v is so chosen that its projection on \mathbb{P}^1 is a. If all the Legendre conditions hold, then on this pencil of conics there is a positive 0-cycle of degree N defined over k whose projection is arbitrarily close to a in the topology induced by B.

5
The existence of a positive 0-cycle of odd degree is the same as solubility in some field extension K/k of the same odd degree.

Unfortunately, for pencils of conics this does not imply solubility in k. A simple counterexample is given by the pencil

$$7(Y_0^2 + Y_1^2) = (U^2 - UV - V^2)(U^2 + UV - V^2)(U^2 - 2V^2).$$

This is insoluble in \mathbb{Q}. But suppose $K = \mathbb{Q}(\rho)$ where $\rho^3 + \rho^2 - 2\rho - 1 = 0$ and $\rho = 2 \cos(2\pi/7)$. If $U = \rho^2 + 2\rho - 3$ and $V = \rho^2 + \rho - 2$ then

$$Y_0 = (\rho - 2)^2(\rho^2 - \rho + 1)/7,$$

$$Y_1 = (\rho - 2)^2(\rho^2 - 1)/7$$

gives a solution in K.

6
Let V be a Del Pezzo surface of degree 4 (that is, the smooth intersection of two quadrics in \mathbb{P}^4) defined over an algebraic number field k. Salberger and Skorobogatov have shown that the only obstruction to weak approximation on V is the Brauer-Manin obstruction. More precisely:

Theorem 3 Suppose that $V(k)$ is not empty. Let A be the subset of the adelic space $V(A)$ consisting of the points $\prod P_v$ such that

$$\sum \text{inv}_v(A(P_v)) = 0 \text{ in } \mathbb{Q}/\mathbb{Z}$$

for all A in the Brauer group $\text{Br}(V)$. Then the image of $V(k)$ is dense in A.

Write the Del Pezzo surface V as $Q_1 \cap Q_2$ where Q_1, Q_2 are quadrics in \mathbb{P}^4. Choose coordinates so that the given point of $V(k)$ is $(1, 0, 0, 0, 0)$ and the tangents to Q_1, Q_2 at this point are $X_1 = 0, X_2 = 0$ respectively. The equations of Q_1 and Q_2 take the form

$$X_0X_1 + f_1(X_1, \ldots, X_4) = 0,$$
$$X_0X_2 + f_2(X_1, \ldots, X_4) = 0$$

where f_1 and f_2 are homogeneous quadratic. Thus V is birationally equivalent to the cubic surface $X_2f_1 = X_1f_2$, which is indeed obtained by blowing up the given point of $V(k)$; and this cubic surface is birationally equivalent to the pencil of affine conics

$$Vf_1(U, V, X_3, X_4) = Uf_2(U, V, X_3, X_4),$$

which can be parametrized by the points (U, V) of \mathbb{P}^1.
Diagonalizing this equation and then making it homogeneous gives a pencil of conics of the form

\[Z_0^2 g_1(U, V) + Z_1^2 \frac{g_2(U, V)}{g_1(U, V)} + Z_2^2 \frac{g_5(U, V)}{g_2(U, V)} = 0, \]

where \(g_r \) is homogeneous of degree \(r \). Writing

\[Z_0 = g_2 Y_0, \quad Z_1 = g_1 Y_1, \quad Z_2 = g_1 g_2 Y_2 \]

and dividing by \(g_1 g_2 \) we obtain

\[g_2 Y_0^2 + Y_1^2 + g_1 g_5 Y_2^2 = 0. \]
Lemma 2 Let V be a Del Pezzo surface of degree 4, defined over a field L of characteristic 0. If V contains a positive 0-cycle of degree 2 and a positive 0-cycle of odd degree n, both defined over L, then $V(L)$ is not empty.

Theorem 4 Let V be a del Pezzo surface of degree 4, defined over a field L of characteristic 0. If V contains a 0-cycle of odd degree defined over L then $V(L)$ is not empty.
Now consider pencils of 2-coverings of elliptic curves, where the underlying pencil of elliptic curves has the form
\[E : Y^2 = \prod_{i=1}^{3} (X - c_i(U, V)). \]
Here the \(c_i(U, V) \) are homogeneous polynomials in \(\mathcal{O}[U, V] \) all having the same even degree.

Lemma 3 Suppose that the Tate-Shafarevich group of \(E/k \) is finite and the 2-Selmer group of \(E \) has order 8. Then every curve representing an element of the 2-Selmer group contains points defined over \(k \).
We can apply these ideas to K3 surfaces defined over \(\mathbb{Q} \) whose equation has the form

\[
V : a_0X_0^4 + a_1X_1^4 + a_2X_2^4 + a_3X_3^4 = 0.
\]

There is an obvious map from \(V \) to the quadric surface

\[
W : a_0Y_0^2 + a_1Y_1^2 + a_2Y_2^2 + a_3Y_3^2 = 0.
\]

If \(a_0a_1a_2a_3 \) is a square then each of the two pencils of lines on \(W \) is defined over \(\mathbb{Q} \), and a general line of either pencil pulls back to a curve of genus 1 on \(V \) which is a 2-covering of its Jacobian.

Theorem 5 Assume Schinzel’s Hypothesis and the finiteness of all relevant Tate-Shafarevich groups. Let \(V \) be everywhere locally soluble and such that \(a_0a_1a_2a_3 \) is a square. Suppose also that no \(-a_ia_j \) is in \(\mathbb{Q}^*2 \). If \(A \) is not empty and Condition D holds, then \(V \) contains rational points.