Two Classical Markov semigroups

Throughout this chapter, (£2,.4,P) denotes a probability space, so that A is a o-algebra
of subsets of Q and P : A — [0, 1] is a probability measure, and S denotes a topological
space, with S its Borel o-algebra (that generated by its open sets).

An S-valued random variable is a A-S-measurable mapping X : €2 — S| so that
XM A)={weQ: X(w)eA}eA forall A€S.

If X is an S-valued random variable then o(X) is the smallest sub-c-algebra A4, of A
such that X is Ay-S measurable.

Similarly, if (X;);e; is an indexed set of S-valued random variables then o(X; : i € I) is
the smallest sub-o-algebra Aj of A such that X; is Ay-S measurable for all ¢ € I.

2.1 Markov processes

Definition 2.1. Given a topological space (5,S), let
By(S):={f:S— C| f is Borel measurable and bounded},

with vector-space operations defined pointwise and supremum norm

[f1] == sup{[f ()] : x € S}.

By Borel measurable, we mean that f~'(A) = {z € S : f(z) € A} € S for every
Borel-measurable subset A C C.

Exercise 2.2. Show that B,(S) is a Banach space. Show further that the norm || - || is
submultiplicative, where multiplication of functions is defined pointwise, so that By(.S)
is a Banach algebra. Show finally that the C* identity holds:

IAIZ =1 fll for all f € By(S),

where the isometric involution f — f* is such that f*(z) := f(z) for all x € S.

17



2. CLASSICAL MARKOV SEMIGROUPS

Definition 2.3. (Provisional) A Markov process with state space S is a collection
of S-valued random variables X = (X;);er, on a common probability space such that,
given any [ € By(S),

E[f(Xy) | o(X, : 0<r <s)] =E[f(Xy) | o(X)] for all s,t € R, such that s < t.
A Markov process is time homogeneous if, given any f € By(S5),

E[f(X:) | Xs =2 =E[f(Xi—s) | Xo=2] forall s,t € R, such that s <t and z € S.
(2.1)

The above is somewhat informal; equality of conditional expectations must be interpreted
almost surely, but what is the proper meaning of (2.1)7 To be more precise, we introduce
the following notion.

Definition 2.4. A transition kernel on (S,S) is a map p: S x § — [0, 1] such that

(i) the map = — p(z, A) is Borel measurable for all A € S
and (ii) the map A — p(x, A) is a probability measure for all x € S.

We interpret p(z, A) as the probability that the transition ends in A, given that it started
at x.

Exercise 2.5. If p and ¢ are transition kernels on (S,S) then the convolution p * q is
defined by setting

(pxq)(z,A) = /p(x, dy)q(y, A) forallz € Sand A€ S.
s

Prove that p x ¢ is a transition kernel. Prove also that convolution is associative: if p, g
and r are transition kernels then (p*q) xr =p= (¢*r).

Definition 2.6. A triangular collection {ps: : s,t € Ry, s < t} of transition kernels is
consistent if pg 4 * pro, = psy for all s, ¢, u € Ry with s <t < w, that is,

Psulx, A) = /ps,t(ﬂf, dy)peu(y, A) forallz € S and A € S.
s

This is the Chapman-Kolmogorov equation. We interpret ps,(x, A) as the probability of
moving from x at time s to somewhere in A at time t.

A family of S-valued random variables X = (X;);er, on a common probability space is
a Markov process if there exists a consistent triangular collection of transition kernels
such that
E[1a(Xy) | o(X,:0<r < s)] =psi(Xs, A)  almost surely
t

forall A € S and s, t € R, such that s <.
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Definition 2.7. Similarly, a one-parameter collection {p, : ¢ € R, } of transition kernels
is consistent if ps * p; = psyy for all s, t € R,. In this case, the Chapman—-Kolmogorov
equation becomes

sz, A) = /ps(x, dy)pi(y, A) forallz € Sand A€ S. (2.2)
s

We interpret p,(x, A) as the probability of moving from z into A in ¢ units of time.

A family of S-valued random variables X = (X;);er, on a common probability space is
a time-homogeneous Markov process if there exists a consistent one-parameter collection
of transition kernels such that

E[14(X:) | o(X, : 0<r <s)] =p—s(X5, A)  almost surely
for all A€ S and s, t € R, such that s <t.
Definition 2.8. A Markov semigroup on By,(.S) is a contraction semigroup 7" such that 7;

is positive for all t € R, : if f € By(.S) is such that f > 0, that is, f(z) € Ry forallz € S,
then T f > 0.

[Note that we impose no condition with respect to continuity at the origin.]

If T; preserves the unit, that is, 7;1 = 1, where the constant function 1: .S — C; = +— 1,
for all ¢ € R, then the Markov semigroup 7' is conservative.

Theorem 2.9. Let p = {p; : t € R} be a family of transition kernels. Setting

(T,f)(z) := /Spt(z,dy)f(y) for all f € B,(S) and z € S

defines a bounded linear operator on By(.S) which is positive, contractive and preserves
the unit. Furthermore, the family 7" = (7});cr, is a Markov semigroup if and only if p
is consistent.

Proof. If f € By(S), x € S and s, t € Ry then the Chapman-Kolmogorov equation (2.2)
implies that

T )o) = |

S

Poss(, d2) f(2) = / / po(, dy)pu(y, d2) £(2)

_ / ol dY) (Tof) ()
= (T(T31)) ().

Verifying the remaining claims is left as an exercise. !
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2. CLASSICAL MARKOV SEMIGROUPS

2.2 Feller semigroups

Definition 2.10. Let S be a locally compact Hausdorft space. Then
Co(S) :=={f:5 — C| f is continuous and vanishes at infinity} C B,(5)

is a Banach space when equipped with pointwise vector-space operations and the su-
premum norm. [Recall that a function f : S — C wanishes at infinity if, for all € > 0,
there exists a compact set K C S such that |f(x)| < e forall z € S\ K]

Exercise 2.11. Prove that Cy(S) lies inside By(S) and is a Banach space, as claimed.

Definition 2.12. A Markov semigroup 1" is Feller if

(i) T:(Co(S)) C Co(S) for all t € R,
and (i) tl_i}r& |Tef — fll =0 for all f e Cy(95).

Remark 2.13. If a time-homogeneous Markov process X has Feller semigroup 7" then

E[f(Xt-l-h) — f(Xy) | Xt} = (Tnf — f)(Xi) = h(Af)(X:) + o(h),

so A describes the change in X over an infinitesimal time interval.

Definition 2.14. An R’%valued stochastic process X = (X;);cr, is a Lévy process if
and only if X

(i) has independent increments, so X; — X is independent of the past o-algebra
o(X,:0<r<s) forall s, t € Ry with s <t,

(ii) has stationary increments, so X;— X has the same distribution as X;_;— Xy,
for all s, t € R, with s <t

and (iii) is continuous in probability at the origin, so tlirori P(|X: — Xo| =€) =0 for
all € > 0. -

Remark 2.15. Lévy processes are well behaved; they have cddlag modifications, and
such a modification is a semimartingale, for example.

Exercise 2.16. Prove that if X is a stochastic process with independent and stationary
increments, and with cadlag paths, then X is continuous at the origin in probability.

Theorem 2.17. Every Lévy process gives rise to a Feller semigroup.

Sketch proof. For all t € R, x € R? and Borel A C R?, let

pi(z, A) == E[14(X; — Xo + 2)]
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2.2. Feller semigroups

and note that p, is a transition kernel. If s € R, then
pe(z, A) = E[1a(Xy — Xo+ 2)] = E[1a( Xyt — X5 + )]
=E[la(Xspr — Xs + ) | Fo, (2.3)

where Fy := o(X, : 0 < r < s); the second equality holds by stationarity and the third
by independence. In particular,

pt(X87 A) = E[lA(Xs—l—t) | fs]a

so X is a Markov process with transition kernels {p;, : t € R} if these are consistent.
For consistency, we use Theorem 2.9; let T" be defined as there and note that

(1)) = [ mlady)f) = ELF(X: = X+ o)L
From the previous working, it follows that
(Tef)(2) = E[f (Xope — X +2) | F,
and replacing z with the F;-measurable random variable X; — Xy + = gives that
(T f) (@) = E[f (Xore — Xo +2)] = E[(T1f)(Xs — Xo +2)] = (Tu(T2f)) (@),

as required.

If f € Co(R?) then x — f(X; — Xo + 2) € Cp(RY) almost surely, whence T;f € Co(R?)
by the Dominated Convergence Theorem.

For continuity, let € > 0 and note that f € Cy(R?) is uniformly continuous, so there
exists § > 0 such that |f(x) — f(y)| < € whenever |z — y| < §. Hence

ITof = fIl < sup E[|f(Xe — Xo + ) — f(2)]]

z€R4

= sup (E[l‘xt_xo|<5|f(Xt - Xo+1x) — f(:L’)H

r€R
+ E[1x,-x0/z6 1 [ (Xs — Xo + ) — f(x)\])
< e+ 2 fIR(X, - Xo| > 6)

— € as t — 0+. O

Theorem 2.18. Let T be a conservative Feller semigroup. If the state space S is
metrisable then there exists a time-homogeneous Markov process which gives rise to 7.

Sketch proof. For all t € (0,00), let

pi(z, A) := (Ty14)(z) forallz e Sand A€ S.
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2. CLASSICAL MARKOV SEMIGROUPS

Then p; is readily verified to be a transition kernel.

Let p be a probability measure on S. If t,, > ... > ¢; > 0 and Ay, ... A, € S then

P (A X x Ay) = / u(dzo) / P (20, 1) / Dot (s, ).
S Ay An

By the Chapman—Kolmogorov equation (2.2), these finite-dimensional distributions form
a projective family. The Daniell-Kolmogorov extension theorem now yields a probability
measure on the product space

0= SRJr = {(A) = (wt)teRJr Wy € S for all t> O}

such the coordinate projections X; : 2 — S; w — w; form a time-homogeneous Markov
process X with associated semigroup 7. O

Example 2.19. (Uniform motion) If S =R and X; = X, +¢ for all ¢t € R, then

(T.f)(@) = fla+t) = / (e, dy)f(y)  forall f € Co(R) and z € R,

where the transition kernel p; : (z, A) — 0,4,(A). It follows that X gives rise to a Feller
semigroup with generator A such that Af = f’ whenever f € dom A.

Example 2.20. (Brownian motion) If S =R and X is a standard Brownian motion
then Ito’s formula gives that

F(X,) = f(Xo) /f )dX, + = /f” ds  forall f € C2(R).

It follows that the Lévy process X has a Feller semigroup with the generator A such
that Af = 17" for all f € C*(R) C dom A. [Informally,

1

_/0 E[f"(X,)|Xo = 2] ds — %f”(m)

B (X)) [ Xo = 2] = f(@) =

as t — 0+.]

Example 2.21. (Poisson process) If S = R and X is a Poisson process with unit
intensity and unit jumps then

[(Xt)\Xo—x—etZﬁijLn for all t € R,.
n=0
Hence the Lévy process X has a Feller semigroup with the bounded generator A such

that (Af)(z) = f(x+1) — f(x) for all x € R and f € Cy(R). [To see this, note that

(Lf — ) _ e —1
t t

as t — 0+, uniformly for all x € R.]

flx)+etf(x+1)+0(t)
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2.3 The Hille-Yosida—Ray theorem

Throughout this section, S denotes a locally compact Hausdorff space. Let
Co(S;R) :=={f: 5 >R feCo(S)}

denote the real subspace of Cj(R) containing those functions which take only real values.

Definition 2.22. A linear operator A in Cy(S) satisfies the positive mazimum principle
if, for all f € dom A N Cy(S;R) and zg € S such that f(xg) = sup{f(x) : x € S}, it
holds that (Af)(x¢) < 0.

Theorem 2.23. (Hille-Yosida—Ray) A closed, densely defined operator A in Cy(S)
is the generator of a Feller semigroup on Cy(95) if and only if A satisfies the positive
maximum principle and zI — A is surjective for some z > 0

Proof. Suppose first that A generates a Feller semigroup on Cy(S). By the Lumer—
Phillips theorem, Theorem 1.50, it suffices to show that A satisfies the positive maximum
principle. Given f € dom A N Cy(S;R), let g € S be such that f(zg) = sup,cq f(2).
Setting f* := x — max{f(z),0}, we see that

(Tof ) (o) < (Tof ") (o) < |Tef T < NFTI = f(=o)-

Thus
(1. ~ o) _

= lim <0,
t—0+ t

(Af)(x0)

as required.

Conversely, suppose A satisfies the positive maximum principle, and let f € dom A.
There exists zp € S such that |f(zo)| = || f||; without loss of generality, let us suppose
that f(zo) > 0. If 2> 0 then

[(z1 = A)fI| = [2f (o) — (Af)(x0)l;

and (Af)(xg) < 0, by the positive maximum principle. Consequently,
[(z] = A)fIl Z 2f(w0) — Af(w0) = 2f(x0) = 2| f]|-

Hence T is a strongly continuous contraction semigroup, by the Lumer—Phillips theorem
and Remark 1.48.

For positivity, let f € Co(S) be non-negative, and consider g = (21 — A)~'f € Cy(9),
where z > 0. Either g does not attain its infimum, in which case g > 0 because g
vanishes at infinity, or there exists zo € S such that g(zg) = inf g := inf{g(x) : x € S}.
Then
g—Ag=(l —A)g=f < z9—f= A4y,
so zg(wo) — f(wo) = (Ag)(xo) = 0, by the positive maximum principle applied to —g.
Thus if z € S then
zg(z) 2 zinf g = zg(z0) = f(0) = 0,

23
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so z(zI — A)~! is positive and therefore so is (21 — A)~!. Finally, since

T,f = lim (I —tn 'A)™f = lim (t 'n)"(t 'nl — A)™"f forall fe X, (24)

n—oo n— oo

each T; is positive also. O

Remark 2.24. Equation (2.4), which holds in full generality, shows how one may recover
a semigroup solely from the family of resolvents. See [3, Problem 8.2.4].
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