
Two Classical Markov semigroups

Throughout this chapter, (Ω,A,P) denotes a probability space, so that A is a σ-algebra
of subsets of Ω and P : A → [0, 1] is a probability measure, and S denotes a topological
space, with S its Borel σ-algebra (that generated by its open sets).

An S-valued random variable is a A-S-measurable mapping X : Ω → S, so that

X−1(A) := {ω ∈ Ω : X(ω) ∈ A} ∈ A for all A ∈ S.

If X is an S-valued random variable then σ(X) is the smallest sub-σ-algebra A0 of A
such that X is A0-S measurable.

Similarly, if (Xi)i∈I is an indexed set of S-valued random variables then σ(Xi : i ∈ I) is
the smallest sub-σ-algebra A0 of A such that Xi is A0-S measurable for all i ∈ I.

2.1 Markov processes

Definition 2.1. Given a topological space (S,S), let

Bb(S) := {f : S → C | f is Borel measurable and bounded},

with vector-space operations defined pointwise and supremum norm

‖f‖ := sup{|f(x)| : x ∈ S}.

By Borel measurable, we mean that f−1(A) = {x ∈ S : f(x) ∈ A} ∈ S for every
Borel-measurable subset A ⊆ C.

Exercise 2.2. Show that Bb(S) is a Banach space. Show further that the norm ‖ · ‖ is
submultiplicative, where multiplication of functions is defined pointwise, so that Bb(S)
is a Banach algebra. Show finally that the C∗ identity holds:

‖f‖2 = ‖f ∗f‖ for all f ∈ Bb(S),

where the isometric involution f 7→ f ∗ is such that f ∗(x) := f(x) for all x ∈ S.
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2. Classical Markov semigroups

Definition 2.3. (Provisional) A Markov process with state space S is a collection
of S-valued random variables X = (Xt)t∈R+

on a common probability space such that,
given any f ∈ Bb(S),

E[f(Xt) | σ(Xr : 0 6 r 6 s)] = E[f(Xt) | σ(Xs)] for all s, t ∈ R+ such that s 6 t.

A Markov process is time homogeneous if, given any f ∈ Bb(S),

E[f(Xt) | Xs = x] = E[f(Xt−s) | X0 = x] for all s, t ∈ R+ such that s 6 t and x ∈ S.
(2.1)

The above is somewhat informal; equality of conditional expectations must be interpreted
almost surely, but what is the proper meaning of (2.1)? To be more precise, we introduce
the following notion.

Definition 2.4. A transition kernel on (S,S) is a map p : S × S → [0, 1] such that

(i) the map x 7→ p(x,A) is Borel measurable for all A ∈ S

and (ii) the map A 7→ p(x,A) is a probability measure for all x ∈ S.

We interpret p(x,A) as the probability that the transition ends in A, given that it started
at x.

Exercise 2.5. If p and q are transition kernels on (S,S) then the convolution p ∗ q is
defined by setting

(p ∗ q)(x,A) :=

∫

S

p(x, dy)q(y, A) for all x ∈ S and A ∈ S.

Prove that p ∗ q is a transition kernel. Prove also that convolution is associative: if p, q
and r are transition kernels then (p ∗ q) ∗ r = p ∗ (q ∗ r).

Definition 2.6. A triangular collection {ps,t : s, t ∈ R+, s 6 t} of transition kernels is
consistent if ps,t ∗ pt,u = ps,u for all s, t, u ∈ R+ with s 6 t 6 u, that is,

ps,u(x,A) =

∫

S

ps,t(x, dy)pt,u(y, A) for all x ∈ S and A ∈ S.

This is the Chapman–Kolmogorov equation. We interpret ps,t(x,A) as the probability of
moving from x at time s to somewhere in A at time t.

A family of S-valued random variables X = (Xt)t∈R+
on a common probability space is

a Markov process if there exists a consistent triangular collection of transition kernels
such that

E[1A(Xt) | σ(Xr : 0 6 r 6 s)] = ps,t(Xs, A) almost surely

for all A ∈ S and s, t ∈ R+ such that s 6 t.
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Definition 2.7. Similarly, a one-parameter collection {pt : t ∈ R+} of transition kernels
is consistent if ps ⋆ pt = ps+t for all s, t ∈ R+. In this case, the Chapman–Kolmogorov
equation becomes

ps+t(x,A) =

∫

S

ps(x, dy)pt(y, A) for all x ∈ S and A ∈ S. (2.2)

We interpret pt(x,A) as the probability of moving from x into A in t units of time.

A family of S-valued random variables X = (Xt)t∈R+
on a common probability space is

a time-homogeneous Markov process if there exists a consistent one-parameter collection
of transition kernels such that

E[1A(Xt) | σ(Xr : 0 6 r 6 s)] = pt−s(Xs, A) almost surely

for all A ∈ S and s, t ∈ R+ such that s 6 t.

Definition 2.8. AMarkov semigroup on Bb(S) is a contraction semigroup T such that Tt

is positive for all t ∈ R+: if f ∈ Bb(S) is such that f > 0, that is, f(x) ∈ R+ for all x ∈ S,
then Ttf > 0.

[Note that we impose no condition with respect to continuity at the origin.]

If Tt preserves the unit, that is, Tt1 = 1, where the constant function 1 : S → C; x 7→ 1,
for all t ∈ R+, then the Markov semigroup T is conservative.

Theorem 2.9. Let p = {pt : t ∈ R+} be a family of transition kernels. Setting

(Ttf)(x) :=

∫

S

pt(x, dy)f(y) for all f ∈ Bb(S) and x ∈ S

defines a bounded linear operator on Bb(S) which is positive, contractive and preserves
the unit. Furthermore, the family T = (Tt)t∈R+

is a Markov semigroup if and only if p
is consistent.

Proof. If f ∈ Bb(S), x ∈ S and s, t ∈ R+ then the Chapman–Kolmogorov equation (2.2)
implies that

(Ts+tf)(x) =

∫

S

ps+t(x, dz)f(z) =

∫

S

∫

S

ps(x, dy)pt(y, dz)f(z)

=

∫

S

ps(x, dy)(Ttf)(y)

=
(

Ts(Ttf)
)

(x).

Verifying the remaining claims is left as an exercise.
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2. Classical Markov semigroups

2.2 Feller semigroups

Definition 2.10. Let S be a locally compact Hausdorff space. Then

C0(S) := {f : S → C | f is continuous and vanishes at infinity} ⊆ Bb(S)

is a Banach space when equipped with pointwise vector-space operations and the su-
premum norm. [Recall that a function f : S → C vanishes at infinity if, for all ε > 0,
there exists a compact set K ⊆ S such that |f(x)| < ε for all x ∈ S \K.]

Exercise 2.11. Prove that C0(S) lies inside Bb(S) and is a Banach space, as claimed.

Definition 2.12. A Markov semigroup T is Feller if

(i) Tt

(

C0(S)
)

⊆ C0(S) for all t ∈ R+

and (ii) lim
t→0+

‖Ttf − f‖ = 0 for all f ∈ C0(S).

Remark 2.13. If a time-homogeneous Markov process X has Feller semigroup T then

E
[

f(Xt+h)− f(Xt) | Xt

]

= (Thf − f)(Xt) = h(Af)(Xt) + o(h),

so A describes the change in X over an infinitesimal time interval.

Definition 2.14. An Rd-valued stochastic process X = (Xt)t∈R+
is a Lévy process if

and only if X

(i) has independent increments, so Xt−Xs is independent of the past σ-algebra
σ(Xr : 0 6 r 6 s) for all s, t ∈ R+ with s 6 t,

(ii) has stationary increments, soXt−Xs has the same distribution asXt−s−X0,
for all s, t ∈ R+ with s 6 t

and (iii) is continuous in probability at the origin, so lim
t→0+

P
(

|Xt −X0| > ε
)

= 0 for
all ε > 0.

Remark 2.15. Lévy processes are well behaved; they have cádlág modifications, and
such a modification is a semimartingale, for example.

Exercise 2.16. Prove that if X is a stochastic process with independent and stationary
increments, and with cádlág paths, then X is continuous at the origin in probability.

Theorem 2.17. Every Lévy process gives rise to a Feller semigroup.

Sketch proof. For all t ∈ R+, x ∈ Rd and Borel A ⊆ Rd, let

pt(x,A) := E[1A(Xt −X0 + x)]

20



2.2. Feller semigroups

and note that pt is a transition kernel. If s ∈ R+ then

pt(x,A) = E[1A(Xt −X0 + x)] = E[1A(Xs+t −Xs + x)]

= E[1A(Xs+t −Xs + x) | Fs], (2.3)

where Fs := σ(Xr : 0 6 r 6 s); the second equality holds by stationarity and the third
by independence. In particular,

pt(Xs, A) = E[1A(Xs+t) | Fs],

so X is a Markov process with transition kernels {pt : t ∈ R+} if these are consistent.
For consistency, we use Theorem 2.9; let T be defined as there and note that

(Ttf)(x) =

∫

S

pt(x, dy)f(y) = E[f(Xt −X0 + x)].

From the previous working, it follows that

(Ttf)(x) = E[f(Xs+t −Xs + x) | Fs],

and replacing x with the Fs-measurable random variable Xs −X0 + x gives that

(Ts+tf)(x) = E[f(Xs+t −X0 + x)] = E[(Ttf)(Xs −X0 + x)] =
(

Ts(Ttf)
)

(x),

as required.

If f ∈ C0(R
d) then x 7→ f(Xt −X0 + x) ∈ C0(R

d) almost surely, whence Ttf ∈ C0(R
d)

by the Dominated Convergence Theorem.

For continuity, let ε > 0 and note that f ∈ C0(R
d) is uniformly continuous, so there

exists δ > 0 such that |f(x)− f(y)| < ε whenever |x− y| < δ. Hence

‖Ttf − f‖ 6 sup
x∈Rd

E
[

|f(Xt −X0 + x)− f(x)|
]

= sup
x∈Rd

(

E
[

1|Xt−X0|<δ|f(Xt −X0 + x)− f(x)|
]

+ E
[

1|Xt−X0|>δ|f(Xt −X0 + x)− f(x)|
]

)

6 ε+ 2‖f‖P
(

|Xt −X0| > δ
)

→ ε as t → 0+.

Theorem 2.18. Let T be a conservative Feller semigroup. If the state space S is
metrisable then there exists a time-homogeneous Markov process which gives rise to T .

Sketch proof. For all t ∈ (0,∞), let

pt(x,A) := (Tt1A)(x) for all x ∈ S and A ∈ S.
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2. Classical Markov semigroups

Then pt is readily verified to be a transition kernel.

Let µ be a probability measure on S. If tn > . . . > t1 > 0 and A1, . . .An ∈ S then

pt1,...,tn(A1 × · · · ×An) =

∫

S

µ(dx0)

∫

A1

pt1(x0, dx1)· · ·

∫

An

ptn−tn−1
(xn−1, dxn).

By the Chapman–Kolmogorov equation (2.2), these finite-dimensional distributions form
a projective family. The Daniell–Kolmogorov extension theorem now yields a probability
measure on the product space

Ω := SR+ = {ω = (ωt)t∈R+
: ωt ∈ S for all t > 0}

such the coordinate projections Xt : Ω → S; ω 7→ ωt form a time-homogeneous Markov
process X with associated semigroup T .

Example 2.19. (Uniform motion) If S = R and Xt = X0 + t for all t ∈ R+ then

(Ttf)(x) = f(x+ t) =

∫

R

pt(x, dy)f(y) for all f ∈ C0(R) and x ∈ R,

where the transition kernel pt : (x,A) 7→ δx+t(A). It follows that X gives rise to a Feller
semigroup with generator A such that Af = f ′ whenever f ∈ domA.

Example 2.20. (Brownian motion) If S = R and X is a standard Brownian motion
then Itô’s formula gives that

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) dXs +
1

2

∫ t

0

f ′′(Xs) ds for all f ∈ C2(R).

It follows that the Lévy process X has a Feller semigroup with the generator A such
that Af = 1

2
f ′′ for all f ∈ C2(R) ⊆ domA. [Informally,

t−1
(

E[f(Xt) | X0 = x]− f(x)
)

=
1

2t

∫ t

0

E[f ′′(Xs)|X0 = x] ds →
1

2
f ′′(x)

as t → 0+.]

Example 2.21. (Poisson process) If S = R and X is a Poisson process with unit
intensity and unit jumps then

E[f(Xt)|X0 = x] = e−t

∞
∑

n=0

tn

n!
f(x+ n) for all t ∈ R+.

Hence the Lévy process X has a Feller semigroup with the bounded generator A such
that (Af)(x) = f(x+ 1)− f(x) for all x ∈ R and f ∈ C0(R). [To see this, note that

(Ttf − f)(x)

t
=

e−t − 1

t
f(x) + e−tf(x+ 1) +O(t)

as t → 0+, uniformly for all x ∈ R.]
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2.3 The Hille–Yosida–Ray theorem

Throughout this section, S denotes a locally compact Hausdorff space. Let

C0(S;R) := {f : S → R | f ∈ C0(S)}

denote the real subspace of C0(R) containing those functions which take only real values.

Definition 2.22. A linear operator A in C0(S) satisfies the positive maximum principle

if, for all f ∈ domA ∩ C0(S;R) and x0 ∈ S such that f(x0) = sup{f(x) : x ∈ S}, it
holds that (Af)(x0) 6 0.

Theorem 2.23. (Hille–Yosida–Ray) A closed, densely defined operator A in C0(S)
is the generator of a Feller semigroup on C0(S) if and only if A satisfies the positive
maximum principle and zI − A is surjective for some z > 0

Proof. Suppose first that A generates a Feller semigroup on C0(S). By the Lumer–
Phillips theorem, Theorem 1.50, it suffices to show that A satisfies the positive maximum
principle. Given f ∈ domA ∩ C0(S;R), let x0 ∈ S be such that f(x0) = supx∈S f(x).
Setting f+ := x 7→ max{f(x), 0}, we see that

(Ttf)(x0) 6 (Ttf
+)(x0) 6 ‖Ttf

+‖ 6 ‖f+‖ = f(x0).

Thus

(Af)(x0) = lim
t→0+

(Ttf − f)(x0)

t
6 0,

as required.

Conversely, suppose A satisfies the positive maximum principle, and let f ∈ domA.
There exists x0 ∈ S such that |f(x0)| = ‖f‖; without loss of generality, let us suppose
that f(x0) > 0. If z > 0 then

‖(zI − A)f‖ > |zf(x0)− (Af)(x0)|,

and (Af)(x0) 6 0, by the positive maximum principle. Consequently,

‖(zI − A)f‖ > zf(x0)−Af(x0) > zf(x0) = z‖f‖.

Hence T is a strongly continuous contraction semigroup, by the Lumer–Phillips theorem
and Remark 1.48.

For positivity, let f ∈ C0(S) be non-negative, and consider g = (zI − A)−1f ∈ C0(S),
where z > 0. Either g does not attain its infimum, in which case g > 0 because g
vanishes at infinity, or there exists x0 ∈ S such that g(x0) = inf g := inf{g(x) : x ∈ S}.
Then

zg −Ag = (zI − A)g = f ⇐⇒ zg − f = Ag,

so zg(x0) − f(x0) = (Ag)(x0) > 0, by the positive maximum principle applied to −g.
Thus if x ∈ S then

zg(x) > z inf g = zg(x0) > f(x0) > 0,
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so z(zI −A)−1 is positive and therefore so is (zI − A)−1. Finally, since

Ttf = lim
n→∞

(I − tn−1A)−nf = lim
n→∞

(t−1n)n(t−1nI −A)−nf for all f ∈ X, (2.4)

each Tt is positive also.

Remark 2.24. Equation (2.4), which holds in full generality, shows how one may recover
a semigroup solely from the family of resolvents. See [3, Problem 8.2.4].
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