
Three Quantum Feller semigroups

3.1 C
∗ algebras

Definition 3.1. A Banach algebra is a Banach space which is also a complex associative
algebra, so has a multiplication compatible with the vector-space operators and the norm,
which is submultiplicative. If the Banach algebra is unital , so that it has a multiplicative
identity 1, called its unit , then we require the norm ‖1‖ to be 1.

An involution on a Banach algebra is an isometric conjugate-linear map which reverses
products and is self inverse.

A Banach algebra with involution A is a C∗ algebra if and only if the C∗ identity holds:

‖a∗a‖ = ‖a‖2 for all a ∈ A.

Remark 3.2. The C∗ identity connects the algebraic and analytic structure of the
algebra in a very rigid way. For example, there exists at most one norm for which an
associative algebra is a C∗ algebra.

Theorem 3.3. (Gelfand) Every commutative C∗ algebra is isometrically isomorphic
to C0(S), where S is a locally compact Hausdorff space.

Theorem 3.4. (Gelfand–Naimark) Any C∗ algebra is isometrically ∗-isomorphic to
a norm-closed ∗-subalgebra of B(H) for some Hilbert space H (a concrete C∗ algebra).

Remark 3.5. Let A be a C∗ algebra and, for all n ∈ N, let Mn(A) be the complex
associative algebra of n×n matrices with entries in A, equipped with algebraic operations
in the usual manner. By the Gelfand–Naimark theorem, we may assume that A ⊆ B(H)
for some Hilbert space H, and so Mn(A) ⊆ B(Hn). We equip Mn(A) with the restriction
of the operator norm on B(Hn), and then Mn(A) becomes a C∗ algebra.

[This observation is the root of the theory of operator spaces.]

Definition 3.6. A concrete C∗ algebra A ⊆ B(H) is a von Neumann algebra if and only
if any of the following equivalent conditions hold.
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3. Quantum Feller semigroups

(i) Closure in the strong operator topology: if the net (ai) ⊆ A and a ∈ B(H)
are such that aix → ax for all x ∈ H, then a ∈ A.

(ii) Closure in the weak operator topology: if (ai) ⊆ A and a ∈ B(H) are such
that 〈x, aix〉 → 〈x, ax〉 for all x ∈ H, then a ∈ A.

(iii) Equality with its commutant: letting

S ′ := {a ∈ A : [a, b] = 0 for all b ∈ S}

denote the commutant of S ⊆ A, then A
′′ := (A′)′ = A [von Neumann].

(iv) Existence of a predual: there exists a Banach space A∗ such that (A∗)
∗ = A

[Sakai].

3.2 Positivity

Definition 3.7. In a C∗ algebra A we have the notion of positivity : we write a > 0
if there exists b ∈ A such that a = b∗b. The set of positive elements in A is denoted
by A+, is closed in the norm topology and is a cone: it is closed under addition and
multiplication by non-negative scalars. Note that a positive element is self adjoint.

Exercise 3.8. Let A = C0(S) and prove that f ∈ A+ if and only if f(x) > 0 for all x ∈ S.
Prove also that if the C∗ algebra A ⊆ B(H), where H is a Hilbert space, then a ∈ A+ if
and only if 〈x, ax〉 > 0 for all x ∈ H. [The existence of square roots is crucial in both
cases.]

Definition 3.9. A linear map Φ : A → B is positive if and only if Φ(A+) ⊆ B+. A
positive map is automatically bounded.

Exercise 3.10. Prove that a positive linear map commutes with the involution. [Hint:
an arbitrary element in a C∗ algebra A may be written in the form (a1−a2)+ i(a3−a4),
where a1, . . . , a4 ∈ A+.]

Definition 3.11. A linear map Φ : A → B between C∗ algebras is n-positive, for
some n ∈ N, if and only if the ampliation

Φ(n) : Mn(A) → Mn(B); (aij) 7→
(

Φ(aij)
)

is positive. [Identifying Mn(A) with Mn(C) ⊗ A, and similarly for Mn(B), it follows
immediately that Φ(n) = idM(Cn) ⊗ Φ.]

If Φ is n-positive for all n ∈ N then Φ is completely positive.

Exercise 3.12. Prove that any ∗-homomorphism between C∗ algebras is completely
positive. Prove also that if V ∈ B(H;K) then

B(K) → B(H); a 7→ V ∗aV
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3.3. Stinespring’s dilation theorem

is completely positive.

Exercise 3.13. (Paschke) A linear map Φ : A → B between C∗ algebras is completely
positive if and only if

n
∑

i,j=1

b∗iΦ(a
∗
i aj)bj > 0

for all n > 1, a1, . . . , an ∈ A and b1, . . . , bn ∈ B. [Hint: there is a faithful representation
of B as a concrete C∗ algebra which is a direct sum of cyclic representations.]

Theorem 3.14. A positive linear map Φ : A → B between C∗ algebras is completely
positive if A is commutative [Stinespring] or B is commutative [Arveson].

Theorem 3.15. (Kadison) A 2-positive unital linear map Φ : A → B between unital
C∗ algebras is such that

Φ(a)∗Φ(a) 6 Φ(a∗a) for all a ∈ A. (3.1)

Proof. Note first that if a ∈ A then

A :=

[

1 a
a∗ a∗a

]

=

[

1 a
0 0

]∗ [
1 a
0 0

]

> 0,

so

0 6 Φ(2)(A) =

[

1 Φ(a)
Φ(a)∗ Φ(a∗a)

]

.

Suppose without loss of generality that B ⊆ B(H) for some Hilbert space H, and note
that, by Exercise 3.8, if x ∈ H and

ξ :=

[

−Φ(a)x
x

]

∈ H
2 then 0 6 〈ξ,Φ(2)(A)ξ〉 = 〈x,

(

Φ(a∗a)− Φ(a)∗Φ(a)
)

x〉.

As x is arbitrary, the claim follows.

Remark 3.16. The inequality (3.1) is known as the Kadison–Schwarz inequality.

Exercise 3.17. Show that the inequality (3.1) holds if Φ is required only to be positive
as long as a is normal , so that a∗a = aa∗. [Hint: use Theorem 3.14.]

3.3 Stinespring’s dilation theorem

Theorem 3.18. (Stinespring) Let Φ : A → B(H) be a linear map, where A is a
unital C∗ algebra and H is a Hilbert space. Then Φ is completely positive if and only if
there exists a Hilbert space K, a unital ∗-homomorphism π : A → B(K) and a bounded
operator V : H → K such that
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3. Quantum Feller semigroups

Φ(a) = V ∗π(a)V (a ∈ A).

Furthermore, ‖Φ(1)‖ = ‖V ‖2.

Proof. One direction is immediate. For the converse, let K0 := A ⊗ H be the algebraic
tensor product of A with H, considered as complex vector spaces. Define a sesquilinear
form on K0 such that

〈a⊗ x, b⊗ y〉 = 〈x,Φ(a∗b)y〉H for all a, b ∈ A and x, y ∈ H.

It is an exercise to check that this form is positive semidefinite; this follows from the
assumption that Φ is completely positive. Furthermore, the kernel

K00 := {ξ ∈ K0 : 〈ξ, ξ〉 = 0}

is a vector subspace of K0. Let K be the completion of K0/K00 = {[ξ] : ξ ∈ K0}.

If
π(a)[b⊗ x] := [ab⊗ x] for all a, b ∈ A and x ∈ H,

then π(a) extends by linearity and continuity to an element of B(K), denoted in the same
manner. Furthermore, the map a 7→ π(a) is a unital ∗-homomorphism from A to B(K).

Finally, let V ∈ B(H;K) be defined by setting V x = [1 ⊗ x] for all x ∈ H. It is a final
exercise to verify that Φ(a) = V ∗π(a)V , as required.

Corollary 3.19. If Φ : A → B(H) is as in Theorem 3.18, with Φ(1) = I, then

n
∑

i,j=1

〈vi,
(

Φ(a∗i aj)− Φ(ai)
∗Φ(aj)

)

vj〉 > 0

for all n > 1, a1, . . . , an ∈ A and v1, . . . , vn ∈ H.

Proof. Note first that ‖V ∗‖ = ‖V ‖ = ‖Φ(1)‖1/2 = 1. Hence

n
∑

i,j=1

〈vi,Φ(a
∗
i aj)vj〉 =

n
∑

i,j=1

〈V vi, π(a
∗
iaj)V vj〉 =

∥

∥

∥

n
∑

i=1

π(ai)V vi

∥

∥

∥

2

>

∥

∥

∥
V ∗

n
∑

i=1

π(ai)V vi

∥

∥

∥

2

=
∥

∥

∥

n
∑

i=1

Φ(ai)vi

∥

∥

∥

2

=
n

∑

i,j=1

〈vi,Φ(ai)
∗Φ(aj)vj〉.
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3.4. The Gorini–Kossakowski–Sudershan–Lindblad theorem

Definition 3.20. A pair (π, V ) as in Theorem 3.18 is a Stinespring dilation of Φ. Such
a dilation is minimal if

K = lin{π(a)V x : a ∈ A, x ∈ H}.

Proposition 3.21. A completely positive map Φ : A → B(H) has a minimal Stinespring
dilation.

Proof. One may take (π, V ) as in Theorem 3.18 and restrict to the closed subspace of K
containing {π(a)V x : a ∈ A, x ∈ H}.

Exercise 3.22. Prove that the minimal Stinespring dilation is unique in an appropriate
sense.

Definition 3.23. Let (ai) ⊆ A be a net in the von Neumann algebra A ⊆ B(H). We
write ai ց 0 if ai − aj ∈ A+ whenever i > j and 〈x, aix〉 → 0 for all x ∈ H.

A map Φ : A → B(K) is normal if Φ(ai) ց 0 whenever ai ց 0.

Corollary 3.24. If A is a von Neumann algebra and Φ is normal then π in Theorem 3.18
be may chosen to be normal also.

Proof. Let (π, V ) be a minimal Stinespring dilation for Φ. If x ∈ H, a ∈ A and (ai) ⊆ A+

is such that ai ց 0 then

〈π(a)V x, π(ai)π(a)V x〉 = 〈x, V ∗π(a∗aia)V x〉 = 〈x,Φ(a∗aia)x〉 → 0,

since a∗aia ց 0. It follows by polarisation and minimality that π(ai) ց 0, as claimed.

3.4 The Gorini–Kossakowski–Sudershan–Lindblad theorem

Definition 3.25. A quantum Feller semigroup T = (Tt)t∈R+
on a C∗ algebra A is a

strongly continuous contraction semigroup with Tt completely positive for all t ∈ R+.

If A is unital, with unit 1, and Tt1 = 1 for all t ∈ R+ then T is conservative.

Theorem 3.26. Let T be a uniformly continuous quantum Feller semigroup on the
unital C∗ algebra A ⊆ B(H). Its generator L is bounded, ∗-preserving and conditionally

completely positive: if n > 1, a1, . . . , an ∈ A and v1, . . . , vn ∈ H then

n
∑

i,j=1

〈vi,L(a
∗
iaj)vj〉 > 0 whenever

n
∑

i=1

aivi = 0.
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3. Quantum Feller semigroups

Proof. The boundedness of L follows immediately from Theorem 1.21, and if a ∈ A then

L(a)∗ = lim
t→0+

t−1(Tt(a)− a)∗ = lim
t→0+

t−1(Tt(a
∗)− a∗) = L(a∗),

by continuity of the involution and the fact that positive maps are ∗-preserving.

To see that conditional complete positivity holds, let a1, . . . , an ∈ A and v1, . . . , vn ∈ H.
By Corollary 3.19, if t > 0 then

t−1

n
∑

i,j=1

〈vi,
(

Tt(a
∗
i aj)− Tt(ai)

∗Tt(aj)
)

vj〉 > 0.

Letting t → 0+ gives that

n
∑

i,j=1

〈vi,
(

L(a∗i aj)− L(ai)
∗aj − a∗iL(aj)

)

vj〉 > 0,

and if
∑n

i=1 aivi = 0 then the second and third terms vanish.

Theorem 3.27. (Lindblad, Evans) Let L be a ∗-preserving bounded linear map on
the unital C∗ algebra A ⊆ B(H). The following are equivalent.

(i) L is conditionally completely positive.

(ii) (zI − L)−1 is completely positive for all sufficiently large z > 0.

(iii) Tt = exp(tL) is completely positive for all t ∈ R+.

The semigroup T which arises is conservative if and only if L(1) = 0.

Proof. The equivalence of (ii) and (iii) is a consequence of Theorem 1.37 and (2.4), and
Theorem 3.26 gives that (iii) implies (i). That (i) implies (iii) is an exercise, as is the
final remark.

Remark 3.28. Since completely positive unital linear maps between unital C∗ algebras
are automatically contractive, this characterises the generators of uniformly continuous
conservative quantum Feller semigroups on unital C∗ algebras.

Theorem 3.29. (Lindblad, Christensen) If A ⊆ B(H) is a von Neumann algebra
then L is conditionally completely positive and normal if and only if there exists a normal
completely positive map Ψ : A → A and an element G ∈ A such that

L(a) = Ψ(a) +G∗a+ aG for all a ∈ A.

Remark 3.30. If A is just a C∗ algebra then Christensen and Evans have showed that
Theorem 3.29 remains true with L and Ψ no longer required to be normal, but G and
the range of Ψ must be taken to lie in the ultraweak closure of A.
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3.5. Quantum Markov processes

Theorem 3.31. (Kraus) Suppose A ⊆ B(H) is a von Neumann algebra. A linear
map Ψ : A → B(K) is normal and completely positive if and only if there exists a family
of operators (Li)i∈I ⊆ B(K;H) such that

Ψ(a) =
∑

i∈I

L∗
iaLi for all a ∈ A,

with convergence in the strong operator topology. The cardinality of the index set I may
be taken to be no larger than dimK.

Remark 3.32. With Ψ and (Li)i∈I as in Theorem 3.31, we may write

Ψ(a) = L∗(a⊗ IK1
)L

for some L ∈ B(K;H⊗ K1); suppose K1 has orthonormal basis (ei)i∈I and let

L : K → H⊗ K1; x 7→
∑

i∈I

x⊗ ei.

Lemma 3.33. Let T be a uniformly continuous semigroup on a von Neumann algebra
with generator L. Then L is normal if and only if Tt is normal for all t ∈ R+.

Theorem 3.34. (Gorini–Kossakowski–Sudarshan, Lindblad) A bounded linear
map L on a von Neumann algebra A ⊆ B(H) is the generator of a uniformly continuous
conservative quantum Feller semigroup composed of normal maps if and only if

L(a) = −i[H, a]− 1
2

(

L∗La− 2L∗(a⊗ I)L+ aL∗L
)

for all a ∈ B(H),

where H = H∗ ∈ B(H) and L ∈ B(H;H⊗ K) for some Hilbert space K.

Proof. If L has this form then it is straightforward to verify that the semigroup it
generates is as claimed.

Conversely, suppose L is the generator of a semigroup as in the statement of the theorem.
Then Theorem 3.27 gives that L is conditionally completely positive and L(1) = 0.
Moreover, L is normal, by the preceding lemma, and so Theorem 3.29 gives that

L(a) = Ψ(a) +G∗a+ aG for all a ∈ A,

where Ψ is completely positive and normal, and G ∈ A. Taking a = 1 in this equation
shows that G∗ + G = −Ψ(1), so G = −1

2
Ψ(1) + iH for some self adjoint H ∈ A. The

result now follows by Theorem 3.31.

3.5 Quantum Markov processes

Remark 3.35. Let S be a compact Hausdorff space. IfX is an S-valued random variable
on the probability space (Ω,A,P) then

jX : A → B; f 7→ f ◦X

31



3. Quantum Feller semigroups

is a unital ∗-homomorphism, where A = C(S) and B = L∞(Ω,A,P).

Definition 3.36. A non-commutative random variable is a unital ∗-homomorphism j
between unital C∗ algebras.

A family (jt : A → B)t∈R+
of non-commutative random variables is a dilation of the

quantum Feller semigroup T on A if there exists a conditional expectation E from B

onto A such that Tt = E ◦ jt for all t ∈ R+.

Many authors have tackled this problem of constructing such dilations: Evans and Lewis;
Davies; Accardi, Frigerio and Lewis; Vincent-Smith; Kümmerer; Sauvageot; Bhat and
Parthasarathy; . . . .

Essentially, one attempts to mimic the functional-analytic proof of Theorem 2.18. Given
an initial ‘measure’ µ, which is a state on the C∗ algebra A, the sesquilinear form

A
⊗n × A

⊗n → C; (a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn) 7→ µ
(

Tt1(a
∗
1 . . . (Ttn−tn−1

(a∗nbn)) . . . b1)
)

must be shown to be positive semidefinite, and the key to this is the complete positivity
of the semigroup maps. There are many technical details to be addressed.
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