Three Quantum Feller semigroups

3.1 C* algebras

Definition 3.1. A Banach algebra is a Banach space which is also a complex associative
algebra, so has a multiplication compatible with the vector-space operators and the norm,
which is submultiplicative. If the Banach algebra is unital, so that it has a multiplicative
identity 1, called its unit, then we require the norm ||1|| to be 1.

An involution on a Banach algebra is an isometric conjugate-linear map which reverses
products and is self inverse.

A Banach algebra with involution A is a C* algebra if and only if the C* identity holds:

la*a| = ||a||? for all @ € A.

Remark 3.2. The C* identity connects the algebraic and analytic structure of the
algebra in a very rigid way. For example, there exists at most one norm for which an
associative algebra is a C* algebra.

Theorem 3.3. (Gelfand) Every commutative C* algebra is isometrically isomorphic
to Cy(9), where S is a locally compact Hausdorff space.

Theorem 3.4. (Gelfand—Naimark) Any C* algebra is isometrically x-isomorphic to
a norm-closed *-subalgebra of B(H) for some Hilbert space H (a concrete C* algebra).

Remark 3.5. Let A be a C* algebra and, for all n € N, let M,,(A) be the complex
associative algebra of n xn matrices with entries in A, equipped with algebraic operations
in the usual manner. By the Gelfand-Naimark theorem, we may assume that A C B(H)
for some Hilbert space H, and so M,,(A) C B(H"). We equip M, (A) with the restriction
of the operator norm on B(H"), and then M, (A) becomes a C* algebra.

[This observation is the root of the theory of operator spaces.]

Definition 3.6. A concrete C* algebra A C B(H) is a von Neumann algebra if and only
if any of the following equivalent conditions hold.
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3. QUANTUM FELLER SEMIGROUPS

(i) Closure in the strong operator topology: if the net (a;) C A and a € B(H)
are such that a;x — ax for all x € H, then a € A.

(ii) Closure in the weak operator topology: if (a;) C A and a € B(H) are such
that (r,a;x) — (r,ax) for all z € H, then a € A.

(iii) Equality with its commutant: letting
S":={a€A:a,b=0forallbe S}
denote the commutant of S C A, then A” := (A’)’ = A [von Neumann].

(iv) Existence of a predual: there exists a Banach space A, such that (A,)* = A
[Sakai.

3.2 Positivity

Definition 3.7. In a C* algebra A we have the notion of positivity: we write a > 0
if there exists b € A such that a = b*b. The set of positive elements in A is denoted
by A,, is closed in the norm topology and is a cone: it is closed under addition and
multiplication by non-negative scalars. Note that a positive element is self adjoint.

Exercise 3.8. Let A = (y(S) and prove that f € A, if and only if f(z) > O forallx € S.
Prove also that if the C* algebra A C B(H), where H is a Hilbert space, then a € A, if
and only if (x,azx) > 0 for all € H. [The existence of square roots is crucial in both
cases.|

Definition 3.9. A linear map ® : A — B is positive if and only if ®(A;) C B,. A
positive map is automatically bounded.

Exercise 3.10. Prove that a positive linear map commutes with the involution. [Hint:
an arbitrary element in a C* algebra A may be written in the form (a; —as) +i(as — a4),
where ay, ..., ag € AL ]

Definition 3.11. A linear map ® : A — B between C* algebras is n-positive, for
some n € N, if and only if the ampliation
M My (A) = My(B); (ai;) = (®(ai)))

is positive. [Identifying M, (A) with M,(C) ® A, and similarly for M, (B), it follows
immediately that ®™ = idycn) @ @]

If ® is n-positive for all n € N then ® is completely positive.

Exercise 3.12. Prove that any x-homomorphism between C* algebras is completely
positive. Prove also that if V' € B(H;K) then

B(K) = B(H); a— V*aV
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3.3. Stinespring’s dilation theorem

is completely positive.

Exercise 3.13. (Paschke) A linear map ® : A — B between C* algebras is completely
positive if and only if

n
> bid(aja;)b; =0
ij=1
forallm > 1,ay, ..., a, € Aand by, ..., b, € B. [Hint: there is a faithful representation
of B as a concrete C* algebra which is a direct sum of cyclic representations.|

Theorem 3.14. A positive linear map ® : A — B between C* algebras is completely
positive if A is commutative [Stinespring| or B is commutative [Arveson].

Theorem 3.15. (Kadison) A 2-positive unital linear map ® : A — B between unital
C* algebras is such that

®(a)* ®(a) < P(a*a) for all a € A. (3.1)

1 a 1 al"[1 a
A= [a* a*a} = {0 0} {0 0} >0,

0<20(A) = Lb(lco* @qfc(ﬁi)} |

Suppose without loss of generality that B C B(H) for some Hilbert space H, and note
that, by Exercise 3.8, if x € H and

SO

§i= {_%a)x] € H? then 0 < (& BP(A)E) = (z, (B(a"a) — B(a)*D(a))z).
As x is arbitrary, the claim follows. O
Remark 3.16. The inequality (3.1) is known as the Kadison—Schwarz inequality.

Exercise 3.17. Show that the inequality (3.1) holds if ® is required only to be positive
as long as a is normal, so that a*a = aa*. [Hint: use Theorem 3.14.]

3.3 Stinespring’s dilation theorem

Theorem 3.18. (Stinespring) Let ® : A — B(H) be a linear map, where A is a
unital C* algebra and H is a Hilbert space. Then ® is completely positive if and only if
there exists a Hilbert space K, a unital *-homomorphism 7 : A — B(K) and a bounded
operator V : H — K such that
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®(a) =V*r(a)V (a € A).
Furthermore, ||®(1)| = ||V

Proof. One direction is immediate. For the converse, let Ky := A ® H be the algebraic
tensor product of A with H, considered as complex vector spaces. Define a sesquilinear
form on K such that

(a®@x,b®y) = (x,P(a"b)y)n for all a,b € A and =,y € H.

It is an exercise to check that this form is positive semidefinite; this follows from the
assumption that ® is completely positive. Furthermore, the kernel

Koo == {§ € Ko : (£, &) = 0}

is a vector subspace of Ky. Let K be the completion of Kog/Kgy = {[{] : £ € Ko}.

If
m(a)[b® z] ;= [ab® z] for all a,b € A and = € H,

then m(a) extends by linearity and continuity to an element of B(K), denoted in the same
manner. Furthermore, the map a — 7(a) is a unital *-homomorphism from A to B(K).

Finally, let V' € B(H;K) be defined by setting Va = [1 ® z] for all € H. It is a final
exercise to verify that ®(a) = V*r(a)V, as required. O

Corollary 3.19. If ® : A — B(H) is as in Theorem 3.18, with ®(1) = I, then

n

> (v, (®(afay) — B(a;) () v) > 0

ij=1
foralln>1,ay,...,a, € Aand vy, ..., v, € H.

Proof. Note first that ||[V*|| = ||[V] = ||®(1)]|'/? = 1. Hence

n n n
2

> (o ®(ajay)vy) =Y (Vo m(aia) V) = || > m(a) Vo
ig—=1 ij=1 i=1
n 2
> V*Zﬁ(ai)Vvi
i=1
n 2
= Z(I)(CLZ)UZ
i=1

= 3" (0, D(a;) Blaz)vy). -

ij=1
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3.4. The Gorini-Kossakowski—Sudershan—Lindblad theorem

Definition 3.20. A pair (7, V) as in Theorem 3.18 is a Stinespring dilation of ®. Such
a dilation is minimal if

K=Ilin{r(a)Vz:a €A, vcH}.

Proposition 3.21. A completely positive map ® : A — B(H) has a minimal Stinespring
dilation.

Proof. One may take (7, V) as in Theorem 3.18 and restrict to the closed subspace of K
containing {m(a)Vx :a € A, z € H}. O

Exercise 3.22. Prove that the minimal Stinespring dilation is unique in an appropriate
sense.

Definition 3.23. Let (a;) € A be a net in the von Neumann algebra A C B(H). We
write a; \ 0 if a; — a; € Ay whenever ¢ > j and (z,a;x2) — 0 for all x € H.

A map ¢ : A — B(K) is normal if ®(a;) \, 0 whenever a; \, 0.

Corollary 3.24. If A is a von Neumann algebra and ® is normal then 7 in Theorem 3.18
be may chosen to be normal also.

Proof. Let (m,V') be a minimal Stinespring dilation for ®. If x € H, a € A and (a;) C Ay
is such that a; N\, 0 then

(m(a)Va,m(a;)m(a)Vr) = (x,V'r(a"a;a)Vz) = (z,P(a"a;a)z) — 0,

since a*a;a 0. It follows by polarisation and minimality that 7(a;) \, 0, as claimed.
O

3.4 The Gorini—Kossakowski—Sudershan—Lindblad theorem

Definition 3.25. A quantum Feller semigroup T = (T})icr, on a C* algebra A is a
strongly continuous contraction semigroup with 7; completely positive for all ¢t € R,..

If A is unital, with unit 1, and 731 =1 for all ¢t € R, then T is conservative.

Theorem 3.26. Let T be a uniformly continuous quantum Feller semigroup on the
unital C* algebra A C B(H). Its generator £ is bounded, *-preserving and conditionally
completely positive: if n>1, ay, ..., a, € Aand vy, ..., v, € H then

n

>~ (v Llatay)vy) >0 whenever Y ajv; = 0.

ij=1 i=1
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Proof. The boundedness of L follows immediately from Theorem 1.21, and if a € A then

L(a)* = lim t Y(T)(a) —a)* = lim t (T)(a*) — a*) = L(a*),

t—0+ t—0+

by continuity of the involution and the fact that positive maps are x-preserving.

To see that conditional complete positivity holds, let ay, ..., a, € Aand vy, ..., v, € H.
By Corollary 3.19, if ¢ > 0 then

n

£y (v, (Tilajay) — To(@) Ti(ay))v;) = 0.

ij=1
Letting ¢ — 0+ gives that

n

> (v, (L(ajay) = Llas) a; — a; L(aj))v;) = 0,

1,j=1

and if Z?:l a;v; = 0 then the second and third terms vanish. O

Theorem 3.27. (Lindblad, Evans) Let £ be a x-preserving bounded linear map on
the unital C* algebra A C B(H). The following are equivalent.

(i) L is conditionally completely positive.
(ii) (21 — £)~! is completely positive for all sufficiently large z > 0.
(iii) T3 = exp(tL) is completely positive for all t € R.

The semigroup 7" which arises is conservative if and only if £(1) = 0.

Proof. The equivalence of (ii) and (iii) is a consequence of Theorem 1.37 and (2.4), and
Theorem 3.26 gives that (iii) implies (i). That (i) implies (iii) is an exercise, as is the
final remark. O

Remark 3.28. Since completely positive unital linear maps between unital C* algebras
are automatically contractive, this characterises the generators of uniformly continuous
conservative quantum Feller semigroups on unital C* algebras.

Theorem 3.29. (Lindblad, Christensen) If A C B(H) is a von Neumann algebra
then L is conditionally completely positive and normal if and only if there exists a normal
completely positive map ¥ : A — A and an element GG € A such that

L(a) =VY(a)+Ga+aG  forall acA.

Remark 3.30. If A is just a C* algebra then Christensen and Evans have showed that
Theorem 3.29 remains true with £ and ¥ no longer required to be normal, but G and
the range of ¥ must be taken to lie in the ultraweak closure of A.
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3.5.  Quantum Markov processes

Theorem 3.31. (Kraus) Suppose A C B(H) is a von Neumann algebra. A linear
map ¥ : A — B(K) is normal and completely positive if and only if there exists a family
of operators (L;);e1 € B(K;H) such that

U(a) = Z LiaL; for all a € A,
i€l
with convergence in the strong operator topology. The cardinality of the index set I may
be taken to be no larger than dim K.

Remark 3.32. With ¥ and (L;);cp as in Theorem 3.31, we may write
U(a) =L (a® Ix,)L
for some L € B(K;H ® K;); suppose K; has orthonormal basis (¢;);cr and let
L:K—H®®Kj; xt—)Zx@ei.

i€l

Lemma 3.33. Let T be a uniformly continuous semigroup on a von Neumann algebra
with generator £. Then L is normal if and only if 7} is normal for all t € R.

Theorem 3.34. (Gorini—-Kossakowski—Sudarshan, Lindblad) A bounded linear
map £ on a von Neumann algebra A C B(H) is the generator of a uniformly continuous
conservative quantum Feller semigroup composed of normal maps if and only if

L(a) = —i[H,a] — 1(L*La —2L*(a ® I)L + aL*L) for all a € B(H),
where H = H* € B(H) and L € B(H; H ® K) for some Hilbert space K.

Proof. If £ has this form then it is straightforward to verify that the semigroup it
generates is as claimed.

Conversely, suppose L is the generator of a semigroup as in the statement of the theorem.
Then Theorem 3.27 gives that £ is conditionally completely positive and £(1) = 0.
Moreover, L is normal, by the preceding lemma, and so Theorem 3.29 gives that

L(a) =V(a)+ Ga+aG  forallaecA,

where W is completely positive and normal, and G € A. Taking a = 1 in this equation
shows that G* + G = —¥(1), so G = —3U(1) +iH for some self adjoint H € A. The
result now follows by Theorem 3.31. O

3.5 Quantum Markov processes
Remark 3.35. Let S be a compact Hausdorff space. If X is an S-valued random variable
on the probability space (£2,.4,P) then

jx :A—=B; f— foX
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is a unital *-homomorphism, where A = C(S) and B = L>(2, A, P).

Definition 3.36. A non-commutative random variable is a unital x-homomorphism j
between unital C* algebras.

A family (j; : A = B)ier, of non-commutative random variables is a dilation of the
quantum Feller semigroup 7" on A if there exists a conditional expectation E from B
onto A such that T, =E o j, for all t € R.

Many authors have tackled this problem of constructing such dilations: Evans and Lewis;
Davies; Accardi, Frigerio and Lewis; Vincent-Smith; Kiimmerer; Sauvageot; Bhat and
Parthasarathy; .. ..

Essentially, one attempts to mimic the functional-analytic proof of Theorem 2.18. Given
an initial ‘measure’ p, which is a state on the C* algebra A, the sesquilinear form

A2 5 AEY 5 C; (g @ @ g, by @ -+~ @ by) > (T (af - (Th -ty (afby)) - 1))

must be shown to be positive semidefinite, and the key to this is the complete positivity
of the semigroup maps. There are many technical details to be addressed.

32



