Feuille d'Exercices 2

Séries numériques

Exercice 2.1.— Etant donné $\rho \in]0,1[$ et $\theta \in \mathbb{R}$, on pose $U_n = \rho^p \cos(p\theta)$. Montrer que la série de terme général (U_n) est convergente et calculer sa somme.

1) $1-\cos\left(\frac{1}{n}\right)$ 2) $\frac{(n!)^3}{(3n)!}$ 3) $\frac{2^n+5}{3^n-11}$ 4) $\frac{n+\ln n}{n^2+1}$ 5) $n^{\ln(a)}$ (a>0) 6) $e^{-\sqrt{n}}$ 7) $n^2\sin\left(\frac{1}{2^n}\right)$ 8) $\left(\frac{1}{2}+\frac{1}{n}\right)^n$ 9) $\frac{1+\log n}{n^2}$ 10) $\left(\frac{3n}{4n-1}\right)^{2n+1}$ 11) $\frac{(n+1)^4}{n!+1}$ 12) $n^2e^{-\sqrt{n}}$ 13) $\frac{1}{(1+n)^\alpha}\ln(\cos(\frac{1}{n}))$ $(\alpha>0)$ 14) $n^{(n^{-k})}-1$ $(k\in\mathbb{R})$ 15) $n^{\frac{1}{1+n^2}}-1$ 16) $n.n^{\frac{1}{n}}$ 17) $n!\left(\frac{x}{n}\right)^n$ $(x>0,x\neq e)$ 18) $\frac{1}{n\log n}$ 19) $\frac{n^{\log n}}{(\log n)^n}$ Exercice 2.2.— Etudier la nature des séries dont voici le terme général

$$1) \ 1 - \cos\left(\frac{1}{n}\right)$$

2)
$$\frac{(n!)^3}{(3n)!}$$

3)
$$\frac{2^n+5}{3^n-11}$$

$$\left(\frac{n+\ln n}{n^2+1}\right)$$

5)
$$n^{\ln(a)}$$
 $(a > 0)$

6)
$$e^{-\sqrt{n}}$$

11)
$$\frac{(n+1)^4}{1}$$

8)
$$(\frac{1}{2} + \frac{1}{n})$$

9)
$$\frac{1}{n^2}$$

14)
$$n^{(n-k)} - 1$$
 $(k \in \mathbb{R})$

15)
$$n^{\frac{n!+1}{1}} - 1$$
 16

17)
$$n! \binom{x}{n}^n (x > 0, x \neq a)$$

14)
$$n^{(\kappa)} \rightarrow -1 \ (\kappa \in \mathbb{R})$$

$$19) \frac{n^{\log n}}{(\log n)^n}$$

17)
$$n! \left(\frac{x}{n}\right)^n \quad (x > 0, x \neq e)$$

$$19) \,\, \frac{n^{\log n}}{(\log n)^n}$$

20)
$$(n^6+3)^a - (n^2+2)^{3a} \ (a \in \mathbb{R})$$

Exercice 2.3.— Soit α un nombre réel. Pour tout entier strictement positif n, on pose

$$u_n = \frac{1}{n^{\alpha}}$$
, $v_n = \frac{1}{n^{\alpha}} - \frac{1}{(n+1)^{\alpha}}$ et $w_n = \frac{1}{n^{\alpha}} - \frac{2}{(n+1)^{\alpha}} + \frac{1}{(n+2)^{\alpha}}$.

- 1. Pour quelles valeurs de α la suite (u_n) est-elle convergente?
- 2. Pour quelles valeurs de α la série de terme général v_n est-elle convergente? Dans ce cas, calculer sa somme.
- 3. Pour quelles valeurs de α la série de terme général w_n est-elle convergente? Dans ce cas, calculer sa somme.

Exercice 2.4.— Montrer que si la série de terme général u_n est convergente alors la série de terme général $v_n = u_{2n} + u_{2n+1}$ est convergente et on a $\sum_{n=1}^{\infty} u_n = \sum_{n=1}^{\infty} v_n$.

Exercice 2.5.— Pour quelles valeurs de $a \in \mathbb{R}_+^*$ la série de terme général $u_n = \frac{\cosh(n)}{a^n}$ converge-t-elle?

Exercice 2.6.— Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels strictement positifs. Pour tout $n \in \mathbb{N}$, on pose $S_n = u_0 + \dots + u_n$ et $v_n = \frac{u_n}{S_n}$.

1. Montrer que si la série de terme général u_n est convergente, alors la série de terme général v_n est convergente.

- **2.** Montrer que pour tout $n \in \mathbb{N}$, on a $\prod_{k=1}^{n} (1 v_k) = \frac{u_0}{S_n}$.
- 3. On suppose que la série de terme général v_n est convergente.
 - a. Quelle est la nature de la série de terme général $\log(1-v_n)$?
 - **b.** Montrer que la série de terme général u_n est convergente.

Exercice 2.7.— Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \frac{(-1)^n}{\sqrt{n}} \exp\left(\frac{(-1)^n}{\sqrt{n}}\right)$ et $v_n = u_n - \frac{(-1)^n}{\sqrt{n}}$.

- 1. Montrer que la série de terme général v_n est divergente.
- **2.** La série de terme général u_n est-elle convergente?

Exercice 2.8.— Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels. Parmi les assertions suivantes, lesquelles sont vraies? lesquelles sont fausses? Justifier la réponse.

- 1. Si pour tout n > 0 $u_n > 0$ et si la suite (u_n) est décroissante et a pour limite 0, alors la série de terme général u_n est convergente.
- **2.** Si pour tout n > 0 $u_n > 0$ et si la série de terme général u_n est convergente, alors la suite (u_n) est décroissante à partir d'un certain rang.
- **3.** Si pour tout n > 0 $u_n > 0$ et si la série de terme général u_n est convergente, alors la série de terme général $\sqrt{u_n}$ est convergente.
- **4.** Si pour tout n > 0 $u_n > 0$ et si la série de terme général u_n est convergente, alors la série de terme général u_n^2 est convergente.
- 5. Si $\lim_{n\to+\infty}((-1)^n nu_n)=1$ alors la série de terme général u_n est convergente.
- **6.** Si $\lim_{n\to+\infty}((-1)^nn^2u_n)=1$ alors la série de terme général u_n est convergente.

Exercice 2.9.— Démontrer, à l'aide d'un développement limité, que la suite de terme général u_n est convergente, avec $u_n = \sin\left(n\pi + \frac{1}{n} + \frac{1}{n^2}\right)$.

Exercice 2.10.— Etudier, en fonction du paramètre $\alpha > 0$, la convergence des séries de terme général :

(a)
$$n^{2-\alpha}\cos\left(\frac{1}{n}\right)$$
; (b) $\alpha^{\frac{n+\sqrt{\ln n}}{2}}$; (c) $\frac{(-\alpha)^n}{\ln n}$.

Exercice 2.11.— Soit f une fonction de classe C^2 sur [-1,1] telle que f(0)=0, f'(0)=f''(0)=1. Etudier les séries de terme général

(a)
$$f\left(\frac{1}{n}\right)$$
; (b) $f\left(\frac{1}{n^2}\right)$; (c) $f\left(\frac{(-1)^n}{n}\right)$; (d) $f\left(\frac{(-1)^n}{\sqrt{n}}\right)$.

Exercice 2.12.— Former le produit des séries de terme général u_n et v_n où

$$u_n = \frac{1}{n\sqrt{n}}$$
 et $v_n = \frac{1}{2^{n-1}}$.

Exercice 2.13.— Calculer, si elles existent, les sommes des séries de terme général

$$(a) \ \ \frac{1}{n^2-\frac{1}{4}} \ (n>0) \, ; \, (b) \ \ \ln \left(1-\frac{1}{n^2}\right) \ (n>1) \, ; \, (c) \ \ \arctan \left(\frac{1}{2n^2}\right) \ (n>0).$$

Pour c) On pourra utiliser la formule suivante :

Si
$$xy < 1$$
, $\arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right)$.

Exercice 2.14.— Etudier la nature des series dont voici le terme général

1)
$$\frac{(-1)^n}{(2n-1)^3}$$

2)
$$(-1)^n \frac{1+n}{n}$$

3)
$$\frac{(-1)^n}{n^2 + \ln n}$$

$$4) \, \frac{\sin(n\theta)}{2^n} \, (\theta \in \mathbb{R})$$

$$5)\frac{1}{n+(-1)^n\sqrt{n}}$$

$$(6)\frac{(-1)^n}{n \ln n}$$

$$1) \frac{(-1)^n}{(2n-1)^3} \qquad 2) (-1)^n \frac{1+n}{n} \qquad 3) \frac{(-1)^n}{n^2 + \ln n} \qquad 4) \frac{\sin(n\theta)}{2^n} (\theta \in \mathbb{R})$$

$$5) \frac{1}{n+(-1)^n \sqrt{n}} \qquad 6) \frac{(-1)^n}{n-\ln n} \qquad 7) \frac{(-1)^n}{2n+\cos(n\alpha\pi)} avec \ \alpha \in \mathbb{R}$$

$$8) (-1)^n \cosh(\frac{1}{n}\sin(\frac{1}{n})) \qquad 9) \ln(n\cosh(\frac{1}{n}\sin(\frac{1}{n})) \qquad 10) \sqrt{1 + \frac{(-1)^n}{\sqrt{n}}} - 1 \qquad 11) \left(\frac{1+n(2-i)}{n(3-2i)-3i}\right)^n.$$

8)
$$(-1)^n \cosh(\frac{1}{n}\sin(\frac{1}{n}))$$

9)
$$\ln \left(n \cosh\left(\frac{1}{n} \sin\left(\frac{1}{n}\right)\right) \right)$$

10)
$$\sqrt{1+\frac{(-1)^n}{\sqrt{n}}}$$

11)
$$\left(\frac{1+n(2-i)}{n(3-2i)-3i}\right)^n$$

Exercice 2.15.—Soit u_n une suite positive telle que la série de terme général u_n converge. On pose $v_n = \frac{1}{1 + n^2 u_n}$.

- 1. Monter que si la série $\sum V_n$ converge, alors la série $\sum \sqrt{U_n V_n}$ diverge.
- 2. Montrer, en raisonnant par l'absurde, que la série de terme général v_n est divergente. On pourra utiliser l'inégalité de Cauchy-Schwartz :

$$\sum_{k=0}^{n} U_k V_k \le \left(\sqrt{\sum_{k=0}^{n} U_k^2} \right)^{1/2} \left(\sqrt{\sum_{k=0}^{n} V_k^2} \right)^{1/2}$$

Exercice 2.16.— Etudier en fonction de $\alpha \in \mathbb{R}$ la nature de la série de terme général 1 $\frac{1}{n^{\alpha}\ln(n)}$.

Exercice 2.17.— Etudier la nature de la série de terme général $\frac{(-1)^n}{(-1)^n + n^a}$ pour $a \in \mathbb{R}$.

Exercice 2.18.— [Ordre des termes] Soient $u_n = \frac{(-1)^n}{n}$ et σ l'application de \mathbb{N}^* dans \mathbb{N}^* définie par

$$\forall p \in \mathbb{N}^*, \ \sigma(3p-2) = 2p-1 \ ; \ \sigma(3p-1) = 4p-2 \ ; \ \sigma(3p) = 4p-2 \ ;$$

- 1. Montrer que σ est une bijection.
- **2.** Comparer $\sum_{n=1}^{+\infty} u_n$ et $\sum_{n=1}^{+\infty} u_{\sigma(n)}$.