Intégration

Exercice 3.1.— Soit $f: \mathbb{R}^+ \to \mathbb{R}$ uniformément continue. Montrer qu'il existe h, k > 0 tels que $\forall x \in \mathbb{R}^+, |f(x)| \leq hx + k$.

Exercice 3.2.— Soit $f:[a,+\infty[\to\mathbb{R} \text{ continue telle que }\lim_{x\to+\infty}f(x)=b$. Montrer que f est uniformément continue sur $[a,+\infty[$.

Exercice 3.3.—Intégrales de Wallis. On considère la suite I_n définie par $I_n = \int_0^{\frac{\pi}{2}} \sin^n x dx$.

- 1. Montrer que $(I_n)_n$ est positive décroissante.
- **2.** Montrer que $I_{n+2} = \frac{n+1}{n+2}I_n$ et expliciter I_n . En déduire $\int_0^1 (x^2-1)^n dx$.
- **3.** Montrer que $I_n \sim I_{n+1}$.
- **4.** Calculer $(n+1)I_nI_{n+1}$. Montrer que $I_n \sim \sqrt{\frac{\pi}{2n}}$.

Exercice 3.4.— Formule de Stirling. On considère la suite $(u_n)_n$ définie, pour $n \in \mathbb{N}^*$, par

$$u_n = \frac{n!}{\sqrt{n}} \left(\frac{e}{n}\right)^n.$$

- 1. On pose $\nu_n = \ln(u_n)$, pour $n \in \mathbb{N}^*$. En étudiant $\nu_{n+1} \nu_n$, démontrer que la suite $(\nu_n)_n$ converge. En déduire que la suite (u_n) converge vers une certaine limite l.
- 2. À l'aide de la question 4 de l'exercice précédent, démontrer que $l=\sqrt{2\pi}$.
- **3.** En déduire la formule de Stirling : $n! \sim \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$.

Exercice 3.5.— Soit $f:[a,b]\to\mathbb{R}$ continue, positive et $M=\sup f(x)$. Montrer que

$$\lim_{n \to \infty} \left(\int_a^b f(x)^n dx \right)^{\frac{1}{n}} = M.$$

Exercice 3.6.— On considère la suite de fonctions en escalier $g_n:[0,1]\to\mathbb{R}$ tel que $g_n(x)=0$ si $x\geq \frac{1}{n}$ et $g_n(x)=n$ si $x<\frac{1}{n}$.

1. Existe-t-il une fonction bornée définie sur [0, 1] qui soit limite de cette suite?

2. Soit la suite (u_n) définie par $u_n = \int_0^1 f(x)g_n(x)dx$, où f est une fonction continue sur [0,1]. Calculer $\lim_{n\to\infty} u_n$.

Exercice 3.7.— Soit f une application continue de [a,b] dans \mathbb{R} . On suppose que pour toute application $g \in E([a,b])$ on a $\int_a^b f(x)g(x)dx = 0$. Montrer que f = 0.

Exercice 3.8.— Soit f une application intégrable sur [a,b]. On pose $I_n = \int_a^b f(x) sin(nx) dx$. Montrer que I_n a une limite lorsque n tend vers $+\infty$ et calculer cette limite.

Exercice 3.9.— Montrer que la fonction $\chi:[0,1]\to\mathbb{R}$ définie par

$$\left\{ \begin{array}{l} \chi(x) = 0 \; si \; x \notin \mathbb{Q} \cap [0,1] \\ \chi(x) = 1 \; si \; x \in \mathbb{Q} \cap [0,1] \end{array} \right.$$

n'est pas intégrable.

Exercice 3.10.— Soit $f:[a,b[\to \mathbb{R}$ une fonction bornée sur [a,b[et intégrable sur tout segment $[a,x]\subset [a,b[$. Montrer que $\tilde{f}:[a,b]\to \mathbb{R}$ définie par

$$\left\{ \begin{array}{ll} \tilde{f}(x) = f(x) & \forall x \in [a, b[\\ \tilde{f}(b) = l \end{array} \right.$$

(où l est un réel quelconque) est intégrable.

Exercice 3.11.— Soient $f:[0,1] \to \mathbb{R}$ intégrable telle que

$$\int_0^1 f(t) \, \mathrm{d}t = 0.$$

On pose m la borne inférieure des valeurs prise par f et M la borne supérieure des valeurs prises par f.

Prouver

$$\int_0^1 f^2(t) \, \mathrm{d}t \leqslant -mM$$

Exercice 3.12.— Soit $f:[a,b] \to \mathbb{R}$ continue. Montrer

$$\left|\int_a^b f(t) \, \mathrm{d}t\right| = \int_a^b |f(t)| \, \mathrm{d}t$$
si, et seulement si, $f \geqslant 0$ ou $f \leqslant 0$

Exercice 3.13.— Calculer les primitives des fonctions suivantes :

(i)
$$\frac{1}{\cos^2(x)}$$
, (ii) $\frac{1}{\sin^2(x)}$, (iii) $\frac{1}{\sin(x)}$, (iv) $\frac{1}{\cos(x)}$

(v)
$$\frac{\sin(x)}{(2+\cos(x))^{\beta}}$$
 pour $\beta \in \mathbb{R}$, (vi) $\sin^2 x \cos^4 x$,

(vii)
$$Arctg(\sqrt[3]{x})$$
, (viii) $\sqrt{\frac{x-1}{x+1}}$, (ix) $\frac{\cos(x)}{1+\cos(x)}$

(x)
$$\frac{1-\cos 2x}{\sin 3x}$$
, (xi) $\frac{1}{1+\cos \alpha \cos x}$ ($\alpha \neq k\pi$) sur les intervalles $]0,\pi[,]\pi,2\pi[,]0,2\pi[$.

Exercice 3.14.—

- 1) Déterminer une primitive de $\frac{1}{x^2 2x + 5}$.
- 2) Calculer une primitive de $\frac{1}{x^3-1}$ sur $]1,+\infty[$ ou $]-\infty,1[$.
- 3) Calculer une primitive de $\frac{1}{x(x^2-1)}$ sur] $-\infty$, -1[ou] -1, 0[ou]0, 1[ou]1, + ∞ [.

Exercice 3.15.—

- 1) Décomposer en éléments simples la fonction $g(x) = \frac{x^3 + 5}{x(x^2 2x + 5)}$.
- 2) Déterminer une primitive de g sur \mathbb{R}^{+*} .
- 3) En déduire une primitive de $\frac{e^{3t} + 5}{e^{2t} 2e^t + 5}$.

Exercise 3.16.— Soit $f \in C^0([0,\pi],\mathbb{R})$.

1. Montrer à l'aide d'un changement de variable que l'on a

$$\int_0^{\pi} x f(\sin(x)) dx = \frac{\pi}{2} \int_0^{\pi} f(\sin(x)) dx.$$

2. En déduire la valeur de

$$I = \int_0^\pi \frac{x \sin(x)}{1 + \cos^2(x)} dx.$$

Exercice 3.17.— 1) Soit f une fonction continue strictement croissante sur l'intervalle [0, a] telle que f(0) = 0. On pose $g = f^{-1}$.

1. Calculer à l'aide de sommes de Riemann bien choisies

$$\int_0^a f(t)dt + \int_0^{f(a)} g(t)dt.$$

2. En déduire que, pour tout $\alpha \in [0, a]$ et $\beta \in [0, f(a)]$:

$$\alpha\beta \le \int_0^{\alpha} f(t)dt + \int_0^{\beta} g(t)dt.$$

Exercice 3.18.— Pour tout x dans \mathbb{R}_+ , on pose $I(x) = \int_0^x \frac{\arctan(t)}{1+t^2} dt$ et $J(x) = \int_0^x \frac{\arctan(t)}{(1+t)^2} dt$.

- a. Déterminer la valeur de I(x) en fonction de x.
 - b. En déduire l'existence et la valeur de la limite de la fonction I en $+\infty$.
- a. Déterminer la valeur de J(x) en fonction de x.
 - b. En déduire l'existence et la valeur de la limite de la fonction J en $+\infty$.

Exercice 3.19.— Pour tout réel x, on pose $f(x) = \int_x^{x^2} \frac{\cos(t)+1}{1+t^2} dt$.

- 1. Montrer que f est définie et de classe C^1 sur \mathbb{R} .
- 2. Calculer la dérivée de f et en déduire que f est de classe C^{∞} sur \mathbb{R} .
- **3.** Montrer que f est positive sur $]-\infty,0]$ et $[1,+\infty[$, et négative sur [0,1].
- **4.** Pour quelles valeurs de x la fonction f s'annule-t-elle?

Exercice 3.20.— Déterminer la nature des intégrales suivantes :
(i)
$$\int_0^1 \frac{\ln(1+t)}{t} dt$$
; (ii) $\int_0^{\frac{\pi}{2}} \frac{\cos(t)-1}{\sin^2(t)} dt$; (iii) $\int_0^1 \frac{1-t^2}{1-\sqrt{t}} dt$; (iv) $\int_0^{+\infty} e^{-t^2} dt$; (v) $\int_0^{+\infty} \frac{\sin(t)}{1+\cos(t)+e^t} dt$; (vi) $\int_0^{+\infty} \frac{t^3-5t^2+1}{2t^4+2t^3+t^2+1} dt$; (vii) $\int_0^{\frac{\pi}{2}} \frac{\tan(t)}{t} dt$; (viii) $\int_0^1 \frac{dt}{\sqrt{t}(1-t)^2}$; (ix) $\int_0^{+\infty} \frac{\ln(t)^2}{\sqrt{|t^2-1|}(\sqrt{t}+2)} dt$;

(vi)
$$\int_0^{+\infty} \frac{t^3 - 5t^2 + 1}{2t^4 + 2t^3 + t^2 + 1} dt$$
; (vii) $\int_0^{\frac{\pi}{2}} \frac{\tan(t)}{t} dt$; (viii) $\int_0^1 \frac{dt}{\sqrt{t(1-t)^2}}$; (ix) $\int_0^{+\infty} \frac{\ln(t)^2}{\sqrt{|t^2 - 1|}(\sqrt{t} + 2)} dt$;

(x)
$$\int_0^1 \frac{dt}{t^{\alpha} |\ln(t)|^{\beta}}$$
, où $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{R}$; (xi) $\int_0^{+\infty} t^{\alpha} (1 - e^{-\frac{1}{\sqrt{t}}}) dt$, où $\alpha \in \mathbb{R}$.

Exercice 3.21.— Les intégrales suivantes sont-elles convergentes? Si oui, calculer leur valeur.

(i)
$$\int_{0}^{\infty} \frac{\arctan(t)}{1+t^{2}} dt$$
; (ii) $\int_{0}^{+\infty} \frac{dt}{(1+e^{t})(1-e^{-t})}$; (iii) $\int_{0}^{\frac{\pi}{4}} \frac{dt}{\tan^{2}(t)}$; (iv) $\int_{0}^{1} \frac{dt}{\sqrt{t(1-t)}}$; (v) $\int_{-1}^{1} \frac{t}{\sqrt{1-t^{2}}} dt$; (vi) $\int_{1}^{+\infty} \frac{\ln(t)}{t^{\alpha}} dt$, oï; $\frac{1}{2} \alpha \in \mathbb{R}$; (vii) $\int_{0}^{+\infty} \frac{dt}{(t+\sqrt{t^{2}+1})^{\alpha}}$, oï; $\frac{1}{2} \alpha \in \mathbb{R}$.

Exercice 3.22.— Soit $f \in C^0([a,b],\mathbb{R})$ avec $(a,b) \in \mathbb{R}^2$.

- 1. Déterminer la nature de l'intégrale $\int_a^b \frac{f(t)}{\sqrt{(b-t)(t-a)}} dt$.
- **2.** On suppose que $f(b) \neq 0$. Déterminer la nature de l'intégrale $\int_a^b \frac{f(t)^2 \ln(t-a)}{(b-t)^2} dt$.

Exercice 3.23.— Soit $f \in C^0([0,1],\mathbb{R})$. On suppose que f(0)=0 et que f est dérivable

- 1. Montrer que l'intégrale $\int_0^1 \frac{f(t)}{t^{\frac{3}{2}}} dt$ est convergente.
- 2. On suppose que $f'(0) \neq 0$. Montrer que l'intégrale $\int_0^1 \frac{f(t)}{t^2} dt$ est divergente.

Exercise 3.24.— Soit $I = -\int_0^1 \frac{\ln(t)}{\sqrt{t(1-t)^{\frac{3}{2}}}} dt$.

- 1. Montrer que l'intégrale I est convergente.
- 2. Calculer la dérivée de la fonction $t \mapsto \sqrt{\frac{t}{1-t}}$ sur l'intervalle]0,1[.
- **3.** En déduire que $I=2\pi$.

Exercice 3.25.— 1. Montrer que les deux intégrales $\int_0^1 \frac{\ln(t)}{1+t^2} dt$ et $\int_1^{+\infty} \frac{\ln(t)}{1+t^2} dt$ sont convergentes.

2. En déduire que l'intégrale $\int_0^{+\infty} \frac{\ln(t)}{1+t^2} dt$ est convergente, et que sa valeur est égale à

$$\int_0^{+\infty} \frac{\ln(t)}{1+t^2} dt = 0.$$

3. Soit a > 0. A l'aide d'un changement de variable approprié, en déduire que

$$\int_0^{+\infty} \frac{\ln(t)}{a^2 + t^2} dt = \frac{\pi}{2a} \ln(a).$$

Exercice 3.26.— 1. Montrer que l'intégrale $\int_0^1 \frac{\sin(t)}{t} dt$ est convergente.

- 2. Montrer que l'intégrale $\int_1^{+\infty} \frac{\cos(t)}{t^2} dt$ est convergente.

3. Pour $x \in [1, +\infty[$, on pose $I(x) = \int_1^x \frac{\sin(t)}{t} dt$. a. Montrer que la fonction I est définie et de classe C^1 sur $[1, +\infty[$, et qu'elle a une limite en $+\infty$.

b. En déduire que l'intégrale $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est convergente. Remarque. La valeur de l'intégrale $\int_0^{+\infty} \frac{\sin(t)}{t} dt$ est $\frac{\pi}{2}$.

Exercice 3.27.— Pour tout réel strictement positif x, on pose $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$.

- **1.** Montrer que la fonction Γ est définie sur \mathbb{R}_+^* et que $\Gamma(1) = 1$.
- **2.** Montrer que pour tout x > 0, on a $\Gamma(x+1) = x\Gamma(x)$.
- **3.** En déduire la valeur de $\Gamma(n)$ pour tout entier $n \in \mathbb{N}^*$.

Exercice 3.28.— Pour tout entier naturel n, on pose $I_n = \int_0^{+\infty} t^n e^{-t^2} dt$.

- **1.** Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est bien définie.
- 2. Montrer que

$$\forall n \in \mathbb{N}, I_{n+2} = \frac{n+1}{2}I_n.$$

3. En déduire la valeur de I_n en fonction de n. Remarque. On admettra que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.