SPECTRAL DECOMPOSITION OF SHIFTED CONVOLUTION Sums

VALENTIN BLOMER AND GERGELY HARCOS

Abstract. Let π_1, π_2 be cuspidal automorphic representations of $\text{PGL}_2(\mathbb{R})$ of conductor 1 and Hecke eigenvalues $\lambda_{\pi_1,2}(n)$, and let $h > 0$ be an integer. For any smooth compactly supported weight functions $W_1: \mathbb{R}^\times \to \mathbb{C}$ and any $Y > 0$ a spectral decomposition of the shifted convolution sum

$$\sum_{m \leq n = h} \frac{\lambda_{\pi_1}(|m|)\lambda_{\pi_2}(|n|)}{\sqrt{mn}} W_1\left(\frac{m}{Y}\right)W_2\left(\frac{n}{Y}\right)$$

is obtained. As an application, a spectral decomposition of the Dirichlet series

$$\sum_{m, n \geq 1 \atop m - n = h} \frac{\lambda_{\pi_1}(m)\lambda_{\pi_2}(n)}{(m + n)^s} \left(\frac{\sqrt{mn}}{m + n}\right)^{100}$$

is proved for $\Re s > 1/2$ with polynomial growth on vertical lines in the s aspect and uniformity in the h aspect.

2000 Mathematics Subject Classification. Primary 11F70, 11F72, 11F30; Secondary 11M41, 11F12.

Key words and phrases. shifted convolution sums, spectral decomposition, Hecke eigenvalues, non-holomorphic cusp forms, Kirillov model.