Shifted convolution sums and subconvexity bounds for automorphic \(L\)-functions, IMRN 2004, 3905-3926

- first display in Section 4 should read \(\lambda \gg \frac{Q^2}{(Nm\ell_1\ell_2)^{1+\varepsilon}}\)

- p.17: the first term of the last line of the display after (4.7) should be \(2^{3\nu/2m^{1/4}}\), and this inequality holds for \(2^\nu \leq \min(w^2,m^{3/8})\). To cover the remaining range, one can use Lemma 4.4 instead of Lemma 4.1a in the next display getting

\[
r(f_1, 2^{2\nu}m) - r(f_2, 2^{2\nu}m) \\
\ll (Nm^{2\nu})^{5/2}HN^{3\nu/2}N(m^{1/4}vw + m^{13/28}(vw)^{3/14}) \\
\ll HN^{7/2+\varepsilon}(2^{2\nu}m)^{13/28+\varepsilon}
\]

if \(2^\nu \geq \max(w^{1/2},w^{7/3}m^{-1/2})\). This extra estimate is not necessary if one uses Proposition 2.1 in [Ternary quadratic forms..., CRM lecture notes 46 (2008), 1-17].

Rankin-Selberg \(L\)-functions on the critical line, Manuscr. Math. 117 (2005), 111-133

- (3.1) should read: \(\lambda \gg \frac{Q^2}{L^{2+\varepsilon}}\)

A Burgess-like subconvex bound for twisted \(L\)-functions (with appendix 2 by Z. Mao), Forum Math. 19 (2007), 61-106

- p.98 line -3: for \(\pi \otimes \chi\) read \(\pi \otimes \chi \chi^{-4}\).

- second last display on p.7: the Eisenstein series are wrongly defined. It should be

\[
E_n(z; s) := \sum_{\gamma \in \Gamma} \overline{\vartheta(\gamma)} j(\gamma z)^{-k} j(\sigma_a^{-1}, \gamma z)^{-k} j(\sigma_a^{-1}, \gamma z)^{k} (3\sigma_a^{-1}, \gamma z)^{s}
\]

where \(\vartheta(\gamma) = \chi(d)e_d^{-1}(\xi_d)\) and \(j(\gamma, z) = cz + d\).

- Lemma 3: For \(K_{ir}\) read \(K_{2ir}\).

Ternary quadratic forms and sums of three squares with restricted variables, CRM lecture notes 46 (2008), 1-17

- before (1.8): remove the sentence “Note that we must have \(\alpha_1 \alpha_2 = 0\), since \(q\) is primitive.”

- p.8, line -7: for “Theorem 1 and Remark 1” read “Theorem 2”

- estimate in the second line of the proof of Lemma 2.3: for \(n^{3/2}2^{1/2} + n^{1+\varepsilon}\) read \(x^{3/2}2^{1/2} + x^{1+\varepsilon}\)

- display after (2.5): for \(s(n, \rho_j)\) read \(|s(n, \rho_j)|\)

- second display after (2.5): for \(x\) read \(h\)

- (2.6): add \((nN)^{\varepsilon}\) at the end.
Hybrid bounds for twisted L-functions, Crelle 621 (2008), 53-79

- (4.9): $J_{k-1} = i^{k-1} \phi_{k-1,0}$
- on p.75 it is assumed that V is independent of t. This is a priori not the case. Instead of the approximate functional equation (2.12) one should use Proposition 1 of “A hybrid asymptotic formula for the second moment...” This introduces an error of $D^{1/2}T^{-A}$ in (7.2) and the argument goes through as claimed. (7.3) holds only on the support of ψ (which is all that is needed) and for the display after (7.4) one has to first write V as an inverse Mellin transform.
- (8.8): for N_0 read N

On the central value of symmetric square L-functions, Math. Z. 260 (2008), 755-777

- equation (2.10) and the last display in Section 3: the h-sum should be removed
- equation (3.1): for $\chi_D(d)$ read $\chi_D(d)$

Twisted L-functions over number fields..., GAFA 20 (2010), 1-52

- p.7, line -2: add “...to a section $\phi \in H$ such that the restriction of $\phi(s)$ to K is independent of $s \in \mathbb{C}$.”
- p.11, lines -11 to -9: q has to be restricted to a fixed parity $q \equiv \kappa \pmod{2}$ for $\kappa \in \{0,1\}$.
- the second last display on p.30 is not correct as claimed, but a variant of it is true. See http://www.renyi.hu/~gharcos/hilbert_erratum.pdf for a corrigendum
- Section 2.12: some notational changes are necessary: In lines -5 to -1 of p.32, the ideal classes should be understood in the narrow sense, while the generator γ and the product $\tau_1 \tau_2$ should be totally positive. The Kuznetsov formula (92) should be corrected as follows: on the left hand side the restriction $\varepsilon_\pi = 1$ should be omitted, and on the right hand side the summation over U/U^2 should be restricted to U^+/U^2. Accordingly the proof must be slightly modified. The analysis must be carried out on the larger space

$$FS = L^2(GL_2(K) \backslash GL_2(\mathbb{A})/K(\mathbb{A})) = \bigoplus_{\omega \in \mathcal{C}(K)} L^2(GL_2(K) \backslash GL_2(\mathbb{A})/K(\mathbb{A}), \omega).$$

In particular, whenever we refer to $L^2(GL_2(K) \backslash GL_2(\mathbb{A})/TK(\mathbb{A}), \omega)$, it should be understood as $L^2(GL_2(K) \backslash GL_2(\mathbb{A})/K(\mathbb{A}), \omega)$ without T. Accordingly, each restriction $\varepsilon_\pi = 1$ or $\varepsilon_\varphi = 1$ should be disregarded in the text. Then Lemma 6 and Theorems 2-3 remain valid, and for the latter we do not need to assume that π_1 and π_2 have the same signature character, cf. [Remarks 11 & 13]. Complete details can be found in P. Maga, A semi-adelic Kuznetsov formula over number fields, arXiv:1209.5220.
- p.45, lines -10 to -9: all 5 occurrences of ϵ should be t.

• Proposition 3.1: for $n \equiv 3 \pmod{8}$ read $n \equiv 3 \pmod{24}$
Sup-norms of Eigenfunctions on Arithmetic Ellipsoids, IMRN 2011

- p.7, line -4 in Section 2.1: for “even finite number” read “even number”
- p.18, line 10: for 1, x read 1, x_{\infty}.

Subconvexity for a double Dirichlet series, Compositio Math. 174 (2011), 355-374

- p.358, sentence after (9): ψ_2(n) = -1 if ... and ψ_{-2}(n) = -1.
- Equation (11): \(\delta_0 = \begin{cases} d_0, & \psi = \psi_1, d \equiv 1 \pmod{4} \text{ or } \psi = \psi_{-1}, d \equiv 3 \pmod{4}, \\ 4d_0, & \psi = \psi_2 \text{ or } \psi_{-2} \end{cases} \)
- Equation (18), although quoted from [IK], is nevertheless incorrect (counterexample: \(z = -s + 1/10 \)), but the polynomial dependence plays no role in the application of (18) on p. 368
- Equation (31): remove \(\psi'(d) \) in the numerator in the first line
- p.362, line -4: for “and (11) together with (8) - (29), we find” read “and (11), together with (8), to (29), we find”
- p.365, first display: \(C = \left| \frac{1}{4} + \frac{i(u+t)}{2} \right| \cdot \left| \frac{1}{4} + \frac{iu}{2} \right| \) (i.e. remove \(C(0,u) \))
- p.365, display after (39): add a factor \(\pi^{-2z} \) to the first term on the right side and remove this factor in (43)
- p.368, 4th display, second line: for \(n^{1/2 \pm jt - s} d_0^{1/2 + iu - w} \) read \(n^{1/2 \pm jt + s} d_0^{1/2 + iu + w} \)
- p.372, display before (67): \(D_{\psi,\psi}(t,u,p;W) \ll U^\varepsilon((TU)^{1/4} + T^{1/6}U^{1/3}) \ll (TUS)^{1/6 + \varepsilon} \)

- Proposition 3: for \(\tilde{F} \) read \(\tilde{F} \)

Subconvexity for twisted \(L \)-functions on \(GL(3) \), Amer. J. Math. 134 (2012), 1385-1421

- p.1386, first display; p.1391, second and 6th display; display above (19); display above (21); (21); p.1405 first, third and 5th display; p.1406, first display: add summation condition \((m,q) = 1 \).
- Lemma 2: for \(\omega^*_j \) read \(\omega^*_f \)
- statement of Lemma 9: it should be
 \[D := \{ z \in \mathbb{C} : \inf \{|z - y| : y \in [a,b]\} < \rho \} \]
 (replace > with <)
- p.1397, 4th display: the second line should read
 \[e \left(\pm \frac{s}{4} \right) \left(e \left(\pm \frac{\alpha_1}{2} \right) + e \left(\pm \frac{\alpha_2}{2} \right) + e \left(\pm \frac{\alpha_3}{2} \right) \right) \]
- p.1400, line 1: for “\(e(2\sqrt{y}D) \) or \(\phi(y) = e(\pm 3(xy)^{1/3}) \)” read “\(2\sqrt{y}D \) or \(\phi(y) = \pm 3(xy)^{1/3} \)".
Period integrals an Rankin-Selberg L-functions on $GL(n)$, GAFA 22 (2012), 608-622

- p.612, first display: in the first integral a factor y^k is missing.
- (3.5) should read
 $$\approx \prod_{j,k=1}^{n-1} \left| \frac{\Gamma_R(s+n(\nu_j+\ldots+\nu_k))^2}{\Gamma_R(1+n(\nu_j+\ldots+\nu_k))} \right|^2.$$
- display after (3.10): for $x^t y^t y x$ read $xy^t y x$

Non-vanishing of L-functions, the Ramanujan conjecture, and families of Hecke characters, Canad. J. Math. 65 (2013), 22-51

- Lemma 6.2: The constant C depends also on ϕ.

- Display before (8.4): for $\frac{d}{dx}$ read $\frac{d}{dt}$

On the 4-norm of an automorphic form, J. EMS 15 (2013), 1825-1852

- (2.8): the notation $L(1, \text{Ad}^2 f)$ differs from the usual meaning by a factor $(1 - 1/q)$.
- (2.12): the last formula should be $q^{1/2} |\lambda_g(q)| \ll 1$ instead of $q^{-1/2} |\lambda_g(q)| \ll 1$.
- (2.16) and (2.18): the integral in the diagonal should be from $-\infty$ to ∞.

- Section 2.5, line 2: for “space functions” read “space of functions”.
- second line, proof of Lemma 4.1: for α_1 and α_2 read α, β.
- two lines before (4.11): for $N\ell^{1/2}$ read $nr_{\ell}(\ell)^{1/2}$
- (4.11): for δ_1 read δ_2

Applications of the Kuznetsov formula on $GL(3)$, Invent. math. 194 (2013), 673-729

- p.677, first display: for $(\text{SL}(3, \mathbb{Z}) \cup U)\setminus U$ read $(\text{SL}(3, \mathbb{Z}) \cap U)\setminus U$
- (1.4): the left hand side should be $C^{-1-\varepsilon}$
- display after (2.13): the leading constant should be 4 instead of 8
- Remark 1: for $y_1 = y_2 = \frac{3}{2\pi} T - \frac{1}{100} T^{1/3}$ read $y_1 = y_2 = \frac{3}{2\sqrt{2\pi} T - \frac{1}{100}} T^{1/3}$
- line below (3.5): constant \rightarrow constants
- Lemma 2: the left hand side should have exponent $-1-\varepsilon$ instead of -1. The proof needs to be modified as follows: let $T := (1+|\nu_0|) \times 1+\max(|\nu_1|, |\nu_2|)$ and fix $\varepsilon > 0$.
 - in the third display of the proof we integrate y_1, y_2 over $[T^{-\varepsilon}, \infty)$. It is easy to see that for some absolute constant c there are at most $T^{c\varepsilon}$ copies of the fundamental domain intersecting $[T^{-\varepsilon}, \infty) \times [0,1]^3$. Hence the fourth display becomes $\ll T^{c\varepsilon/2} \|\phi\|$.

By the exponential decay of the Whittaker function at $y_1, y_2 \geq T^{1+\varepsilon/3}$ we have

$$\int_{T^{-\varepsilon}}^{\infty} \int_{T^{-\varepsilon}}^{\infty} |\tilde{W}_{\nu_1, \nu_2}(y_1, y_2)|^2 (y_1^2 y_2)^{1/2} dy_1 dy_2/y_1 y_2 \geq \int_{0}^{\infty} \int_{0}^{\infty} |\tilde{W}_{\nu_1, \nu_2}(y_1, y_2)|^2 (y_1^2 y_2)^{1/4} dy_1 dy_2/y_1 y_2
\gg ((1 + |\nu_0|)(1 + |\nu_1|)(1 + |\nu_2|))^{-1/2},$$

and we complete the proof as before with an additional factor $T^{c\varepsilon}$.

(A stronger result is given in Theorem 3 of Brumley, Effective multiplicity one on GL_N and narrow zero-free regions for Rankin-Selberg L-functions.)

- Lemma 3: the variables m_1 and m_2 should be exchanged, and in the factor $(n, m)^\varepsilon$ in (4.1) should be $(nm)^\varepsilon$.
- Section 7, line 4: for $m_1 x_1$ read $m_1 x_1$
- in the display after (7.3), the indices m_1, m_2 should be interchanged in the w_0-Kloosterman term S_3, the same in (8.2). Correspondingly, the Kloosterman sum in (9.3) should be $S(\varepsilon_1, \varepsilon_2 m, n, 1, D_1, D_2)$. For these sums, the analogue of (6.6) is

$$\sum_{D_1 \leq X_1, D_2 \leq X_2} |S(\pm 1, m, n, 1, D_1, D_2)| \ll (X_1 X_2)^{3/2+\varepsilon}(nm)^\varepsilon.$$

- (8.7): for $X_1^2 X_2$ read $(X_1 X_2)^2$. Correspondingly, in the proof of Theorem 2 replace X with X^2.
- long display before (8.12): for $x_2 + i\sqrt{x_1^2} + 1$ in the the last line read $\sqrt{x_1^2} + 1$
- (9.2): for $-C_1, -C_2$ read C_1, C_2
- Proof of Theorem 5, line 8: for “From Proposition 3 and Proposition 5” read “From Lemma 3 and Proposition 5”
- Reference 14: the correct title is “A problem of Linnik for elliptic curves and mean-value estimates for automorphic representations”
- Reference 25: for Li, Xinnan read Li, Xiaoman

- (2.4): the second summation condition should be $|\text{ver}(U)| = k$
- Lemma 8: for $r \in S(d_1)$ read $r \in S(u_1)$.

The second moment of twisted modular L-functions, GAFA 25 (2015), 453-516

- (1.14) and the following display: the leading factor should be $M^3/(C^3 N)$ instead of $M^3/(C^3 N^{3/2})$.
- display below (5.5) should read

$$r_f(c) = \sum_{b|e} \frac{\mu(b) \chi_f(b^2)}{b} \left(\sum_{d|b} \chi_0(d) \right)^{-2}, \quad \alpha(c) = \sum_{b|e} \frac{\mu(b) \chi_0^2(b)}{b^2}, \quad \beta(c) = \sum_{b|e} \frac{\mu^2(b) \chi_0(b)}{b}$$
• in (5.8) the first expression should read
 \[A(p) = \frac{\lambda_f(p)}{\sqrt{p(1 + c(p)/p)}} \]
• in the display above (5.9), the following adjustments should be made
 \[\xi_p(1) = -\frac{\lambda_f(p)}{\sqrt{p(1 + c(p)/p)}} \xi_p(p') \]
 \[\xi_p(\nu) = (p_f(p)(1 - c(p)p^{-2}))^{-1/2} \]
• (6.5) should read \(\tilde{J}_{2it}(1/2 + i\tau) \ll ((1 + |\tau + 2it|)(1 + |\tau - 2it|))^{-1/4} e^{-\pi \max(0, |\tau - |t|)} \).
• 3rd display on p. 481, second line: for \(\frac{t^2}{s} \) read \(\frac{t^2}{s + (t + \delta)} \); two lines later:
 For \(Y = t^2/\sqrt{t + X} \) read \(Y = t^2/(t + X) \).
• (7.6) should read \(\Lambda \gg C^2(\ell_1 \ell_2)^{-1 - \varepsilon} \).
• (7.20): the s-contour should be \([1/2 - iC^{-} \mathcal{T} - , 1/2 + iC^{-} \mathcal{T} -] \)
• (8.13), second line: the last term should be \(N^{1/2}/(dr_2)^{1/2} \) instead of \(N^{1/2}/(dr_2) \)
• p.496, first display: the last factor should be raised to the power 1/2.
• p.496, line -2: the summation condition should be \(\ell'_2 n - \ell'_2 m = d' r \).
• p.497, line 2: the first formula should be replaced with
 \[\left| \lambda_2 \left(\frac{\delta_2}{g} \right) \lambda_1 \left(\frac{\delta_1}{h} \right) (\ell'_1 g \cdot \ell_2 h, d')^{1/2} \right| \ll \left(\frac{\delta_2}{g} \right)^{1/2} \left(\frac{\delta_1}{h} \right)^{1/2} (gh)^{1/2} = (\delta_1 \delta_2)^{1/2} \]
• (12.4): replace the right hand side with \(q^r(AB)^{1/2} X \).
• p. 512, penultimate display: this expression is only used for \(B > AX^2 \), in which case the condition \(a_1 a_2 = b_1 b_2 \) is moot

KLOOSTERMAN SUMS IN RESIDUE CLASSES, J EMS 17, 51-69
• p.54, second paragraph: for \(\text{SL}_2(\mathbb{Q}) \setminus \text{SL}_2(\mathbb{A}_\mathbb{Q}) \) read \(\text{GL}_2(\mathbb{Q}) \setminus \text{GL}_2(\mathbb{A}_\mathbb{Q}) \). Also the parenthesis at the end of paragraph should be deleted.
• p.65, line 13: for \(C_2 = (C, Q) \) read \(C_2 = (C, Q^\infty) \).

THE SUP-NORM PROBLEM FOR PGL(4), IMRN 2015 (VOL. 14), 5311-5332
• (3.4): for \(\ll \) read \(\ll \).
• (3.9), (6.2), (6.4), (6.6): for \(|c(\mu)|^{-2} \) read \(\prod_{1 \leq j < k \leq n} (1 + |\mu_j - \mu_k|) \).

• penultimate paragraph of introduction: for \(\mathbb{Q}(\sqrt{n^2 + 1}) \) read \(\mathbb{Q}(\sqrt{n^2 - 1}) \)

ON THE SIZE OF IKEDA LIFTS, MANUSCR. MATH. 148 (2015), 341-349
• equation (2.3): \(\pi^k \) in the numerator should be \(\pi^{k-1} \).

BOUNDS FOR EIGENFORMS ON ARITHMETIC HYPERBOLIC 3-MANIFOLDS, DUKE MATH. J. 165 (2016), 625-659
• Lemma 1: in line 6 of the proof, \(kB' \) should be \(k^2 B' \) and in line 9, \((k+1)B' \) should be \((k^2 + 1)B' \).
On moments of twisted L-functions, Amer. J. Math. 139 (2017), 707-768

Applications of the Kuznetsov formula on $GL(3)$: the level aspect, Math. Ann. 369 (2017), 723-759

Lemma 4. Let $W : (0,\infty)^6 \to \mathbb{C}$ be a fixed smooth compactly supported function. Let $A_1, A_2 > 0$ and define $A := \exp(\max(\|\log A_1\|, \|\log A_2\|))$. Let $P \geq 1$, and let $\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_1, \gamma_2 \in \mathbb{R}$ be such that $\min(\|\alpha_1\|, \|\alpha_2\|, |\beta_1|, |\beta_2|, |\gamma_1|, |\gamma_2|) \leq P$. Then the six-fold Fourier transform

$$\tilde{J} := \int_{\mathbb{R}^6} \mathcal{J}_{\epsilon,F}(A_1 \sqrt[1]{u_1 v_1}, A_2 \sqrt[2]{u_2 v_2}) W(t_1, t_2, u_1, u_2, v_1, v_2)$$

$$\times e(-t_1 \alpha_1 - t_2 \alpha_2 - u_1 \beta_1 - u_2 \beta_2 - v_1 \gamma_1 - v_2 \gamma_2) dt_1 dt_2 du_1 du_2 dv_1 dv_2$$

is bounded by

$$O_C \left((PA)^2(P^2 \max\left(A_2^{-2/3} A_1^{-4/3}, A_1^{-2/3} A_2^{-4/3}\right) + P^{-C}\right)$$

for any constant $C > 0$. In addition, it is bounded by

$$A^\epsilon \max(|\alpha_1|, |\beta_1|, |\gamma_1|)^{-1/2} \max(|\alpha_2|, |\beta_2|, |\gamma_2|)^{-1/2},$$

as long as both maxima are non-zero.

Proof. Suppose that $|\alpha_1|$ is the smallest of the variables. Choose a sufficiently large constant c_2 and a sufficiently large constant $c_1 > c_2$. We split the x_1, x_2, x_3-integration in four pieces

(i) $|x_1|, A_1^4 |\eta_1|/|\xi_1| \leq c_1 P$, (ii) $|x_1| \leq c_2 P, A_1^4 |\eta_1|/|\xi_1| \geq c_1 P$, (iii) $|x_1| \geq c_1 P, A_1^4 |\eta_1|/|\xi_1| \leq c_2 P$

and the remaining portion (iv), which is contained in $|x_1|, A_1^4 |\eta_1|/|\xi_1| \geq c_2 P$. The conditions (i) imply $|x_1| \ll P$, $x_2 x_4 \ll PA_2^{4/3} A_1^{2/3}$ (note that this is $\gg P$ by Lemma 3), and the area of this region is $\ll P^2 (A_2^{4/3} A_1^{2/3}) (AP)^\epsilon$. Integrating by parts in the y_1-integral we can save arbitrarily many factors of P in regions (ii) and (iii). Integrating by parts in t_1, the same holds for region (iv). We conclude the bound $O_P((PA)^2(P^2 A_2^{4/3} A_1^{2/3}) (AP)^\epsilon)$. If, say, $|\alpha_2|$ is the smallest of the variables, we interchange indices and run the same argument.

The second bound follows by not restricting x_1, x_2, x_3 at all and applying in the penultimate display of the proof the simple stationary phase bound

$$\int e(at + b\sqrt{t}) W(t) dt \ll |a|^{-1/2}, \quad a \neq 0$$

for a fixed smooth function W with compact support in $(0, \infty)$.
third display after (5.3): the right hand side should be \(\left(\frac{M^3 d_2}{N(d_1 d_2 d_3)^3 D_2} \right)^i \)

penultimate display of Section 5: we apply the second bound of Lemma 4, unless \(x_1 x_2 y_1 y_2 z_1 z_2 = 0 \), in which case we apply the first bound with \(P = N^\varepsilon \). This replaces the last fraction in the first line

\[
\frac{(d_1 d_2 d_3)^2 N(D_1 D_2)^{1/2}}{M^3 d_2} \rightarrow \frac{\min(d_1 d_2, d_1 d_3, d_2 d_3)(D_1 D_2)^{1/2}}{M} + \frac{(d_1 d_2 d_3)^2 N(D_1 + D_2)}{M^3 d_2}
\]

which still suffices to conclude \(\Sigma_6 \ll N^{2+\varepsilon} \).

- (3.4): for \(N_\ell(X, Y) \) read \(N^{(1)}_\ell(X, Y) \)
- Lemma 4.3: The quantity \(V_{r, (\alpha, \delta, \zeta)}(X, Y, H) \) should be slight re-defined.
 Condition (4.5) and the display before (4.3) should be replaced with \(\max_\ell |a_j z_j| \leq X_j, \delta_i \delta_k \zeta_k |d_i d_j z_k| \leq Y_k \). Statement and proof of Lemma 4.5 remain the same except that the first 4 lines of the proof can be deleted.
- Lemma 4.4/4.5: the quantity \(V_{r, (\alpha, \delta, \zeta)}(B, H) \) should be redefined: (4.14) should be replaced with \(\max_\ell |a_j z_j| \leq X \delta_i \delta_k \zeta_k |d_i d_j z_k| \leq Y \). Lemma 4.4 and its proof remain unaffected, but \(S(B, H) \) is re-defined, and the bound in Lemma 4.5 should be \(B (\log B)^3 (\log H)^3 (\alpha_1 \alpha_2 \alpha_3 \delta_1 \delta_2 \delta_3)^{2/3} (\zeta_1 \zeta_2 \zeta_3)^{-1} \).
 This is needed in the proof of Lemma 5.2: in the last double display the integral over \(S_\delta \) should be the same in both lines, and an application of the modified Lemma 4.5 completes the proof.
- (5.8): for \([1, \infty) \) read \([1, \infty)^9 \) and for \(x_n \) read \(x_9 \)
- Lemma 5.1/5.2: for \(\delta \) read \((\delta + 1/\log B) \).
- (5.13) should be replaced with

\[
D \left(\prod_\ell \frac{v_\ell \hat{f}_\Delta(s_\ell)}{1 - 2^{-v_\ell}} \right) \ll D \frac{\Delta^{18}}{|s_{11}s_{12} \cdots s_{33}|^2}.
\]

- two lines before (5.16): for \(N^{(1)}_{\Delta, T}(B) \) read \(N^{(2)}_{\Delta, T}(B) \)
- display after (5.16): the factor \(\prod_\ell (w_\ell - 1)^{-1} \) is missing.

Higher order divisor problems, Math. Z. 290 (2018), 937-952

- line after display after Theorem 1: for “norm form” read “incomplete norm form”

- (3.8): a factor \(-i\) is missing on the right hand side. In the subsequent formula, the factor \(\pm 1 \) should be \(\mp i \).

- 3 line before Corollary 4: for \((t, \ldots, t - (k - 1)t)\) read \((t + i(k/2 - 1), t + i(k/2 - 2), \ldots, t + i(1 - k/2), -(k - 1)t)\) and the following display should be

\[
\lambda = \lambda(t) = \frac{k^3 - k}{24} + \frac{1}{2}((t + i(k/2 - 1))^2 + \ldots + (t + i(1 - k/2))^2 + (k - 1)^2 t^2) = \frac{k(k - 1)}{8}(4t^2 + 1) \asymp t^2
\]

Der Satz von Green-Tao, Mitteilungen DMV 15 (2007), 160-164

- p.162, line 40/41: for “unendlich” read “beliebig”

L-functions, automorphic forms and arithmetic, in: Symmetries in Algebra and Number Theory, Göttingen 2009

- p.16, example 2: for “for all primes \(p\)” read “for almost all primes \(p\)”