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Roughly speaking, a function u of a single variable x > 0 is polyhomogeneous if it has
an asymptotic expansion as x→ 0 of the form

(1) u(x) ∼
∑
z,k

az,k x
z logk x, az,k ∈ C

Here z ∈ C, k ∈ N0, and for each z only finitely many az,k are non-zero. We write

logk x = (log x)k. Functions of this sort arise in various ways:

• As solutions of differential equations.
• As results of integrating smooth functions (see the push-forward theorem).
• etc.

We will do the following:

(1) Make precise the meaning of the asymptotic expansion; this includes fixing the sets
of (z, k) which may occur in the expansion (index sets). We will also want to be
able to ’differentiate the asymptotics’1, so we make this requirement part of the
definition of (1).

(2) Allow dependence of u and the az,k on additional variables (parameters); geomet-
rically this means considering functions on a half space rather than a half line

(3) Characterize polyhomogeneity in terms of differential equations
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(4) Extend this to asymptotics in terms of several variables approaching a limit. That
is, consider functions on quadrants/octants etc. instead of a half line; or more
generally quadrants/octants... times Euclidean spaces if parameters are present.

(5) Think about coordinate invariance. This leads to generalization to manifolds with
corners.

0.1. Preliminaries, polyhomogeneous functions on the half line. First note that
(all asymptotics are meant as x→ 0)

xz logk x = o(xz
′
logk

′
x) iff

{
Rez > Rez′ or

Rez = Rez′, k < k′

For example, the sequence of functions

log2 x, log x, xi log x, 1, x log x, x, x2, xπ log10 x

is decreasing with respect to the order g > f :⇐⇒ f = o(g).
Therefore, the asymptotic series in (1) makes sense if the sum runs over (z, k) ∈ E where

E satisfies condition (a) in the following definition.

Definition 1. An index set is a subset E ⊂ C× N0 satisfying

(a) For each s ∈ R the set

E≤s := {(z, k) ∈ E : Rez ≤ s}
is finite.

(b) (z, k) ∈ E, 0 ≤ l ≤ k ⇒ (z, l) ∈ E.

E is a C∞-index set if in addition

(c) (z, k) ∈ E ⇒ (z + 1, k).

We also denote
inf E := min{Rez : (z, k) ∈ E for some k}

Condition (b) means that with any log x power also all the lesser powers may appear
(with the same xz). We will see presently why this is useful. Condition (c) will be important
when considering invariance under coordinate changes.

In the sequel the differential expression (operator) x∂x := x ∂
∂x will occur frequently. One

reason for this is that it behaves very nicely (much better than ∂x) with functions of the

form xz logk x:

x∂x(xz) = z xz, x∂x(logk x) = k logk−1 x

and therefore

(2) x∂x(xz logk x) = z xz logk x+ k xz logk−1 x

so the space spanned by xz logj x, j = 0, . . . , k, is invariant under the operator x∂x for any
k. This would be false for the operator ∂x.

In the following definitions we write

R+ = [0,∞), int(R+) = (0,∞)
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Definition 2. Let E be an index set. A polyhomogeneous function on R+ with index
set E is a smooth function u : int(R+) → C for which there are az,k ∈ C, (z, k) ∈ E, so
that for all j ∈ N0 and s ∈ R we have

(3) (x∂x)j

u(x)−
∑

(z,k)∈E≤s

az,k x
z logk x

 = O(xs)

In this case we write

u(x) ∼
∑
z,k

az,k x
z(log x)k

The space of polyhomogeneous functions on R+ with index set E is denoted

AE(R+)

Here we use the

Convention: All O estimates are to be understood as locally
uniform on the spaces in question.

That is, f(x) = O(xs) means that for any compact set K ⊂ R+ there is a constant C so
that |f(x)| ≤ Cxs for all x ∈ K at which f is defined. The main point is that we have a
statement about behavior as x→ 0 (since K may contain zero), but none about behavior
as x→∞.

Remarks 3.

(1) u(x) is only defined for x > 0, but we say that u is polyhomogeneous on [0,∞) since
there is a condition on the behavior of u in arbitrarily small pointed neighborhoods
of 0.

(2) If we required (3) only for j = 0 then we would get the standard notion of asymptotic
series (no derivatives).

(3) We would obtain the same space of functions if we required

(4) (x∂x)j

u(x)−
∑

(z,k)∈E
Rez<s

az,k x
z logk x

 = O(xs−ε)

for all j, s and ε > 0. This is the definition used in [?].

Proposition 4. Let E be an index set. Then AE(R+) is a vector space, and is mapped by
x∂x to itself.

This is obvious from (2). Note that for the last statement one needs condition (b) in
Definition 1 and all j in Definition 2.

Definition 2 may be made more digestible by introducing some notation. We will do this
after considering parameters.

Examples 5.
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(1) A function is smooth on R+ if and only if it is polyhomogeneous with index set
N0×{0}. One implication in this equivalence follows directly from Taylor’s theorem,
applied to the function and its derivatives. The other directions is an exercise .(refer to manifolds

with corners chap-
ter)

(2) Clearly, x−2, xe, log x are polyhomogeneous on R+ with suitable index sets.
(3) The function sin 1

x is not polyhomogeneous on R+ for any index set: Its fast os-

cillation as x → 0 cannot be modelled using functions of the form xz logk x. If we
used the Taylor series sin 1

x = 1
x −

1
6

1
x3
± . . . then arbitrarily large negative powers

of x would appear. This is not allowed for an index set.

0.2. Polyhomogeneous functions on the half space. We now consider functions on
the half space

Hn := R+ × Rn−1

It is standard to denote the variables

x ∈ R+, y = (y1, . . . , yn−1) ∈ Rn−1

The definition of polyhomogeneity extends in a straightforward way, where we want to
assume smooth dependence on y and also the possibility to differentiate the asymptotic
series in y.

Definition 6. Let E be an index set. A polyhomogeneous function on Hn with index
set E is a smooth function u : int(Hn)→ C for which there are az,k ∈ C∞(Rn−1), (z, k) ∈
E, so that for all j ∈ N0, α ∈ Nn−10 and s ∈ R we have

(5) (x∂x)j∂αy

u(x, y)−
∑

(z,k)∈E≤s

az,k(y)xz logk x

 = O(xs)

In this case we write
u(x, y) ∼

∑
(z,k)∈E

az,k(y)xz(log x)k

The space of polyhomogeneous functions on Hn with index set E is denoted

AE(Hn)

Recall the convention that O estimates are meant to be uniform on compact subsets.
Here this means compact subsets of Hn.

The following definitions are designed to focus attention on various aspects of this def-
inition. First, it is useful to give a name to combinations of derivatives as they occur in
(5).

Definition 7. A b-differential operator on Hn is an operator of the form∑
j,α

bj,α(x, y)(x∂x)j∂αy

where bj,α ∈ C∞(Hn) for all j ∈ N0, α ∈ Nn−10 and only finitely many terms of the sum
are non-zero. The space of b-differential operators on Hn is denoted Diff∗b(H

n).
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As usual the order of P ∈ Diff∗b(H
n) is defined as the largest j + |α| for which bj,α is

not identially zero, and by Diffmb (Hn) we denote the set of b-operators of order at most m.
Clearly this is a vector space, and the composition of two b-operators is a b-operator.

We now introduce spaces in which the remainders – the expressions in parantheses in
(5) – lie.

Definition 8. For s ∈ R let

As(Hn) = {u ∈ C∞(int(Hn)) : Pu = O(xs) for all P ∈ Diff∗b(H
n)}

Functions in As(Hn) are sometimes called conormal with respect to the boundary ∂Hn.
The definition of polyhomogeneity translates directly as:

Lemma 9. A function u ∈ C∞(int(Hn)) is polyhomogeneous, u(x, y) ∼
∑

(z,k)∈E
az,k(y)xz(log x)k

if and only if for each s ∈ R we can write

(6) u =
∑

(z,k)∈E≤s

az,k x
z logk x + rs, rs ∈ As(Hn)

Remark 10. The condition rs ∈ As(Hn) ∀s is equivalent to the seemingly weaker condition

that rs ∈ As
′
(Hn) ∀s, for some s′ which tends to infinity as s→∞. (For example s′ = s−1

or s′ = s/2.)
(Proof as exercise.)

As before, we have

Proposition 11. Let E be an index set. Then AE(Hn) and As(Hn) are vector spaces,
and are mapped by Diff∗b(H

n) to themselves.

0.3. Characterization by differential operators. In order to prove some basic prop-
erties of polyhomogeneous functions, it is useful to characterize them in a different way.

The starting point is the observation that (x∂x − z)xz = 0, and more generally

(7) (x∂x − z)xz logk x = kxz logk−1 x

which implies (x∂x− z)k+1xz logk x = 0. A neat way to understand this is by noticing that
x∂x − z = xzx∂xx

−z (conjugation of x∂x by the operator of multiplication by xz), which
reduces the claims to the case z = 0.

More precisely and more generally, we have for any finite subset S ⊂ C and numbers
pz ∈ N0

(8) ker
∏
z∈S

(x∂x − z)pz+1 = {
∑
z∈S

pz∑
k=0

az,k x
z logk x, az,k ∈ C}

as functions on int(R+): Clearly the functions on the right are in the kernel, and then the
equality follows from a dimensional argument.

The right side of (8) is simply a ’piece’ of the polyhomogeneous expansion! This makes
the following theorem plausible.
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Theorem 12. For each s ∈ R define the differential operator

BE,s =
∏

(z,k)∈E≤s

(x∂x − z)

Then

(9) AE(Hn) = {u ∈ C∞(int(Hn)) : BE,su ∈ As(Hn) for all s ∈ R}

In this characterization of polyhomogeneity the coefficients az,k do not appear explicitly!
Note that the factor x∂x − z appears p + 1 times in BE,s if p = max{k : (z, k) ∈ E}.

This implies

(10) {v ∈ C∞(int(Hn) : BE,sv = 0} = {
∑

(z,k)∈E≤s

az,k(y)xz logk x : az,k ∈ C∞(Rn−1)}

by the remarks before the theorem (applied for any fixed y; the az,k must be smooth in y
by smoothness of u).

Proof. First, let u ∈ AE(Hn). For any s ∈ R, write u as in (6). Then (10) implies
BE,su = BE,srs, and by Proposition 11 this lies in As(Hn) since BE,s ∈ Diff∗b(H

n).
We have proved the inclusion ’⊂’ of (9). To prove the converse, we use the following

lemma.

Lemma 13. Let s ∈ R, z ∈ C.

(1) u ∈ As ⇒ xzu ∈ As+Rez

(2) If u ∈ As then there is w ∈ As such that (x∂x − z)w = u.

Proof. Note that x∂xx
z = xz(x∂x + z). Applying this repeatedly, we see that for any

P ∈ Diff∗b(H
n) there is P ′ ∈ Diff∗b(H

n) satisfying Pxz = xzP ′. This implies (1) since
|xz| = xRez. Using conjugation by xz and (1) we may assume z = 0 in (2). Set

w(x, y) =

{∫ x
0 u(t, y)dtt if s > 0∫ x
1 u(t, y)dtt if s ≤ 0

Then x∂xw = u, and u = O(xs) implies w = O(xs) if s > 0, and w = O(1 + xs) = O(xs)
if s ≤ 0, and similarly for the ∂αy w estimates. The estimates of (x∂x)j∂αy w for j ≥ 1 follow
from x∂xw = u and the estimates for u. �

To finish the proof of Theorem 12 assume u ∈ C∞(int(Hn)) satisfiesBE,su ∈ As(Hn) for all s ∈
R. Fix s and let ũ = BE,su. Applying the lemma iteratively find w ∈ As with ũ = BE,sw.
Then BE,s(u − w) = 0, hence by (10) there are az,k ∈ C∞(Rn−1) for Rez ≤ s so that

u−w =
∑

(z,k)∈E≤s
az,k x

z logk x. It is easy to check that when the same procedure is done

for s′ > s, producing coefficients a′z,k, then one must have a′z,k = az,k for Rez ≤ s. It

follows that u ∼
∑

(z,k)∈E az,k(y)xz(log x)k, so u ∈ AE(Hn). �
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0.4. Polyhomogeneous functions on a quadrant. We will first discuss polyhomoge-
neous functions on the simplest manifold with corners, the quadrant R2

+. This will guide
us how to proceed for general manifolds with corners.

What’s the idea? Polyhomogeneity of a smooth function u on int(R2
+) should involve

three things:

(1) u(x, y) should be polyhomogeneous as x→ 0, smoothly in y > 0.
(2) u(x, y) should be polyhomogeneous as y → 0, smoothly in x > 0.
(3) These expansions should be uniform, in a suitable sense, at the corner, i.e. for

x→ 0 and y → 0.

The smooth dependence in 1. and 2. should be as in the case of the half space, but it is
less clear how to make 3. precise. There are different ways to do this. First, we should fix
index sets for both side faces.

Definition 14. Let M be a manifold with corners. An index family E for M is an
assignment of an index set E(H) to each boundary hypersurface H of M .

For M = R2
+ we denote an index family simply by (E,F ), where E is considered as

index set for {x = 0} and F is an index set for {y = 0}.4
Next, we extend the definitions of b-differential operators and conormal spaces to this

case.

Definition 15. A b-differential operator on R2
+ is an operator of the form∑

j,l

bj,l(x, y)(x∂x)j(y∂y)
l

where bj,l ∈ C∞(R2
+) for all j, l ∈ N0 and only finitely many terms of the sum are non-zero.

The space of b-differential operators on R2
+ is denoted Diff∗b(R2

+).

Definition 16. For s, t ∈ R let

A(s,t)(R2
+) = {u ∈ C∞(int(R2

+)) : Pu = O(xsyt) for all P ∈ Diff∗b(R2
+)}

Here the local uniformity implicit in the O is for compact subsets of R2
+.

Definition 17. Let (E,F ) be an index family for R2
+. A polyhomogeneous function

on R2
+ with index family (E,F ) is a smooth function u : int(R2

+) → C for which there
are

az,k ∈ AF (R+), (z, k) ∈ E and bw,l ∈ AE(R+), (w, l) ∈ F
and N ∈ R so that for all s ∈ R we have

u =
∑

(z,k)∈E≤s

az,k(y)xz logk x+ rs, rs ∈ A(s,−N)(R2
+)(11)

u =
∑

(w,l)∈F≤s

bw,l(x)yz logk y + r′s, r′s ∈ A(−N,s)(R2
+)(12)

4This is opposite to the notation used in [?].
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The −N should be thought of as any number smaller than inf E and inf F . It is needed
since both u and the sum on the right in (11) will behave like yinf E times logarithms, and
similarly for (12).

Examples 18.

(1) u is smooth on R2
+ if and only if it is polyhomogeneous with index sets E = F =

N0 × {0}.
(2) The function u(x, y) =

√
x2 + y2 is smooth on R2 \ {(0, 0)}, so it has polyhomoge-

neous expansions in the interior of each boundary hypersurface. However, u is not
polyhomogeneous on R2

+. To see this, we find the expansion at the face x = 0 by
writing, for y > 0,√

x2 + y2 = y
√

1 + (x/y)2 = y
∞∑
0

ci(
x

y
)2i(13)

= y +
1

2

x2

y
− 1

8

x4

y3
+ . . .(14)

with the Taylor series
√

1 + t =
∑∞

0 cit
i = 1 + t/2− t2/8 + . . . (for |t| < 1). Thus,

in the expansion u(x, y) ∼
∑∞

i=0 a2i(y)x2i the coefficients are a2i(y) = ciy
1−2i.

Although each a2i is polyhomogeneous as y → 0, there is no index set F so that
each a2i has the same index set F . Therefore, polyhomogeneity at the corner fails.

Remark 19. Equations (11) and (12) imply that the coefficient functions az,k, bw,l must
satisfy compatibility conditions at the corner: When we write

az,k(y) ∼
∑

(w,l)∈F

cz,k,w,l y
w logl y, b2,l(x) ∼

∑
(z,k)∈E

c′z,k,w,l x
z logk x

then necessarly cz,k,w,l = c′z,k,w,l for all z, k, w, l.

Again we have a characterization of polyhomogeneity by differential operators, which
avoids explicit appearance of the coefficient functions.

Theorem 20. For each s ∈ R define the differential operators

Bx
E,s =

∏
(z,k)∈E≤s

(x∂x − z)

By
F,s =

∏
(w,l)∈F≤s

(y∂y − w)

Then u ∈ A(E,F )(R2
+) iff u is smooth in the interior and there is N ∈ R so that for all

s ∈ R

(15) Bx
E,su ∈ A(s,−N)(R2

+), By
F,su ∈ A

(−N,s)(R2
+)

Proof. Analogous to the proof of Theorem 12. �
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(15) implies that

Bx
E,sB

y
F,su ∈ A

(t,t)(R2
+), t =

s−N
2

since the spaces A(s,t)(R2
+) are invariant under b-differential operators and A(s,−N)(R2

+) ∩
A−N.s(R2

+) ⊂ A(t,t)(R2
+). The proof of this inclusion is left as an exercise.

0.5. Polyhomogeneous functions on general model spaces. Next we consider the
spaces

Rnk := Rk+ × Rn−k

which are the local models for general manifolds with corners. The extension of the previous
discussion to this case is straightforward: The Rn−k variables are treated like (smooth)
parameters as in the case of a halfspace, and having a codimension k corner is analogous
to a codimension 2 corner. This should really be worked out by the reader as an exercise,
but we provide the main steps.

By convention, we denote the coordinates as x1, . . . , xk ∈ R+, y1, . . . , yn−k ∈ R and also
x = (x1, . . . , xk), y = (y1, . . . , yn−k). Then b-differential operators are, by definition,
operators of the form

(16)
∑

α∈Nk
0 ,β∈N

n−k
0

bα,β(x, y)(x1∂x1)α1 . . . (xk∂xk)αk∂βy

with all bα,β smooth on Rnk . For s1, . . . , sk ∈ R we define the conormal spaces

A(s1,...,sk)(Rnk) = {u ∈ C∞(int(Rnk)) : Pu = O(xs11 . . . xskk ) for all P ∈ Diff∗b(Rnk)}
As always, the O is to be understood as being locally uniform on Rnk .

An index family for Rnk is given by k index sets E1, . . . , Ek, with Ej associated to the
boundary hypersurface {xj = 0} for each j. We want to define the space

A(E1,...,Ek)(Rnk)

of polyhomogeneous functions on Rnk with index family (E1, . . . , Ek). The definition of
polyhomogeneity works by induction over k. Suppose we have defined polyhomogeneous
functions on spaces Rnk−1 for any n, then a polyhomogeneous function on Rnk with
index family (E1, . . . , Ek) is a smooth function u : int(Rnk)→ C so that there are N ∈ R
and functions for each j = 1, . . . , k

a
(j)
z,k ∈ A

(E1,...,Êj ,...,Ek)(Rn−1k−1) , (z, k) ∈ Ej
with the hat denoting omission, such that for all s ∈ R and for each j we have

(17) u =
∑

(z,k)∈(Ej)≤s

a
(j)
z,k(x 6=j , y)xzj logk xj + r(j)s , r(j)s ∈ A(−N,...,s,...,−N)(Rnk)

where x 6=j = (x1, . . . , x̂j , . . . , xk) and the s is at the jth spot.
As for R2

+ this implies (multiple) compatibility relations for the expansion coefficients
for different j, and also we have a characterization by differential operators analogous to
Theorem 20.
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Note that if we allow the functions a
(j)
z,k in (17) to depend on all variables (including xj)

then by expanding them in Taylor series around xj = 0 we get an expansion of the type

(17), but with additional terms involving xz+mj logk xj for m ∈ N0. This is where part (c)
of Definition 1 matters, and we get:

Lemma 21. Suppose each Ej is a C∞ index set. Then A(E1,...,Ek)(Rnk) is equal to the space

of functions having expansions as in (17) but with the a
(j)
z,k depending on all variables x, y.

Note that allowing these more general coefficients has the disadvantage that they are not
uniquely determined by u (while those in (17) are). However, the lemma will be needed
when discussing coordinate invariance.

0.6. The invariant perspective: Manifolds with corners. The only additional is-
sue which arises when we consider manifolds with corners is invariance under coordinate
changes. We first discuss this for R+. The standard coordinate x on R+ is a boundary
defining function for the boundary hypersurface {0}. A general boundary defining function
is a function on R+ which vanishes at 0, has non-vanishing derivative there, and is positive
on (0,∞). By Taylor’s theorem, it can be written as

x′ = xρ(x), ρ ∈ C∞(R+), ρ > 0 on R+

Then
(x′)z logk x′ = xzρ(x)z(log x+ log ρ(x))k

Now ρ is smooth and positive, hence log ρ and ρz are smooth. Expanding these functions
in Taylor series around x = 0 and multiplying out, we see that

(x′)z logk x′ ∼
∞∑
m=0

k∑
l=0

γm,l x
z+m logl x

for certain coefficients γm,l. The fact that also the powers xz+m appear on the right is
another reason, besides Lemma 21, for the condition (c) in Definition (1).

Now consider coordinate changes on Rnk . A general boundary defining function for the
boundary hypersurface {xj = 0} is of the form

x′j = xjρ(x, y), ρ ∈ C∞(Rnk), ρ > 0

A simple inductive argument together with Lemma 21 shows that:

Proposition 22. Let E be an index family for Rnk . If each index set in E is a C∞-index

set then the space AE(Rnk) is invariant under changes of coordinates.

Also, it is clear that the definitions of these spaces are local in the sense that u ∈ AE(Rnk)

if and only if ρu ∈ AE(Rnk) for every ρ ∈ C∞(Rnk). Therefore, if we define, for any open
subset U ⊂ Rnk ,

AE(U) = {u ∈ C∞(U ∩ int(Rnk)) : ρu ∈ AE(Rnk) for all ρ ∈ C∞0 (U)}
then this is compatible with the previous definition in case U = Rnk . This allows us to
define:
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Definition 23. Let M be a manifold with corners and E a C∞ index set for M . A
polyhomogeneous function on M with index family E is a smooth function u :
int(M)→ C which is polyhomogeneous with corresponding index family in any local chart.

Explicitly, this means that for any chart ϕ : Ũ → U , Ũ ⊂ Rnk open, we have ϕ∗u ∈
AE ′(Ũ), where E ′(φ−1(H ∩ U)) := E(H) for every boundary hypersurface H of M which
intersects U .

We can also generalize the remaining discussion to the manifold case. We start by
reformulating the definition of b-differential operators on Rnk , (16), in an invariant way.
First, consider first order operators annihilating constants, i.e. vector fields. Note that any
smooth vector field on Rnk can be written

k∑
j=1

aj∂xj +
n−k∑
l=1

bl∂yl

with smooth functions aj , bl. Such a vector field is tangent to the boundary hypersurface
{xj = 0} if and only if aj = 0 at xj = 0, which is equivalent to aj = xja

′
j for some smooth

function a′j . This shows that

{smooth vector fields on Rnk which are tangent to all boundary hypersurfaces}
= spanC∞(Rn

k )
{x1∂x1 , . . . , xk∂xk , ∂y1 , . . . , ∂yn−k

} :=

{
k∑
j=1

aj xj∂xj +
n−k∑
l=1

bl∂yl , aj , bl ∈ C
∞(Rnk) ∀j, l}

Then clearly, for m ∈ N0,

Diffmb (Rnk) = {a+

m∑
r=1

∑
V1,...,Vr∈Vb(Rn

k )

V1 . . . Vr : a ∈ C∞(Rnk)}

This generalizes naturally to manifolds:

Definition 24. Let M be a manifold with corners. Then define

Vb(M) = {smooth vector fields on M which are tangent to all boundary hypersurfaces}

and for m ∈ N0

Diffmb (M) = {a+

m∑
r=1

∑
V1,...,Vr∈Vb(M)

V1 . . . Vr : a ∈ C∞(M)}

This leads directly to conormal spaces:

Definition 25. Let M be a manifold with corners. A weight family for M is a map
M1(M)→ R, where M1(M) is the set of boundary hypersurfaces of M .
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For a set of boundary defining functions ρH for each H ∈ M1(M) and for a weight

family s define ρs =
∏
H∈M1(M) ρ

s(H)
H . Finally, define the conormal space

As(M) = {u ∈ C∞(int(M)) : Pu = O(ρs) for all P ∈ Diff∗b(M)}

As always, the O is understood locally uniformly on M . This is a reasonable definition
since clearly the set of functions which are O(ρs) is independent of the choice of the ρH .
Also, we see that in the case of M = Rnk we get back the previous definition.

Now we have generalizations of all previous results:

• C∞(M) = AE0(M) where E0(H) = N0 × {0} for all H.
• As(M) and AE(M) are vector spaces and invariant under Diff∗b(M).
• There is also a characterization of AE(M) using vector fields. This is a little subtle

since we need to think carefully about an invariant generalization of the vector
fields xi∂xi in Theorem 20. The main observation is that, for M = Rnk , the vector
field xi∂xi (i ∈ {1, . . . , k}) turns under any coordinate change into a vector field of
the form

(18) xi∂xi + xiV, V ∈ Vb(Rnk)

and that the space of these vector fields is invariant under coordinate changes. We
call a b-vector field on M radial with respect to the boundary hypersurface H if
it has the form (18) in any coordinate system, with xi defining H.

Also, it is easily checked that (15) remains true if x∂x, y∂y are replaced by any
radial vector fields for the respective boundary hypersurfaces. In light of this, the
following theorem is natural, and we leave the details of the proof to the reader.

Theorem 26. Let M be a manifold with corners and E a C∞ index set for M .
For each H ∈M1(M) choose a radial vector field VH and define

BH
E,s =

∏
(z,k)∈E(H)≤s

(VH − z)

Then a smooth function u on int(M) is in AE(M) if and only if there is N ∈ R so
that for all s ∈ R and all H ∈M1(M)

BH
E,su ∈ AsH (M), sH(H ′) :=

{
s H ′ = H

−N H ′ 6= H
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