|
|
|
Publications (HTML), Google Scholar and arXiv
Self-similar, or fractal, objects abound in mathematics; depending on context, they mean a space containing several almost disjoint copies of itself as subspaces; a group containing the direct product of copies of itself as a subgroup; or an algebra containing a matrix algebra over itself as a subalgebra. The fractalness is algebraically encoded via the collection of inclusion maps of these subobjects in their common parent.
A self-similar group may be associated with any complex dynamical system, and yields an extremely potent algebraic invariant of that dynamical system up to isotopy and conjugation. I currently explore more deeply the connection between complex dynamics and fractal groups, and use it to extend the classification of degree-two polynomials (described by points in the Mandelbrot set) to arbitrary-degree rational functions.
|