Interplay between polynomial and transcendental entire dynamics

L. Rempe

Definitions and Motivation
Motivation
Basic definitions

Dynamic rays
The Eremenko-Lyubich class
Adam's favorite example

Conjugacies near infinity

Outlook: influences on polynomial dynamics

Department of Mathematical Sciences,
University of Liverpool

Oberwolfach, October 2008
Interplay between polynomial and transcendental entire dynamics

L. Rempe

Definitions and Motivation

Motivation
Basic definitions

Dynamic rays

The Eremenko-Lyubich class
Adam's favorite example

Conjugacies near infinity

Outlook: influences on polynomial dynamics

Outline

1. Definitions and Motivation
 - Motivation
 - Basic definitions

2. Dynamic rays
 - The Eremenko-Lyubich class
 - Adam's favorite example

3. Conjugacies near infinity

4. Outlook: influences on polynomial dynamics
Interplay between polynomial and transcendental entire dynamics

L. Rempe

Outline

1. Definitions and Motivation
 - Motivation
 - Basic definitions

2. Dynamic rays
 - The Eremenko-Lyubich class
 - Adam’s favorite example

3. Conjugacies near infinity

4. Outlook: influences on polynomial dynamics
Interplay between polynomial and transcendental entire dynamics

L. Rempe

Definitions and Motivation
- Motivation
- Basic definitions

Dynamic rays
- The Eremenko-Lyubich class
- Adam's favorite example

Conjugacies near infinity

Outlook: influences on polynomial dynamics
Interplay between polynomial and transcendental entire dynamics

L. Rempe

Definitions and Motivation
 - Motivation
 - Basic definitions

Dynamic rays
 - The Eremenko-Lyubich class
 - Adam’s favorite example

Conjugacies near infinity

Outlook: influences on polynomial dynamics
I shall be talking today about some aspects of the dynamics of polynomials and transcendental entire functions that are related to each other.

- Influences of polynomial on transcendental dynamics:
 - Directly applicable proofs/concepts.
 - Motivation from successful ideas in polynomial dynamics.

- Phenomena special to transcendental dynamics.

- Influences of transcendental on polynomial dynamics.
I shall be talking today about some aspects of the dynamics of polynomials and transcendental entire functions that are related to each other.

- **Influences of polynomial on transcendental dynamics:**
 - Directly applicable proofs/concepts.
 - Motivation from successful ideas in polynomial dynamics.

- Phenomena special to transcendental dynamics.

- Influences of transcendental on polynomial dynamics.
I shall be talking today about some aspects of the dynamics of polynomials and transcendental entire functions that are related to each other.

- Influences of polynomial on transcendental dynamics:
 - Directly applicable proofs/concepts.
 - Motivation from successful ideas in polynomial dynamics.
- Phenomena special to transcendental dynamics.
- Influences of transcendental on polynomial dynamics.
I shall be talking today about some aspects of the dynamics of polynomials and transcendental entire functions that are related to each other.

- Influences of polynomial on transcendental dynamics:
 - Directly applicable proofs/concepts.
 - Motivation from successful ideas in polynomial dynamics.

- Phenomena special to transcendental dynamics.

- Influences of transcendental on polynomial dynamics.
Motivation

I shall be talking today about some aspects of the dynamics of polynomials and transcendental entire functions that are related to each other.

- Influences of polynomial on transcendental dynamics:
 - Directly applicable proofs/concepts.
 - Motivation from successful ideas in polynomial dynamics.
- Phenomena special to transcendental dynamics.
- Influences of transcendental on polynomial dynamics.
I shall be talking today about some aspects of the dynamics of polynomials and transcendental entire functions that are related to each other.

- Influences of polynomial on transcendental dynamics:
 - **Directly** applicable proofs/concepts.
 - **Motivation** from successful ideas in polynomial dynamics.

- Phenomena **special** to transcendental dynamics.

- Influences of transcendental on polynomial dynamics.
Transcendental dynamics

\[f : \mathbb{C} \rightarrow \mathbb{C} \text{ entire, transcendental; } \]
\[f^n := f \circ f \circ \cdots \circ f \]
\[n \text{ times} \]

- **Fatou set** \(F(f) \): regular set.
 (Set of equicontinuity of the family \((f^n)\).)

- **Julia set**: ‘chaotic’ set.
 \(J(f) := \mathbb{C} \setminus F(f) \).

- **Escaping set**
 \[I(f) := \{ z \in \mathbb{C} : \lim_{n \to \infty} f^n(z) = \infty \} \]
 \[J(f) = \partial I(f) \.]
Transcendental dynamics

\[f : \mathbb{C} \rightarrow \mathbb{C} \text{ entire, transcendental;} \]

\[f^n := f \circ f \circ \cdots \circ f \]

\[n \text{ times} \]

- **Fatou set** \(F(f) \): regular set.
 (Set of equicontinuity of the family \((f^n)\).)

- **Julia set**: 'chaotic' set.
 \[J(f) := \mathbb{C} \setminus F(f). \]

- **Escaping set**
 \[I(f) := \{ z \in \mathbb{C} : \lim_{n \to \infty} f^n(z) = \infty \}. \]

 \[J(f) = \partial I(f). \]
Transcendental dynamics

\[f : \mathbb{C} \to \mathbb{C} \text{ entire, transcendental; } \]
\[f^n := \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ times}} \]

- **Fatou set** \(F(f) \): regular set.
 (Set of equicontinuity of the family \((f^n) \).)

- **Julia set**: 'chaotic' set.
 \[J(f) := \mathbb{C} \setminus F(f). \]

- **Escaping set**
 \[I(f) := \{ z \in \mathbb{C} : \lim_{n \to \infty} f^n(z) = \infty \}. \]
 \[J(f) = \partial I(f). \]
Transcendental dynamics

$f : \mathbb{C} \to \mathbb{C}$ entire, transcendental;

$$f^n := f \circ f \circ \cdots \circ f$$

\[n \text{ times} \]

- **Fatou set** $F(f)$: regular set.
 (Set of equicontinuity of the family (f^n).)

- **Julia set**: ’chaotic’ set.
 \[J(f) := \mathbb{C} \setminus F(f). \]

- **Escaping set**
 \[I(f) := \{ z \in \mathbb{C} : \lim_{n \to \infty} f^n(z) = \infty \}. \]

\[J(f) = \partial I(f). \]
Interplay between polynomial and transcendental entire dynamics

L. Rempe

Definitions and Motivation

Motivation

Basic definitions

Dynamic rays

The Eremenko-Lyubich class

Adam's favorite example

Conjugacies near infinity

Outlook: influences on polynomial dynamics

Transcendental dynamics

\[f : \mathbb{C} \rightarrow \mathbb{C} \text{ entire, transcendental; } \]

\[f^n := f \circ f \circ \cdots \circ f \]

\[n \text{ times} \]

- **Fatou set** \(F(f) \): regular set.
 (Set of equicontinuity of the family \((f^n) \).)

- **Julia set**: 'chaotic' set.
 \(J(f) := \mathbb{C} \setminus F(f) \).

- **Escaping set**
 \[I(f) := \{ z \in \mathbb{C} : \lim_{n \to \infty} f^n(z) = \infty \} \]

 \[J(f) = \partial I(f). \]
Transcendental dynamics

\[f : \mathbb{C} \to \mathbb{C} \text{ entire, transcendental}; \]
\[f^n := f \circ f \circ \cdots \circ f \quad \text{\(n\) times} \]

- **Fatou set** \(F(f) \): regular set.
 (Set of equicontinuity of the family \((f^n)\).)

- **Julia set**: 'chaotic' set.
 \(J(f) := \mathbb{C} \setminus F(f). \)

- **Escaping set**
 \[I(f) := \{ z \in \mathbb{C} : \lim_{n \to \infty} f^n(z) = \infty \}. \]
 \[J(f) = \partial I(f). \]
Interplay between polynomial and transcendental entire dynamics

L. Rempe

Definitions and Motivation
Motivation
Basic definitions

Dynamic rays
The Eremenko-Lyubich class
Adam’s favorite example

Conjugacies near infinity

Outlook: influences on polynomial dynamics

Some Julia sets

\[z \mapsto z^2 + c \]

- The Julia set \(J \) is compact.
- The escaping set is the basin of infinity, contained in the Fatou set.
Some Julia sets

- The Julia set J is compact.
- The escaping set is the basin of infinity, contained in the Fatou set.

$$z \mapsto z^2 + c$$
Some Julia sets

\[z \mapsto z^2 + c \]

- The Julia set \(J \) is compact.
- The escaping set is the basin of infinity, contained in the Fatou set.
Interplay between polynomial and transcendental entire dynamics

L. Rempe

Definitions and Motivation
Motivation
Basic definitions

Dynamic rays
The Eremenko-Lyubich class
Adam’s favorite example

Conjugacies near infinity
Outlook: influences on polynomial dynamics

Some Julia sets

$z \mapsto z^2 + c$

$z \mapsto \exp(z) - 2$
Some Julia sets

- J is an uncountable union of Jordan arcs $g : [0, \infty) \to \mathbb{C}$ with $g(t) \to \infty$. We call $g((0, \infty))$ a ray and $g(0)$ the endpoint of that ray.

- The set E of all endpoints has Hausdorff dimension 2, but the union R of all rays has Hausdorff dimension 1.

- E is totally disconnected, but $E \cup \{\infty\}$ is connected.
Some Julia sets

- J is an uncountable union of Jordan arcs $g : [0, \infty) \to \mathbb{C}$ with $g(t) \to \infty$. We call $g((0, \infty))$ a ray and $g(0)$ the endpoint of that ray.

- The set E of all endpoints has Hausdorff dimension 2, but the union R of all rays has Hausdorff dimension 1.

- E is totally disconnected, but $E \cup \{\infty\}$ is connected.
Some Julia sets

- \(J \) is an uncountable union of Jordan arcs \(g : [0, \infty) \to \mathbb{C} \) with \(g(t) \to \infty \). We call \(g((0, \infty)) \) a ray and \(g(0) \) the endpoint of that ray.

- The set \(E \) of all endpoints has Hausdorff dimension 2, but the union \(R \) of all rays has Hausdorff dimension 1.

- \(\mathbb{E} \) is totally disconnected, but \(\mathbb{E} \cup \{\infty\} \) is connected.
Some Julia sets

- J is an uncountable union of Jordan arcs $g : [0, \infty) \to \mathbb{C}$ with $g(t) \to \infty$. We call $g((0, \infty))$ a ray and $g(0)$ the endpoint of that ray.

- The set E of all endpoints has Hausdorff dimension 2, but the union R of all rays has Hausdorff dimension 1.

- E is totally disconnected, but $E \cup \{\infty\}$ is connected.
Some Julia sets

The set R of rays is completely contained in the escaping set $I(f)$.

Some endpoints belong to $I(f)$; others do not.

$z \mapsto \exp(z) - 2$
The set R of rays is **completely contained** in the escaping set $I(f)$.

Some endpoints belong to $I(f)$; others do not.

$$z \mapsto \exp(z) - 2$$
Rays of exponential maps

Curves of escaping points for exponential maps will belong to the Julia set, but nonetheless provide a natural generalization of external rays of polynomials.

We will give a proof of the existence of these curves for the simple case $f(z) = \exp(z) - 2$ on the board.

(This is not the original proof, due to Devaney!)
Rays of exponential maps

Curves of escaping points for exponential maps will belong to the Julia set, but nonetheless provide a natural generalization of external rays of polynomials.

We will give a proof of the existence of these curves for the simple case $f(z) = \exp(z) - 2$ on the board.

(This is not the original proof, due to Devaney!)
Curves of escaping points for exponential maps will belong to the Julia set, but nonetheless provide a natural generalization of external rays of polynomials.

We will give a proof of the existence of these curves for the simple case $f(z) = \exp(z) - 2$ on the board.

(This is not the original proof, due to Devaney!)
Question

Let f is a transcendental entire function and $z \in \mathcal{I}(f)$. Can z be connected to infinity by a curve of escaping points of f?

(There is also a related question about the existence of such curves, due to Fatou.)

Theorem 1 (Schleicher,Zimmer)

If $f(z) = \exp(z) + \kappa$, $\kappa \in \mathbb{C}$, then the answer is yes.
A question of Eremenko

Question

Let f is a transcendental entire function and $z \in l(f)$. Can z be connected to infinity by a curve of escaping points of f?

(There is also a related question about the existence of such curves, due to Fatou.)

Theorem 1 (Schleicher,Zimmer)

If $f(z) = \exp(z) + \kappa$, $\kappa \in \mathbb{C}$, then the answer is yes.
A question of Eremenko

Question

Let f is a transcendental entire function and $z \in l(f)$. Can z be connected to infinity by a curve of escaping points of f?

(There is also a related question about the existence of such curves, due to Fatou.)

Theorem 1 (Schleicher,Zimmer)

If $f(z) = \exp(z) + \kappa$, $\kappa \in \mathbb{C}$, then the answer is yes.
Definitions and Motivation
Motivation
Basic definitions
Dynamic rays
The Eremenko-Lyubich class
Adam's favorite example
Conjugacies near infinity
Outlook: influences on polynomial dynamics
Singular values

The set $\text{sing}(f^{-1})$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- c is a **critical value** if $c = f(w), \ f'(w) = 0$.
- a is an **asymptotic value** if there is a curve $\gamma : (0, 1] \rightarrow \mathbb{C}$ such that $\lim_{t \to 0} |\gamma(t)| = \infty$ and $\lim_{t \to 0} f(\gamma(t)) = a$.

$S(f) := \text{sing}(f^{-1})$: singular values.

‘Behaviour of singular orbits dominates dynamics.’
Singular values

The set \(\text{sing}(f^{-1}) \) contains all values in which some branch of \(f^{-1} \) cannot be defined. There are two types of such points:

- \(c \) is a **critical value** if \(c = f(w), \ f'(w) = 0 \).
- \(a \) is an **asymptotic value** if there is a curve \(\gamma : (0, 1] \to \mathbb{C} \) such that \(\lim_{t \to 0} |\gamma(t)| = \infty \) and \(\lim_{t \to 0} f(\gamma(t)) = a \).

\[S(f) := \text{sing}(f^{-1}) : \text{singular values.} \]

‘Behaviour of singular orbits dominates dynamics.’
Singular values

The set $\text{sing}(f^{-1})$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- c is a **critical value** if $c = f(w)$, $f'(w) = 0$.
- a is an **asymptotic value** if $a \gamma$.
Singular values

The set $\text{sing}(f^{-1})$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- c is a critical value if $c = f(w), f'(w) = 0$.
- a is an asymptotic value if

 there is a curve $\gamma : (0, 1] \to \mathbb{C}$ such that

 $\lim_{t \to 0} |\gamma(t)| = \infty$ and $\lim_{t \to 0} f(\gamma(t)) = a$.

$S(f) := \text{sing}(f^{-1})$: singular values.

‘Behaviour of singular orbits dominates dynamics.’
Singular values

The set $\text{sing}(f^{-1})$ contains all values in which some branch of f^{-1} cannot be defined. There are two types of such points:

- c is a **critical value** if $c = f(w)$, $f'(w) = 0$.
- a is an **asymptotic value** if

 there is a curve $\gamma : (0, 1] \rightarrow \mathbb{C}$ such that

 $\lim_{t \rightarrow 0} |\gamma(t)| = \infty$ and $\lim_{t \rightarrow 0} f(\gamma(t)) = a$.

- $S(f) := \text{sing}(f^{-1})$: **singular values**.
- ‘Behaviour of singular orbits dominates dynamics.’
The Eremenko-Lyubich class \mathcal{B}

A class of entire functions which is particularly interesting for our considerations was introduced by Eremenko and Lyubich in 1986:

$$\mathcal{B} := \{ f \text{ transcendental, entire : } \text{sing}(f^{-1}) \text{ is bounded}\}.$$

If $f \in \mathcal{B}$, then $I(f) \subset J(f)$.

In the following, we will mainly restrict ourselves to the Eremenko-Lyubich class.
A class of entire functions which is particularly interesting for our considerations was introduced by Eremenko and Lyubich in 1986:

\[\mathcal{B} := \{ f \text{ transcendental, entire : } \text{sing}(f^{-1}) \text{ is bounded} \}. \]

If \(f \in \mathcal{B} \), then \(I(f) \subset J(f) \).

In the following, we will mainly restrict ourselves to the Eremenko-Lyubich class.
The Eremenko-Lyubich class \mathcal{B}

A class of entire functions which is particularly interesting for our considerations was introduced by Eremenko and Lyubich in 1986:

$$\mathcal{B} := \left\{ f \text{ transcendental, entire : } \text{sing}(f^{-1}) \text{ is bounded} \right\}.$$

If $f \in \mathcal{B}$, then $\mathcal{I}(f) \subset \mathcal{J}(f)$.

In the following, we will mainly restrict ourselves to the Eremenko-Lyubich class.
An entire function \(f \) has **finite order** if

\[
\log \log |f(z)| = O(\log |z|) \quad (z \to \infty).
\]

Theorem 2 (Rottenfußer, Rückert, R., Schleicher)

Suppose that \(f \in B \) has finite order. Then every escaping point can be connected to infinity by a curve of escaping points.

(The theorem holds more generally for finite compositions of such functions.)

Barański independently proved the same result for hyperbolic \(f \) with a single completely invariant Fatou component.
Curves in $l(f)$

An entire function f has **finite order** if

$$\log \log |f(z)| = O(\log |z|) \quad (z \to \infty).$$

Theorem 2 (Rottenfußer, Rückert, R., Schleicher)

Suppose that $f \in \mathcal{B}$ has finite order. Then every escaping point can be connected to infinity by a curve of escaping points.

(The theorem holds more generally for finite compositions of such functions.)

Barański independently proved the same result for hyperbolic f with a single completely invariant Fatou component.
Curves in $I(f)$

An entire function f has **finite order** if

$$\log \log |f(z)| = O(\log |z|) \quad (z \to \infty).$$

Theorem 2 (Rottenfußer, Rückert, R., Schleicher)

Suppose that $f \in B$ has finite order. Then every escaping point can be connected to infinity by a curve of escaping points.

(The theorem holds more generally for **finite compositions** of such functions.)

Barański independently proved the same result for hyperbolic f with a single completely invariant Fatou component.
Curves in $I(f)$

An entire function f has finite order if

$$\log \log |f(z)| = O(\log |z|) \quad (z \to \infty).$$

Theorem 2 (Rottenfuß, Rückert, R., Schleicher)

Suppose that $f \in B$ has finite order. Then every escaping point can be connected to infinity by a curve of escaping points.

(The theorem holds more generally for finite compositions of such functions.)

Barański independently proved the same result for hyperbolic f with a single completely invariant Fatou component.
Counterexamples

Theorem 3 (RRRS)

There exists a hyperbolic function $f \in B$ *such that every path-connected component of* $J(f)$ *is bounded.*

The function f can be chosen such that

$$\log \log |f(z)| = (\log |z|)^{1+\varepsilon}.$$

There are even hyperbolic functions $f \in B$ such that every path-connected component of $J(f)$ is a point (but $J(f) \cup \infty$ is a compact connected set).
Countereexamples

Theorem 3 (RRRS)

There exists a hyperbolic function $f \in \mathcal{B}$ such that every path-connected component of $J(f)$ is bounded.

The function f can be chosen such that

$$
\log \log |f(z)| = (\log |z|)^{1+\varepsilon}.
$$

There are even hyperbolic functions $f \in \mathcal{B}$ such that every path-connected component of $J(f)$ is a point (but $J(f) \cup \infty$ is a compact connected set).
Counterexamples

Theorem 3 (RRRS)

There exists a hyperbolic function $f \in B$ such that every path-connected component of $J(f)$ is bounded.

The function f can be chosen such that

$$\log \log |f(z)| = (\log |z|)^{1+\varepsilon}.$$

There are even hyperbolic functions $f \in B$ such that every path-connected component of $J(f)$ is a point (but $J(f) \cup \infty$ is a compact connected set).
Let p be a polynomial of degree ≥ 2 with a repelling fixed point at 0, and $\mu := p'(0)$.

Let ψ be the (inverse of the) Kœnigs linearizing coordinate, defined near 0:

$$\psi(\mu \cdot z) = p(\psi(z)).$$

Let $\Psi : \mathbb{C} \to \mathbb{C}$ be the analytic extension of ψ to the complex plane (using the functional relation).

(Ψ is called a Poincaré function.)
Adam Epstein’s favorite example

Let \(p \) be a polynomial of degree \(\geq 2 \) with a repelling fixed point at 0, and \(\mu := p'(0) \).

Let \(\psi \) be the (inverse of the) Koenigs linearizing coordinate, defined near 0:

\[
\psi(\mu \cdot z) = p(\psi(z)).
\]

Let \(\Psi : \mathbb{C} \rightarrow \mathbb{C} \) be the analytic extension of \(\psi \) to the complex plane (using the functional relation).

(\(\Psi \) is called a Poincaré function.)
Let \(p \) be a polynomial of degree \(\geq 2 \) with a repelling fixed point at 0, and \(\mu := p'(0) \).

Let \(\psi \) be the (inverse of the) Kœnigs linearizing coordinate, defined near 0:

\[
\psi(\mu \cdot z) = p(\psi(z)).
\]

Let \(\Psi : \mathbb{C} \to \mathbb{C} \) be the analytic extension of \(\psi \) to the complex plane (using the functional relation).

(\(\Psi \) is called a Poincaré function.)
Adam Epstein’s favorite example

Let p be a polynomial of degree ≥ 2 with a repelling fixed point at 0, and $\mu := p'(0)$.

Let ψ be the (inverse of the) Kœnigs linearizing coordinate, defined near 0:

$$\psi(\mu \cdot z) = p(\psi(z)).$$

Let $\Psi : \mathbb{C} \to \mathbb{C}$ be the analytic extension of ψ to the complex plane (using the functional relation).

(Ψ is called a Poincaré function.)
The set of singular values of Ψ is determined by the postsingular set of p:

$$S(\psi) = \bigcup_{n \geq 1} p^n(\text{Crit}(p))$$

So if the Julia set of p is connected, then $\psi \in \mathcal{B}$. We also note that ψ has finite order of growth.
Adam Epstein’s favorite example

The set of singular values of \(\Psi \) is determined by the \textbf{postsingular set} of \(p \):

\[
S(\Psi) = \bigcup_{n \geq 1} p^n(\text{Crit}(p))
\]

So if the Julia set of \(p \) is connected, then \(\Psi \in \mathcal{B} \).

We also note that \(\Psi \) has \textbf{finite order of growth}.
Adam Epstein’s favorite example

The set of singular values of Ψ is determined by the postsingular set of p:

$$S(\Psi) = \bigcup_{n \geq 1} p^n(\text{Crit}(p))$$

So if the Julia set of p is connected, then $\Psi \in B$. We also note that Ψ has finite order of growth.
Adam Epstein’s favorite example
An analog of Böttcher’s theorem

We say that $f, g \in B$ are quasiconformally equivalent near ∞ if there are quasiconformal maps $\phi, \psi : \mathbb{C} \to \mathbb{C}$ such that

$$\psi(f(z)) = g(\phi(z))$$

whenever $f(z)$ or $g(z)$ is sufficiently large.

Theorem 4 (R., 2005)

Suppose that f and g are quasiconformally equivalent near ∞. Then there is $R > 0$ and a quasiconformal map $\theta : \mathbb{C} \to \mathbb{C}$ such that $\theta \circ f = g \circ \theta$ on

$$J_R(f) := \{z \in \mathbb{C} : |f^n(z)| \geq R \text{ for all } n \geq 1\}.$$

Furthermore, the complex dilatation of θ on $I(f) \cap J_R(f)$ is zero.
An analog of Böttcher’s theorem

We say that $f, g \in \mathcal{B}$ are quasiconformally equivalent near ∞ if there are quasiconformal maps $\phi, \psi : \mathbb{C} \to \mathbb{C}$ such that

$$\psi(f(z)) = g(\phi(z))$$

whenever $f(z)$ or $g(z)$ is sufficiently large.

Theorem 4 (R., 2005)

Suppose that f and g are quasiconformally equivalent near ∞. Then there is $R > 0$ and a quasiconformal map $\theta : \mathbb{C} \to \mathbb{C}$ such that $\theta \circ f = g \circ \theta$ on

$$J_R(f) := \{z \in \mathbb{C} : |f^n(z)| \geq R \text{ for all } n \geq 1\}.$$

Furthermore, the complex dilatation of θ on $I(f) \cap J_R(f)$ is zero.
An analog of Böttcher’s theorem

We say that \(f, g \in \mathcal{B} \) are quasiconformally equivalent near \(\infty \) if there are quasiconformal maps \(\phi, \psi : \mathbb{C} \to \mathbb{C} \) such that

\[
\psi(f(z)) = g(\phi(z))
\]

whenever \(f(z) \) or \(g(z) \) is sufficiently large.

Theorem 4 (R., 2005)

Suppose that \(f \) and \(g \) are quasiconformally equivalent near \(\infty \). Then there is \(R > 0 \) and a quasiconformal map \(\theta : \mathbb{C} \to \mathbb{C} \) such that \(\theta \circ f = g \circ \theta \) on

\[
J_R(f) := \{ z \in \mathbb{C} : |f^n(z)| \geq R \text{ for all } n \geq 1 \}.
\]

Furthermore, the complex dilatation of \(\theta \) on \(I(f) \cap J_R(f) \) is zero.
Interplay between polynomial and transcendental entire dynamics

L. Rempe

Definitions and Motivation

Motivation
Basic definitions

Dynamic rays

The Eremenko-Lyubich class
Adam's favorite example

Conjugacies near infinity

Outlook: influences on polynomial dynamics
The result seems surprising given the existence of very wild examples in class B.

It gives rise to the hope that escaping sets can also be used successfully to study the Julia sets of such wild functions. It also gives some explanation as to why the Julia sets of different explicit entire functions often look remarkably similar.
Consequences

The result seems surprising given the existence of very wild examples in class B.

It gives rise to the hope that escaping sets can also be used successfully to study the Julia sets of such wild functions.

It also gives some explanation as to why the Julia sets of different explicit entire functions often look remarkably similar.
Consequences

The result seems surprising given the existence of very wild examples in class B.

It gives rise to the hope that escaping sets can also be used successfully to study the Julia sets of such wild functions. It also gives some explanation as to why the Julia sets of different explicit entire functions often look remarkably similar.
Interplay between polynomial and transcendental entire dynamics

L. Rempe

Definitions and Motivation

Motivation

Basic definitions

Dynamic rays

The Eremenko-Lyubich class

Adam's favorite example

Conjugacies near infinity

Outlook: influences on polynomial dynamics

Similarities in Julia sets

\[z \mapsto 2(\exp(z) - 1) \quad z \mapsto \lambda \sinh(z) \quad z \mapsto (z+1) \exp(z)-1 \]
Rigidity results

The conjugacy θ from the preceding theorem is “essentially unique” (up to countably many choices).

Theorem 5 (R., 2005)

Let $f \in B$. Then there are no invariant line fields on $l(f)$.

This and other rigidity results on the escaping set are used in work with van Strien on rigidity and density of hyperbolicity in families of real transcendental entire functions.
Rigidity results

The conjugacy θ from the preceding theorem is “essentially unique” (up to countably many choices).

Theorem 5 (R., 2005)

*Let $f \in B$. Then there are no invariant line fields on $l(f)$.***

This and other rigidity results on the escaping set are used in work with van Strien on rigidity and density of hyperbolicity in families of real transcendental entire functions.
The conjugacy θ from the preceding theorem is “essentially unique” (up to countably many choices).

Theorem 5 (R., 2005)

*Let $f \in \mathcal{B}$. Then there are no invariant line fields on $I(f)$.***

This and other rigidity results on the escaping set are used in work with van Strien on rigidity and density of hyperbolicity in families of real transcendental entire functions.
Transcendental polynomials?

Aspects of transcendental dynamics have started to become apparent in renormalization phenomena (i.e. when the degree gets large).

- Features of exponential dynamics appearing in parabolic renormalization (Shishikura).
- Trancendental aspects of measurable dynamics (Urbanski-Zdunik) appearing in work of Avila-Lyubich on Feigenbaum quadratics.
Cantor bouquets and hedgehogs

The proofs of the above results on existence of curves and conjugacy can be adapted to deal with model hedgehogs and (in the first case) actual hedgehogs. (This is ongoing work by Shishikura / Buff-Chéritat-Inou-R.)
Interplay between polynomial and transcendental entire dynamics

L. Rempe

Definitions and Motivation
Motivation
Basic definitions

Dynamic rays
The Eremenko-Lyubich class
Adam's favorite example

Conjugacies near infinity

Outlook: influences on polynomial dynamics

A Siegel hedgehog
Interplay between polynomial and transcendental entire dynamics

L. Rempe

Definitions and Motivation
Motivation
Basic definitions

Dynamic rays
The Eremenko-Lyubich class
Adam's favorite example

Conjugacies near infinity

Outlook: influences on polynomial dynamics

A Siegel hedgehog