![]() |
|||
[Georg-August-Universität Göttingen] | [Fakultät für Mathematik und Informatik] | [Mathematik an der Universität Göttingen] | [Mathematisches Institut] |
Priv.-Doz. Dr. Martin Kohlmann |
Georg-August-Universität
Göttingen Mathematisches Institut Bunsenstraße 3-5 37073 Göttingen |
martin.kohlmann@mathematik.uni-goettingen.de |
![]() |
2004 - 2009 | Studium der Mathematik (Master of Science) und Physik (Diplom) an der Technischen Universität Braunschweig |
2009 - 2011 | Promotionsstudium
an der
Leibniz Universität Hannover (Institut für Angewandte Mathematik, Graduiertenkolleg 1463 "Analysis, Geometry and String Theory") Dissertation: A geometric approach to the μ-variant of the periodic b-equation and some two-component extensions |
2016 | Habilitation an
der
Georg-August-Universität
Göttingen Habilitationsschrift: Free Boundary Problems in Nature and Science |
![]() |
Spektraltheorie
Akademische
Verlagsgemeinschaft München
137 Seiten 21 x 14,8 cm Softcover Erscheinungstermin 24.11.2017 Bestell-Nr. 86924-998 ISBN 978-3-86924-998-8 |
Meine Vorlesungen zur Streutheorie im
Wintersemester 2018/19 wurden aufgezeichnet und können hier
angeschaut werden:
Wintersemester 2016/17 | Spectral Theory (2 SWS) [Vorlesungsskript] Das überarbeitete und erweiterte Vorlesungsskript habe ich als Lehrbuch veröffentlicht. |
Wintersemester 2017/18 | Schrödinger Operators
and their Spectra (2 SWS) [Vorlesungsskript] |
Wintersemester 2018/19 | Introduction
to Scattering Theory
(2 SWS) [Vorlesungsskript] Meine Vorlesungen wurden mit Hilfe der Aufzeichnungstechnik im Auditorium Maximum aufgenommen, siehe oben. |
Exercises
to "Introduction to Scattering Theory" (2 SWS) [Blatt 1] [Blatt 2] [Blatt 3] [Blatt 4] [Blatt 5] [Blatt 6] [Blatt 7] [Blatt 8] [Blatt 9] [Blatt 10] |
|
Sommersemester 2019 | The Dislocation Problem in Hilbert Spaces (2 SWS) |
In this lecture, we study interface problems for Schrödinger operators. Starting from the periodic dislocation problem on the line, we present a variational approach to show that the dislocation produces discrete states (surface states) in gaps of the periodic problem. Moreover, we discuss regularity properties of the eigenvalue branches (as functions of the dislocation parameter), derive a spectral shift function and show that the dislocation moves enough states through a gap to produce a non-vanishing density of states. Our approach can easily be generalized to the periodic dislocation problem on the plane. The dislocation problem also serves as an approximation for a small angle defect in a two-dimensional lattice for which we prove the existence of spectrum in gaps of the periodic problem and obtain lower and upper bounds for the spectral densities inside the gaps on a scale that is appropriate to surface states. Finally, we turn to the general 2D dislocation problem for which we show that the occurrence of eigenvalues in spectral gaps is a generic phenomenon and that the eigenvalue branches are Lipschitz continuous functions of the dislocation parameter if the potential on the left-hand side of the interface is locally of bounded variation. Some examples arising in solid state physics (e.g. muffin tin potentials) will illustrate the results of the lecture. | |
References: Hempel, R., Kohlmann, M.: A variational approach to dislocation problems for periodic Schrödinger operators. J. Math. Anal. Appl. 381 (2011) 166-178 Hempel, R., Kohlmann, M.: Spectral properties of grain boundaries at small angles of rotation. J. Spectr. Theory 1 (2011) 1-23 Hempel, R., Kohlmann, M., Stautz, M., Voigt, J.: Bound states for nano-tubes with a dislocation. J. Math. Anal. Appl. 431 (2015) 202-227 |
|
[Vorlesungsskript] | |
Exercises
to "The Dislocation Problem in Hilbert Spaces" (2 SWS) [Blatt 1] [Blatt 2] [Blatt 3] [Blatt 4] [Blatt 5] [Blatt 6] [Blatt 7] [Blatt 8] [Blatt 9] |
|
Wintersemester 2019/20 | M.Mat.0045:
Seminar "Ausgewählte Kapitel der Analysis" (2 SWS) Mittwoch, 17:00-18:30 Uhr im Hörsaal HS 1 des Mathematischen Instituts (Beginn: 23. Oktober 2019) |
[Seminarthemen] | |
Sommersemester 2020 | Seminar
"Geometric Mechanics and Symmetry" (2 SWS) Mittwoch, 17:00-18.30 Uhr im Hörsaal HS 1 des Mathematischen Instituts (Beginn: 15. April 2020) |
Eine Vorbesprechung zur Einteilung der Vortragsthemen findet am Mittwoch, 5.2.20 um 17.30 Uhr im Hörsaal HS 1 statt. Interessenten, die nicht an der Vorbesprechung teilnehmen können, melden sich bitte per E-Mail für einen Vortrag bei mir an. Am 8.4.20 endet der Anmeldezeitraum für die Veranstaltung. | |
[Seminarthemen] |