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Chapter 1

Classical particle scattering

Scattering occurs in a variety of physical situations. It normally involves a compar-

ison of two different dynamics for the same system: the given dynamics and a “free”

dynamics. It is hard to give a precise definition of “free dynamics” but important

characteristics of a free dynamical system are that it is simpler than the given dy-

namics and that it conserves the momentum of the “individual constituents” of the

physical system.

The simplest system with which to illustrate the ideas of scattering theory is the

classical mechanics of a single particle moving in an external force field f(x), x ∈ R3.

This theory is equivalent to the scattering of two particles interacting with each other

through a force field f(x1 − x2) because the center of mass motion of such a two-

body system separates from the motion of x12 = x1−x2. The states of such a single

particle system are points in phase space R3 ×R3, i.e. pairs u(t) = (x(t), ẋ(t)) ∈ R6

representing the position and the velocity of the particle. The evolution is given by

the equation

d

dt
u(t) = F (u(t)). (1.1)

The force field is obtained from a potential V (x) and equals −grad V (x). The

right-hand side of the evolution equation (1.1) thus reads

F (u(t)) = F

(
x(t)

ẋ(t)

)
=

(
ẋ(t)

− 1
m
grad V (x(t))

)
.

Let us assume for simplicity that V has compact support and that the particle

moves outside the support of V (and hence outside of the corresponding force field)

for large |t|. We can then expect that

x(t) = x− + tv−, t→ −∞,

x(t) = x+ + tv+, t→ +∞.

Conservation of the energy E implies that |v+| = |v−|. Furthermore, integrating the

conservation law 1
2
mẋ(t)2 = E−V (x(t)) with a given initial condition (x(t0), ẋ(t0)) =
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(x− + t0v−, v−), for t0 sufficiently near −∞ so that {x− + tv−, t < t0} ∩ supp V = ∅,
we observe that x+ and v+ are functions of x− and v−. This motivates to define the

scattering map

S : R6 → R6,

(
x−
v−

)
7→

(
x+
v+

)
.

Let us consider a particle moving in one spatial direction and assume that V is

bounded, V (x) ≤ E0 = maxV . For energies E < E0, the particle will be reflected

by the potential; its velocity will change sign (and vary temporarily while the particle

is moving inside the support of V ). The scattering map thus is of the form(
x−
v−

)
7→

(
x+(x−, v−)

−v−

)
.

For E > E0 the particle moves through and we expect a time delay compared with

the free dynamics and again a temporary change of the velocity such that finally

v+ = v−. The scattering map now has the form(
x−
v−

)
7→

(
x+(x−, v−)

v−

)
.

In the case E = E0 the particle stops at x0 with V (x0) = E0 (if this point is reached

in finite time).

Next, let us suppose that supp V is not compact but that V and grad V are

sufficiently small for |x| → ∞. Then we expect that the position of the particle will

not exactly but asymptotically be of the form x± + tv±, i.e.

∃(x±, v±) ∈ R6 : |x(t)− x± − tv±| → 0, t→ ±∞. (1.2)

Observe that the potential must indeed be very small at ±∞; even for the Coulomb

potential, the particle will not be asymptotically free.

Let us now consider a one-dimensional particle with positive energy E in a force

field with the potential

V (x) = C(1 + |x|)−α, α > 0, C ̸= 0.

We show that the particle moves asymptotically free in the sense of (1.2) if α > 1.

For simplicity, let m = 2. It suffices to consider the case t → +∞. We can

choose an initial condition such that x(t) → ∞, t→ ∞. By conservation of energy,

ẋ(t)2 = E − V (x(t)) so that

ẋ(t) =
√
E − V (x(t)) →

√
E, t→ +∞. (1.3)

In particular, ẋ(t) does not change sign for large t and hence ẋ(t) > 0.
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(1) Let α > 1; here, it suffices to suppose that |V (x)| ≤ C(1 + |x|)−α. By (1.3),

there are constants t0 ∈ R, x1 ∈ R and v1 > 0 such that for t ≥ t0

v1 ≤ ẋ(t) and

x1 + v1t ≤ x(t).

For any y > 0, the mean value theorem ensures the existence of η ∈ (0, y) such

that √
E − y =

√
E − 0 + y

[
d

ds

√
E − s

]
s=η

=
√
E − y

2
√
E − η

.

For sufficiently large t, E − V (x(t)) is bounded away from zero so that there is a

function η(t) satisfying |η(t)| ≤ c(1 + t)−α for some constant c > 0 and

ẋ(t) =
√
E − V (x(t)) =

√
E + η(t) and

x(t) = x0 +
√
E t+

∫ t

t0

η(τ) dτ

= x0 +
√
E t+

∫ ∞

t0

η(τ) dτ −
∫ ∞

t

η(τ) dτ

= x̃0 +
√
E t+ η̃(t)

with |η̃(t)| ≤ c̃ t1−α. This is the desired result with x+ = x̃0 and v+ =
√
E.

(2) Assume that α ≤ 1. By (1.3) there are c1, c2 > 0 (for C > 0) or c1, c2 < 0 (for

C < 0) so that for α < 1 and large t

ẋ(t) =
√
E − V (x(t))

{
≤

√
E − c1(1 + t)−α

≥
√
E − c2(1 + t)−α and

x(t)

{
≤

√
E t+ c3 − c1

1−α
(1 + t)1−α

≥
√
E t+ c4 − c2

1−α
(1 + t)1−α.

For α = 1, the term 1
1−α

(1 + t)1−α has to be replaced by ln(1 + t). Let us assume

for a contradiction that (1.2) holds true. Let α < 1. Then, for sufficiently large t,

√
E t+ c4 −

c2
1− α

(1 + t)1−α − 1 ≤ x+ + v+t ≤
√
E t+ c3 −

c1
1− α

(1 + t)1−α + 1.

Dividing by t and computing the limit t → ∞, this implies that
√
E ≤ v+ ≤

√
E,

i.e. v+ =
√
E. Hence c1 = 0, a contradiction. Similarly, a contradiction is obtained

in the case α = 1.

Assume that the particle is asymptotically free in the sense of (1.2). The maps

Ω± : (x±, v±) 7→ (x(t), v(t))
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have an important analogy in the quantum mechanical setting where they are called

the (Møller)-wave operators. The scattering map thus satisfies

S = Ω−1
+ Ω−.

It describes the process of scattering without comprising the time-dependent details

of the event. One of the most important and most difficult problems in scattering

theory yet is the inverse problem: given the scattering map S what can we say about

the scattering center or the potential respectively?

Concerning Coulomb scattering, we will observe a similar phenomenon in the

quantum mechanical setting: the wave operators exist in general only for potentials

that decay faster than the Coulomb potential.

Finally, to make contact with physical experiments, we comment briefly on the

notions cross section and scattering angles : A beam of constant energy is sent

towards a target. The beam has a wide spread and an approximately uniform

density ρ of particles per unit area of the plane R2 orthogonal to the beam. A

detector sits at some scattering angle (ϑ, φ) far away from the target and collects

(and counts) all particles that leave the target within some angular region of size

∆Ω about (ϑ, φ). The measured quantity is

number of particles hitting the detector

(∆Ω)ρ
.

If ∆Ω is very small and the detector and source of particles are very far from the

target, this quantity is called the differential cross section. The integral of the

differential cross section over all spatial directions yields the total cross section.
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Chapter 2

Basic principles of scattering in

Hilbert spaces

We begin with a brief overview about some relevant aspects of spectral theory in

Hilbert spaces. For more details, we refer to [K-I, K-II] and of course [RS-I].

Let (An)n∈N be a sequence of bounded operators on the Hilbert space H, (An)n∈N ⊂
L(H), and let A ∈ L(H) be given. We say:

An → A weakly :⇐⇒ ⟨Anf, g⟩ → ⟨Af, g⟩ , ∀f, g ∈ H,
An → A strongly :⇐⇒ Anf → Af, ∀f ∈ H,
An → A in norm :⇐⇒ ||An − A|| = sup{||Anf − Af || ; ||f || ≤ 1} → 0.

Clearly, norm convergence =⇒ strong convergence =⇒ weak convergence. For the

purposes of scattering theory, we will see that strong convergence is the appropriate

notion.

Lemma 2.1. Assume that An, Bn, A,B ∈ L(H), n ∈ N, and that An → A strongly

and Bn → B strongly. Then AnBn → AB strongly.

Proof. By the Uniform Boundedness Principle, there exists a constant c ≥ 0 with

||An|| ≤ c for all n ∈ N. Thus

||AnBnf − ABf || ≤ ||AnBf − ABf ||+ ||AnBnf − AnBf ||
≤ ||(An − A)Bf ||+ ||An|| ||(Bn −B)f ||
→ 0

as n→ ∞.

Let H be a Hilbert space and let A : D(A) → H be a self-adjoint operator. By

the spectral theorem, there exists a unique spectral family (E(λ))λ∈R such that

A =
∫
R λ dE(λ). The operators E(λ) are bounded, E(λ) ∈ L(H) for any λ ∈ R,
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and projections, E(λ)2 = E(λ) = E(λ)∗ for any λ ∈ R, and satisfy the following

properties:

(i) Monotonicity: λ ≤ µ =⇒ E(λ) ≤ E(µ).

(ii) Strong right continuity: ∀λ ∈ R ∀f ∈ H : E(λ+ ε)f → E(λ)f , ε ↓ 0.

(iii) For all f ∈ H, we have that E(λ)f → f , λ→ ∞, and E(λ)f → 0, λ→ −∞.

For any φ, ψ ∈ H, the sesquilinear form ⟨Aφ,ψ⟩ is the Riemann-Stieltjes integral

⟨Aφ,ψ⟩ =
∫
R
λ d ⟨E(λ)φ, ψ⟩ . (2.1)

The function λ 7→ ⟨E(λ)φ, φ⟩ = ||E(λ)φ||2 is the spectral measure µφ associated with

the vector φ. The spectral theorem also says that given a spectral family (E(λ))λ∈R,

there exists a unique self-adjoint operator A such that A =
∫
R λ dE(λ). In fact, the

domain of integration in (2.1) is σ(A) ⊂ R, the spectrum of A, as E(·) is locally

constant on the resolvent set ρ(A).
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