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Introduction

Just as groups may be used to describe symmetries of objects in a category,
crossed modules can describe symmetries of objects in 2-categories. A crossed
module may act on X by a homomorphism to Aut(X), and equivalent crossed
modules give equivalent actions [6], [2]. Therefore it is useful to understand
crossed modules up to equivalence.

A crossed module is just a particular way to view a strict 2-group [7]. In this
thesis, bigroups are classified up to equivalence of bicategories. This is the same
classification as Section 8 of John Baez’s article [1] written in the language of
bicategories. This classification result is then applied to crossed modules.

In Chapter 1, we review all the preliminary notions needed from bicate-
gory theory. In particular, we describe in detail all of the data needed for an
equivalence of bicategories.

Chapter 2 begins the classification process using skeletal bigroups. We work
with skeleta, because it is in this setting that the classification result is clearest.
This result will later be generalised to arbitrary 2-groups. A skeletal bigroup
appears to have four pieces of data:

1. the 1-arrows;

2. the 2-arrows;

3. the unitors;

4. the associator.

When we consider skeletal bigroups up to equivalence, this reduces to the
following three pieces of data:

1. a group G, describing the 1-arrows;

2. a G-module M , describing the 2-arrows;

3. an element of the third cohomology class H3(G,M), describing the associ-
ator.

In Chapter 3 we show how the results in Chapter 2 for skeletal bigroups
can be used in general bigroups. To do this, we show that all bicategories are
equivalent to skeletal ones. We prove this using the Whitehead Theorem for
Bicategories (Theorem 30), which gives criteria for a pseudofunctor to be an
equivalence. Generalising a well known result about 1-categories, it states that a
pseudofunctor F is an equivalence if and only if it satisfies all of the following
three properties:

1. F is essentially surjective;

2. F is essentially full ;

3. F is 2-fully-faithful.
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These three properties are called the Whitehead criteria and defined in full in
Definition 22. The Whitehead Theorem is a powerful result, as it simplifies the
task of showing that two bicategories are equivalent. Instead of constructing
an equivalence as described in Chapter 1, it is only necessary to check if a
pseudofunctor satisfies the above three criteria. We give an elementary proof of
this theorem, and then apply it to prove the existence of skeleta. It follows that
the classification theorem from Chapter 2 holds for general bigroups.

Chapter 4 discusses our classification result for strict bigroups. The classi-
fication of crossed modules up to equivalence of bicategories has already been
demonstrated in Chapter 3. However, when discussing crossed modules, we
often use a simpler notion of equivalence than “equivalence of bicategories”.
Equivalences of crossed modules corresponds to a simpler notion, which we call
a strict equivalence of strict bicategories. In fact, there is no difference between
these two notions of equivalence: two strict bicategories are strictly equivalent
iff they are equivalent in the sense described in Chapter 1. Theorem 47 is the
key result here, as it states that any equivalence can be made strict. Therefore,
the classification Theorem in Chapter 2 can be applied to crossed modules. This
completes the classification of crossed modules.
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1 Preliminaries

1.1 Bicategories

Definition 1. A bicategory C = (C0, C, ◦, l, r, a) consists of:

• A set of objects C0.

• For all objects x, y, a category C(x, y), whose objects are 1-arrows x→ y
and morphisms are 2-arrows. Composition of 2-arrows in this category is
denoted by · and is called vertical composition.

• For all objects x, a unit 1-arrow 1x : x→ x.

• For all objects x, y, z, a bifunctor ◦ : C(y, z) × C(x, y) → C(x, z). This
bifunctor provides a product ◦ on arrows and a horizontal product • on
2-arrows.

• For all arrows f : x→ y, invertible natural transformations lf : 1x ◦ f ⇒ f
and rf : f ◦ 1y ⇒ f called left and right unitors, respectively.

• An invertible natural transformation a with components af,g,h : (f◦g)◦h⇒
f ◦ (g ◦ h) for each composable triple of arrows f, g, h, called an associator.

such that the following diagrams commute for all composable arrows f, g, h, i:

• The middle triangle identity

(f ◦ 1) ◦ g f ◦ (1 ◦ g)

f ◦ g

af,1,g

rf•1g 1f•lg
(1)

• The pentagon identity

(f ◦ g) ◦ (h ◦ i)

((f ◦ g) ◦ h) ◦ i f ◦ (g ◦ (h ◦ i))

(f ◦ (g ◦ h)) ◦ i f ◦ ((g ◦ h) ◦ i)

af,g,h◦iaf◦g,h,i

af,g,h•1i
af,g◦h,i

1f•ag,h,i

(2)

Remark 2. The bifunctoriality of the horizontal product is also known as the
interchange law. In full, it states that for any composable 2-arrows α, β, γ, δ:

(α • β) · (γ • δ) = (α · γ) • (β · δ)

The diagrams in the following lemma were originally included as coherence
axioms of a monoidal category, but Max Kelly showed in [4] that they follow
from the others.
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Lemma 3. Let f, g be composable arrows in a bicategory. Then the following
two diagrams of 2-arrows commute:

• The left triangle identity

(1 ◦ f) ◦ g 1 ◦ (f ◦ g)

f ◦ g

a1,f,g

lf•1g lf◦g

(3)

• The right triangle identity

(f ◦ g) ◦ 1 f ◦ (g ◦ 1)

f ◦ g

af,g,1

rf◦g 1f•rg

(4)

Proof. Consider the diagram

((1 ◦ 1) ◦ f) ◦ g (1 ◦ (1 ◦ f)) ◦ g

(1 ◦ f) ◦ g

1 ◦ (f ◦ g)

(1 ◦ 1) ◦ (f ◦ g) 1 ◦ ((1 ◦ f) ◦ g)

1 ◦ (1 ◦ (f ◦ g))

a1,1,f•1g

a1◦1,f,g

(l1•1f )•1g (11•lf )•1g

a1,1◦f,ga1,f,g

l1•1f◦g

a1,1,f◦g

11•(lf•1g)

11•a1,f,g

11•lf◦g

The outer pentagon commutes by the pentagon identity. The upper triangle
and lower left triangle commute by the middle triangle identity. The two
quadrilaterals commute because a is natural. Therefore, the lower right triangle
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commutes. We now use the naturality of l:

1 ◦ (1 ◦ f) ◦ g 1 ◦ (1 ◦ (f ◦ g))

(1 ◦ f) ◦ g 1 ◦ (f ◦ g)

f ◦ g

1 ◦ (f ◦ g)

11•a1,f,g

11•(lf•1g)

l(1◦f)•1g

11•lf◦g

l1◦(f◦g)

a1,f,g

lf•1g
lf◦g

lf◦g

The squares of this diagram are naturality squares of l. Therefore the inner
triangle, which is the left triangle identity, commutes. The proof that the right
triangle identity commutes is similar.

1.2 Lax Functors, Transformations and Modifications

We now introduce arrows between bicategories, 2-arrows between 1-arrows, and
3-arrows between 2-arrows. Similar to how the category of categories is really
a bicategory, bicategories form a certain kind of tricategory. The most general
form of an equivalence of bicategories is described using three levels of arrows,
and we give the concrete definition of these arrows in this section. We also
describe their vertical compositions and units, which are also needed to define
equivalences.

Definition 4. Let C,D be two bicategories. A lax functor F = (F 0, F, µ, λ) :
C → D consists of:

• A function F 0 : C0 → D0 between the objects.

• For all objects x, y, a functor F : C(x, y)→ D(F 0(x), F 0(y)).

• For all composable arrows f, g, a natural transformation µf,g : F (f) ◦
F (g)⇒ F (f ◦ g).

• For all objects x, an arrow λx : 1F 0(x) ⇒ F (1x).

We require that the following diagram commutes for all composable arrows
f, g, h:

(Ff ◦ Fg) ◦ Fh F (f ◦ g) ◦ Fh F ((f ◦ g) ◦ h)

Ff ◦ (Fg ◦ Fh) Ff ◦ F (g ◦ h) F (f ◦ (g ◦ h))

µf,g•1Fh

aFf,Fg,Fh

µf◦g,h

F (af,g,h)

1Ff•µg,h µf,g◦h

(5)
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and the following diagrams commute for all f : x→ y:

1F 0y ◦ Ff F (1y) ◦ Ff Ff ◦ 1F 0x Ff ◦ F (1x)

Ff F (1y ◦ f) Ff F (f ◦ 1x)

λy•1Ff

lFf µ1y,f

1Ff•λx

rFf µf,1x

F (lf ) F (rf )

(6)

If the arrows λ and µ are invertible, then we call F a pseudofunctor.

Lemma 5 (Composition of lax functors). Let C,D,E be bicategories and
let F : C → D, G : D → E be lax functors (resp. pseudofunctors). Let
F = (F 0, F, µF , λF ) and G = (G0, G, µG, λG). Then we define the composition
F ◦G by [3]:

F ◦G = (F 0 ◦G0, F ◦G,µGF ·,F · ◦G(µF ), λGF · ◦G(λF ))

This is a lax functor (resp. pseudofunctor).

Proof. We follow the proof of Lemma 4.1.29 of [3]. First we show that µGF ·,F · ◦
G(µF ) is natural. Let f, g be a pair of composable arrows, f ′, g′ be another pair
of composable arrows and α : f ⇒ f ′, β : g ⇒ g′ 2-arrows in C. The following
naturality diagram commutes:

GFf ◦GFg G(Ff ◦ Fg) GF (f ◦ g)

GFf ′ ◦GFg′ G(Ff ′ ◦ Fg′) GF (f ′ ◦ g′)

µGFf,Fg

GFα•GFβ

G(µFf,g)

G(Fα•Fβ) GF (α•β)

µG
Ff′,Fg′ G(µF

f′,g′ )

To see that diagram (5) commutes for GF , let f, g, h be composable arrows
in C and consider the diagram:

(GFf ◦GFg) ◦GFh GFf ◦ (GFg ◦GFh)

G(Ff ◦ Fg) ◦GFh GFf ◦G(Fg ◦ Fh)

GF (f ◦ g) ◦GFh G((Ff ◦ Fg) ◦ Fh) G(Ff ◦ (Fg ◦ Fh)) GFf ◦GF (g ◦ h)

G(F (f ◦ g) ◦ Fh) G(Ff ◦ F (g ◦ h))

GF ((f ◦ g) ◦ h) GF (f ◦ (g ◦ h))

µGFf,Fg•1GFh

aGFf,GFg,GFh

1GFf•µGFg,Fh

µGFf◦Fg,Fh
G(µFf,g)•1GFh

µGFf,Fg◦Fh
1GFf•G(µFg,h)

µGF (f◦g),Fh
G(aFf,Fg,Fh)G(µFf,g•1Fh) G(1Ff•µFg,h)

µGFf◦F (g◦h)

G(µFf◦g,h) G(µFf,g◦h)

GF (af,g,h)

The upper and lower hexagons commute by diagram (5). The “triangles” on the
left and right are naturality squares for µG. The outside 12-gon is diagram (5)
for F ◦G.
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Finally we show that diagram (6) commutes for F ◦G. Let f : x→ y be an
arrow in C. Consider the diagram:

1GFy ◦GFf G1Fy ◦GFf GF1y ◦GFf

G(1Fy ◦ Ff) G(F1y ◦ Ff)

GFf GF (1y ◦ f)

λGFy•1GFf

lGFf

G(λFy )•1GFf

µG1Fy,Ff µGF1y,Ff

G(λFy •1Ff )

G(lFf )
G(µF1y,f )

GFlf

The top-right square is a naturality square for µ. The trapezoids commute by
diagram (6). The outside hexagon is the left half of Diagram (6) for F ◦G. The
commutativity of the right half is shown in a similar way.

Definition 6 (Identity Pseudofunctor). Let C be a category. Then 1C =
(1, 1, 1, 1) : C → C is the identity pseudofunctor.

The identity pseudofunctor clearly acts as a (strict) unit with respect to
vertical composition.

Definition 7. Let C,D be bicategories. Let (F 0, F, µF , λF ) and (G0, G, µG, λG)
be lax functors C → D. A lax transformation σ : F ⇒ G consists of:

• for all objects x ∈ C0, an arrow σx : F 0x→ G0x;

• for all arrows f ∈ C, natural 2-arrows σf : Gf ◦ σx ⇒ σy ◦ Ff ;

such that the following diagram commutes for all composable arrows f : x→ y,
g : y → z:

(Gf ◦Gg) ◦ σx Gf ◦ (Gg ◦ σx) Gf ◦ (σy ◦ Fg) (Gf ◦ σy) ◦ Fg

G(f ◦ g) ◦ σx σz ◦ F (f ◦ g) σz ◦ (Ff ◦ Fg) (σz ◦ Ff) ◦ Fg

a

µGf,g•1σx

1Gf•σg a−1

σf•1Fg

σf◦g 1σz•µ
F
f,g

a

(7)
and the following diagram commutes for all x ∈ C0:

1G0x ◦ σx σx σx ◦ 1F 0x

G(1x) ◦ σx σx ◦ F (1x)

lσx

λGx •1σx

r−1
σx

1σx•λ
F
x

σ1x

(8)

If the arrows λ and µ are invertible, then we call σ a strong transformation. If
the arrows λ and µ are identities, then we call σ a strict transformation.
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Definition 8 (Vertical composition of pseudonatural transformations). Let
F,G,H be parallel pseudofunctors and let σ : F ⇒ G, σ′ : G ⇒ H be two
transformations. The (vertical) composition σ′σ consists of the following data:

• The component on each object x is given by σ′x ◦ σx.

• The component on each arrow f is given by the composition

(σ′ ◦ σ) ◦ Ff Ff ◦ (σ′ ◦ σf )

σ′ ◦ (σ ◦ Ff) (Ff ◦ σ′) ◦ σf

σ′ ◦ (Gf ◦ σf ) (σ′ ◦Gf) ◦ σf

a

σ′σf

1•σf

a

a−1

σ′f•1

This composition is itself a transformation, as shown in Lemma 4.2.19 of [3].

Definition 9 (Identity transformation). Let C,D be bicategories and let F :
C → D be a lax functor. The identity transformation 1F : F ⇒ F consists of:

• for all objects x in C, the unit arrow 1x;

• for all 1-arrows f : x→ y in C, the composite 2-arrow

Ff ◦ 1
r
=⇒ Ff

l−1

==⇒ 1 ◦ Ff

A proof that this is a transformation can be found in Proposition 4.2.12 of
[3].

Definition 10. Let C,D be bicategories, let F,G : C → D be lax functors
and let σ, σ′ : F ⇒ G be transformations. A modification Γ : σ V σ′ consists
of a 2-arrow Γx : σx ⇒ σ′x for every object x, such that the following diagram
commutes for all arrows f ∈ C(x, y):

Gf ◦ σx Gf ◦ σ′x

σy ◦ Ff σ′y ◦ Ff

1•Γx

σf σ′f

Γy•1

(9)

A modification is invertible iff all of its components are invertible. Then Γ−1,
defined by taking the inverse of all components of Γ, is a transformation inverse
to Γ.

Remark 11. To give meaning to invertible modifications, we can define a
(vertical) composition of modifications and an identity modification. Then we
find that a modification has an inverse if and only if it is invertible. An invertible
modification composed with its inverse gives the identity. This is explained in
detail in Section 4.4 of [3].
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1.3 Equivalence of Bicategories

We now describe the most general form of an equivalence of bicategories. The
idea of this definition becomes clear when one views bicategories as objects
belonging to a tricategory. Then this definition is simply the weakest notion of
“sameness” of objects in a tricategory.

Definition 12. Let C,D be bicategories. An equivalence of bicategories C,D
consists of the following data:

• Two pseudofunctors F : C → D, G : D → C.

• Four pseudonatural transformations

σ : GF ⇒ 1C , σ∗ : 1C ⇒ GF, τ : FG⇒ 1D, τ∗ : 1D ⇒ FG

• Four invertible modifications

σ∗σ V 1GF , σσ∗ V 11C , τ∗τ V 1FG, ττ∗ V 11D

We also call a pseudofunctor F : C → D an equivalence if it is part of an
equivalence of bicategories.
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2 The Classification of Skeletal Bigroups

Definition 13. A bigroup is a bicategory with one object c in which all arrows
and 2-arrows are invertible.

Definition 14. A skeletal bigroup is a bigroup in which all isomorphic arrows
are equal.

A skeletal bigroup is defined with four pieces of data:

1. the 1-arrows;

2. the 2-arrows;

3. the unitors;

4. the associator.

Throughout this chapter, we will consider each of these up to equivalence
of bicategories. First, we will see that the 1-arrows correspond to a group G
and the 2-arrows correspond to a G-module M . Then, we will show that the
unitors add no additional data. Finally, we will see that the associator gives us
an element of the third cohomology H3(M,G). The results are summarised in
the following proposition:

Proposition 15. Skeletal bigroups can be classified up to equivalence by the
following data:

• a group G;

• a G-module M ;

• a 3-cocycle ω : M3 → G.

Let G and H be two skeletal bigroups described in this way by (GG,MG, ωG)
and (GH,MH, ωH), respectively. Then G and H are equivalent as bicategories iff
all of the following hold:

• There exists a group isomorphism φ : GG → GH.

• There exists a group isomorphism ψ : MG →MH.

• F (ωG) and ωH differ by a coboundary, where F (ωG) := ψ ◦ ωG ◦ (φ−1)3.

We begin with the 1-arrows of a skeletal bigroup. An immediate consequence
of being skeletal is:

Remark 16. All 2-arrows in a skeletal bigroup have the same source and target.
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By the above remark, 1c ◦ f = f and (f ◦ g) ◦ h = f ◦ (g ◦ h) hold for all
arrows f, g, h, so the set of 1-arrows together with the operator ◦ form a group
G = (G, ◦).

Next we will describe the structure of the 2-arrows. Any 2-arrow α : f ⇒ f
is of the form 1f • β, where β := 1f−1 • α is an arrow from 1c to 1c. So we can
describe any 2-arrow by an element of G and a 2-arrow 1c ⇒ 1c. We make use
of the Eckmann-Hilton argument to describe the set of 2-arrows 1c ⇒ 1c.

Lemma 17 (Eckmann-Hilton). Let M be a set equipped with 2 unital binary
operators • and · such that for all a, b, c, d ∈M :

(a • b) · (c • d) = (a · c) • (b · d)

Then:

i The units of the operators are equal.

ii The operators coincide.

iii The operators are commutative.

iv The operators are associative.

Proof.

i 1• = 1• • 1• = (1· · 1•) • (1• · 1·) = (1· • 1•) · (1• • 1·) = 1· · 1· = 1·

ii a • b = (a · 1) • (1 · b) = (a • 1) · (1 • b) = a · b
iii a · b = (1 • a) · (b • 1) = (1 · b) • (a · 1) = b • a = b · a
iv (a · b) · c = (a • b) · (1 • c) = (a · 1) • (b · c) = a · (b · c)

This argument can be applied to the horizontal and vertical products on
the set of 2-arrows over an identity arrow in any 2-category. In the setting of
bigroups, it means that the set of 2-arrows 1c ⇒ 1c forms an abelian group M .

Lemma 18 (Classification: 1-arrows and 2-arrows). Let G,H be skeletal bi-
groups, and let F : G→ H be an equivalence. Then the corresponding groups of
1-arrows GG, GH are isomorphic, and the corresponding abelian groups MG,MH

are isomorphic.

Proof. A lax functor F acts as a strict monoid homomorphism on the 1-arrows
and the 2-arrows of a skeletal bigroup. The existence of a (weak) inverse
pseudofunctor of F , together with G,H being skeletal, implies that F induces a
bijection on 1-arrows and 2-arrows. Therefore GG and GH are isomorphic, and
MG and MH are isomorphic.

In a skeletal bigroup the 2-arrows f ⇒ f over any arrow f form an abelian
group. This is because we can translate a 2-arrow f ⇒ f horizontally to a
2-arrow 1c ⇒ 1c. This observation gives a new interpretation of the naturality
of l, r and a:
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Remark 19. Consider the naturality square for l:

1c ◦ f f

1c ◦ g g

lf

11c•α α

lg

In a skeletal bigroup, we have f = g and lf = lg, and by the Eckmann-Hilton
argument, the composition of 2-arrows is commutative. Therefore, this diagram
simply states that 11c • α = α. If we do the same for the naturality squares of
r and a, we find that α • 11c = α and (α • β) • γ = α • (β • γ) for all 2-arrows
α, β, γ.

Next we discuss the unitors. Every choice of unitor yields an equivalent
bicategory:

Lemma 20 (Classification: Unitors). Let G,H be two skeletal bigroups with the
same arrows, 2-arrows, horizontal products and associators, but not necessarily
the same unitors. Then G and H are equivalent.

Proof. For any skeletal bigroup, we can rewrite the unitors lf and rf for any
arrow f in terms of the arrow l1c and associators. Substituting f = 1c and g = f
into diagram (3) gives us lf = a−1

1,1,f · (l1c • 1f ). Substituting f = f and g = 1c
into diagram (4) gives us rf = af,1,1 · (1f • r1c), and in particular a1,1,1 = 11c .
Substituting f = g = 1c into diagram (1) gives us l1c = r1c . To summarise:

lf = a−1
1,1,f · (l1c • 1f ) (10)

rf = af,1,1 · (1f • l1c) (11)

Now we construct an equivalence between G and H. Let α be the 2-arrow l1c in
G and β the 2-arrow l1c in H. We define a homomorphism F = (F 0, F, µF , λF ) :
G → H which acts as the identity on objects, arrows and 2-arrows, and µF is
trivial. We have to find a λF such that the diagrams in (6) commute. After
making the substitutions of equation (10), the left diagram becomes:

a−1
1,1,f · (β • 1f ) = (λc • 1f ) · 1f · a−1

1,1,f · (α • 1f )

Using the fact that the 2-arrows f ⇒ f form an abelian group, this simplifies to

(β • 1f ) = (λc • 1f ) · (α • 1f )

Applying the interchange law gives us

(β • 1f ) = (λc · α) • (1f · 1f )

Choosing λc := β · α−1 satisfies this equation. A similar calculation shows that
this choice of λc also makes the right diagram of (6) commute.

We construct G = (G0, G, µG, λG) : H→ G in a similar way, letting λGc :=
α · β−1. This is a strict inverse of F , so we have an equivalence.
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The associator of a bigroup can be described in terms of group cohomology.
Let G be the group of arrows and M the abelian group of 2-arrows 1c ⇒ 1c
belonging to a skeletal bigroup. We can make M into a G-module: for g ∈ G
and h ∈M we define the action of g on h by gh = 1g • h • 1g−1 .

The associator of a bigroup takes three 1-arrows f, g, h : c→ c and produces
a 2-arrow af,g,h : f ◦ g ◦ h ⇒ f ◦ g ◦ h, subject to the pentagon identity. We
can describe the 2-arrow af,g,h using a 2-arrow M 3 ωf,g,h : 1c ⇒ 1c defined
by af,g,h = ωf,g,h • 1f◦g◦h. Then the associator corresponds to a certain map
G3 →M . The pentagon identity states that for all f, g, h, i ∈ G :

(ωf,g,h • 1f◦g◦h • 1i) · (ωf,g◦h,i • 1f◦g◦h◦i) · (1f • ωg,h,i • 1g◦h◦i)

= (ωf◦g,h,i • 1f◦g◦h◦i) · (ωf,g,h◦i • 1f◦g◦h◦i)

This simplifies to

ωf,g,h · ω−1
f◦g,h,i · ωf,g◦h,i · ω

−1
f,g,h◦i · (1f • ωg,h,i • 1−1

f ) = 0,

i.e., ω is a 3-cocycle G3 →M .
This is the final piece of data from Proposition 15. We now investigate how

this behaves under an equivalence of bicategories.

Lemma 21 (Classification: Associators). Let G, H be two skeletal bigroups
with the same arrows and 2-arrows. Let F : G → H be an equivalence. Let
ωG and ωH be the cocycles corresponding to the associators of G and H. Then
F (ωG) and ωH differ by a coboundary.

Proof. Suppose that F : G→ H is an equivalence of skeletal bigroups. We write
the 2-arrows µf,g as ψf,g • 1f◦g for ψf,g ∈ M . Then we can translate diagram
(5) to the following statement about 2-arrows 1c ⇒ 1c:

ωH
Ff,Fg,Fh = ψf,g · ψf◦g,h · ψ−1

f,g◦h · (1f • ψg,h • 1f )−1 · F (ωG
f,g,h) (12)

This means that F (ωG) and ωH differ by a coboundary.

We now compete the proof of Proposition 15 by constructing an equivalence
between two skeletal bigroups with matching cohomology classes.

Proof of Proposition 15. Let G and H be skeletal bigroups with corresponding
data (GG,MG, ωG) and (GH,MH, ωH).

If G and H are equivalent, then Lemma 18 gives isomorphisms φ : GG → GH

and ψ : MG → MH, Lemma 21 show that ωH and ψ ◦ ωG ◦ (φ−1)3 differ by a
coboundary.

For the other direction, assume that there exist group isomorphisms φ :
GG → GH and ψ : MG → MH, and assume that φ ◦ ωG ◦ (ψ−1)3 ∼= ωH. We
need to construct an equivalence F = (F 0, F, µ, λ) : G → H. By Lemma 20
we can assume without loss of generality that lG1 = 11c and lH1 = 11c . Let F 0

map the object of G to the object of H. Let F be the functor which acts as
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an isomorphism GG ∼= GH on 1-arrows, and as an isomorphism HG ∼= HH on
2-arrows c⇒ c.

The associators of G and H differ by a coboundary in the way given by (12).
Let µf,g := ψf,g • 1f◦g. This choice is natural, and satisfies Coherence Condition
(5) by construction. It remains to find a λ that makes the diagrams in (6)
commute. We start with the left half of diagram (6), and horizontally translate
it to the following equation about 2-arrows 1c ⇒ 1c:

λ · ψ1,f · (F (ωG
1,1,f ))−1 = (ψ1,1 · ψ1,f · ψ−1

1,f · (11c • ψ1,f • 11c)
−1 · F (ωG

1,1,f ))−1

which simplifies to
λ = ψ−1

1,1 (= µ−1
1,1)

To show that this choice of λ also makes the right diagram in (6) commute, we
follow the same steps but horizontally translate on the left side instead of the
right side, i.e., we use ψ′f,g defined by µf,g = 1f◦g • ψ′f,g etc. In this way, we

verify that (F 0, F, µ, λ) is coherent, and is really a pseudofunctor.
The pseudofunctor (F 0, F, µ, λ) is strictly invertible, since we can invert all

of its data to construct an inverse. Therefore, G and H are equivalent.
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3 The Whitehead Theorem and Skeleta of Bicat-
egories

A well known result in 1-category theory is that, assuming the Axiom of Choice,
every category is equivalent to a skeletal category. A skeletal category is a
category in which all isomorphic arrows are equal. This can be proven using
another well known result, named the Whitehead Theorem for categories. We
follow the language of Chapter 7 in [3]. It states that, assuming the Axiom of
Choice, a functor F : C → D between 1-categories is an equivalence iff it satisfies
the following two properties:

1. F is essentially surjective: For all objects xD ∈ D, there exists an object
xC ∈ C such that FxC is isomorphic to xD.

2. F is fully faithful : For any two objects xC , yC ∈ C, the map C(xC , yC)→
D(FxC , FyC) is bijective.

In this section, we aim to generalise both of these results to the setting of
2-categories. A skeletal bicategory is a bicategory in which all equivalent objects
are equal, and all isomorphic 1-arrows are equal. The bicategorical Whitehead
criteria are the following:

Definition 22 (Whitehead criteria). Let C,D be two bicategories. The White-
head criteria for a pseudofunctor F : C → D are the following:

1. F is essentially surjective if it is surjective on objects up to equivalence.

2. F is essentially full if for any two objects xC , yC ∈ C0, the functor
F (xC , yC) is surjective on arrows up to isomorphism.

3. F is 2-fully-faithful if for any two objects xC , yC ∈ C0 and arrows f, g :
xC ⇒ yC , the functor F (xC , yC) gives a bijection of 2-arrows f ⇒ g and
Ff ⇒ Fg.

The main result here is the Whitehead Theorem for bicategories (Theorem
30), which states that a pseudofunctor is an equivalence if and only if it satisfies
the Whitehead criteria.

Most of the work for this theorem will be done in the proof of Lemma 24,
in which we assume that the target bicategory is skeletal. We then prove the
existence of skeletal bicategories in Theorem 26. The full Whitehead Theorem
follows from these results.

Throughout this chapter we will assume the Axiom of Choice. We also
assume that every category is small, so that we can apply it. We do not, however,
rely on any deep results in category theory, such as the Yoneda embedding or the
coherence theorem for bicategories. The reason for this is that we might want to
use the Whitehead Theorem to prove these results. In particular, the coherence
theorem can be proven by showing that every bicategory is equivalent to a
strict one. It is easier to show this equivalence when we can use the Whitehead
Theorem.
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We now begin the proof of the Whitehead Theorem with the special case
that the target bicategory is skeletal.

Remark 23. Let C,D be bicategories and let F : C → D be a pseudofunctor
that is fully faithful on 2-arrows. Then a diagram of 2-arrows in C commutes
iff its image in D commutes. This is true because a commutative diagram of
2-arrows describes an equality of 2-arrows.

Lemma 24. Let C be a bicategory and let D be a skeletal bicategory. A
pseudofunctor F = (F 0, F, µF , λF ) : C → D is an equivalence if all of the
following hold:

1. F is essentially surjective on objects;

2. F is essentially full on 1-arrows;

3. F is 2-fully-faithful.

Proof. In the following we use superscript D (like xD, fD) to indicate that
something belongs to D and superscript C to indicate that something belongs
to a chosen pre-image.

The idea of this proof is to choose 2-arrows in C that are pre-images of
well-behaved arrows in D. Then, by Remark 23, we can prove that diagrams of
2-arrows in C commute by showing that the images of those diagrams commute
in D.

A consequence of D being skeletal is that F must be strictly surjective and
strictly full on 1-arrows. This allows us to make the following choices:

• For all objects xD ∈ D0, choose an object xC ∈ C0 such that F 0xC = xD.

• For all objects x ∈ C0, let xD := F 0x and let xC ∈ C0 be the chosen
object corresponding to xD. Let fx : x→ xC be a 1-arrow in the preimage
of 1xD : F 0x → F 0xC . Let f̄x : xC → x be a 1-arrow in the preimage of
1xD : F 0xC → F 0x. Let εx : fx ◦ f̄x ⇒ 1xc be the 2-arrow in the preimage
of lD1x and let ηx : f̄x ◦ fx ⇒ 1x be the 2-arrow in the preimage of rD1x . This
defines an equivalence (fx, f̄x, ε

−1
x , ηx) between x and xC .

• For all 1-arrows fD ∈ D(xD, yD), choose a 1-arrow fC ∈ C(xC , yC) such
that FfC = fD.

• For all 1-arrows f ∈ C(x, y), let fD := Ff and let fC ∈ C(xC , yC) be the
chosen 1-arrow corresponding to fD. Let αf : (fy ◦ f) ◦ f̄x ⇒ fC be a
2-arrow in the preimage of FlCfC · Fr

C
1◦fC : (1 ◦ F (f)) ◦ 1⇒ F (fC).

• For all 2-arrows αD : fD ⇒ gD, choose a 2-arrow αC : fC ⇒ gC such that
FαC = αD.

We now construct a pseudofunctor G = (G0, G, µG, λG) : D → C:

• The map G0 sends xD to xC .
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• The functor G sends the 1-arrows fD to fC and the 2-arrows αD to αC .

• The natural isomorphism µG is defined as the pre-image of (µF )−1 · 1 in
C(GfD ◦GgD, G(fD ◦gD)). We can write its components µGfD,gD explicitly
as the composition:

GfD ◦GgD α−1•α−1

======⇒ ((fz ◦ f) ◦ f̄y) ◦ ((fy ◦ g) ◦ f̄x)

1•a
==⇒ ((fz ◦ f) ◦ f̄y) ◦ (fy ◦ (g ◦ f̄x))

a−1

==⇒ (((fz ◦ f) ◦ f̄y) ◦ fy) ◦ (g ◦ f̄x)

a•1
==⇒ ((fz ◦ f) ◦ (f̄y ◦ fy)) ◦ (g ◦ f̄x)

(1•η)•1
=====⇒ ((fz ◦ f) ◦ 1) ◦ (g ◦ f̄x)

r•1
==⇒ (fz ◦ f) ◦ (g ◦ f̄x)

a−1

==⇒ ((fz ◦ f) ◦ g) ◦ f̄x
a•1
==⇒ (fz ◦ (f ◦ g)) ◦ f̄x
α
=⇒ G(fD ◦ gD)

G(µF
fD,gD

)−1

=========⇒ G(fD ◦ gD)

(13)

Note that this definition does not depend on a particular choice of fC ,
because F (µGfD,gD) is the same with any choice. The following diagram

demonstrates why µG is a pre-image of (µF )−1 · 1:

fD ◦ gD 1 ◦ (fD ◦ gD) (1 ◦ (fD ◦ gD)) ◦ 1

((1 ◦ fD) ◦ gD) ◦ 1)

(1 ◦ fD) ◦ gD (1 ◦ fD) ◦ (gD ◦ 1) ((1 ◦ fD) ◦ 1) ◦ (gD ◦ 1)

((1 ◦ fD) ◦ 1) ◦ gD ((1 ◦ fD) ◦ (1 ◦ 1)) ◦ gD ((1 ◦ fD) ◦ (1 ◦ 1)) ◦ (gD ◦ 1)

((1 ◦ fD) ◦ 1)) ◦ (gD ◦ 1) (((1 ◦ fD) ◦ 1) ◦ 1) ◦ (gD ◦ 1)

((1 ◦ fD) ◦ 1) ◦ (1 ◦ gD) ((1 ◦ fD) ◦ 1) ◦ ((1 ◦ gD) ◦ 1) ((1 ◦ fD) ◦ 1) ◦ (1 ◦ (gD ◦ 1))

Fl−1•1

Fl Fr

Fa•1

Fr

Fr−1

Fa

Fa−1

1•Fr Fr•1

1•Fr

1•Fl−1

(1•Fr)•1

(1•Fr)•1

1•Fr

(1•Fr)•11•Fr Fa•1

Fr•1

1•Fr−1 1•Fa

1•(Fl•1) Fa−1

1•Fl

• The natural isomorphism λG is given by the pre-image of (λF )−1.
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The naturality and coherence of µG and λG follow from the naturality and
coherence of µF and λF .

We constructed G such that FG is equal to the identity 1D. It remains
to show that GF : C ⇒ C is equivalent to 1C . We construct transformations
σ : 1C ⇒ GF and σ∗ : GF ⇒ 1C with the following data:

• σx := fx

• σg is the composite

gC◦fx
α−1•1
====⇒ ((fy◦g)◦f̄x)◦fx

a
=⇒ (fy◦g)◦(f̄x◦fx)

1•η−1

====⇒ (fy◦g)◦1x
r
=⇒ fy◦g

• σ∗x := f̄x

• σ∗g is the composite

g◦f̄x
l−1

==⇒ 1◦(g◦f̄x)
η−1•1
====⇒ (f̄y◦fy)◦(g◦f̄x)

a
=⇒ f̄y◦(fy◦(g◦f̄x))

1•α
==⇒ f̄y◦gC

These transformations are natural because their images under F are com-
positions of natural 2-arrows in D. We now check that σ satisfies Coherence
Conditions (7) and (8) (the case for σ∗ is similar).

The right triangle identity (4) tells us that r1 = a1,1,1 · r1, thus a1,1,1 = 1
and the middle triangle identity (1) tells us that l1 = r1. Therefore, the image
of Coherence Condition (8) in D commutes:

1 ◦ 1 1 1 ◦ 1

1 ◦ (1 ◦ 1) 1 ◦ 1

(1 ◦ 1) ◦ 1

((1 ◦ 1) ◦ 1) ◦ 1 (1 ◦ 1) ◦ (1 ◦ 1)

Fl

F l−1•1

Fr−1

1•Fl
F l

F l Fr

Fra
Fr•1

Fr−1•1

Fa

1•Fr

(14)

Coherence Condition (7) commutes by the following diagram:
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The final step is to construct invertible modifications Γ : σ∗ ◦ σ V 11C and
Γ̃ : σ ◦ σ∗ V 1GF . We choose Γx := ηx and Γ̃x := εx. We must show that these
choices are coherent.

Consider the coherence condition for Γ:

fC ◦ 1 fC 1 ◦ fC

fC ◦ (fx ◦ f̄x) (fy ◦ f̄y) ◦ fC

(fC ◦ fx) ◦ f̄x fy ◦ (f̄y ◦ fC)

(((fy ◦ f) ◦ f̄x) ◦ fx) ◦ f̄x fy ◦ (f̄y ◦ ((fy ◦ f) ◦ f̄x))

fy ◦ (f̄y ◦ (fy ◦ (f ◦ f̄x)))

((fy ◦ f) ◦ (f̄x ◦ fx)) ◦ f̄x fy ◦ ((f̄y ◦ fy) ◦ (f ◦ f̄x))

((fy ◦ f) ◦ 1) ◦ f̄x fy ◦ (1 ◦ (f ◦ f̄x))

(fy ◦ f) ◦ f̄x fy ◦ (f ◦ f̄x)

r

1•ε−1

l−1

a−1

ε•1

(α−1•1)•1

a−1

a•1

1•(1•α)

1•(1•a−1)

(1•η)•1

1•a

r•1

1•(η−1•1)

α

a

1•l−1

(15)

We have split the above diagram into 2 subdiagrams. The key insight in this
step is that the so-called zig-zag identities hold for our η and ε:

(f̄x ◦ fx) ◦ f̄x f̄x ◦ (fx ◦ f̄x)

1 ◦ f̄x f̄x f̄x ◦ 1

(fx ◦ f̄x) ◦ fx fx ◦ (f̄x ◦ fx)

1 ◦ fx fx fx ◦ 1

a

η•1 1•ε

l r

a

ε•1 1•η

l r

When we map these diagrams to D, we get subdiagrams of Diagram (14).
Therefore they commute. We use this result to prove that both subdiagrams of
Diagram (15) commute:
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The coherence condition for Γ̃ commutes by a similar diagram. Thus we have
constructed an equivalence from C to D.

In order to use this result, we must show that skeletal bicategories really
exist, and that every bicategory is equivalent to a skeletal one. The following
lemma will help us to construct the skeleton of a bicategory.

Lemma 25. Let C = (C0, C, ◦C , lC , rC , aC) be a bicategory. Let

D = (D0, D, ◦D, lD, rD, aD)

be the data for a bicategory, except l, r, a are not known to be natural or
coherent. Let F = (F 0, F, µ, λ) : C ⇒ D be the data of a pseudofunctor,
satisfying Coherence Conditions (5) and (6); in particular, all the 2-arrows λx
and µf,g are invertible. Assume that 1F 0(x) belongs to the image of F for all
objects x of C.

Then lD, rD, aD restricted to the image of F are natural and satisfy Coherence
Conditions (1) and (2).

Proof. We will avoid labelling ◦, l, r, a when it is clear which category they are in.
In the diagrams that follow, we will label regions to explain why they commute.

• Regions labelled “nat” commute by naturality.

• Regions labelled “func” commute by functoriality. (The functoriality of •
is the interchange law.)

• Regions labelled “square” commute by Coherence Condition (5) for pseud-
ofunctors.

• Regions labelled “hex” commute by Coherence Condition (6) for pseudo-
functors.

First, we show that the unitors are natural:

F (1x ◦ f)

F (1x) ◦ Ff 1Fx ◦ Ff Ff

F (1x) ◦ Fg 1Fx ◦ Fg Fg

F (1x ◦ f)

F (l)

F (1•α)

square

nat

µ

1•F (α) func

λ•1 l

1•F (α) F (α)

µ

λ•1 l

F (l)

square

The outside square is the naturality condition for lC and the rightmost square is
the naturality condition for lD. The naturality of rD is proven similarly.
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For Coherence Condition (1), consider the diagram:

F ((f ◦ 1y) ◦ g)

F (f ◦ 1y) ◦ Fg nat

(Ff ◦ F1y) ◦ Fg square

(Ff ◦ 1Fy) ◦ Fg

Ff ◦ Fg F (f ◦ g)

Ff ◦ (1Fy ◦ Fg)

Ff ◦ (F1y ◦ Fg) square

Ff ◦ F (1y ◦ g) nat

F (f ◦ (1y ◦ g))

F (r•1)

F (a)

F (r)•1

µ

a

µ•1

a

(1•λ)•1

r•1

hex nat
µ

1•(λ•1)

1•l

1•µ

µ

1•F (l)

F (l)

The outermost triangle is Coherence Condition (1) for C and the innermost
triangle is Coherence Condition (1) for D.

Now we show that the associator is natural and coherent:
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The outermost pentagon is Coherence Condition (2) for C and the innermost
pentagon is Coherence Condition (2) for D.

Theorem 26. Every bicategory is equivalent to a skeletal bicategory.

Proof. Let C = (C0, C, ◦C , lC , rC , aC) be a bicategory. For every equivalence
class of objects [x] ∈ C0, we choose a representative x and for all y ∈ [x] we
choose an equivalence (fy, f̄y, εy, ηy) : y → x. Let D0 be the set of representative
objects. For every isomorphism class of 1-arrows [f ] in C(x, y), where x, y ∈ D0,
we choose a representative f and an invertible 2-arrow αg : g ⇒ f for all g ∈ [f ].
For simplicity, we choose the equivalence (1x, 1x, l1x , l1x) for all x ∈ D0, and we
choose the representative 1-arrow 1x for all x ∈ D0.

Having chosen all our representatives, we now construct a bicategory D =
(D0, D, ◦D, lD, rD, aD) and a pseudofunctor P = (P 0, P, µ, λ) : C → D with the
following data:

• The set D0 consists of our representative objects.

• For all x, y in D0, the category D(x, y) is the full subcategory of C(x, y)
containing exactly the chosen 1-arrows.

• The map P 0 maps objects y to its chosen representative x ∼= y.

• The functor P sends 1-arrows g : x→ y to α(fy ◦ g ◦ f̄x) : P 0(x)→ P 0(y)
and 2-arrows β : g ⇒ h to α(fy ◦ g ◦ f̄x)−1 · (1fy • β • 1f̄x) · α(fy ◦ h ◦ f̄x) :
P (g)⇒ P (h).

• The horizontal product is defined on 1-arrows by f ◦D g := P (f ◦C g) and
on 2-arrows by β •D γ := P (β •C γ).

• The natural isomorphism µ is given by µf,g := ((α−1
f •C α−1

g ) · αf◦Cg.

• The natural isomorphism λ is given by λy := 11P0(y)

• The natural isomorphisms lD,rD,aD are defined by Coherence Conditions
(5) and (6).
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The following diagram shows that µ is natural:

Pg ◦ Ph g ◦ h P (g ◦ h)

g ◦ h g ◦ h

g′ ◦ h′ g′ ◦ h′

P (g′) ◦ P (h′) g′ ◦ h′ P (g′ ◦ h′)

α−1
g •α

−1
h

α−1
g •α

−1
h

µ

P (β•γ)

αg◦h

α−1
g◦h

P (β)•P (γ)β•γ β•γ

αg•αh αg′◦h′

α−1
g •α

−1
h

µ

αg′◦h′

In Lemma 25, we proved that lD, rD, aD constructed in this way are natural and
coherent. Therefore D is a bicategory and P is a pseudofunctor. By construction,
D is skeletal. The pseudofunctor P satisfies the Whitehead criteria. Therefore,
P is an equivalence.

We now complete the proof of the Whitehead Theorem for bicategories.

Lemma 27. Let C,D,E be bicategories and let F : C → D, G : D → E be
pseudofunctors satisfying the Whitehead criteria.

Then GF : C → E satisfies the Whitehead criteria.

Proof. GF is essentially surjective because pseudofunctors preserve equivalences;
GF is essentially full because functors preserve isomorphisms; and GF is 2-fully
faithful because a composition of bijective maps is bijective.

Lemma 28. Let C,D be bicategories, and let F = (F 0, F 1, µ, λ) : C → D be
an equivalence of bicategories. Then for any two objects x, y ∈ C0, the functor
F 1 : C(x, y)→ D(F (x), F (y)) is an equivalence of categories.

Proof. Let G : D → C be a weak inverse of F . The composition GF is equivalent
to 1C . For a pair of objects x, y ∈ C0, this means that G1F 1(C(x, y)) ∼=
1(C(x, y)). In the other direction, we get F 1G1 ∼= 1. Therefore, F 1 is an
equivalence of categories with weak inverse G1.

The 2-out-of-3 property is also used to prove the Whitehead Theorem. It
holds for general n-categories, and is discussed in a more general setting in [8].

Theorem 29 (2-out-of-3 property for Bicategories). Equivalences of bicategories
satisfy the 2-out-of-3 property: If two of the pseudofunctors F , G and GF are
equivalences, then so is the third.
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Theorem 30 (The Whitehead Theorem for Bicategories). Let C,D be bicate-
gories and let F : C → D be a pseudofunctor.

The pseudofunctor F is an equivalence if and only if it satisfies the Whitehead
criteria.

Proof. First we show the direction that the Whitehead criteria implies equiva-
lence. Assume that F satisfies the Whitehead criteria. Consider the diagram

C D

Skel(D)

F

SF
S

where S is the equivalence constructed in Theorem 26. The pseudofunctor SF
is an equivalence by Theorem 24 and Lemma 27. Therefore, by the 2-out-of-3
property, F is an equivalence.

For the other direction, assume that F is an equivalence. Let G : D → C
be a pseudoinverse to F , meaning G satisfies FG ∼= 1D and GF ∼= 1c. The
equivalence FG ∼= 1D implies that FG is essentially surjective, and it follows
that F is essentially surjective.

By Lemma 28, the functors C(x, y) → D(F 0x, F 0y) are equivalences, and
therefore they are essentially surjective and fully faithful. This implies that F is
essentially full and 2-fully-faithful.

We conclude this section by stating the classification of bigroups, which no
longer need to be skeletal.

Theorem 31 (Classification of Bigroups). Bigroups can be classified up to
equivalence by the following data:

• a group G;

• a G-module M ;

• a 3-cocycle ω : M3 → G.

Proof. The skeleton of a bigroup is a skeletal bigroup. We can see this because
the construction of a skeleton as described in Theorem 26 does not introduce
any non-invertible arrows. Therefore we can apply the classification of skeletal
bigroups (Theorem 15) to general bigroups.
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4 Strictification of Equivalences

4.1 Strict Equivalences

When working with strict bicategories, we might want to avoid using non-
strict lax functors, and also avoid transformations and modifications. Using
the Whitehead criteria, it is still possible to define an equivalence with these
restrictions:

Definition 32. Let C,D be strict bicategories. An elementary equivalence
of strict bicategories is a strict pseudofunctor F : C → D that satisfies the
Whitehead criteria.

Definition 33. Two strict bicategories are called strictly equivalent if they are
connected by a zig-zag of strict equivalences.

The “zig-zags” are necessary to turn elementary equivalences, which have a
direction, into an equivalence relation. By zig-zag, we mean a path which does
not necessarily respect the direction of the elementary equivalence. For example,
two strict bicategories C,F are equivalent if they are connected by elementary
equivalences in the following way:

C D E F

The aim of this chapter is to show that the above defined strict equivalence
is no different from an equivalence of bicategories. Two strict bicategories are
equivalent iff they are strictly equivalent. One direction (strictly equivalent =⇒
equivalent) is trivial.

As motivation for our definition, we will first discuss equivalences of crossed
modules.

Definition 34. A crossed module (G,H, τ, α), often written as H
τ
=⇒ G, consists

of:

• two groups G,H;

• a group homomorphism τ : H → G;

• a G-action on H α : G→ Aut(H);

such that the following diagrams commute:

H ×H G×H G×H H

H G×G G

τ×1

Adjoint α

α

1×τ τ

Adjoint

Definition 35. Let (G1, H1, τ1, α1), (G2, H2, τ2, α2) be two crossed modules.
A crossed module homomorphism (γ, δ) consists of two group homomorphisms
γ : G1 → G2, δ : H1 → H2 such that the following diagrams commute:
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H1 H2 G1 ×H1 G2 ×H2

G1 G2 H1 H2

δ

τ1 τ2

γ×δ

α1 α2

γ δ

Crossed modules are just another way to represent the data of a strict 2-group,
and crossed module homomorphisms correspond to strict pseudofunctors. This
is discussed in detail in [7]. What is especially interesting to us is the definition
of an equivalence of crossed modules.

Definition 36. An elementary equivalence of crossed modules (G1, H1, τ1, α1),
(G2, H2, τ2, α2) is a crossed module homomorphism that induces isomorphisms
ker(τ1) ∼= ker(τ2) and coker(τ1) ∼= coker(τ2).

Two crossed modules are equivalent if and only if they are connected by a
zig-zag of elementary equivalences.

If we view crossed modules as bigroups, then ker(τ) corresponds to the 2-
arrows 1⇒ 1 of the bigroup, and coker(τ) corresponds to equivalence classes of
1-arrows. Then this definition corresponds to the definition of strictly equivalent
strict bicategories.

Lemma 37. Two crossed modules are equivalent if and only if their correspond-
ing strict 2-groups are strictly equivalent.

Proof. Let F be a pseudofunctor. We will show that the definitions of elementary
equivalence coincide.

First, assume that the pseudofunctor F satisfies the Whitehead criteria. The
2-fully-faithfulness condition implies that F is bijective on 2-arrows 1⇒ 1. The
essential fullness condition implies that F is surjective on equivalence classes of
1-arrows. From 2-fully-faithfulness, it follows that F preserves isomorphisms of
1-arrows. Therefore, for 1-arrows f and g, we have F (f) ∼= F (g) implies f ∼= g.
It follows that F is injective on equivalence classes of 1-arrows.

Now assume conversely that F is bijective on 2-arrows 1 ⇒ 1, and F is
bijective on equivalence classes of 1-arrows. Then F is 2-fully-faithful and
essentially full. The pseudofunctor F is also essentially surjective because strict
bigroups contain only 1 object.

4.2 The Bicategorical Yoneda Embedding

Definition 38. Let C,D be bicategories. Then [C,D] is the bicategory of
pseudofunctors, pseudonatural transformations, and modifications from C to D.

Remark 39. Let σ1, σ2, σ3 be three composable transformations in [C,D]. The
associator of [C,D] consists of 2-arrows (σ1

x ◦ σ2
x) ◦ σ3

x ⇒ σ1
x ◦ (σ2

x ◦ σ3
x). This

is given by the associator in D. Similarly, the unitor of [C,D] has components
given by the unitor of D.

This means that if D is strict, then [C,D] is also strict.
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Definition 40. Let C be a bicategory. C has three opposite bicategories:

• the bicategory Cop, in which only the 1-arrows are reversed;

• the bicategory Cco, in which only the 2-arrows are reversed;

• the bicategory Cco op, in which both the 1-arrows and 2-arrows are reversed.

Definition 41 (Bicategorical Yoneda embedding). Let C be a bicategory. The
Yoneda embedding Y = (Y0,Y, µY, λY) is a pseudofunctor C → [Cop,Cat] given
by the following data:

• Y0 sends an object a ∈ C0 to the pseudofunctor Y0(a) : C → Cat,
consisting of the following data:

– Y0(a) sends an object x ∈ C0 to the category C(a, x).

– Y0(a) sends a 1-arrow f ∈ C to the functor f∗ : C(a, x) → C(a, y),
which sends a 1-arrow φ ∈ C(a, x) to (f ◦ φ) ∈ C(a, y), and sends a
2-arrow α ∈ C(a, x) to (1f • α) ∈ C(a, y).

– Y0(a) sends a 2-arrow α ∈ C to the post-composition functor α∗ :
C(a, x)→ C(a, y).

– µ
Y0(a)
f,g : f∗ ◦ g∗ → (f ◦ g)∗ sends a composition f ◦ (g ◦ φ) to the

composition (f ◦ g) ◦ φ. It is given by the inverse associator of C.

– Similarly, λ
Y0(a)
f is given by the inverse left unitor of C.

• Y sends a 1-arrow φ ∈ C(a, b) to the pseudonatural transformations Y(φ) :
Y0(b)⇒ Y0(a), consisting of the following data:

– For an object x ∈ C0, the transformation Y(φ) has a component
Y(φ)x : C(b, x) → C(a, x) which sends a 1-arrow f ∈ C(b, x) to
f ◦φ ∈ C(a, x), and sends a 2-arrow α ∈ C(b, x) to (α • 1φ) ∈ C(a, x).

– For a morphism f ∈ C(x, y), the transformation Y(φ) has a component
φ1 ◦ (f ◦ φ2)⇒ (φ1 ◦ f) ◦ φ2 given by the inverse of the associator of
C.

• Y sends a 2-arrow α ∈ C(φ1, φ2) to the modification Y(α) : Y(φ1)⇒ Y(φ2)
that sends f to 1f • α.

• Let φ, ψ be composable 1-arrows in C. Then µY
φ,ψ is a modification

Y(φ) ◦ Y(ψ) V Y(ψ ◦ φ). On an object x, this modification is given by
2-arrows Y(ψ)(x) ◦ Y(φ)(x)⇒ Y(ψ ◦ φ)(x), which go from (h ◦ ψ) ◦ φ to
h ◦ (ψ ◦ φ). These are given by the associator of C.

• Let a be an object in C. Then λYa is a modification 1Y0(a) V Y(1a). Its

components at x ∈ C0 maps h ∈ C(a, x) to (h ◦ 1a) ∈ C(a, x). This is
given by the inverse of the right unitor of C.
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Remark 42 (Strictification of bicategories). The Yoneda embedding is 2-fully-
faithful ([6]). When restricted to its image, the Yoneda embedding is essentially
surjective, essentially full and 2-fully-faithful. This means that every bicategory
is equivalent to a subcategory of Cat. Therefore, every bicategory is equivalent
to a strict bicategory.

This can be used to prove the coherence theorem for bicategories, as explained
in [5].

Remark 43. It follows from the definition that if C is a strict bicategory, then
Y is a strict pseudofunctor.

4.3 Strictification of Equivalences of Bicategories

Definition 44. Let C be a bicategory and let D ⊆ C be a sub-bicategory. The
repletion D of D is the smallest sub-bicategory of C such that:

• D contains D.

• For any equivalence (f, g, ε, η) : c → d in C with c ∈ D, we have
c, d, f, g, ε, η ∈ D.

• For any isomorphism α : f → g in C with f ∈ D, we have f, g, α, α−1 ∈ D.

Let F : B → C be a lax functor. The essential image F (B) ⊆ C is the
repletion of the image of F .

We will now use the Yoneda embedding to create a strictification procedure
for equivalences. Let C,D be strict bicategories and let F : C → D be an
equivalence. Consider the diagram:

C Y(C)

D Y(D)

F

Y

Y

F∗

Our goal is to construct a strict equivalence F ∗ : Y(D)→ Y(C), the existence
of which will imply that C and D are strictly equivalent. Note that this diagram
will only commute up to equivalence.

Lemma 45. Let C, D be strict bicategories, and let F : C → D be a pseudofunc-
tor. Then F defines a strict pullback pseudofunctor F× : [Dop,Cat]→ [Cop,Cat]
by pre-composition.

Proof. The pullback F× is defined in the following way:

• On objects, a pseudofunctor G : Dop → Cat is sent to GF op : Cop → Cat.

• On 1-arrows, a transformation σ : G ⇒ H consists of a 1-arrow and
2-arrows in Cat corresponding to objects and 1-arrows in D. Therefore
F×(σ) : GF op ⇒ HF op inherits its data from σ. This is automatically
strict.
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• On 2-arrows, similar to 1-arrows, a modification F×(Γ) inherits its data
from Γ.

Lemma 46. Let C,D be strict bicategories, and let F : C → D be an equivalence.
Then the pullback pseudofunctor F× : [Dop,Cat] → [Cop,Cat] gives a strict
equivalence of bicategories Y(D) and Y(C).

Proof. First we show that Y(C) contains F×(Y(D)). We will show that for
any object a ∈ C0, the pseudofunctor D(Fa, F−) is equivalent to C(a,−),
and therefore lies in Y(C). We construct a pseudonatural transformation σ :
C(a,−)⇒ D(Fa, F−) with the following data:

• On objects x, the component σx : C(a, x)⇒ D(Fa, Fx) is given by F .

• On arrows f : x→ y, the component σf : Ff∗ ◦ σx V σy ◦ f∗ is given by
(µF )−1, shown by the diagram:

(a
ψ−→ x) (Fa

Fψ−−→ Fx)

(a
ψ−→ x

f−→ y) (Fa
F (f◦ψ)−−−−−→ Fy) (Fa

Fψ−−→ Fx
Ff−−→ Fy)

σx

f∗ Ff∗

σy σf=µ−1

• After making substitutions, Coherence Condition (7) becomes Coherence
Condition (5) for F , and Coherence Condition (8) becomes the middle
triangle identity. Therefore, this transformation is coherent.

From the essential fullness and 2-fully-faithfulness of F , it follows that σ is
essentially surjective and fully faithful, and therefore an equivalence. Thus we
have shown that the objects of F×(Y(D)) lie in Y(C). It follows that the arrows
and 2-arrows of F×(Y(D)) must also lie in Y(C).

Finally we show that F× satisfies the Whitehead criteria. Every object in
Y(C) is equivalent to one in Y(C), and by the above paragraph, it is equivalent
to an object in F×(Y(D)). This is the essential surjectivity property. The
essential fullness property holds for similar reasons.

These results allow us to prove that all equivalences between strict bicategories
can be strictified.

Theorem 47. Any two equivalent strict 2-categories are also strictly equivalent.

Proof. Let C,D be strict bicategories and F : C → D an equivalence. Then
consider the following zig-zag:

C Y(C) Y(D) DY F× Y

By Remarks 42 and 43, Y is a strict equivalence. By Lemma 46, F× is
a strict equivalence. Therefore C and D are connected by a zig-zag of strict
equivalences.
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It follows that our classification of 2-groups also applies to crossed modules,
with crossed module equivalences:

Theorem 48 (Classification of crossed modules). Crossed modules are classified
up to equivalence by the following data:

• a group G;

• a G-module M ;

• a class in the third cohomology H3(G,M), given by a 3-cocycle ω : G3 →
M .

The crossed modules associated to two such triples (Gi,Mi, ωi) for i = 1, 2 are
equivalent if and only if there are isomorphisms G1

∼= G2 and M1
∼= M2 such

that the induced isomorphism H3(G3
1,M1) ∼= H3(G3

2,M2) maps ω1 to ω2.
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