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1 Introduction
Nicolai Stammeier ([26]) introduces and studies irreversible algebraic dynamical
systems (𝐺, 𝑃 , 𝜃), where 𝐺 is a countable group, 𝑃 is a countably generated
free abelian monoid and 𝜃 is an action of 𝑃 on 𝐺 by injective endomorphisms
fulfilling a certain independence condition. He associates 𝐶∗-algebras 𝒪[𝐺, 𝑃 , 𝜃].

In his thesis ([1]), Suliman Albandik describes a homomorphism from a bi-
category 𝔊𝔯prop of proper locally compact étale groupoids and groupoid corre-
spondences to a bicategory of 𝐶∗-algebras and 𝐶∗-correspondences introduced
by Alcides Buss, Ralf Meyer and Chengchang Zhu in [10]. He constructs bi-
categorial (co)limits2 for Ore monoid shaped diagrams of such correspondences.
Further, he shows that the homomorphism of bicategories, which maps the di-
agrams to product systems, maps the limit constructions to the Cuntz-Pimsner
algebras of the product systems.

Much of the theory in Albandik’s thesis has been extended by Ralf Meyer
and his students Celso Antunes and Joanna Ko in [5], [20], [15]. In many cases,
those will be our main sources for this part of the theory we use. Especially
the construction of the groupoid model is heavily based on [20], in which Meyer
provides a construction different from Albandik’s.

We make use of the theory above as follows: First, we interpret Stammeier’s
irreversible algebraic dynamical systems (𝐺, 𝑃 , 𝜃) as 𝑃-shaped diagrams in the
category of injective (discrete) group endomorphisms. Then we describe a ho-
momorphism from this category into the bicategory of locally compact étale
groupoid correspondences, which contains Albandik’s bicategory. In the finite-
type case, that is, under the assumption that 𝜃𝑝(𝐺) has finite index for all 𝑝 ∈ 𝑃,
applying this homomorphism to an irreversible algebraic dynamical system re-
sults in a diagram in Albandik’s subbicategory. Albandik’s theory now gives us
a product system, a locally compact étale groupoid, and a 𝐶∗-algebra being the
Cuntz-Pimsner algebra of the product system and the groupoid 𝐶∗-algebra of
the groupoid.

In fact, Stammeier, too, reinterprets his 𝐶∗-algebra in the finite-type case as
the Cuntz-Pimsner algebra of a product system. By comparing the product sys-
tems, we conclude that in the finite-type case, Stammeier’s 𝐶∗-algebra 𝒪[𝐺, 𝑃 , 𝜃]
coincides with the 𝐶∗-algebra obtained through Albandik’s and Meyer’s theory.
Another way to see this, using Meyer’s construction of a groupoid model, via
two different crossed product constructions for inverse semigroup actions and
for semigroup actions, respectively, on 𝐶∗-algebras, is roughly sketched.

We study how certain properties of the groupoid model depend on properties
of the irreversible algebraic dynamical system and give a sufficient criterion for
simplicity of the resulting 𝐶∗-algebra. Much of the above is formulated in the
more general framework where 𝑃 is an Ore monoid, and 𝐺 an arbitrary group.

The possibility to reinterpret Stammeier’s irreversible algebraic dynamical
systems in terms of groupoid correspondences, as worked out in this master’s
thesis, is briefly mentioned in [5, Section 4; p. 1338]

In Section 2, we recall the required bicategorical language. In Section 3,
we describe Stammeier’s irreversible algebraic dynamical systems and some op-
tional properties. In Section 4, we describe the appropriate version of the bicat-

2There are different versions of the bicategory of (certain) groupoid correspondences with
the arrows going in different directions.
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egory of locally compact étale groupoid correspondences, our homomorphism
from injective group endomorphisms into this bicategory and thus an encoding
of (slightly generalised) irreversible algebraic dynamical systems via groupoid
correspondences. In Section 5, we construct a groupoid model for such an
encoding (in fact for the more general Ore case), applying a construction by
Meyer. In the finite-type case, this will turn out to be a groupoid model for
the 𝐶∗-algebra of interest. Further, we sketch a way to show this without prod-
uct systems by comparing Meyer’s construction with Stammeier’s via crossed
product constructions. In Section 6, we apply Albandik’s homomorphism of bi-
categories to obtain a product system and a groupoid 𝐶∗-algebra, which in the
finite-type case is the Cuntz-Pimsner algebra of the former, and by comparing
the product system to a product system provided by Stammeier, conclude that
we indeed describe Stammeier’s 𝐶∗-algebra in the finite type case. In Section 7,
we provide sufficient criteria for the groupoid model to be Hausdorff, effective,
minimal and locally contracting, respectively, and a sufficient criterion for the
associated groupoid 𝐶∗-algebra to be simple.

2 Bicategories, homomorphisms of bicategories
and diagrams

In order to reinterpret a type of dynamical system and the construction of an
associated 𝐶∗-algebra by Stammeier (see [26]) in terms of diagrams of groupoid
correspondences, groupoid models, and their groupoid 𝐶∗-algebras, we need
some bicategorial language.

First, we recall what bicategories are. A bicategory has objects like a cat-
egory. It has also 1-arrows between objects, corresponding roughly to arrows
in categories. A major difference is that their composition is only associative
up to what is called 2-arrows. A 2-arrow has as domain and codomain par-
allel 1-arrows. Analogously to associativity, the multiplication with identity
1-arrows only acts trivially up to 2-arrows. The 2-arrows are part of the data
of a bicategory. For fixed objects 𝑎, 𝑏, the 1-arrows 𝑎 → 𝑏 are the objects of
a category Hom(𝑎, 𝑏) where the 2-arrows between 1-arrows 𝑎 → 𝑏 are the mor-
phisms. The multiplication of 1-arrows 𝑏 → 𝑐, 𝑎 → 𝑏 extends to a bifunctor
Hom(𝑏, 𝑐) × Hom(𝑎, 𝑏) → Hom(𝑎, 𝑐).

Definition 2.1 (see [19, Section 1.0] and [1, Definition 2.1]). A bicategory ℬ
is given by the data

1. a class of objects ℬ0,

2. a category ℬ(𝑎, 𝑏) whose objects are called 1-arrows 𝑎 → 𝑏, and whose
morphisms are called 2-arrows 𝑓 → 𝑔 between such 1-arrows 𝑓, 𝑔 ∈ ℬ(𝑎, 𝑏),
for all objects 𝑎, 𝑏 ∈ ℬ0. For the concatenation of morphisms in the
category ℬ(𝑎, 𝑏), which we call vertical composition of 2-arrows in ℬ, we
write 𝛼1 ∘ 𝛼2, for 𝛼1 ∶ 𝑓1 → 𝑓2, 𝛼2 ∶ 𝑓2 → 𝑓3, 𝑓1, 𝑓2, 𝑓3 ∈ ℬ0(𝑎, 𝑏).

3. a bifunctor c𝑎,𝑏,𝑐 ∶ ℬ(𝑏, 𝑐) × ℬ(𝑎, 𝑏) → ℬ(𝑎, 𝑐), encoding the concatenation
of 1-arrows and the horizontal3 composition of 2-arrows, for each triple of

3For horizontal and vertical composition of 2-arrows, see [23, p. 45], there defined for the
2-category of categories, which is a particular bicategory.
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objects 𝑎, 𝑏, 𝑐 ∈ ℬ0 (we also write 𝛽 ∗ 𝛼 ∶= c𝑎,𝑏,𝑐(𝛽, 𝛼), for 𝛽 ∈ ℬ1(𝑏, 𝑐),
𝛼 ∈ ℬ1(𝑎, 𝑏), for the horizontal concatenation of 2-arrows, and 𝑔 ∘ 𝑓 ∶=
c𝑎,𝑏,𝑐(𝑔, 𝑓), for 𝑔 ∈ ℬ0(𝑏, 𝑐), 𝑓 ∈ ℬ0(𝑎, 𝑏), 𝑎, 𝑏 ∈ ℬ0, for the concatenation
of 1-arrows),

4. a functor 𝐼𝑎 ∶ 1 → ℬ(𝑎, 𝑎) (selecting a “unit” with respect to the compo-
sition of 1-arrows) for each object 𝑎 ∈ ℬ0, where 1 is the category with
exactly one object and one (identity) arrow,

5. a natural isomorphism

assoc𝑎,𝑏,𝑐,𝑑 ∶ c𝑎,𝑏,𝑑 ∘ (c𝑏,𝑐,𝑑 × idℬ(𝑎,𝑏)) ⇒ c𝑎,𝑐,𝑑 ∘ (idℬ(𝑐,𝑑) × c𝑎,𝑏,𝑐), (1)

called the associator, for each quadruple of objects 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℬ0, with the
2-arrows

assocℎ,𝑔,𝑓 ∶ (ℎ ∘ 𝑔) ∘ 𝑓 → ℎ ∘ (𝑔 ∘ 𝑓) (2)

for 𝑓 ∈ ℬ(𝑎, 𝑏)1, 𝑔 ∈ ℬ(𝑏, 𝑐)1, ℎ ∈ ℬ(𝑐, 𝑑)1, as components,

6. natural isomorphisms 𝔩𝑎,𝑏 ∶ c𝑎,𝑏,𝑏 ∘ (𝐼𝑎 × idℬ(𝑎,𝑏)) ⇒ 𝑝2 and 𝔯𝑎,𝑏 ∶ c𝑎,𝑎,𝑏 ∘
(idℬ(𝑎,𝑏) × 𝐼𝑎) ⇒ 𝑝1, called unitors, for each pair of objects 𝑎, 𝑏 ∈ ℬ0, with
components

𝔩𝑓 ∶ 𝐼𝑏 ∘ 𝑓 → 𝑓 (3)
𝔯𝑓 ∶ 𝑓 ∘ 𝐼𝑎 → 𝑓 (4)

for 𝑓 ∈ ℬ(𝑎, 𝑏)0 for 𝑎, 𝑏 ∈ ℬ0,

fulfilling the coherence axioms given in [19, Section 1.0]. A bicategory is called
small, if its objects, 1-arrows and 2-arrows fit in a set.

Remark 2.2. Bicategories whose 2-arrows are all units correspond one-to-one
to categories in the obvious way: The objects are the same in the bicategory and
in the category. The 1-arrows in such a bicategory become morphisms in the
corresponding category. For the bifunctor c𝑎𝑏𝑐 ∶ ℬ(𝑏, 𝑐) × ℬ(𝑎, 𝑏) → ℬ(𝑎, 𝑐), for
objects 𝑎, 𝑏, 𝑐 ∈ ℬ, the map encoding its action on objects is the map Hom(𝑏, 𝑐)×
Hom(𝑎, 𝑏) → Hom(𝑎, 𝑐) encoding multiplication of arrows 𝑔∶ 𝑏 → 𝑐, 𝑓∶ 𝑎 →
𝑏 in the category. The data of assoc of a bicategory is choices of certain 2-
arrows not involving a choice of domain or codomain, so it becomes trivial
given that all 2-arrows are units. The existence of assoc then enforces the
associativity of composition of morphisms in the associated purported category.
Similarly, given the information that 2-arrows are units, 𝔯𝑎 and 𝔩𝑎, for objects
𝑎 ∈ ℬ0, do not contain any information about ℬ, but ensure that the associated
purported category has the “units” of ℬ as actual units and is thus a category.
For categories, we use “⋅” rather than “∘” for composition of 1-arrows, that is,
morphisms.

Definition 2.3 (compare [19, 1.1]). For bicategories ℬ′, ℬ, a homomorphism
of bicategories 𝐹∶ ℬ′ → ℬ has data (𝐹 , 𝐹𝑎,𝑏, 𝜙𝑎,𝑏,𝑐, 𝜙𝑎) with

• a map 𝐹∶ ℬ′0 → ℬ0 between object classes,

• a functor 𝐹 = 𝐹𝑎,𝑏 ∶ ℬ′(𝑎, 𝑏) → ℬ(𝐹𝑎, 𝐹𝑏) for all objects 𝑎, 𝑏 ∈ ℬ′0 in ℬ′,
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• natural isomorphisms 𝜙𝑎,𝑏,𝑐 ∶ c𝐹𝑎,𝐹𝑏,𝐹𝑐 ∘ (𝐹𝑏,𝑐 × 𝐹𝑎,𝑏) ⇒ 𝐹𝑎,𝑐 ∘ c′
𝑎,𝑏,𝑐, for

𝑎, 𝑏, 𝑐 ∈ ℬ′0, with components 𝜙𝑔,𝑓 ∶ 𝐹𝑔 ∘ 𝐹𝑓 → 𝐹(𝑔 ∘ 𝑓), for 𝑔 ∈ ℬ′(𝑏, 𝑐)0,
𝑓 ∈ ℬ′(𝑎, 𝑏)0,

• natural isomorphisms 𝜙𝑎 ∶ 𝐼𝐹𝑎 ⇒ 𝐹𝑎,𝑎 ∘ 𝐼′
𝑎, for 𝑎 ∈ ℬ′0, each having a

single component 𝜙𝑎 ∶ 𝐼𝐹𝑎 → 𝐹𝐼 ′
𝑎,

fulfilling the axioms

𝐹(assoc′
ℎ,𝑔,𝑓) ∘ 𝜙ℎ∘𝑔,𝑓 ∘ (𝜙ℎ,𝑔 ∗ 1𝐹𝑓) = 𝜙ℎ,𝑔∘𝑓 ∘ (1𝐹ℎ ∗ 𝜙𝑔,𝑓) ∘ assoc𝐹ℎ,𝐹𝑔,𝐹𝑓 (5)

𝔩𝐹𝑓 = 𝐹(𝔩′𝑓) ∘ 𝜙𝐼𝑏,𝑓 ∘ (𝜙𝑏 ∗ 1𝐹𝑓) (6)
𝔯𝐹𝑓 = 𝐹(𝔯′

𝑓) ∘ 𝜙𝑓,𝐼𝑎
∘ (1𝐹𝑓 ∗ 𝜙𝑎), (7)

for ℎ ∈ ℬ′(𝑐, 𝑑)0, 𝑔 ∈ ℬ′(𝑏, 𝑐)0, 𝑓 ∈ ℬ′(𝑎, 𝑏)0, for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℬ′0. A homomor-
phism of bicategories is called strictly unital if the components of 𝜙𝑎 are unit
2-arrows – implying 𝐼𝐹𝑎 = 𝐼 ′

𝑎 – for all objects 𝑎 ∈ ℬ′0. The term “strictly
unital” is taken from [20, Proposition 3.1].

Remark 2.4. A homomorphism of bicategories of which the domain and codomain
bicategory are both categories (in the sense of Remark 2.2) is equivalent to a
functor in the most obvious way.

We describe strictly unital homomorphisms from small categories to bicate-
gories, analogously to how diagrams in a particular bicategory of étale groupoid
correspondences are described in [20, Proposition 3.1]. In Lemma 4.29, we spe-
cialise this description to diagrams with monoid shape in another version 𝔊𝔯
of the bicategory (following [5]). Furthermore, we use the following description
to establish a strictly unital homomorphism of bicategories from the category
𝔊𝔯𝔭𝔐𝔫 to 𝔊𝔯 in Lemma 4.28.

Lemma 2.5 (compare [20, Proposition 3.1] and [1, Proposition 2.40]). Let 𝒞 be
a small category and ℬ a bicategory. A strictly unital homomorphism 𝒞 → ℬ
is described by the data (𝐴𝑎, 𝑋𝑓, 𝜙𝑔,𝑓) with

• an object 𝐴𝑎 for each object 𝑎 ∈ 𝒞0,

• a 1-arrow 𝑋𝑔 ∈ ℬ(𝐴𝑎, 𝐴𝑏)0 for each 𝑔 ∈ 𝒞(𝑎, 𝑏) for each pair 𝑎, 𝑏 ∈ 𝒞1,

• an invertible 2-arrow 𝜙𝑔,𝑓 ∶ 𝑋𝑔 ∘ 𝑋𝑓 → 𝑋𝑔⋅𝑓 for each pair of composable
morphisms 𝑓, 𝑔 in 𝒞

fulfilling the axioms

𝐼𝐴𝑎
= 𝑋𝐼𝑎

(8)
𝜙ℎ𝑔,𝑓 ∘ (𝜙ℎ,𝑔 ∗ 1𝑋𝑓

) = 𝜙ℎ,𝑔𝑓 ∘ (1𝑋ℎ
∗ 𝜙𝑔,𝑓) ∘ assocℎ,𝑔,𝑓 (9)

𝔩𝑋𝑓
= 𝜙𝐼𝑏,𝑓 (10)

𝔯𝑋𝑓
= 𝜙𝑓,𝐼𝑎

(11)

for all ℎ ∈ 𝒞(𝑐, 𝑑), 𝑔 ∈ 𝒞(𝑏, 𝑐), 𝑓 ∈ 𝒞(𝑎, 𝑏), for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝒞0. The identity
(9) expresses the commutativity of the following diagram, whose arrows represent
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2-arrows in ℬ:

(𝑋ℎ ∘ 𝑋𝑔) ∘ 𝑋𝑓 𝑋ℎ𝑔 ∘ 𝑋𝑓

𝑋ℎ ∘ (𝑋𝑔 ∘ 𝑋𝑓) 𝑋ℎ ∘ 𝑋𝑔𝑓

𝑋ℎ𝑔𝑓

𝜙ℎ,𝑔 ∗ 1𝑋𝑓

1𝑋ℎ
∗ 𝜙𝑔,𝑓

assocℎ𝑔,𝑓

𝜙ℎ𝑔,𝑓

𝜙ℎ,𝑔𝑓

Proof. We demonstrate how the description of a homomorphism 𝐹∶ ℬ′ → ℬ
between general bicategories in Definition 2.3 simplifies under the assumption
that 𝐹 is strictly unital and that the domain bicategory ℬ′ is a category (as in
Remark 2.2). We first consider the data.

The object map 𝐹∶ 𝒞0 → ℬ0 remains the same.
The Hom-categories of ℬ′ are just sets, that is, categories with only identity-

arrows; hence the functors between hom-categories are equivalent to maps (of
sets) ℬ′0(𝑎, 𝑏)0 → ℬ(𝐴𝑎, 𝐴𝑏)0, for 𝑎, 𝑏 ∈ ℬ′0.

For 𝑎, 𝑏, 𝑐 ∈ ℬ′0, consider the natural isomorphism 𝜙𝑎,𝑏,𝑐 between the func-
tors

c𝐹𝑎,𝐹𝑏,𝐹𝑐 ∘ (𝐹𝑏,𝑐 × 𝐹𝑎,𝑏), 𝐹𝑎,𝑐 ∘ c′
𝑎,𝑏,𝑐 ∶ ℬ′(𝑏, 𝑐) × ℬ′(𝑎, 𝑏) → ℬ(𝑎, 𝑐).

With the domain category of the functors becoming a set, the naturality require-
ment becomes vacuous. Then the natural isomorphism 𝜙𝑎,𝑏,𝑐 becomes equivalent
to the family of its components

𝜙𝑔,𝑓 ∶ 𝐹𝑔 ∘ 𝐹𝑓 → 𝐹(𝑔 ∘ 𝑓), for 𝑔 ∈ ℬ′(𝑏, 𝑐)0, 𝑓 ∈ ℬ′(𝑎, 𝑏)0,

for 𝑎, 𝑏, 𝑐 ∈ ℬ′0.
The natural isomorphisms 𝜙𝑎, for 𝑎 ∈ ℬ′0, become trivial by the assumption

of strict unitality. So as data, they vanish; however they survive as an axiom:
𝐼𝐹𝑎 = 𝐹𝐼 ′

𝑎, for all 𝑎 ∈ ℬ′0.
We now describe how the axioms simplify. To see how (5) simplifies, consider

assoc′
ℎ,𝑔,𝑓 ∶ (ℎ ∘ 𝑔) ∘ 𝑓 → ℎ ∘ (𝑔 ∘ 𝑓),

for 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℬ′0 and 𝑓 ∈ ℬ′(𝑎, 𝑏)1, 𝑔 ∈ ℬ′(𝑏, 𝑐)1 and ℎ ∈ ℬ′(𝑐, 𝑑)1. When
ℬ′ is a category, then assoc′

ℎ,𝑔,𝑓 is the unit 2-arrow 1′
ℎ𝑔𝑓 on the 1-arrow ℎ𝑔𝑓 ∈

ℬ′(𝑎, 𝑑)0, hence its image under the functor 𝐹∶ ℬ′(𝑎, 𝑑) → ℬ(𝐹𝑎, 𝐹𝑑) is the
identity 2-arrow 𝐹(assoc′

ℎ𝑔𝑓) = 1𝐹(ℎ𝑔𝑓) on 𝐹(ℎ𝑔𝑓) ∈ ℬ(𝐹𝑎, 𝐹𝑑). Since this is a
unit with respect to concatenation of 2-arrows in ℬ′, the term can be left out;
this leaves (9).

To see how (6) simplifies, consider first the component 𝔩′𝑓 ∶ 𝐼 ′
𝑏 ∘ 𝑓 → 𝑓 of the

left unitor at 𝑓 ∈ ℬ′(𝑎, 𝑏), for objects 𝑎, 𝑏 ∈ ℬ′0. When ℬ′ is a category, 𝔩′𝑓 is the
unit 2-arrow on 𝑓. Its image under the functor 𝜙𝑎,𝑏 ∶ ℬ′(𝑎, 𝑏) → ℬ(𝑎, 𝑏) is hence
a unit 2-arrow, and the term 𝐹(𝔩′𝑓) vanishes. Next, consider 𝜙𝑏 ∶ 𝐼𝐹𝑏 → 𝐹𝐼 ′

𝑎.
When we require strict unitality, then this is the 2-unit on 𝐼𝐹𝑏. Hence the term
(𝜙𝑏 ∗ 1𝐹𝑓) becomes (1𝐼𝐹𝑏

∗ 1𝐹𝑓). This is the image of a unit morphism (in ℬ′,
a 2-arrow) under the functor c𝑎,𝑏,𝑏 ∶ ℬ(𝑏, 𝑏) × ℬ(𝑎, 𝑏) → ℬ(𝑎, 𝑏), hence a unit
morphism, that is, in ℬ, a unit 2-arrow. Hence the term (𝜙𝑏 ∗ 1𝐹𝑓) vanishes as
well. This leaves (10). By a similar argument, (7) simplifies to (11).
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Lemma 2.6. Suppose that ℬ″, ℬ′, ℬ are bicategories and 𝐹 ′ ∶ ℬ″ → ℬ′,
𝐹∶ ℬ′ → ℬ are homomorphisms of bicategories. Then the data for a homomor-
phism 𝐹 ∘ 𝐹 ′ ∶ ℬ″ → ℬ, the composition of 𝐹 and 𝐹 ′, is given by

• the concatenation of maps 𝐹 ∘𝐹 ′ ∶ ℬ″0 → ℬ0 as map between object classes,

• the concatenations of functors 𝐹𝐹 ′𝑎,𝐹 ′𝑏 ∘ 𝐹 ′
𝑎,𝑏, for 𝑎, 𝑏 ∈ 𝐹 ″0, as functors

encoding the mapping of 1- and 2-arrows,

• the natural isomorphisms4

(𝐹𝐹 ′𝑎,𝐹 ′𝑐 ∗ 𝜙′
𝑎,𝑏,𝑐) ⋅ (𝜙𝐹 ′𝑎,𝐹 ′𝑏,𝐹 ′𝑐 ∗ (𝐹 ′

𝑏,𝑐 × 𝐹 ′
𝑎,𝑏)) ∶

c𝐹𝐹 ′𝑎,𝐹𝐹 ′𝑏,𝐹𝐹 ′𝑐 ∘ (𝐹𝐹 ′𝑏,𝐹 ′𝑐 × 𝐹𝐹 ′𝑎,𝐹 ′𝑏) ∘ (𝐹 ′
𝑏,𝑐 × 𝐹 ′

𝑎,𝑏)
⇒ 𝐹𝐹 ′𝑎,𝐹 ′𝑐 ∘ 𝐹 ′

𝑎,𝑐 ∘ c″
𝑎,𝑏,𝑐 (12)

providing the required natural isomorphisms related to multiplication of
1-arrows and horizontal concatenation of 2-arrows,

• the natural isomorphisms

(𝐹𝐹 ′𝑎,𝐹 ′𝑎 ∗ 𝜙′
𝑎) ⋅ 𝜙𝐹 ′𝑎 ∶ 𝐼𝐹𝐹 ′𝑎 ⇒ 𝐹𝐹 ′𝑎,𝐹 ′𝑎 ∘ 𝐹 ′

𝑎,𝑎 ∘ 𝐼″
𝑎 (13)

providing the required natural isomorphisms related to the units of 1-
arrows.

Proof. Compare the data to [14, Definition 4.1.24]. Homomorphisms of bi-
categories are called “lax functors” (see [14, Definition 4.2.1]) there, and the
notational conventions are different. Then [14, Lemma 4.1.27] implies that the
given data indeed defines a homomorphism of bicategories. The best way to an
understanding of this definition might be drawing the diagrams with functors
and their domains and the natural isomorphisms between them.

Definition 2.7 (see [23, p. 5]). A monoid 𝑃 is a small category with exactly
one object. We write 𝑃 to denote the set of its morphisms, too, and 1 to denote
the unit arrow of the single object.

The term diagram can be used to refer to a homomorphism of bicategories
where the domain bicategory is small (see [20, first paragraph of Section 3]).
We define a monoid shaped diagram with the extra property of strict unitality.

Definition 2.8. A monoid-shaped diagram 𝐷 in a bicategory ℬ is a monoid 𝑃
together with a strictly unital homomorphism of bicategories 𝑃 → ℬ.

Lemma 2.9 (compare [1, Definition 3.4]). A monoid-shaped diagram in a bi-
category ℬ is of the form 𝐷 = (𝐴, 𝑃 , 𝑋𝑝, 𝜇𝑝,𝑞) with data

• an object 𝐴 ∈ ℬ0,

• a monoid 𝑃,

• a 1-arrow 𝑋𝑝 ∈ ℬ(𝐴, 𝐴)0 for each 𝑝 ∈ 𝑃,
4Here, “∗” symbolises whiskering of natural transformations and functors, see [23, Remark

1.7.6].

10



• an invertible 2-arrow 𝜇𝑝,𝑞 ∶ 𝑋𝑝 ∘ 𝑋𝑞 → 𝑋𝑝⋅𝑞 for any two 𝑝, 𝑞 ∈ 𝑃.

fulfilling

𝐼𝐴 = 𝑋1, (14)
𝜇𝑝𝑞,𝑟 ∘ (𝜇𝑝,𝑞 ∗ 1𝑋𝑟

) = 𝜇𝑝,𝑞𝑟 ∘ (1𝑋𝑝
∗ 𝜇𝑞,𝑟) ∘ assoc𝑝,𝑞,𝑟, (15)

𝔩𝑋𝑝
= 𝜇1,𝑝 and (16)

𝔯𝑋𝑝
= 𝜇𝑝,1 (17)

for all 𝑝, 𝑞, 𝑟 ∈ 𝑃.

Proof. This follows immediately from Lemma 2.5.

Remark 2.10. If the bicategory ℬ is a category in the sense of Remark 2.2,
then a monoid-shaped diagram 𝐷 = (𝐴, 𝑃 , 𝑋𝑝, 𝜇𝑝,𝑞) in ℬ as in Lemma 2.9
simplifies to 𝐷 = (𝐴, 𝑃 , 𝑋𝑝) where 𝑋∶ 𝑃 → ℬ is a functor and 𝐴 is the single
object in its image.

3 Stammeier’s irreversible algebraic dynamical
systems

In this section, we recall Stammeier’s irreversible algebraic dynamical systems
(see [26, Section 1]) and describe how they can be encoded as monoid-shaped dia-
grams in the category of (discrete) groups and group monomorphisms. We prove
a lemma analysing the independence property, a property part of Stammeier’s
definition for his systems. We recall the definition of 𝐶∗-algebras 𝒪[𝐺, 𝑃 , 𝜃] as-
sociated by Stammeier to his irreversible algebraic dynamical systems. Then
we introduce some conventions concerning properties of the monoid shaped di-
agrams encoding (sometimes a generalisation of) Stammeier’s systems.

Definition 3.1. Let 𝑃 be a free abelian monoid. Then 𝑝, 𝑞 are relatively prime,
if there are no 𝑥, 𝑦 ∈ 𝑃, 𝑧 ∈ 𝑃 ⧵ {1} such that 𝑝 = 𝑧𝑥 and 𝑞 = 𝑧𝑦.

Remark 3.2. Stammeier defines what it means for 𝑝, 𝑞 ∈ 𝑃 to be relatively
prime in the case of a not necessarily free abelian or even commutative, but
lattice ordered monoid 𝑃 in [26, paragraph preceding Definition 1.5]: In this
context, 𝑝, 𝑞 are relatively prime, if their greatest common divisor 𝑝 ∧ 𝑞 is 1.
The canonical lattice order given on a free abelian monoid 𝑃 is given by

𝑝 ≤ 𝑞 if and only if there exists 𝑥 ∈ 𝑃 such that 𝑞 = 𝑝𝑥.

Then 𝑝 ∧𝑞 is the largest monoid element such that there exist 𝑦, 𝑧 ∈ 𝑃 such that
𝑝 = (𝑝 ∧ 𝑞)𝑦 and 𝑞 = (𝑝 ∧ 𝑞)𝑧. Then 𝑝 ∧ 𝑞 = 1 is equivalent to there being no
𝑥, 𝑦 ∈ 𝑃, 𝑧 ∈ 𝑃 ⧵ {1} such that 𝑝 = 𝑧𝑎 and 𝑞 = 𝑧𝑏, since in the free abelian 𝑃,
1 has no divisors except for itself. This shows that Definition 3.1 is compatible
with the usage of the term “relatively prime” in [26].

Definition 3.3 (see [26, Proposition 1.1 and Definition 1.3]). Suppose that
𝜃1, 𝜃2 are commuting injective group endomorphisms of a (discrete) group 𝐺.
Then 𝜃1 and 𝜃2 are independent if

𝜃1(𝐺) ∩ 𝜃2(𝐺) = 𝜃1𝜃2(𝐺). (18)
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We cite Stammeier’s definition of an irreversible algebraic dynamical system:

Definition 3.4 ([26, Definition 1.5]). An irreversible algebraic dynamical system
(𝐺, 𝑃 , 𝜃) is

(A) a countably infinite, discrete group 𝐺 with unit 1𝐺,

(B) a countably generated, free abelian monoid 𝑃 with unit 1𝑃, and

(C) a 𝑃-action 𝜃 on 𝐺 by injective group endomorphisms for which 𝜃𝑝 and 𝜃𝑞
are independent if and only if 𝑝 and 𝑞 are relatively prime.

An irreversible algebraic dynamical system (𝐺, 𝑃 , 𝜃) is said to be

• minimal, if ⋂𝑝∈𝑃 𝜃𝑝(𝐺) = 1𝐺,

• commutative, if 𝐺 is commutative,

• of finite type, if [𝐺 ∶ 𝜃𝑝(𝐺)] is finite for all 𝑝 ∈ 𝑃, and

• of infinite type, if [𝐺 ∶ 𝜃𝑝(𝐺)] is infinite for all 𝑝 ≠ 1𝑃.

Lemma 3.5. Let 𝜃1, … , 𝜃𝑚, 𝜃′
1, … , 𝜃′

𝑚′ be commuting group endomorphisms of
a group 𝐺, where 𝑚, 𝑚′ ∈ ℕ≥0. Then ∏𝑚

𝑘=1 𝜃𝑘 and ∏𝑚′

𝑘′=1 𝜃′
𝑘′ are independent if

and only if 𝜃𝑘, 𝜃′
𝑘′ are independent for all 𝑘 ∈ {1, … , 𝑚}, 𝑘′ ∈ {1, … , 𝑚′}.

Proof. [26, Lemma 1.4] states that for three commuting injective group endo-
morphisms 𝜃1, 𝜃2, 𝜃3 of 𝐺, 𝜃1𝜃2 and 𝜃3 are independent if and only if 𝜃1 and 𝜃3
are independent and 𝜃2 and 𝜃3 are independent. Applying this result inductively
proves the statement of the lemma.

Lemma 3.6. An injective endomorphism 𝜃 in 𝐺 is independent of itself if and
only if it is surjective.

Proof. If 𝜃 is surjective, then 𝜃(𝐺) ∩ 𝜃(𝐺) = 𝜃2(𝐺), thus 𝜃 is independent of
itself. Conversely, if 𝜃 is independent of itself, that is, 𝜃(𝐺) = 𝜃2(𝐺), then,
for every 𝑔 ∈ 𝐺, there exists ℎ ∈ 𝐺 such that 𝜃(𝑔) = 𝜃2(ℎ), and, since 𝜃 is
injective, 𝑔 = 𝜃(ℎ). Hence 𝐺 ⊆ 𝜃(𝐺), that is, 𝐺 is surjective. This concludes
the proof.

Lemma 3.7. Let 𝑃 be the free abelian monoid on a generating countable set 𝐵.
Let 𝜃∶ 𝑃 → Mono(𝐺) be a monoid homomorphism into the monoid Mono(𝐺) of
injective group endomorphisms of 𝐺. Then Stammeier’s “independence condi-
tion” (C) for 𝜃 is equivalent to requiring independence for 𝜃𝑝1

, 𝜃𝑝2
for any two

distinct elements 𝑝1, 𝑝2 of 𝐵. Furthermore, if “independence” of 𝜃 in this sense
holds, then 𝜃 is injective.

Proof. Suppose, “independence” in the sense of (C) holds, that is, (18) holds
for 𝜃𝑝, 𝜃𝑝′, 𝑝, 𝑝′ ∈ 𝑃, if and only if 𝑝 and 𝑝′ are relatively prime. Two distinct
𝑏, 𝑏′ ∈ 𝐵 are relatively prime, so 𝜃𝑏, 𝜃𝑏′ are independent.

Conversely, suppose that for any two distinct elements 𝑏, 𝑏′ of 𝐵, 𝜃𝑏, 𝜃𝑏′ fulfil
(18). We show that any 𝑝, 𝑝′ ∈ 𝑃 are relatively prime if and only if 𝜃𝑝, 𝜃𝑝′ are
independent. Let 𝑝, 𝑝′ ∈ 𝑃. If 𝑝 = 1 or 𝑝′ = 1, then 𝜃𝑝, 𝜃𝑝′ are independent, and
𝑝, 𝑝′ are relatively prime. So we now consider the case when 𝑝 ≠ 1 and 𝑞 ≠ 1.
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Write 𝑝 = ∏𝑚
𝑘=1 𝑏𝑘, 𝑝′ = ∏𝑚′

𝑘=1 𝑏′
𝑘 for 𝑏1, … , 𝑏𝑚, 𝑏′

1, … , 𝑏′
𝑚′ ∈ 𝐵, 𝑚, 𝑚′ ∈ ℕ≥0.

Then 𝑝, 𝑝′ are relatively prime if and only if 𝑏𝑘 ≠ 𝑏𝑘′ for all 𝑘 ∈ {1, … , 𝑚},
𝑘′ ∈ {1, … , 𝑚′}. The latter is equivalent to 𝜃𝑏𝑘

, 𝜃𝑏𝑘′ being independent for all
𝑘, 𝑘′, by assumption. This, in turn, is equivalent to 𝜃𝑝, 𝜃𝑝′ being independent,
by Lemma 3.5.

Suppose that the two equivalent criteria for “independence” of 𝜃 hold. Let
𝑝, 𝑝′ ∈ 𝑃 such that 𝜃𝑝 = 𝜃𝑝′. First suppose that 𝜃𝑝 is surjective. Then 𝜃𝑝 is
independent of itself by Lemma 3.6. So 𝑝 is relatively prime with itself and
hence 𝑝 = 1. Similarly, 𝑞 = 1. (Compare [26, Remark 1.6].) Now suppose
that the identical 𝜃𝑝, 𝜃𝑝′ are not surjective. Then they are not independent,
by Lemma 3.6, and hence 𝑝, 𝑝′, are not relatively prime. Then they can be
written 𝑝 = 𝑧𝑎, 𝑝′ = 𝑧𝑎′, for 𝑎, 𝑎′, 𝑧 ∈ 𝑃, 𝑧 ≠ 1. Since 𝑃 is finitely generated,
we can require without loss of generality that 𝑎, 𝑎′ are relatively prime. Then
𝜃𝑧𝜃𝑎 = 𝜃𝑝 = 𝜃𝑝′ = 𝜃𝑧𝜃𝑎′. Since 𝜃𝑧 is injective, 𝜃𝑎 = 𝜃𝑎′. Then 𝜃𝑎, 𝜃𝑎′ must be
surjective, because they are independent, by Lemma 3.6. According to the case
treated above, 𝑎 = 𝑎′ = 1, and hence 𝑝 = 𝑧 = 𝑝′.

Stammeier associates 𝐶∗-algebras to irreversible algebraic dynamical sys-
tems:

Definition 3.8 ([26, Definition 3.1]). 𝒪[𝐺, 𝑃 , 𝜃𝑝] is the universal 𝐶∗-algebra
generated by a unitary representation (𝑢𝑔)𝑔∈𝐺 of the group 𝐺 and a representa-
tion (𝑠𝑝)𝑝∈𝑃 of the monoid 𝑃 by isometries subject to the (additional) relations

𝑠𝑝𝑢𝑔 = 𝑢𝜃𝑝(𝑔)𝑠𝑝 (19)

𝑠∗
𝑝𝑢𝑔𝑠𝑞 = {𝑢𝑔1

𝑠(𝑝∧𝑞)−1𝑞𝑠∗
(𝑝∧𝑞)−1𝑝𝑢𝑔2

if 𝑔 = 𝜃𝑝(𝑔1)𝜃𝑞(𝑔2),
0, otherwise. (20)

1 = ∑
[𝑔]∈𝐺/𝜃𝑝(𝐺)

𝑒𝑔,𝑝 if [𝐺 ∶ 𝜃𝑝(𝐺)] < ∞, (21)

where 𝑒𝑔,𝑝 = 𝑢𝑔𝑠𝑝𝑠∗
𝑝𝑢∗

𝑔.

We are going to show that if an irreversible algebraic dynamical system
(𝐺, 𝑃 , 𝜃) is of finite type, that is, if 𝜃𝑝(𝐺) ≤ 𝐺 has finite index for all 𝑝 ∈ 𝑃, then
Stammeier’s 𝐶∗-algebra 𝒪[𝐺, 𝑃 , 𝜃] can be obtained as a groupoid 𝐶∗-algebra by
applying theory from [1] and [20].

We interpret Stammeier’s irreversible algebraic dynamical systems (see Def-
inition 3.4) as a special case of a monoid-shaped diagram of group monomor-
phisms.

Definition 3.9. Let 𝔊𝔯𝔭𝔐𝔫 be the category of (discrete) groups and group
monomorphisms.

Lemma 3.10. A monoid-shaped diagram in 𝔊𝔯𝔭𝔐𝔫 has the form 𝐷𝔊𝔯𝔭𝔐𝔫 =
(𝐺, 𝑃 , 𝜃𝑝) for a (discrete) group 𝐺, a monoid 𝑃 and an injective group endomor-
phism 𝜃𝑝 ∶ 𝐺 → 𝐺 for each 𝑝 ∈ 𝑃 such that 𝑝 ↦ 𝜃𝑝 is a monoid homomorphism
𝑃 → Mono(𝐺), where Mono(𝐺) is the monoid of injective group endomorphisms
of 𝐺.

Proof. This follows from Remark 2.10 and the observation that a functor 𝑃 →
𝔊𝔯𝔭𝔐𝔫 with 𝐺 as the single group in its image is equivalent to a homomorphism
from 𝑃 to Mono(𝐺).
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An irreversible algebraic dynamical system is a monoid-shaped diagram
𝐷𝔊𝔯𝔭𝔐𝔫 = (𝐺, 𝑃 , 𝜃𝑝) in 𝔊𝔯𝔭𝔐𝔫 with a countably infinite group 𝐺, and a count-
ably generated free abelian monoid 𝑃, fulfilling the independence conditions
(C).

The above motivates the following conventions for this work:

Standing Assumption 3.11. Throughout the present work, let 𝐺 be a group,
𝑃 a monoid and 𝜃∶ 𝑃 → Mono(𝐺) an action of 𝑃 on 𝐺 by injective group
endomorphisms.

Definition 3.12. Despite Standing Assumption 3.11, we will occasionally call
monoid shaped diagrams in 𝔊𝔯𝔭𝔐𝔫 dynamical systems (in 𝔊𝔯𝔭𝔐𝔫) and denote
them by 𝐷𝔊𝔯𝔭𝔐𝔫.

Such a “dynamical system” induces monoid shaped diagrams in other bicat-
egories, namely 𝔊𝔯 (Section 4) and ℭ𝔬𝔯𝔯 (Section 6), which we call dynamical
systems (in 𝔊𝔯 or ℭ𝔬𝔯𝔯, respectively).

Remark 3.13. We say that Stammeier’s conditions hold or call it Stammeier’s
case, if

• 𝐺 is countably infinite,

• 𝑃 is a countably generated free abelian monoid and

• Stammeier’s independence condition (C) holds for 𝜃.

In accordance with Definition 3.4, we say that

• Stammeier’s finite-type condition holds, if 𝜃𝑝𝐺 ≤ 𝐺 has finite index for all
𝑝 ∈ 𝑃, and

• Stammeier’s “minimality” condition holds, if ⋂𝑝 𝜃𝑝(𝐺) = {1𝐺}.

We may combine the above in expressions like Stammeier’s finite-type, “mini-
mal” case.

Beware that in Section 7, there is the notion of minimality of a topologi-
cal groupoid, which (in this work) has no interesting relation to Stammeier’s
“minimality” of irreversible algebraic dynamical systems.

At various places in this work, we will say which version of Stammeier’s set
of conditions fulfils requirements of results, especially in Section 7, where prop-
erties of a groupoid model are discussed. To this end, we state an observation:

Remark 3.14. By Lemma 3.7, in Stammeier’s case, 𝜃∶ 𝑃 → Mono(𝐺) is injec-
tive.

See also Remark 5.16.

4 Translation to groupoid correspondences
In this section we recall the definition of a suitable bicategory 𝔊𝔯 of groupoid
correspondences (Section 4.1) and describe a homomorphism from the category
of group monomorphisms to 𝔊𝔯 (Section 4.2). This enables us to encode Stam-
meier’s irreversible algebraic dynamical systems as monoid shaped diagrams in
𝔊𝔯 (Section 4.3).
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4.1 The bicategory 𝔊𝔯 of locally compact étale topological
groupoids and locally compact étale groupoid corre-
spondences

We recall the definition of the bicategory 𝔊𝔯 of locally compact étale (topolog-
ical) groupoids and locally compact étale groupoid correspondences with injec-
tive, biequivariant, continuous maps as 2-arrows described in [5]. See Remark
4.24 for the particular choice of groupoids and groupoid correspondences out of
different versions occurring in [5] and [20].

Definition 4.1 (see [5, Definition 2.1]). A topological groupoid is a groupoid 𝒢
with topologies on the arrow and object spaces 𝒢 and 𝒢0 such that the range
and source maps r, s ∶ 𝒢 → 𝒢0 and the multiplication and inverse maps are
continuous. A topological groupoid is an étale (topological) groupoid if r and s
are local homeomorphisms. An étale groupoid is locally compact if the object
space 𝒢0 is Hausdorff and locally compact.

In the following, let 𝒢 be a topological groupoid, if nothing else is stated.
We do not only denote the groupoid itself by 𝒢, but also its arrow space, and
𝒢0 is regarded as a subset of 𝒢.

The objects in the bicategory 𝔊𝔯 we are interested will be locally compact
étale groupoids; we follow [5], see also Remark 4.24.

Definition 4.2 ([5, Definition 2.3]). A right 𝒢-space is a topological space 𝒳
with a continuous map s ∶ 𝒳 → 𝒢0, the anchor map, and a continuous map

mult ∶ 𝒳 ×s,𝒢0,r 𝒢 → 𝒳, 𝒳 ×s,𝒢0,r 𝒢 ∶= {(𝑥, 𝑔) ∈ 𝒳 × 𝒢 ∶ s(𝑥) = r(𝑔)} ,

which we denote multiplicatively as ⋅, such that

(1) s(𝑥 ⋅ 𝑔) = s(𝑔) for 𝑥 ∈ 𝒳, 𝑔 ∈ 𝒢 with s(𝑥) = r(𝑔);

(2) (𝑥 ⋅ 𝑔1) ⋅ 𝑔2 = 𝑥 ⋅ (𝑔1 ⋅ 𝑔2) for 𝑥 ∈ 𝒳, 𝑔1, 𝑔2 ∈ 𝒢 with s(𝑥) = r(𝑔1),
s(𝑔1) = r(𝑔2);

(3) 𝑥 ⋅ s(𝑥) = 𝑥 for all 𝑥 ∈ 𝒳.

Left 𝒢-spaces are defined accordingly, and their anchor maps are denoted by
r (for range) rather than s (for source), see [5, paragraph after Definition 2.4];
see also Definition 5.1.

Definition 4.3 ([5, Definition 2.4]). The orbit space 𝒳/𝒢 is the quotient 𝒳/ ∼𝒢
with the quotient topology, where 𝑥 ∼𝒢 𝑦 if there is an element 𝑔 ∈ 𝒢 with
s(𝑥) = r(𝑔) and 𝑥 ⋅ 𝑔 = 𝑦. We write p ∶ 𝒳 → 𝒳/𝒢 for the orbit space projection.

Definition 4.4 ([5, Definition 2.5]). Let 𝒳 and 𝒴 be right 𝒢-spaces. A con-
tinuous map 𝑓∶ 𝒳 → 𝒴 is 𝒢-equivariant if s(𝑓(𝑥)) = s(𝑥) for all 𝑥 ∈ 𝒳 and
𝑓(𝑥 ⋅ 𝑔) = 𝑓(𝑥) ⋅ 𝑔 for all 𝑥 ∈ 𝒳, 𝑔 ∈ 𝒢 with s(𝑥) = r(𝑔).

Definition 4.5 ([5, see Definition 2.7 and 2.12]). A continuous map 𝑓 is proper
if the map 𝑓 × 𝑖𝑑𝑍 is closed for any topological space 𝑍. A right 𝒢-space is
proper if the map

𝒳 ×s,𝒢0,r 𝒢 → 𝒳 × 𝒳, (𝑥, 𝑔) ↦ (𝑥 ⋅ 𝑔, 𝑥) (22)

is proper. A right 𝒢-space is basic, if the map in (22) is a homeomorphism onto
its image with the subspace topology from 𝒳 × 𝒳.
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Lemma 4.6 (see [6, §10, Théorème 1 (TG I.75)]5). A continuous map 𝑓∶ 𝑋 → 𝑌
between two topological spaces 𝑋 and 𝑌 is proper if and only if 𝑓 is closed and
𝑓−1(𝑦) is compact for all 𝑦 ∈ 𝑌.

Lemma 4.7 ([5, “Definition and Lemma” 3.4]). Let 𝒳 be a space with a basic
right 𝒢-action. Let p ∶ 𝒳 → 𝒳/𝒢 be the orbit space projection. The image of
the map in (22) is the subset 𝒳 ×𝒳/𝒢 𝒳 = 𝒳 ×p,𝒢0,p 𝒳 of all (𝑥1, 𝑥2) ∈ 𝒳 × 𝒳
with p(𝑥1) = p(𝑥2). The inverse to the map in (22) induces a continuous map

𝒳 ×𝒳/𝒢 𝒳 → 𝒳 ×s,𝒢0,r 𝒢 → 𝒢, (𝑥1, 𝑥2) ↦ ⟨𝑥2 | 𝑥1⟩ . (23)

That is, ⟨𝑥1 | 𝑥2⟩ is defined for 𝑥1, 𝑥2 ∈ 𝒳 with p(𝑥1) = p(𝑥2) in 𝒳/𝒢, and it
is the unique 𝑔 ∈ 𝒢 with 𝑠(𝑥1) = 𝑟(𝑔) and 𝑥2 = 𝑥1𝑔. Conversely, if 𝑔 ∈ 𝒢 with
𝑥2 = 𝑥1𝑔 for 𝑥1, 𝑥2 ∈ 𝒳 with p(𝑥1) = p(𝑥2) is unique and depends continuously
on (𝑥1, 𝑥2) ∈ 𝒳 ×𝒳/𝒢 𝒳, then the right 𝒢-action on 𝒳 is basic.

Lemma 4.8 ([5, Proposition 2.16]). Let 𝒢 be a locally compact étale groupoid
and 𝒳 a right 𝒢-space. The following are equivalent:

1. the action of 𝒢 on 𝒳 is basic and the orbit space 𝒳/𝒢 is Hausdorff;

2. the action of 𝒢 on 𝒳 is free and proper.

We now give the definition of locally compact étale groupoid correspon-
dences, the 1-arrows of 𝔊𝔯:

Definition 4.9 (see [5, Definition 3.1]). Let ℋ and 𝒢 be locally compact étale
groupoids. A locally compact étale groupoid correspondence from 𝒢 to ℋ, de-
noted 𝒳∶ ℋ ← 𝒢, is a space 𝒳 with commuting actions of ℋ on the left and 𝒢
on the right, such that the right anchor map s ∶ 𝒳 → 𝒢0 is a local homeomor-
phism and the right 𝒢-action is free and proper.

Remark 4.10. By Lemma 4.8, in Definition 4.9, rather than requiring that the
right 𝒢-action be free and proper, one can equivalently require that it be basic
and that the orbit space 𝒳/𝒢 be Hausdorff.

Remark 4.11 (see [5, Remark 3.2]). The underlying space 𝒳 of a locally com-
pact étale groupoid correspondence is locally compact and it is not necessarily
Hausdorff.

Definition 4.12 ([5, Definition 3.3]). A locally compact étale groupoid corre-
spondence 𝒳∶ ℋ ← 𝒢 is proper if the map r∗ ∶ 𝒳/𝒢 → ℋ0 induced by r is
proper. It is tight if r∗ is a homeomorphism.

Example 4.13 (see [5, Example 4.2]). Requiring the two groupoids in Defi-
nition 4.9 to be discrete groups 𝒢 = 𝐺 and ℋ = 𝐻, a locally compact étale
groupoid correspondence 𝒳∶ 𝐻 ← 𝐺 is a discrete topological space 𝒳 with
commuting group actions of 𝐻 on the left and 𝐺 on the right, such that right
action is free: 𝒳 being discrete is equivalent to the right anchor map being a
local homeomorphism, and the right action being basic is equivalent to it being
free; the orbit space is automatically Hausdorff because it is the quotient space
of a discrete space (and hence discrete). The correspondence 𝒳 is proper if and

5Beware that there, “quasi-compact” means what is usually called compact (see [6, §9,
Définition 1 (TG I.59)]).
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only if the map r∗ ∶ 𝒳/𝐺 → 𝐻0 = {∗} is proper, where 𝒳/𝐺 is the quotient set
with respect to the right 𝐺-action; hence by Lemma 4.6, 𝒳 is proper if and only
if 𝒳/𝐺 is finite.

Example 4.14. Let 𝒢 be a locally compact étale groupoid. This groupoid
itself gives rise to a locally compact étale groupoid correspondence 𝒢∶ 𝒢 ← 𝒢
consisting of 𝒢 as a topological space, r, s ∶ 𝒢 → 𝒢0 as the anchor maps, and
having the regular left and right 𝒢-actions on itself as left and right 𝒢-actions as
in Definition 4.9. We denote this correspondence by 𝒢, just as the groupoid it
comes from. Such correspondences will be needed as the “units” with respect to
the concatenation of 1-arrows in the bicategory of locally compact étale groupoid
correspondences. See Lemma 4.21 and Definition 2.1, and [5, paragraph before
Lemma 6.3]. The correspondence 𝒢 is tight and thus proper:

For 𝑔, ℎ ∈ 𝒢, there is 𝑥 ∈ 𝒢 with 𝑔𝑥 = ℎ if and only if r(𝑔) = r(ℎ).
Hence the surjective continuous r ∶ 𝒢 → 𝒢0 descends to a continuous bijection
r∗ ∶ 𝒢/𝒢 → 𝒢0 along the quotient map p ∶ 𝒢 → 𝒢/𝒢. The inclusion map of the
object space 𝜄 ∶ 𝒢0 → 𝒢 is a (continuous) section for r, that is, r∘ 𝜄 = id𝒢0. Since
p ∘ r∗ = r, this implies r∗ ∘ p ∘ 𝜄 = id𝒢0. So r∗ is a continuous bijection with a
continuous section, hence a homeomorphism. Thus 𝒢 is tight.

The following is the category whose objects are the 1-arrows between two
fixed objects 𝒢, ℋ of 𝔊𝔯, and whose morphisms are the 2-arrows in between
such 1-arrows:

Lemma 4.15 (see [5, around Lemma 6.1]). For locally compact étale groupoids
ℋ, 𝒢, a category 𝔊𝔯(𝒢, ℋ) is obtained by taking the locally compact étale
groupoid correspondences 𝒳∶ ℋ ← 𝒢 as objects and the injective, ℋ, 𝒢-equiv-
ariant, continuous maps in between with the usual composition of maps as mor-
phisms.

Lemma 4.16 (see [5, Lemma 6.1]). The morphisms of 𝔊𝔯(𝒢, ℋ) are homeo-
morphisms onto open subsets of their respective codomain correspondences.

We now state how 1-arrows of 𝔊𝔯, that is, locally compact étale groupoid
correspondences, are composed, see [5, Section 5; p.1341]. Consider locally
compact étale groupoids ℋ, 𝒢, 𝒦 and locally compact étale groupoid corre-
spondences 𝒳∶ ℋ ← 𝒢, 𝒴∶ 𝒢 ← 𝒦. Let

𝒳 ×𝒢0 𝒴 ∶= 𝒳 ×s,𝒢0,r 𝒴 ∶= {(𝑥, 𝑦) ∈ 𝒳 × 𝒴 ∶ s(𝑥) = r(𝑦)} (24)

and consider the orbit space 𝒳 ∘𝒢 𝒴 of 𝒳 ×𝒢0 𝒴 with respect to the left 𝒢-action
given by

𝑔 ⋅ (𝑥, 𝑦) ∶= (𝑥 ⋅ 𝑔−1, 𝑔 ⋅ 𝑦) (25)

for each 𝑥 ∈ 𝒳, 𝑦 ∈ 𝒴 and 𝑔 ∈ 𝒢 with s(𝑥) = r(𝑔) and s(𝑔) = r(𝑦). We denote
the image of (𝑥, 𝑦) ∈ 𝒳 ×𝒢 𝒴 in the quotient by [𝑥, 𝑦]. We equip 𝒳 ∘𝒢 𝒴 with
the left ℋ-action ℎ ⋅ [𝑥, 𝑦] = [ℎ ⋅ 𝑥, 𝑦] and the right 𝒦-action [𝑥, 𝑦] ⋅ 𝑘 = [𝑥, 𝑦 ⋅ 𝑘].
Well-definedness of those actions is to be established.

Remark 4.17 (see [5, paragraph before Lemma 5.1]). Note that 𝒳 ∘𝒢 𝑌 can be
defined as the orbit space of a diagonal 𝒢-action similar to (25) even when 𝑌
in place of 𝒴 is merely “a correspondence short of the right action of any étale
groupoid”, that is, just a topological space with a left 𝒢-action. 𝒳 ∘𝒢 𝑌 can
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be equipped with a left ℋ-action just as above, turning it into a topological
space with a left ℋ-action. This will occur when actions of diagrams of cor-
respondences on topological spaces are defined, see Definition 5.2 and Lemma
5.3.

We now describe how 2-arrows in 𝔊𝔯, that is, injective, bi-equivariant, con-
tinuous maps between correspondences, are composed horizontally, see [5, be-
tween Remark 6.2 and Lemma 6.3]. Let 𝒳1, 𝒳2 ∶ ℋ ← 𝒢 and 𝒴1, 𝒴2 ∶ 𝒢 ← 𝒦
be locally compact étale groupoid correspondences and let 𝛼∶ 𝒳1 → 𝒳2 and
𝛽∶ 𝒴1 → 𝒴2 be 2-arrows. Define

𝛼 ∘𝒢 𝛽∶ 𝒳1 ∘𝒢 𝒴1 → 𝒳2 ∘𝒢 𝒴2 ∶ [(𝑥, 𝑦)] ↦ [(𝛼(𝑥), 𝛽(𝑦)]. (26)

Lemma 4.18 ([5]). The above construction describes a bifunctor

∘𝒢 ∶ 𝔊𝔯(𝒢, ℋ) × 𝔊𝔯(𝒦, 𝒢) → 𝔊𝔯(𝒦, ℋ), (27)
(𝒳, 𝒴) ↦ 𝒳 ∘𝒢 𝒴 (28)
(𝛼, 𝛽) ↦ 𝛼 ∘𝒢 𝛽 (29)

If 𝒳, 𝒴 are both proper, or tight, respectively, so is the composition 𝒳 ∘ 𝒴.

Proof. That the result of the composition of two locally compact étale groupoid
correspondences is again such a correspondence (including well-definedness of
the left and right action), and the preservation property with respect to tightness
and properness, is the content of [5, Proposition 5.7]. That the composition is
functorial is stated in [5, between Remark 6.2 and Lemma 6.3].

Remark 4.19. Note the use of 𝛼∘𝒢 𝛽 to denote the horizontal concatenation of
2-arrows 𝛼, 𝛽 as above in place of the notation 𝛼 ∗ 𝛽, used in the case of generic
bicategories. The former will be our standard notation in any bicategories in-
volving correspondences.

The associators for the composition of 1-arrows of 𝔊𝔯 are given by the fol-
lowing lemma.

Lemma 4.20 (see [5, Lemma 6.4]6). Let 𝒢𝑖 for 1 ≤ 𝑖 ≤ 4 be locally compact
étale groupoids. Let 𝒳𝑖 ∶ 𝒢𝑖 ← 𝒢𝑖+1 for 1 ≤ 𝑖 ≤ 3 be locally compact étale
groupoid correspondences. The map

assoc ∶ (𝒳1 ∘𝒢2
𝒳2)∘𝒢3

𝒳3 → 𝒳1 ∘𝒢2
(𝒳2 ∘𝒢3

𝒳3), [[𝑥1, 𝑥2], 𝑥3] ↦ [𝑥1, [𝑥2, 𝑥3]],
(30)

is a 𝒢1, 𝒢4-equivariant homeomorphism, which is natural with respect to 𝒢𝑖, 𝒢𝑖+1-
equivariant, continuous maps 𝛼𝑖 ∶ 𝒳𝑖 → 𝒳′

𝑖 for 1 ≤ 𝑖 ≤ 3.

Recall the “unit” correspondence 𝒢 for an étale groupoid 𝒢 from Example
4.14. The unitors are given by the following maps:

Lemma 4.21 ([5, Lemma 6.3]). Let 𝒳∶ ℋ ← 𝒢 be a locally compact étale
groupoid correspondence. The maps

𝔩 ∶ ℋ ∘ℋ 𝒳 → 𝒳, [ℎ, 𝑥] ↦ ℎ ⋅ 𝑥, (31)
𝔯 ∶ 𝒳 ∘𝒢 𝒢 → 𝒳, [𝑥, 𝑔] ↦ 𝑥 ⋅ 𝑔, (32)

6Deviating form the cited source, we have turned around the direction of the associators,
replacing the original homeomorphisms by their inverses, in order to achieve compatibility
with Leinster’s ([19]) convention regarding the direction of associators.
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are ℋ, 𝒢-equivariant homeomorphisms, which are natural for ℋ, 𝒢-equivariant,
continuous maps 𝒳 → 𝒳′.

Finally, we have recalled all the ingredients for the bicategory of locally com-
pact étale groupoids and locally compact étale groupoid correspondences.

Lemma 4.22 ([5, Proposition 6.5]). The following defines a bicategory 𝔊𝔯:

1. The objects be locally compact étale groupoids as in Definition 4.1.

2. For two objects ℋ, 𝒢, the category of 1-arrows from 𝒢 to ℋ and of 2-
arrows in between be given by the category 𝔊𝔯(𝒢, ℋ) in Lemma 4.15 of
locally compact étale groupoid correspondences from 𝒢 to ℋ and injective,
ℋ, 𝒢-equivariant, continuous maps between them.

3. The bifunctor encoding the composition of 1-arrows and horizontal com-
position of 2-arrows be the one from Lemma 4.18 sending correspondences
𝒳∶ ℋ ← 𝒢 and 𝒴∶ 𝒢 ← 𝒦 to 𝒳 ∘𝒢 𝒴.

4. The “units” with respect to composition of correspondences (the images of
the functors 𝐼𝒢) be the correspondences 𝒢∶ 𝒢 ← 𝒢 for groupoids 𝒢 from
Example 4.14.

5. The components of the natural isomorphisms assoc𝑎,𝑏,𝑐,𝑑 (for 𝑎, 𝑏, 𝑐, 𝑑 ∈
ℬ0) – that is, of the associators for composition of 1-arrows – be the maps
from Lemma 4.20.7

6. The components of the natural isomorphisms 𝔩𝑎,𝑏, 𝔯𝑎,𝑏 (for 𝑎, 𝑏 ∈ ℬ0) – that
is, of the unitors for composition of 1-arrows – be the maps from Lemma
4.21.

Lemma 4.23 (compare [5, Last paragraph of Section 6] and [1, Section 2.4] and
[20, paragraph following Proposition 2.19]). Restricting the class of 1-arrows in
𝔊𝔯 to proper or tight correspondences (see Definition 4.12), and restricting the
Hom-categories 𝔊𝔯(𝒢, ℋ), for 𝒢, ℋ ∈ 𝔊𝔯0, to the full subcategories generated
by such correspondences, results in bicategories 𝔊𝔯prop and 𝔊𝔯tight, respectively,
where 𝔊𝔯tight ⊆ 𝔊𝔯prop

Proof. Tight and proper correspondences each define subbicategories of 𝔊𝔯 by
Lemma 4.18 and the observation that the unit correspondences are tight and
a fortiori proper (see Example 4.14). Every tight correspondence is proper
because every homeomorphism is a proper map (consider this in the context of
Definition 4.12).

Remark 4.24. In [5], the bicategory 𝔊𝔯 of locally compact étale groupoids
and locally compact étale groupoid correspondences with injective, biequivari-
ant, continuous maps as 2-arrows, as in Lemma 4.22, is considered. The original
bicategory described by Albandik in his thesis [1] is the same except that (1)
only invertible 2-arrows (that is, biequivariant homeomorphisms) are allowed
(see [1, second paragraph of Section 2.4]), and (2) what we call a locally com-
pact groupoid correspondence 𝒢 ← ℋ from ℋ to 𝒢, for locally compact étale
groupoids 𝒢, ℋ, he calls a groupoid correspondence 𝒢 → ℋ from 𝒢 to ℋ;

7Recall that in [5], the associators go in the opposite direction.
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names and symbols for the anchor maps (source, s, range, r) of the left and
right groupoid actions are swapped accordingly; what we consider a 1-arrow
from ℋ to 𝒢, he considers a 1-arrow from 𝒢 to ℋ. Also, for locally compact
étale groupoids 𝒢, ℋ he calls locally compact étale groupoid correspondences
𝒢 ← ℋ just “groupoid correspondences” (see [1, Definition 2.18], take into
account [1, Standing assumption 2.9]).

In [20], the bicategory of étale groupoids and étale groupoid correspondences
with not necessarily injective, continuous, biequivariant maps as 2-arrows is
considered and denoted by 𝔊𝔯, see [20, Section 2, especially paragraphs before
Definition 2.1, Definition 2.7 and paragraph after 2.19]. For étale groupoids
𝒢, ℋ, [20, Definition 2.7] defines an étale groupoid correspondence 𝒳∶ ℋ ← 𝒢
to be a space with commuting actions of ℋ on the left and 𝒢 on the right such
that the right anchor map s ∶ 𝒳 → 𝒢0 is a local homeomorphism and the right
𝒢-action is basic. If 𝒢 and ℋ are locally compact, then such an étale groupoid
correspondence 𝒳∶ ℋ ← 𝒢 is a locally compact étale groupoid correspondence
as in Definition 4.9 (see also Remark 4.10), if and only if the orbit space 𝒳/𝒢
is Hausdorff. See also [20, Definition 2.9].

The category 𝔊𝔯 of locally compact étale groupoids and locally compact étale
groupoid correspondences with injective, biequivariant, continuous 2-arrows used
in the present work and in [5] is denoted by 𝔊𝔯lc in [20] (see [20, first paragraph
on p. 3, and between Proposition 2.19 and Theorem 2.22]).

The stricter variant is used here and in [5] in order to allow for the homo-
morphism from 𝔊𝔯 into a bicategory of 𝐶∗-correspondences (see Section 6.2),
see [5, Remark 2.2] and [20, from Definition 2.9 to Example 2.10].

4.2 The homomorphism from the category of group mo-
nomorphisms to 𝔊𝔯

In this section, we describe a homomorphism of bicategories from 𝔊𝔯𝔭𝔐𝔫 to
𝔊𝔯. The interesting component of this homomorphism is the construction of
a groupoid correspondence from an injective group endomorphism. It is men-
tioned in [5, last paragraph of Example 4.2], where it is noted that such groupoid
correspondences are implicitly used by Stammeier ([26]).

Let 𝐺 and 𝐻 be (discrete) groups. Let 𝜃∶ 𝐺 → 𝐻 be an injective group
homomorphism. For this data, define 𝒳 ∶= 𝐻 as a set and equip it with the
regular left action by 𝐻, given by

ℎ.𝑘 ∶= ℎ ⋅ 𝑘 ∈ 𝒳 for all 𝑘 ∈ 𝒳 = 𝐻, ℎ ∈ 𝐻. (33)

and the right 𝒢-action given by

𝑘.𝑔 ∶= 𝑘 ⋅ 𝜃(𝑔) ∈ 𝒳 for all 𝑘 ∈ 𝒳 = 𝐻, 𝑔 ∈ 𝐺. (34)

Lemma 4.25 (see also [5, Example 4.2, last paragraph]). Let 𝐺, 𝐻 be (discrete)
groups and 𝜃∶ 𝐺 → 𝐻 an injective group homomorphism. The construction
above associates to 𝜃 a locally compact étale groupoid correspondence 𝒳𝜃 ∶ 𝐻 ←
𝐺. It is proper if and only if 𝜃(𝐺) has finite index in 𝐻.

Proof. We have 𝒳𝜃 = 𝐻 as a discrete topological space. The left and right
actions by the group 𝐻 and 𝐺, respectively, commute because (ℎ ⋅ 𝑥) ⋅ 𝜃(𝑔) =
ℎ ⋅ (𝑥 ⋅ 𝜃(𝑔)) for ℎ ∈ 𝐻, 𝑥 ∈ 𝒳𝜃 = 𝐻, 𝑔 ∈ 𝐺. The right action is free, because
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𝑥 ⋅ 𝜃(𝑔1) = 𝑥 ⋅ 𝜃(𝑔2) implies 𝑔1 = 𝑔2, for 𝑥 ∈ 𝒳𝜃 = 𝐻, 𝑔1, 𝑔2 ∈ 𝐺, since 𝜃 is
injective. By Example 4.13, the given data thus constitute a locally compact
étale groupoid correspondence 𝒳𝜃 ∶ 𝐻 ← 𝐺 which is proper if and only if 𝒳/𝐺 =
𝐻/𝜃(𝐺) is finite.

Remark 4.26. In 4.1, left and right actions of groupoids on groupoid corre-
spondences are indicated by “⋅”. We now consider concrete correspondences,
which have as underlying spaces the groups acting on them from the left. Later,
we will exclusively consider the case where the group acting on the right will
be identical to the underlying group, as well. Since in this case the correspon-
dence and the group acting on it from both sides have the same underlying set,
it is crucial to distinguish the right group action from the product within the
group; the results are typically different. Thus some care has to be taken when
it comes to the notation. In the context of correspondences coming from group
monomorphisms, we will use “⋅” for the multiplication within a group whenever
this interpretation is possible; terms explicitly involving the application of a left
or right action will be avoided – for example by replacing them with the result
of the application – or the symbol “.” will be used.

Let 𝐻, 𝐺, 𝐾 be (discrete) groups and 𝜃1 ∶ 𝐺 → 𝐻, 𝜃2 ∶ 𝐾 → 𝐺 be injective
group homomorphisms. Consider the map

𝒳𝜃1
× 𝒳𝜃2

→ 𝒳𝜃1𝜃2
∶ (ℎ, 𝑔) ↦ ℎ ⋅ 𝜃1(𝑔). (35)

The underlying sets of 𝒳𝜃1
, 𝒳𝜃2

and 𝒳𝜃1𝜃2
are 𝐻, 𝐺 and 𝐻, respectively.

Lemma 4.27. The map in (35) descends to an 𝐻-𝐾-equivariant homeomor-
phism

𝜙𝜃1,𝜃2
∶ 𝒳𝜃1

∘ 𝒳𝜃2
→ 𝒳𝜃1𝜃2

∶ [𝑦, 𝑥] ↦ 𝑦 ⋅ 𝜃1(𝑥). (36)

Proof. The relation
(𝑦, 𝑥) ∼ (𝑦 ⋅ 𝜃1(𝑔), 𝑔−1 ⋅ 𝑥)

for 𝑦 ∈ 𝒳𝜃1
, 𝑥 ∈ 𝒳𝜃2

and 𝑔 ∈ 𝐺 defines an equivalence relation on 𝒳𝜃1
× 𝒳𝜃2

.
The set 𝒳𝜃1

∘ 𝒳𝜃2
is the resulting set of equivalence classes, see (25), (33) and

(34).
We first show that the map in (36) is well defined and injective. To this end,

let 𝑦, 𝑦′ ∈ 𝒳𝜃1
, 𝑥, 𝑥′ ∈ 𝒳𝜃2

. Then

[𝑦, 𝑥] = [𝑦 ⋅ 𝜃1(𝑥), 𝑥−1 ⋅ 𝑥] = [𝑦 ⋅ 𝜃1(𝑥), 1𝐺] (37)
[𝑦′, 𝑥′] = [𝑦′ ⋅ 𝜃1(𝑥′), 𝑥′−1 ⋅ 𝑥′] = [𝑦′ ⋅ 𝜃1(𝑥′), 1𝐺]; (38)

the right hand sides are equal if and only if 𝑦 ⋅ 𝜃1(𝑥) = 𝑦′ ⋅ 𝜃1(𝑥′), which shows
that 𝜙𝜃1,𝜃2

is well defined by (36) and injective.
Biequivariance of 𝜙𝜃1,𝜃2

is witnessed by commutativity of the following dia-
gram for all ℎ ∈ 𝐻, 𝑘 ∈ 𝐾, 𝑦 ∈ 𝒳𝜃1

and 𝑥 ∈ 𝒳𝜃2
:

[𝑦, 𝑥] [ℎ𝑦, 𝑥][𝑦, 𝑥𝜃2(𝑘)]

𝑦𝜃1(𝑥) ℎ𝑦𝜃1(𝑥).𝑦𝜃1(𝑥𝜃2(𝑘))
= 𝑦𝜃1(𝑥)𝜃1 ∘ 𝜃2(𝑘)

ℎ ⋅ −− ⋅ 𝑘

ℎ ⋅ −− ⋅ 𝑘
𝜙𝜃1,𝜃2

𝜙𝜃1,𝜃2
𝜙𝜃1,𝜃2
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Additionally to being injective, as shown above, 𝜙𝜃1,𝜃2
is surjective, because

𝜙𝜃1,𝜃2
([ℎ, 1𝐺]) = ℎ for all ℎ ∈ 𝒳𝜃1

= 𝐻, and, as a set, 𝒳𝜃1𝜃2
= 𝐻. Thus 𝜙𝜃1,𝜃2

is
a homeomorphism between discrete spaces.

Lemma 4.28. The construction above defines a strictly unital homomorphism
𝔊𝔯𝔭𝔐𝔫 → 𝔊𝔯 with the data ({𝐺}𝐺 , 𝒳𝜃, 𝜙𝜃1,𝜃2

) in terms of Lemma 2.5.

Proof. The required map between the classes of objects is just the reinterpre-
tation of a discrete group as a locally compact étale groupoid, that is, in terms
of Lemma 2.5, 𝐴𝐺 ∶= 𝐺, as groupoids, for each discrete group 𝐺. For two
given groups 𝐺, 𝐻, to an injective group homomorphism 𝜃∶ 𝐺 → 𝐻 is assigned
the locally compact groupoid correspondence 𝒳𝜃 ∶ 𝐻 ← 𝐺, that is, in terms of
Lemma 2.5, 𝑋𝜃 ∶= 𝒳𝜃 ∈ 𝔊𝔯0(𝐺, 𝐻) for 𝜃 ∈ 𝔊𝔯𝔭𝔐𝔫(𝐺, 𝐻). The invertible 2-
arrows in 𝔊𝔯 are biequivariant homeomorphisms between correspondences with
equal domains and codomains. For two composable injective group homomor-
phisms 𝜃1, 𝜃2, the required invertible 2-arrow 𝜙𝜃1,𝜃2

∶ 𝒳𝜃1
∘ 𝒳𝜃2

→ 𝒳𝜃1⋅𝜃2
is given

by (36).
It remains to show that the axioms (8)–(11) are fulfilled. In the present

situation, (8) amounts to 𝐺 = 𝒳id𝐺
for all groups 𝐺, where the left hand side

denotes the “unit” groupoid correspondence on 𝐺 consisting of 𝐺 as a set and
being equipped with the left and right regular 𝐺-actions, see Example 4.14.
This is fulfilled, since the groupoid correspondence on the right hand side is
exactly the same by (33) and (34); specifically, the right 𝐺-action on 𝒳id𝐺

is
the regular 𝐺-action.

We show that identity (9) holds by demonstrating that the equivalent dia-
gram in Lemma 2.5 commutes. Taking into account the definitions of horizontal
concatenation of 2-arrows (see (26)) and the associator (see Lemma 4.20) in 𝔊𝔯
and the maps 𝜙𝜃1,𝜃2

(see Lemma 4.27), this is shown thus: The diagram

[[𝑥, 𝑦], 𝑧] [𝑥𝜃ℎ(𝑦), 𝑧]

[𝑥, [𝑦, 𝑧]] [𝑥, 𝑦𝜃𝑔(𝑧)]

𝑥𝜃ℎ(𝑦)𝜃ℎ𝑔(𝑧)
= 𝑥𝜃ℎ(𝑦𝜃𝑔(𝑧))

𝜙ℎ,𝑔 ∘𝐾 id𝒳𝑘

id𝒳ℎ
∘𝐺 𝜙𝑔,𝑘

assocℎ𝑔,𝑘

𝜙ℎ𝑔,𝑘

𝜙ℎ,𝑔𝑘

commutes for groups 𝐽, 𝐾, 𝐺, 𝐻, group monomorphisms 𝑘∶ 𝐽 → 𝐾, 𝑔∶ 𝐾 → 𝐺,
ℎ∶ 𝐺 → 𝐻 and 𝑥 ∈ 𝒳ℎ, 𝑦 ∈ 𝒳𝑔, 𝑧 ∈ 𝒳𝑘.

We verify (10) and (11). Let 𝐾,𝐺,𝐻 be groups and 𝑓∶ 𝐾 → 𝐺 and ℎ∶ 𝐺 → 𝐻
group monomorphisms. We have to show that 𝔩𝒳𝑓

= 𝜙id𝐺,𝑓 and 𝔯𝒳ℎ
= 𝜙ℎ,id𝐺

.
To this end, let 𝑔 ∈ 𝐺 = 𝒳id𝐺

, 𝑥 ∈ 𝒳ℎ and 𝑦 ∈ 𝒳𝑓. Then, indeed,

𝜙id𝐺,𝑓([𝑔, 𝑦]) = 𝑔 ⋅ id𝐺(𝑦) = 𝑔 ⋅ 𝑦 = 𝑔.𝑦 = 𝔩𝒳𝑓
([𝑔, 𝑦]) and

𝜙ℎ,id𝐺
([𝑥, 𝑔]) = 𝑥 ⋅ 𝜃ℎ(𝑔) = 𝑥.𝑔 = 𝔯𝒳ℎ

([𝑥, 𝑔]),

where “.” denotes the left 𝐺-action on 𝒳𝑓, and the right 𝐺-action on 𝒳ℎ, re-
spectively; see (31) and (32) for the definitions of the unitors 𝔩𝒳𝑓

and 𝔯𝒳ℎ
.

4.3 Dynamical systems in 𝔊𝔯
In this section, we describe monoid shaped diagrams (see Definition 2.8) in 𝔊𝔯
in general and the monoid-shaped diagrams arising from composing dynamical
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systems in 𝔊𝔯𝔭𝔐𝔫 (see Definition 3.12) with the homomorphism of bicategories
𝔊𝔯𝔭𝔐𝔫 → 𝔊𝔯 described in Section 4.2. The latter will be called dynamical
systems in 𝔊𝔯.

Lemma 4.29 (compare [5, first paragraph after Theorem 7.13] and [1, Defini-
tion 3.4]). A monoid-shaped diagram in 𝔊𝔯 is of the form 𝐷 = (𝒢, 𝑃 , 𝒳𝑝, 𝜇𝑝,𝑞)
with data

• a locally compact étale groupoid 𝒢,

• a monoid 𝑃,

• a locally compact étale groupoid correspondence 𝒳𝑝 ∶ 𝒢 ← 𝒢 for each 𝑝 ∈ 𝑃,

• a 𝒢-biequivariant homeomorphism 𝜇𝑝,𝑞 ∶ 𝒳𝑝 ∘ 𝒳𝑞 → 𝒳𝑝⋅𝑞 for each pair
𝑝, 𝑞 ∈ 𝑃,

fulfilling

𝒳1 = 𝒢, (39)
𝜇𝑝𝑞,𝑟 ∘ (𝜇𝑝,𝑞 ∗ id𝒳𝑟

) = 𝜇𝑝,𝑞𝑟 ∘ (id𝒳𝑝
∗ 𝜇𝑞,𝑟) ∘ assoc𝑝,𝑞,𝑟, (40)

𝔩𝒳𝑝
= 𝜇1,𝑝 and (41)

𝔯𝒳𝑝
= 𝜇𝑝,1 (42)

for all 𝑝, 𝑞, 𝑟 ∈ 𝑃.

Proof. This directly follows from 2.9 and the definition of 𝔊𝔯 in Section 4.1.

Lemma 4.30 (compare8 [5, second paragraph after Theorem 7.13]). Apply-
ing the homomorphism of bicategories 𝔊𝔯𝔭𝔐𝔫 → 𝔊𝔯 from Lemma 4.28 to a
dynamical system in 𝔊𝔯𝔭𝔐𝔫 (that is, a monoid-shaped diagram in 𝔊𝔯𝔭𝔐𝔫)
𝐷𝔊𝔯𝔭𝔐𝔫 = (𝐺, 𝑃 , 𝜃𝑝) as in Lemma 3.10 results in the monoid-shaped diagram
𝐷𝔊𝔯 = (𝐺, 𝑃 , 𝒳𝑝, 𝜇𝑝,𝑞) in 𝔊𝔯 where

• 𝒳𝑝 ∶ 𝐺 ← 𝐺 is the locally compact groupoid correspondence with underlying
discrete space 𝒳𝑝 = 𝐺 and the left and right 𝐺-actions given by

𝑔.𝑥 ∶= 𝑔 ⋅ 𝑥 (43)
𝑥.𝑔 ∶= 𝑥 ⋅ 𝜃𝑝(𝑔) (44)

for 𝑥 ∈ 𝒳𝑝, 𝑔 ∈ 𝐺, for each 𝑝 ∈ 𝑃,

• 𝜇𝑝,𝑞 is the 𝐺-biequivariant homeomorphism

𝒳𝑝 ∘ 𝒳𝑞 → 𝒳𝑝𝑞, (45)
[𝑔, ℎ] ↦ 𝑔𝜃𝑝(ℎ), (46)

for each pair 𝑝, 𝑞 ∈ 𝑃.

We omit the rather technical proof.
8The relationships between the present and the last lemma is not analogous to the rela-

tionship between the given sources with which they should be compared.
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Remark 4.31. Let 𝐷𝔊𝔯 be as in Lemma 4.30 and 𝑝 ∈ 𝑃. Then for 𝑥1, 𝑥2 ∈ 𝒳𝑝
with 𝑥1𝜃𝑝(𝐺) = 𝑥2𝜃𝑝(𝐺), the “bracket product”

⟨𝑥2 | 𝑥1⟩𝑝 ∶= ⟨𝑥2 | 𝑥1⟩

defined by the continuous map in (23) is the group element in 𝐺 such that
𝑥1 = 𝑥2𝜃𝑝(⟨𝑥2 | 𝑥1⟩𝑝).

Definition 4.32. A monoid shaped diagram 𝐷𝔊𝔯 in 𝔊𝔯 coming from a dynam-
ical system 𝐷𝔊𝔯𝔭𝔐𝔫 in 𝔊𝔯𝔭𝔐𝔫 as in Lemma 4.30 will be called a dynamical
system (in 𝔊𝔯) in the present work.
Remark 4.33. In [1], Albandik describes, put in terms of Lemma 2.5, strictly
unital homomorphisms from categories into his bicategory of groupoid corre-
spondences ([1, Proposition 2.40]). He calls them “functors”.9 Despite the fact
that in his bicategory “𝔊𝔯”, he considers only invertible biequivariant contin-
uous maps as 2-arrows, his “functors 𝒞 → 𝔊𝔯”, for categories 𝒞, are exactly
our strictly unital homomorphisms 𝒞op → 𝔊𝔯, because all 2-arrows being part
of the data of a homomorphism from a category to a bicategory are invertible.
The domain 𝒞op instead of 𝒞 accounts for the fact that Albandik’s 1-arrows go
in the other direction (see Remark 4.24).

In [1, Definition 3.4 and preceding paragraph], an action of 𝑃 in “𝔊𝔯” (or
an action of 𝑃 on 𝒢, for a locally compact étale groupoid 𝒢), for an Ore monoid
𝑃, is defined as a “functor 𝑃 op → 𝔊𝔯” (with 𝒢 in its image) in the sense above,
that is, a 𝑃-shaped diagram in 𝔊𝔯 (with 𝒢 in its image) in the sense of Lemma
4.29. Compare the concrete description in [1, Definition 3.4].10

5 Construction of a groupoid model
In this section, for the case that 𝑃 fulfils the right Ore conditions, we construct
a groupoid model encoding 𝐷𝔊𝔯, applying a construction by Meyer ([20, Section
4.2]).

The construction involves a universal action of the diagram, an inverse
semigroup associated to the diagram together with an action of it by partial
homeomorphisms, and the transformation groupoid of this action, which is the
groupoid model.

If 𝜃𝑝(𝐺) ≤ 𝐺 has finite index for all 𝑝 ∈ 𝑃, then 𝐷𝔊𝔯 consists only of
proper correspondences, and by [15, Theorem 6.3], this implies that the groupoid
model is locally compact. Also, as pointed out by Meyer, then it coincides with
a construction by Albandik [1, Section 3]. This will be used to show that
the 𝐶∗-algebra associated to the groupoid model is the Cuntz-Pimsner algebra
associated to a certain product system in Section 6.

In particular, in Stammeier’s finite-type case, Stammeier’s 𝐶∗-algebra is the
groupoid 𝐶∗-algebra of the groupoid model ℒ. In remarks in the appropriate
places, we draft an alternative way to show this by comparing Meyer’s construc-
tion to Stammeier’s construction via different crossed product constructions for
inverse semigroup actions and semigroup actions on 𝐶∗-algebras.

9If the domain is a bicategory, strict unitality is not required, see [1, Definition 2.2]; but it
is encoded in the description in [1, Proposition 2.40] of “functors” with a category as domain.

10There, what is called “an action of an Ore monoid 𝑃 in the bicategory 𝔊𝔯” just above the
cited definition, is called “an action of 𝑃 op on 𝒢 by correspondences”. Referring to Albandik,
we will call it an action of 𝑃 on 𝒢 (or in 𝔊𝔯).
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5.1 Actions and groupoid models for dynamical systems
in 𝔊𝔯

We describe what an action of a dynamical system in 𝔊𝔯 on a topological space
is (see [20, Section 4.1]). A groupoid model for a dynamical system is defined by
requiring a natural bijection between such actions and actions of the groupoid
model, see Definition 5.4.

Definition 5.1 (compare Definitions 4.2 and 4.4 (or, equivalently, [5, Definitions
2.3 and 2.5])). Let 𝒢 be a topological groupoid. A (left) action of 𝒢 on a
topological space 𝑌 is a left 𝒢-space 𝑌. The data is thus a continuous anchor
map r ∶ 𝑌 → 𝒢0 and a continuous map

mult ∶ 𝒢 ×s,𝒢0,r 𝑌 → 𝑌 , 𝒢 ×s,𝒢0,r 𝑌 ∶= {(𝑔, 𝑦) ∈ 𝒢 × 𝑌 | s(𝑔) = r(𝑦)} (47)

which we denote multiplicatively as ⋅, which fulfil the conditions

(1) r(𝑔 ⋅ 𝑦) = r(𝑔) for 𝑔 ∈ 𝒢, 𝑦 ∈ 𝑌, with s(𝑔) = r(𝑦);

(2) 𝑔1 ⋅(𝑔2 ⋅𝑦) = (𝑔1 ⋅𝑔2)⋅𝑦 for 𝑔1, 𝑔2 ∈ 𝒢, 𝑦 ∈ 𝑌 with s(𝑔1) = r(𝑔2), s(𝑔2) = r(𝑦);

(3) r(𝑦) ⋅ 𝑦 = 𝑦 for all 𝑦 ∈ 𝑌.

Let 𝑌 , 𝑌 ′ be 𝒢-actions. A continuous map 𝑓∶ 𝑌 → 𝑌 ′ is called 𝒢-equivariant,
if r(𝑓(𝑦)) = r(𝑦) for all 𝑦 ∈ 𝑌 and 𝑓(𝑔 ⋅ 𝑦) = 𝑔 ⋅ 𝑓(𝑦) for all 𝑦 ∈ 𝑌, 𝑔 ∈ 𝒢 with
r(𝑦) = s(𝑔).

We specialise the definition in [20, Definition 4.5] of actions of (strictly unital,
category-shaped) diagrams (as the term is used in the cited source) of étale
groupoid correspondences on topological spaces: We are only interested in the
case where the diagram is a dynamical system 𝐷𝔊𝔯 of locally compact étale
groupoid correspondences as in Definition 4.32.

Definition 5.2 (compare [20, Definitions 4.5 and 4.8]). Let 𝐷𝔊𝔯 = (𝐺, 𝑃 , 𝒳𝑝, 𝜇𝑝,𝑞)
be a dynamical system in 𝔊𝔯. A 𝐷𝔊𝔯-action ((𝛼𝑝)𝑝∈𝑃, 𝑌 ) consists of a topolog-
ical space 𝑌 and open, continuous, surjective maps 𝛼𝑝 ∶ 𝒳𝑝 × 𝑌 → 𝑌 for 𝑝 ∈ 𝑃,
denoted multiplicatively as 𝛼𝑝(𝑥, 𝑦) = 𝑥 ⋅𝑝 𝑦, such that

(i) 𝑥1 ⋅𝑝1
(𝑥2 ⋅𝑝2

𝑦) = 𝑥1𝜃𝑝1
(𝑥2) ⋅𝑝1𝑝2

𝑦 for 𝑝𝑖 ∈ 𝑃, 𝑥𝑖 ∈ 𝒳𝑝𝑖
, 𝑖 = 1, 2, and 𝑦 ∈ 𝑌

and

(ii) if 𝑥⋅𝑝 𝑦 = 𝑥′ ⋅𝑝 𝑦′ for 𝑥, 𝑥′ ∈ 𝒳𝑝, 𝑦, 𝑦′ ∈ 𝑌, there is 𝜂 ∈ 𝐺 with 𝑥′ = 𝑥⋅𝜃𝑝(𝜂)
and 𝑦 = 𝜂 ⋅1 𝑦′; equivalently, p(𝑥) = p(𝑥′) for the orbit space projection
p ∶ 𝒳𝑝 → 𝒳𝑝/𝐺 and 𝑦 = ⟨𝑥 | 𝑥′⟩𝑝 ⋅1 𝑦′.

A continuous map 𝑓∶ 𝑌 → 𝑌 ′ between two spaces with 𝐷𝔊𝔯-actions is called
𝐷𝔊𝔯-equivariant if 𝑓(𝑥 ⋅𝑝 𝑦) = 𝑥 ⋅𝑝 𝑓(𝑦) for all 𝑝 ∈ 𝑃, 𝑥 ∈ 𝒳𝑝 and 𝑦 ∈ 𝑌.

Lemma 5.3 (see [20, Lemma 4.7]). The multiplication map 𝛼𝑝 descends to a
𝒢-equivariant homeomorphism ̇𝛼 ∶ 𝒳𝑝 ∘𝒢 𝑌 → 𝑌.

Proof. A direct comparison immediately shows that Definition 5.2 is a special
case of [20, Definition 4.5], namely, a restriction from general category-shaped
strictly unital diagrams 𝐹 in a larger bicategory to dynamical systems 𝐷𝔊𝔯 in
𝔊𝔯, a subbicategory of that larger bicategory considered in [20] (see Remark
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4.24). Since the domain category 𝑃 of 𝐷𝔊𝔯 has only one object, the partition
of 𝑌 and the anchor maps 𝑟 for the action as in [20, Definition 4.5] are here
unnecessary. There are technical simplifications because here, it is at no point
necessary to require composability of arrows in the domain category. Hence,
the lemma follows from [20, Lemma 4.7].

Definition 5.4 (compare [20, Definition 4.13]). A groupoid model for 𝐷𝔊𝔯-actions
is an étale topological groupoid ℒ with natural bijections between the sets of
ℒ-actions and 𝐷𝔊𝔯-actions on the same space in the sense that a continuous
map 𝑌 → 𝑌 ′ is ℒ-equivariant if and only if it is 𝐷𝔊𝔯-equivariant.

Lemma 5.5 (compare [20, Proposition 4.16]). Let ℒ and ℒ′ be two groupoid
models for 𝐷𝔊𝔯-actions. There is a unique isomorphism of topological groupoids
ℒ ≅ ℒ′ that is compatible with the equivalence between actions of ℒ, ℒ′ and
𝐷𝔊𝔯.

5.2 The universal action
In [20, Section 8], a universal action for diagrams11 of groupoid correspondences
of Ore shape is constructed. In this section, we apply this construction to the dy-
namical system 𝐷𝔊𝔯 in 𝔊𝔯 (see Lemma 4.30). This necessitates the assumption
that 𝑃 fulfils the right Ore conditions (see Definition 5.15). We thus construct
a universal action for 𝐷𝔊𝔯 under this assumption.

Definition 5.6 (compare [20, Definition 4.12]). An action ((𝛼𝑝)𝑝∈𝑃, 𝑌 ) of a
dynamical system 𝐷𝔊𝔯 is called universal if for every action (( ̃𝛼𝑝)𝑝∈𝑃, ̃𝑌 ), there
is a unique 𝐷𝔊𝔯-equivariant continuous map 𝑓∶ ̃𝑌 → 𝑌.

Let 𝐷𝔊𝔯 = (𝐺, 𝑃 , 𝒳𝑝, 𝜇𝑝,𝑞) be a dynamical system in 𝔊𝔯. The space upon
which 𝐷𝔊𝔯 acts universally is defined as a limit of a certain diagram in the
category Top of topological spaces. The shape category 𝒟 for this diagram
is defined as the comma category 𝑃 ↓ •, where • is the only object of 𝑃. It
has as objects arrows of 𝑃 and as morphisms pairs (𝑝, 𝑞), with domain 𝑝𝑞 and
codomain 𝑝, where 𝑝, 𝑞 ∈ 𝑃. The composition of such morphisms is given by
(𝑝, 𝑞)(𝑝𝑞, 𝑟) ∶= (𝑝, 𝑞𝑟). This is illustrated by

• •

•

•

(in 𝑃)

p

pq

pqr

(in 𝒟).

𝑝 q𝑝𝑞

r
𝑝𝑞𝑟

qr
(𝑝, q)

(𝑝𝑞, r)
(𝑝, qr)

(48)

For comma categories, see [23, Exercises 1.3.vi–vii]. Compare the category 𝒟
to the categories 𝒟𝑥 in [20, paragraph following Lemma 8.2].

The data of the diagram 𝒟 → Top is given as follows: The image of 𝑝 ∈ 𝒟0

is the quotient space of 𝒳𝑝 with respect to the right 𝐺-action, namely

𝒳𝑝/𝐺 = 𝐺/𝜃𝑝(𝐺). (49)
11strictly unital homomorphisms of bicategories with a category as domain
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For 𝑝, 𝑞 ∈ 𝑃, the image of (𝑝, 𝑞) ∈ 𝒟1 is the map

𝜋𝑝,𝑞 ∶ 𝐺/𝜃𝑝𝑞(𝐺) → 𝐺/𝜃𝑝(𝐺) (50)
𝑔𝜃𝑝𝑞(𝐺) ↦ 𝑔𝜃𝑝(𝐺). (51)

Then (𝐺/𝜃𝑝(𝐺), 𝜋𝑝,𝑞) is a diagram in Top with domain category 𝒟, see [20,
paragraph following Lemma 8.2].

Remark 5.7. We denote by [𝑔]𝑝 the coset 𝑔𝜃𝑝(𝐺) ∈ 𝐺/𝜃𝑝(𝐺), for 𝑔 ∈ 𝐺 and
𝑝 ∈ 𝑃.

The limit of (𝐺/𝜃𝑝(𝐺), 𝜋𝑝,𝑞) will serve as the space on which the universal
action of the dynamical system 𝐷𝔊𝔯 will be defined (compare [20, paragraph
following Lemma 8.2]).

Lemma 5.8. A limit of (𝐺/𝜃𝑝(𝐺), 𝜋𝑝,𝑞) is given by the set

Ω ∶= {([𝑔𝑝]𝑝)𝑝∈𝑃 ∈ ∏
𝑝∈𝑃

𝐺/𝜃𝑝(𝐺) ∣ [𝑔𝑝𝑞]𝑝 = [𝑔𝑝]𝑝 for all 𝑝, 𝑞 ∈ 𝑃} (52)

equipped with the topology on Ω generated by the cylinder sets

𝑍Ω
(ℎ1,𝑝1),…,(ℎ𝑚,𝑝𝑚) ∶= {([𝑔𝑝])𝑝∈𝑃 ∈ Ω ∣ [𝑔𝑝𝑖

]𝑝𝑖
= [ℎ𝑖]𝑝𝑖

, for 𝑖 = 1, … , 𝑚} (53)

for 𝑝𝑗 ∈ 𝑃, ℎ𝑗 ∈ 𝒳𝑝𝑗
= 𝐺, for 𝑗 = 1, … , 𝑚, for 𝑚 ∈ ℕ, which are closed in this

topology, and the projections

𝔭𝑝 ∶ Ω → ∏
𝑝′∈𝑃

𝐺/𝜃𝑝′(𝐺) → 𝐺𝑝/𝜃𝑝(𝐺)∶ ([𝑔𝑝′]𝑝′)𝑝′∈𝑃 ↦ [𝑔𝑝]𝑝 (54)

as legs of the limit cone.

Proof. By [23, Proposition 3.5.2], Top is complete; hence the limit exists; and
in the proof of the proposition, it is explained that since the forgetful functor
𝑈∶ Set → Top is represented by the space with one point, by [23, Proposition
3.4.5], 𝑈 preserves limits. In fact, a limit object in Top can be obtained from
the limit of the underlying set diagram by equipping the limit set with the
coarsest topology such that the legs of the limit cone are continuous (see [23,
Example 3.5.3]). By [23, Theorem 3.4.12], a limit object for (𝐺/𝜃𝑝(𝐺), 𝜋𝑝,𝑞) is
alternatively given by the limit object, or, more specifically, equaliser, for the
diagram

∏
𝑝∈𝒟0=𝑃

𝐺/𝜃𝑝(𝐺) ∏
(𝑝,𝑞)∈𝒟1

𝐺/𝜃𝑝(𝐺)
𝑐

𝑑 (55)

in Top, where
𝑐(([𝑔𝑝]𝑝)𝑝∈𝑃) ∶= ([𝑔𝑝]𝑝)(𝑝,𝑞)∈𝒟1

and
𝑑(([𝑔𝑝]𝑝)𝑝∈𝑃) ∶= ([𝜋𝑝,𝑞([𝑔𝑝𝑞]𝑝𝑞)]𝑝)(𝑝,𝑞)∈𝒟1 = ([𝑔𝑝𝑞]𝑝)(𝑝,𝑞)∈𝒟1.

The underlying set of this equaliser is the equaliser of the underlying diagram
of sets (see above). Thus, the definition of Ω in (52) is such that the set Ω is
this underlying set.
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What is the coarsest topology on Ω, such that 𝑐 and 𝑑 are continuous? A
subbasis of ∏(𝑝,𝑞)∈𝒟1 𝐺/𝜃𝑝(𝐺) is given by the family of closed cylinder sets

̃𝑍ℎ,(𝑝,𝑞) (56)

∶= {([𝑔(𝑟,𝑠)]𝑟)(𝑟,𝑠)∈𝒟1 ∈ ∏
(𝑟,𝑠)∈𝒟1

𝐺/𝜃𝑟(𝐺) ∣ [𝑔(𝑝,𝑞)]𝑝 = [ℎ]𝑝 for all 𝑞 ∈ 𝑃} . (57)

The right topology on Ω is thus the one generated by the sets

Ω ∩ 𝑐−1( ̃𝑍ℎ,(𝑝,𝑞)) = {([𝑔𝑟])𝑟∈𝑃 ∈ Ω ∣ [𝑔𝑝]𝑝 = [ℎ]𝑝} = 𝑍Ω
(ℎ,𝑝)

and

Ω ∩ 𝑑−1( ̃𝑍ℎ,(𝑝,𝑞)) = {([𝑔𝑟])𝑟∈𝑃 ∈ Ω ∣ [𝑔𝑝𝑞]𝑝 = [ℎ]𝑝 for all 𝑞 ∈ 𝑃} = 𝑍Ω
(ℎ,𝑝)

for ℎ ∈ 𝐺, (𝑝, 𝑞) ∈ 𝒟1; and those sets are closed in this topology. The last
equality is due to the coherence relations in the definition of Ω. Such sets are all
of the form as the ones in (53) and the ones in (53) are exactly the intersections
of positive finite numbers of such sets. Thus the sets in (53) form a basis of Ω
and are closed. Inspecting the theory [23, Theorem 3.4.14] is based upon reveals
that the maps in (54) are the legs of the (original) limit cone.

Remark 5.9. Albandik constructs a diagram of which (𝐺/𝜃𝑝(𝐺), 𝜋𝑝,𝑞) is the
special case obtained by replacing a general locally compact étale groupoid by
the group 𝐺 (see [1, Section 3.3.1]). He considers the limit ℋ0 (see [1, (3.29)])
of it. Thus, in our special case, Ω = ℋ0.

Lemma 5.10. The space Ω is compact if and only if 𝜃𝑝(𝐺) ≤ 𝐺 has finite index
for all 𝑝 ∈ 𝑃.

Proof. Suppose that 𝜃𝑝(𝐺) ≤ 𝐺 has finite index for all 𝑝 ∈ 𝑃. Then 𝐺/𝜃𝑝(𝐺) is
finite for all 𝑝 ∈ 𝑃. By Tychonoff’s Theorem, this implies that ∏𝑝∈𝑃 𝐺/𝜃𝑝(𝐺)
with the product topology is compact. The topology of Ω ⊆ ∏𝑝∈𝑃 𝐺/𝜃𝑝(𝐺)
is the relative topology with respect to the product topology (see Lemma 5.8).
Since Ω is closed in the product topology, it is compact. Conversely, suppose that
there is 𝑝 ∈ 𝑃 such that 𝜃𝑝(𝐺) ≤ 𝐺 has infinite index. Then ⨆

[𝑥]∈𝐺/𝜃𝑝(𝐺) 𝑍Ω
(𝑥,𝑝)

is an infinite partition of Ω consisting of open sets, which implies that Ω is not
compact.

Definition 5.11 ([26, Definition 3.6 and Lemma 3.9]). Let the diagonal of
𝒪[𝐺, 𝑃 , 𝜃𝑝], denoted 𝒟, be its sub-𝐶∗-algebra generated by the projections 𝑒𝑔,𝑝
for 𝑔 ∈ 𝐺 and 𝑝 ∈ 𝑃. Let 𝐺𝜃 be its spectrum.

Remark 5.12. In Stammeier’s finite-type case, the map Ω → 𝐺𝜃 by 𝜔 =
([𝑔𝑝])𝑝∈𝑃 ↦ 𝜒𝜔, where

𝜒𝜔(𝑒𝑔,𝑝) = 𝕀[𝑔]𝑝=[𝑔𝑝]𝑝, (58)
for 𝑔 ∈ 𝐺, 𝑝 ∈ 𝑃, where 𝕀 is the indicator function, seems likely to be a homeo-
morphism, such that 𝐶(Ω) is isomorphic to 𝒟. (Ω is compact by Lemma 5.10)
Compare the description of the topology of 𝐺𝜃 from [26, Lemma 3.9] to Ω. This
is not so in the non-finite-type case: By [26, Lemma 3.9], 𝐺𝜃 is compact. But
if there exists 𝑝 ∈ 𝑃 such that 𝜃𝑝(𝐺) ≤ 𝐺 has infinite index, then, by Lemma
5.10, Ω is not compact.
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Now we specify how 𝐷𝔊𝔯 acts on Ω. This is a special case of the construction
in [20, around Lemma 8.4].

Lemma 5.13 (compare [20, second to last paragraph before Lemma 8.4]). The
space Ω ⊆ ∏𝑝∈𝑃 𝐺/𝜃𝑝(𝐺) carries a left 𝐺-action coming from the left regular
𝐺-action on 𝐺, given by

𝑔.([𝜔𝑝]𝑝)𝑝∈𝑃 ∶= ([𝑔𝜔𝑝]𝑝)𝑝∈𝑃 (59)

for all 𝑔 ∈ 𝐺, ([𝜔𝑝]𝑝)𝑝∈𝑃 ∈ Ω.

Proof. For each 𝑝 ∈ 𝑃, 𝐺 acts on the discrete space 𝒳𝑝/𝐺 = 𝐺/𝜃𝑝(𝐺) by

𝑔.[𝑥]𝑝 ∶= [𝑔𝑥]𝑝,

for all 𝑔 ∈ 𝐺, 𝑥 ∈ 𝒳𝑝 = 𝐺. Those actions consist of maps

𝑎𝑝 ∶ 𝐺 × (𝐺/𝜃𝑝(𝐺)) → 𝐺/𝜃𝑝(𝐺),

for 𝑝 ∈ 𝑃, which are continuous maps between discrete spaces. For 𝑝, 𝑞 ∈ 𝑃, the
diagram of continuous maps

𝐺 × (𝐺/𝜃𝑝(𝐺))

𝐺 × (𝐺/𝜃𝑝𝑞(𝐺))

𝐺/𝜃𝑝(𝐺)

𝐺/𝜃𝑝𝑞(𝐺),
id𝐺 × 𝜋𝑝,𝑞

𝑎𝑝

𝑎𝑝𝑞
𝜋𝑝,𝑞

(𝑔, [𝑥]𝑝)

(𝑔, [𝑥]𝑝𝑞)

[𝑔𝑥]𝑝

[𝑔𝑥]𝑝𝑞

commutes, thus witnessing that the maps 𝑎𝑝, 𝑝 ∈ 𝑃, form a natural trans-
formation between the 𝒟-shaped diagrams (𝐺 × (𝐺/𝜃𝑝(𝐺)), id𝐺 × 𝜋𝑝,𝑞) and
(𝐺/𝜃𝑝(𝐺), 𝜋𝑝,𝑞). The former diagram has the limit 𝐺 × Ω where (id𝐺 × 𝔭𝑝),
𝑝 ∈ 𝑃, form the limit cone. Now the maps

(𝑎𝑝 ∘ (id𝐺 × 𝔭𝑝)) ∶ 𝐺 × Ω → 𝐺/𝜃𝑝(𝐺)∶ (𝑔, ([𝜔𝑝]𝑝)𝑝∈𝑃) ↦ [𝑔𝜔𝑝]𝑝 (60)

form a cone over (𝐺/𝜃𝑝(𝐺), 𝜋𝑝,𝑞). This cone induces a continuous map 𝑎∶ 𝐺 ×
Ω → Ω, for which the diagram

𝐺 × (𝐺/𝜃𝑝(𝐺))

𝐺 × Ω

𝐺/𝜃𝑝(𝐺)

Ω,
id𝐺 × 𝔭𝑝

𝑎𝑝

𝑎
𝔭𝑝

commutes for all 𝑝 ∈ 𝑃. Thus, since 𝔭(([𝑔𝑝]𝑝)𝑝∈𝑃) = [𝑔𝑝]𝑝, 𝑎 is determined by
(60) as

𝑎∶ 𝐺 × Ω → Ω∶ (𝑔, ([𝜔𝑝]𝑝)𝑝∈𝑃) ↦ ([𝑔𝜔𝑝]𝑝)𝑝∈𝑃. (61)

Being a continuous map, 𝑎 witnesses that (59) defines an action of 𝐺 on Ω.

Specialising [20], we describe how, given that 𝑃 fulfils the Ore conditions
(see 5.15), the left 𝐺-action on Ω from Lemma 5.13 extends to an action of 𝐷𝔊𝔯
on Ω. Compare the following to [20, paragraph preceding Lemma 8.4].

The definition of Ω suggests that the maps

𝒳𝑝 × 𝒳𝑞 → 𝒳𝑝𝑞 ∶ (𝑥, 𝑦) ↦ 𝜇𝑝,𝑞([𝑥, 𝑦]) = [𝑥𝜃𝑝(𝑦)] (62)
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could somehow be used in order to define an action of 𝒳𝑝 on Ω. Indeed, if we
define

Ω′ ∶ = lim
𝑞,(𝑞,𝑠)

(𝐺/𝜃𝑝𝑞(𝐺), 𝜋𝑝𝑞,𝑠), (63)

= {([𝑔𝑝𝑞])𝑞∈𝑃 ∈ ∏
𝑞∈𝑃

𝐺/𝜃𝑝𝑞(𝐺) ∣ [𝑔𝑝𝑞𝑠]𝑝𝑞 = [𝑔𝑝𝑞]𝑝𝑞 for all 𝑞, 𝑠 ∈ 𝑃} (64)

the maps in (62) induce a map

𝒳𝑝 × Ω → Ω′ (𝑥, ([𝑔𝑞])𝑞) ↦ ([𝑥𝜃𝑝(𝑔𝑞)]𝑝𝑞)𝑞. (65)

There is also a canonical map

Ω′ ← Ω, ([𝑔𝑝𝑞]𝑝𝑞)𝑞 ↤ ([𝑔𝑟])𝑟. (66)

Remark 5.14. While an element of Ω′ can be seen as a “partial specification”
of an element of Ω – a relation given by the map in (66) – beware that the
𝑞-component [𝑔𝑝𝑞]𝑝𝑞 of ([𝑔𝑝𝑞]𝑝𝑞)𝑞∈𝑃 ∈ Ω′ corresponds to the 𝑝𝑞-component [𝑔𝑝𝑞]𝑝𝑞
of ([𝑔�̃�]�̃�)�̃�∈𝑃 ∈ Ω. So when elements of Ω′ and Ω are seen as dependent functions
(𝑞 ∈ 𝑃) → 𝐺/𝜃𝑝𝑞(𝐺), and ( ̃𝑝 ∈ 𝑃) → 𝐺/𝜃�̃�(𝐺), respectively, the elements of the
former do not come from those of the latter merely by restriction of the domain.

The data of an inverse of the map in (66) would consist of a way to extend
a coherent choice of an element of 𝒳𝑝𝑞/𝒢 for each 𝑞 ∈ 𝑃 to a coherent choice
of elements of 𝒳𝑟/𝒢 for all 𝑟 ∈ 𝑃. In order to obtain such an extension in a
canonical way, we require the monoid 𝑃 to fulfil the right12 Ore conditions:

Definition 5.15. [see [1, paragraph after Definition 3.1 and Definition 3.2] and
[2, Definition 3.7], compare [20, Lemma 8.4]] A monoid 𝑃 fulfils the right Ore
conditions if

• for any 𝑝1, 𝑝2 ∈ 𝑃 there exist 𝑞1, 𝑞2 ∈ 𝑃 such that 𝑝1𝑞1 = 𝑝2𝑞2 and

• for any 𝑝1, 𝑝2, 𝑟 ∈ 𝑃 for which 𝑟𝑝1 = 𝑟𝑝2 there exists 𝑞 ∈ 𝑃 such that
𝑝1𝑞 = 𝑝2𝑞.

Remark 5.16. In Stammeier’s case, 𝑃 is commutative. It is easy to check that
then, 𝑃 fulfils the right Ore conditions.

Let again 𝑝 ∈ 𝑃. If 𝑃 fulfils the right Ore conditions, then for each 𝑟 ∈ 𝑃,
there are 𝑞𝑝,𝑟, 𝑠𝑝,𝑟 ∈ 𝑃, such that 𝑝𝑞𝑝,𝑟 = 𝑟𝑠𝑝,𝑟. Hence, given an element ([𝑔𝑝𝑞]𝑝𝑞)𝑞
of Ω′, we can now specify an arbitrary 𝑟-component [𝑔𝑟]𝑟 of an element ([𝑔𝑟]𝑟)𝑟
of Ω by

[𝑔𝑟]𝑟 ∶= 𝜋𝑟,𝑠𝑝,𝑟
([𝑔𝑝𝑞𝑝,𝑟

]𝑟𝑠𝑝,𝑟
) = [𝑔𝑝𝑞𝑝,𝑟

]𝑟, (67)
where for each 𝑟 ∈ 𝑃, 𝑞𝑝,𝑟 ∈ 𝑃 is such that 𝑝𝑞𝑝,𝑟 = 𝑟𝑠 for some 𝑠 ∈ 𝑃.

Lemma 5.17 (compare [20, Lemma 8.5]). Suppose that 𝑃 fulfils the right Ore
conditions. Then (67) defines an inverse for the map in (66). Composing it
with the maps in (65), we obtain the maps

𝛼𝑝 ∶ 𝒳𝑝 × Ω → Ω′ → Ω (68)
(𝑥, ([𝑔𝑞])𝑞) ↦ ([𝑥𝜃𝑝(𝑔𝑞𝑝,𝑟

)]𝑟)𝑟,
12as opposed to left, not to wrong
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where for each 𝑟 ∈ 𝑃, 𝑞𝑟,𝑠 ∈ 𝑃 is such that 𝑝𝑞𝑝,𝑟 = 𝑟𝑠, for 𝑝 ∈ 𝑃, which descend
to homeomorphisms

𝒳𝑝 ∘𝐺 Ω
∼
→ Ω, (69)

and thus define a 𝐷𝔊𝔯-action (𝛼𝑝)𝑝∈𝑃 on Ω. This action is universal.

Proof. Inspecting the constructions in [20, Section 8], considering the references
above and the proof of [20, Lemma 8.5], one can see that our constructions are
a special case thereof. By [20, Lemma 8.5], the maps presented as

𝒳𝑔 ×𝑠,𝒢0
𝑠(𝑔),𝑟 Ω𝑠 → lim←−

𝒟𝑠(𝑔)

(𝒳𝑔ℎ/𝒢𝑠(ℎ), 𝜋𝑔ℎ,𝑘) ≅ Ω𝑟(𝑔), (70)

for “𝑔 ∈ 𝒞”, descend to homeomorphisms “𝒳𝑔 ∘ Ω𝑠(𝑔) → Ω𝑟(𝑔)”, which define an
“𝐹-action” on “Ω”.

Under our specialisation, “𝐹” corresponds to 𝐷𝔊𝔯, “Ω” and “Ω𝑟(𝑔)”, for “𝑔 ∈
𝒞”, both correspond to Ω at the same time, “𝒳𝑔”, for “𝑔 ∈ 𝒞”, correspond to
𝒳𝑝, for 𝑝 ∈ 𝑃;

lim←−
𝒟𝑠(𝑔)

(𝒳𝑔ℎ/𝒢𝑠(ℎ), 𝜋𝑔ℎ,𝑘) (71)

– in the proof denoted as “Ω′” – corresponds to Ω′, and the first parts of the
maps in (70), for 𝑔 ∈ 𝒞, correspond to the maps in (65), for 𝑝 ∈ 𝑃. Inspecting
the proof of [20, Lemma 8.5], one can see that the map from right to left in the
isomorphism on the right in (70) corresponds to (66), and that the inverse of
that map specialises to a map Ω′ → Ω which is indeed described by (67). This
shows that (67) is well defined, defines an inverse to (66), that (68) is well defined
and that the picture in (70) corresponds to the picture in (68). Then indeed
[20, Lemma 8.5] implies that the maps in (68) descend to homeomorphisms

𝒳𝑝 ∘𝐺 Ω
∼
→ Ω,

𝑝 ∈ 𝑃 which define a 𝐷𝔊𝔯-action on Ω. By [20, Theorem 8.7], this action is
universal.

Remark 5.18. In Remark 5.14 we mentioned that the elements of Ω′ can be
seen as partial specifications of elements of Ω, a relation given by the map in
(66).

Lemma 5.17 shows that, given that 𝑃 fulfils the right Ore conditions, such a
partial specification determines an element of Ω, which can be obtained by the
formula in (67). Specifically, an element ([𝑔�̃�]�̃�)�̃�∈𝑃 ∈ Ω is determined by [𝑔𝑝𝑞]𝑝𝑞,
for 𝑞 ∈ 𝑃.

5.3 Slice-wise action of 𝐷𝔊𝔯 by partial homeomorphisms
In [20, Section 5], starting from a diagram13 𝐹 containing étale groupoid cor-
respondences 𝒳𝑔, 𝑔 ∈ 𝒞, and an action (𝜗𝑔 ∶ 𝒳𝑔 ∘𝒢s(𝑔)

𝑌s(𝑔) → 𝑌r(𝑔))𝑔∈𝒞 of this
diagram on a space 𝑌, Meyer constructs an inverse semigroup together with an
action by partial homeomorphisms on 𝑌 = ⨆

𝑥∈𝒞0 𝑌𝑥.
The first step of this construction is to specify a type of open subsets (slices)

𝒰 (see [20, Section 5.1]) of the correspondences 𝒳𝑔, 𝑔 ∈ 𝒞, which are “small
13strictly unital homomorphisms with a category as domain
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enough” such that the quotient map 𝔮𝑔 ∶ 𝒳𝑔 ×s,𝒢s(𝑔),r 𝑌s(𝑔) → 𝒳𝑔 ∘𝒢s(𝑔)
𝑌s(𝑔) with

respect to the diagonal action by 𝒢s(𝑔) together with such 𝒰 gives rise to a
homeomorphism

𝑌s(𝑔) ⊇ r−1(s(𝒰)) ≅ 𝒰 ×s,𝒢s(𝑔),r r−1(s(𝒰))

→ 𝔮𝑔(𝒰 ×s,𝒢s(𝑔),r r−1(s(𝒰))) ⊆ 𝒳𝑔 ∘𝒢s(𝑔)
𝑌s(𝑔),

(72)

for 𝑔 ∈ 𝒞, see [20, Lemma 5.1]. Post-composing the homeomorphisms 𝜗𝑔 encod-
ing the action of 𝐹 on 𝑌 results in partial homeomorphisms 𝜗(𝒰) from 𝑌s(𝑔) to
𝑌r(𝑔), for 𝑔 ∈ 𝒞.

With 𝒮(𝒳) being the set of slices of a correspondence 𝒳,

⨆
𝑔∈𝒞

𝒮(𝒳𝑔)/{empty slices of 𝒳𝑔, for all 𝑔 ∈ 𝒞, are equivalent}

inherits a multiplication from the diagram 𝐹, see [20, Section 5.1]. The action
of 𝐹 on 𝑌 induces an action on 𝑌 by the partial homeomorphisms 𝜗(𝒰), for
𝒰 ∈ 𝒮(𝒳𝑔), 𝑔 ∈ 𝒞, which respects this multiplication, see [20, Section 5.2].

This first step will be specialised to the dynamical system 𝐷𝔊𝔯 in 𝔊𝔯 (see
Lemma 4.30) and its universal action ((𝛼𝑝)𝑝∈𝑃, Ω) (see Lemma 5.17) constructed
in Section 5.1. The construction of this universal action used that 𝑃 fulfils
the right Ore conditions (see Definition 5.15), a requirement we will therefore
implicitly assume to be fulfilled throughout this section.

Definition 5.19 ([5, Definition 7.2] or [20, paragraph preceding Definition 2.1
and Definition 2.12]). A slice of an étale groupoid 𝒢 is an open subset 𝒰 ⊆ 𝒢
such that s|𝒰 and r|𝒰 are injective. Let 𝒢 and ℋ be locally compact étale
groupoids. A slice of a locally compact étale groupoid correspondence 𝒳∶ ℋ ←
𝒢 is an open subset 𝒰 ⊆ 𝒳 such that s|𝒰 ∶ 𝒰 → 𝒢0 and p|𝒰 ∶ 𝒰 → 𝒳/𝒢 are
injective.

Remark 5.20 (see [5, second paragraph after Definition 7.2]). The slices of 𝒢
seen as a correspondence 𝒢 ← 𝒢 (see Example 4.14) are the same as its slices
as a groupoid.

Remark 5.21. In other texts ([1],[2],[4],[25]), slices (of groupoids or of corre-
spondences) are called bisections. The articles [5],[20] and [15] use the term
slices, as we do, following [11].

Let 𝒰 and 𝒱 be slices of 𝒳𝑝 and 𝒳𝑞, respectively. Then

𝒰𝒱 ∶= {𝜇𝑝,𝑞([𝑢, 𝑣]) ∈ 𝒳𝑝𝑞 ∣ 𝑢 ∈ 𝒰, 𝑣 ∈ 𝒱, s(𝑢) = r(𝑣)} (73)

defines a slice of 𝒳𝑝𝑞 – inheriting the range map from 𝒰 and the source map from
𝒱 – by [5, Lemma 7.11] and the fact that 𝜇𝑝,𝑞 is a biequivariant homeomorphism.
For two slices 𝒰1 and 𝒰2 of 𝒳𝑝,

⟨𝒰1 | 𝒰2⟩𝑝 ∶= {⟨𝑢 | 𝑣⟩𝑝 ∈ 𝒢 ∣ 𝑥 ∈ 𝒰1, 𝑦 ∈ 𝒰2, p(𝑥) = p(𝑦)} (74)

defines a slice of 𝒢 – as a correspondence, or, equivalently, as a groupoid. Com-
pare [20, Section 5.1].
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Lemma 5.22. For a groupoid correspondence between two discrete groups as in
Example 4.13, and specifically for the 𝒳𝑝, 𝑝 ∈ 𝑃, in our dynamical system 𝐷𝔊𝔯,
the slices are just the empty set, and the sets containing exactly one element of
the correspondence.

Proof. Let 𝒳∶ 𝐻 ← 𝐺 be a locally compact étale groupoid correspondence
between two discrete groups 𝐻 and 𝐺. Since the anchor map s ∶ 𝒳 → 𝐺0 =∶ {∗}
is a local homeomorphism, 𝒳 carries the discrete topology. If 𝒰 is a slice of 𝒳,
then, since s|𝒰 ∶ 𝒰 → 𝐺0 = {∗} is injective, 𝒰 can have at most one element.
Conversely, if 𝒰 ⊆ 𝒳 is the empty set or a singleton, it is open, and the maps
s|𝒰 ∶ 𝒰 → 𝒢0 and p|𝒰 ∶ 𝒰 → 𝒳/𝒢 are injective, since their domain contains at
most one element; hence 𝒰 is a slice of 𝒳. Compare the proof of [20, Lemma
9.2].

We describe a semigroup of (labelled) slices which will later be extended to
an inverse semigroup 𝐼(𝐷𝔊𝔯) described in Section 5.4.

Lemma 5.23 (compare [20, Section 5.1]). The dynamical system 𝐷𝔊𝔯 together
with the multiplication of slices given by (73) gives rise to a semigroup 𝒮(𝐷𝔊𝔯)
with underlying set

{(𝑥, 𝑝) ∣ 𝑝 ∈ 𝑃 , 𝑥 ∈ 𝒳𝑝} ⊔ {0} (75)

with multiplication given by

(𝑥1, 𝑝1) ⋅ (𝑥2, 𝑝2) ∶= (𝜇𝑝1,𝑝2
([𝑥1, 𝑥2]), 𝑝1𝑝2) = (𝑥1 ⋅ 𝜃𝑝1

(𝑥2), 𝑝1𝑝2), (76)

for 𝑥𝑖 ∈ 𝒳𝑝𝑖
, 𝑝𝑖 ∈ 𝑃, 𝑖 = 1, 2, and the rule that 0 is an absorbing element.

Proof. The multiplication of slices given by (73) induces a multiplication on the
set

⨆
𝑝∈𝑃

𝒮(𝒳𝑝).

This multiplication is associative due to (40). The set {(𝑝, ∅) | 𝑝 ∈ 𝑃} of empty
slices for different 𝑝 ∈ 𝑃 is an absorbing subset. Hence identifying its elements
is a semigroup congruence relation. The non-empty slices of 𝒳𝑝 are of the
form (𝑝, {𝑥}), 𝑥 ∈ 𝒳𝑝, 𝑝 ∈ 𝑃 by Lemma 5.22. By replacing {𝑥} by 𝑥 and
swapping the components of the pairs, taking the quotient with respect to the
congruence relation described above, and calling the unified empty slice, which
is an absorbing element in the quotient, 0, we obtain a semigroup matching the
description in the lemma.

Lemma 5.24. Define the semigroup 𝒮×(𝐷𝔊𝔯) ∶= 𝒮(𝐷𝔊𝔯)⧵{0}. Then 𝒮×(𝐷𝔊𝔯) ≅
𝐺 ⋊𝜃 𝑃, where 𝐺 ⋊𝜃 𝑃 is the semidirect product of discrete semigroups as in
[26, second paragraph after Definition A.2] (see also [26, Proposition 3.18]).

Proof. From the definition of 𝒮(𝐷𝔊𝔯) in Lemma 5.23 it is easy to see that
𝒮×(𝐷𝔊𝔯) = 𝒮(𝐷𝔊𝔯) ⧵ {0} is a subsemigroup of 𝒮(𝐷𝔊𝔯) with the multiplication
given by (76) and that it coincides as a semigroup with 𝐺 ⋊𝜃 𝑃 as described in
[26, second paragraph following Definition A.2].

Remark 5.25. In Stammeier’s case, 𝐺⋊𝜃𝑃 is identical to the semigroup “𝐺⋊𝜃𝑃”
occurring in [26, Proposition 3.18].
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Following [20], we will describe an encoding of the action in (68) by an
action of 𝒮(𝐷𝔊𝔯) by partial homeomorphisms on Ω. To this end, we define
partial homeomorphisms of a set and their composition.

Definition and Lemma 5.26 (see [11, Definition 4.2] and [20, Example 5.6]).
Let 𝑌 be a topological space. Let 𝑓 and 𝑔 be two partial homeomorphisms on 𝑌,
that is, homeomorphisms between open subsets of 𝑌. Then a partial homeomor-
phism 𝑔𝑓, the concatenation of 𝑔 and 𝑓, is defined by

𝑔𝑓∶ 𝑓−1(dom(𝑔) ∩ im(𝑓)) → 𝑔(dom(𝑔) ∩ im(𝑓)) ∶ 𝑥 ↦ 𝑔(𝑓(𝑥)). (77)

This concatenation, together with the empty map ∅∶ ∅ → ∅, which is absorbing
with respect to the concatenation, turns the set ℐ(𝑌 ) of partial homeomorphisms
on 𝑌 into a semigroup with zero. When 𝑓∶ 𝑈 → 𝑉 is a partial homeomorphism on
𝑌 with open domain 𝑈 ⊆ 𝑌 and open codomain 𝑉 ⊆ 𝑌, then we write 𝑓∗ ∶ 𝑉 → 𝑈
for its inverse. See Lemma 5.35 for the motivation for this notation.

The partial homeomorphisms on Ω associated to (𝑥, 𝑝) ∈ 𝒮(𝐷𝔊𝔯), 𝑝 ∈ 𝑃,
𝑥 ∈ 𝒳𝑝, are described in the next lemma.

Lemma 5.27 (compare [20, Lemma 5.1 and paragraph preceding Lemma 5.2]).
For 𝑝 ∈ 𝑃, the map (68) induces a homeomorphism

𝜗(𝑥,𝑝) ∶ Ω → 𝑍Ω
(𝑥,𝑝) ⊆ Ω, (78)

for each 𝑥 ∈ 𝒳𝑝, described by

𝜗(𝑥,𝑝)(([𝑔𝑞])𝑞) = ([𝑥𝜃𝑝(𝑔𝑞𝑝,𝑟
)]𝑟)𝑟 for ([𝑔𝑞]𝑞)𝑞 ∈ Ω, (79)

where 𝑞𝑝,𝑟 ∈ 𝑃 is such that there exists 𝑠𝑝,𝑟 ∈ 𝑃 with 𝑝𝑞𝑝,𝑟 = 𝑟𝑠𝑝,𝑟, for all 𝑟 ∈ 𝑃.

Proof. Fix 𝑝 ∈ 𝑃 and 𝑥 ∈ 𝒳𝑝. By Lemma 5.22, {𝑥} is a slice of 𝒳𝑝. Then, by
[20, Lemma 5.1],

Ω → 𝔮({𝑥} × Ω) ⊆ 𝒳𝑝 ∘ Ω∶ 𝜔 ↦ 𝔮(𝑥, 𝜔),

is a homeomorphism. Here, 𝔮∶ 𝒳𝑝×Ω → 𝒳𝑝∘Ω is the quotient map with respect
to the diagonal action of 𝐺. Post-composing the homeomorphism 𝒳𝑝 ∘ Ω → Ω
in (69) gives a partial homeomorphism which is described by (79), compare
[20, paragraph preceding Lemma 5.2]. It remains to show that its image is
𝑍Ω

(𝑥,𝑝). For any ([𝑔𝑝]𝑝)𝑝∈𝑃 ∈ Ω, (𝜗(𝑥,𝑝)(([𝑔𝑞]𝑞)𝑞∈𝑃))𝑝 = [𝑥𝜃𝑝(𝑔1)]𝑝 = [𝑥]𝑝, and
hence 𝜗(𝑥,𝑝)(([𝑔𝑞]𝑞)𝑞∈𝑃) ∈ 𝑍Ω

(𝑥,𝑝), Conversely, suppose that ([ ̃𝑔𝑞]𝑞)𝑞∈𝑃 ∈ Ω with
[ ̃𝑔𝑝]𝑝 = [𝑥]𝑝. Then, for each 𝑞 ∈ 𝑃, [ ̃𝑔𝑝𝑞]𝑝 = [𝑥]𝑝, and hence, there exists 𝑔𝑞 ∈ 𝐺
such that ̃𝑔𝑝𝑞 = 𝑥𝜃𝑝(𝑔𝑞). For 𝑞, 𝑟 ∈ 𝑃, since [ ̃𝑔𝑝𝑞𝑟]𝑝𝑞 = [ ̃𝑔𝑝𝑞]𝑝𝑞, there is ℎ ∈ 𝐺
such that ̃𝑔𝑝𝑞𝑟 = ̃𝑔𝑝𝑞𝜃𝑝𝑞(ℎ); hence

𝑥𝜃𝑝(𝑔𝑞𝑟) = ̃𝑔𝑝𝑞𝑟 = ̃𝑔𝑝𝑞𝜃𝑝𝑞(ℎ) = 𝑥𝜃𝑝(𝑔𝑞)𝜃𝑝𝑞(ℎ) = 𝑥𝜃𝑝(𝑔𝑞𝜃𝑞(ℎ)),

which implies 𝑔𝑞𝑟 = 𝑔𝑞𝜃𝑞(ℎ) by injectivity of 𝜃𝑝, and hence [𝑔𝑞𝑟]𝑞 = [𝑔𝑞]𝑞; thus,
([𝑔𝑞]𝑞)𝑞∈𝑃 is an element of Ω. Then

(𝜗(𝑥,𝑝)(([𝑔𝑞]𝑞)𝑞∈𝑃))
𝑝𝑞

= [𝑥𝜃𝑝(𝑔𝑞)]𝑝𝑞 = [ ̃𝑔𝑝𝑞]𝑝𝑞.

By Remark 5.18, this implies that 𝜗(𝑥,𝑝)(([𝑔𝑞]𝑞)𝑞∈𝑃) = ([ ̃𝑔�̃�]�̃�)�̃�∈𝑃. We have thus
shown that the image of 𝜗(𝑥,𝑝) is 𝑍Ω

(𝑥,𝑝), which completes the proof.
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Lemma 5.28 (compare [20, Lemma 5.2]). Mapping 0 ∈ 𝒮(𝐷𝔊𝔯) to the empty
partial homeomorphism ∅ ∈ ℐ(Ω) and the other elements of 𝐷𝔊𝔯, that is, the
pairs (𝑥, 𝑝), for 𝑝 ∈ 𝑃, 𝑥 ∈ 𝒳𝑝, to the partial homeomorphisms (78), defines a
homomorphism 𝒮(𝐷𝔊𝔯) → ℐ(Ω) of semigroups with zero.

Proof. Since 0 ∈ 𝒮(𝐷𝔊𝔯) and ∅ ∈ ℐ(Ω) are the zeros in their respective semi-
groups with zero, it suffices to show that

𝜗(𝑥1,𝑝1)(𝑥2,𝑝2) = 𝜗(𝑥1,𝑝1)𝜗(𝑥2,𝑝2) (80)

for all 𝑝𝑖 ∈ 𝑃, 𝑥𝑖 ∈ 𝒳𝑝, 𝑖 = 1, 2. The pairs (𝑥𝑖, 𝑝𝑖) come from slices {𝑥𝑖}.
Their multiplication is based on the product of their associated slices as in (73)
and hence in [20, Section 5.1], see the proof of Lemma 5.23. The association
of partial homeomorphisms to pairs (𝑥𝑖, 𝑝𝑖) thus corresponds to the association
of partial homeomorphisms to slices in [20, paragraph preceding Lemma 5.2].
Hence, [20, Lemma 5.2] implies (80). This concludes the proof.

Remark 5.29. Suppose Stammeier’s conditions hold and Stammeier’s finite-
type condition holds. Then the action 𝜗 of 𝒮×(𝐷𝔊𝔯) on Ω by partial homeo-
morphisms induces an action 𝜗∗ of 𝒮×(𝐷𝔊𝔯) on 𝐶(Ω) by isometries. When we
identify 𝒮×(𝐷𝔊𝔯) with 𝐺 ⋊𝜃 𝑃 as in Lemma 5.24, the presumed isomorphism
𝐶(Ω) → 𝒟 in Remark 5.12 would be likely to be equivariant for 𝜗∗ and the
action of 𝐺 ⋊𝜃 𝑃 on 𝒟 by isometries described in [26, Proposition 3.18].

Remark 5.30. In the next proposition, we use Laca’s and Raeburn’s semigroup
crossed product construction for actions of semigroups on unital 𝐶∗-algebras (see
[16, Section 2]).

Remark 5.31. Suppose that Stammeier’s conditions hold and that Stammeier’s
finite-type condition holds. Suppose that we can identify 𝐶(Ω) with Stammeier’s
𝒟 as in Remark 5.12 and that this identification is equivariant for the actions of
𝒮×(𝐷𝔊𝔯) ≅ 𝐺⋊𝜃 𝑃 on 𝐶(Ω) and 𝒟 (see Remark 5.29). Then, by [26, Proposition
3.18] and Remark 5.29, the semigroup crossed product 𝐶(Ω) ⋊𝜗∗

𝒮×(𝐷𝔊𝔯) is
isomorphic to 𝒪[𝐺, 𝑃 , 𝜃].

5.4 Extension of the action to an inverse semigroup
We are halfway through the application of Meyer’s construction of an inverse
semigroup with an action by partial homeomorphisms, starting with an action
of an Ore-category shaped diagram of correspondences (see [20, Section 5]), to
the universal action of 𝐷𝔊𝔯 in the case that 𝑃 fulfils the right Ore conditions.

In Section 5.3, we specialised the first step of the construction, thus ob-
taining a semigroup 𝒮(𝐷𝔊𝔯) of (𝑃-indexed) slices and an action of it by partial
homeomorphisms on Ω. In this section, specialising the remainder of Meyer’s
construction (see [20, Sections 5.2 and 5.3]), we extend this action to an inverse
semigroup. Roughly speaking, this can be seen as adding the partial inverses
which will eventually be turned into inverses in a groupoid in Section 5.5.

Lemma 5.32 (compare [20, Lemma 5.2]). For 𝑝 ∈ 𝑃 and 𝑥, 𝑦 ∈ 𝒳𝑝,

𝜗∗
(𝑥,𝑝)𝜗(𝑦,𝑝) = {

𝜗(⟨𝑥 | 𝑦⟩𝑝,1), if [𝑥]𝑝 = [𝑦]𝑝,
0, otherwise.
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Recall that for 𝑥, 𝑦 ∈ 𝒳𝑝 with [𝑥]𝑝 = [𝑦]𝑝, ⟨𝑥 | 𝑦⟩𝑝 is the element 𝑔 ∈ 𝐺 such that
𝑦 = 𝑥𝜃𝑝(𝑔) (see Remark 4.31).

Proof. This follows from [20, Lemma 5.2] analogously to how (80) does; see the
proof of Lemma 5.28. Recall that the pairs (𝑥, 𝑝), (𝑦, 𝑞) come from the slices
{𝑥}, {𝑦} ∈ 𝒮(𝒳𝑝), see the proof of Lemma 5.28. It has to be observed that
(⟨𝑥 | 𝑦⟩𝑝 , 1), for 𝑥, 𝑦 ∈ 𝒳𝑝 with [𝑥]𝑝 = [𝑦]𝑝, 𝑝 ∈ 𝑃, come from the slice ⟨{𝑥} | {𝑦}⟩
as defined in (74).

Definition 5.33 ([20, second and third paragraph of Section 5.3]). An inverse
semigroup is a semigroup 𝑆 with the property that for each element 𝑎 ∈ 𝑆, there
exists a unique element 𝑎∗ such that 𝑎𝑎∗𝑎 = 𝑎 and 𝑎∗𝑎𝑎∗ = 𝑎∗.

An element 𝑒 ∈ 𝑆 is idempotent if 𝑒2 = 𝑒. The set of idempotents of 𝑆 is
denoted by 𝐸(𝑆). The idempotent elements form a commutative subsemigroup,
and 𝑠𝑒𝑠∗ ∈ 𝐸(𝑆) for all 𝑠 ∈ 𝑆, 𝑒 ∈ 𝐸(𝑆).

Observe that 𝑠∗𝑠, 𝑠𝑠∗ ∈ 𝐸(𝑆) for any 𝑠 ∈ 𝑆 in an inverse semigroup 𝑆.

Lemma 5.34. Let 𝑆 be an inverse semigroup. Let 𝑒, 𝑓 ∈ 𝐸(𝑆) be idempotents
and let 𝑠, 𝑢 ∈ 𝑆.

1. If 𝑠∗𝑢𝑒 = 𝑒, then 𝑢𝑒 = 𝑠𝑒.

2. 𝑒𝑓 = 𝑓𝑒.

3. 𝑒𝑠 = 𝑠𝑠∗𝑒𝑠.

Proof. In order to prove the first assertion, assume 𝑠∗𝑢𝑒 = 𝑒 and consider

𝑒𝑠∗(𝑢𝑒)𝑒𝑠∗ = 𝑒(𝑠∗𝑢𝑒)𝑠∗ = 𝑒𝑠∗, (81)
𝑢𝑒(𝑒𝑠∗)𝑢𝑒 = 𝑢𝑒(𝑠∗𝑢𝑒) = 𝑢𝑒. (82)

Then 𝑢𝑒 = 𝑠𝑒 follows from the uniqueness condition of the “inverses” in an
inverse semigroup (Definition 5.33).

For the second assertion, see [18, Theorem 3].
For the third assertion, observe that 𝑒𝑠𝑠∗ = 𝑠𝑠∗𝑒 by (2), because 𝑠∗𝑠 is

idempotent. Multiplying both sides with 𝑠 on the right yields 𝑒𝑠 = 𝑠𝑠∗𝑒𝑠.

Lemma 5.35 (see [11, Definition 4.2] and [20, Example 5.6]). Let 𝑌 be a topo-
logical space. Then the semigroup with zero ℐ(𝑌 ) of homeomorphisms 𝑈 → 𝑉,
where 𝑈, 𝑉 are open subsets of 𝑌, with multiplication given by (77), as in Defini-
tion and Lemma 5.26, extends to an inverse semigroup with zero with inverses
𝑓∗, for 𝑓∶ 𝑈 → 𝑉, given by the inverse partial homeomorphism of 𝑓 defined on
𝑉.

Definition 5.36 (compare [11, Definition 4.3]). An action of an inverse semi-
group 𝑆 on a topological space 𝑌 by local homeomorphisms is a semigroup
homomorphism 𝜗∶ 𝑆 → ℐ(𝑌 ) such that 𝑌 = ⋃

𝑠∈𝑆 dom(𝜗𝑠).

We denote by 𝐷𝑒 the domain of 𝜗𝑒 for an idempotent 𝑒 ∈ 𝐸(𝑆). Hence, 𝐷𝑠∗𝑠
is the domain of 𝜗𝑠, for an arbitrary 𝑠 ∈ 𝑆 (see [11, Notation 4.4]).
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Lemma 5.37 (see [11, neighbourhood of Notation 4.4 and Proposition 4.5]).
Suppose that 𝑒, 𝑓 ∈ 𝐸(𝑆) are idempotents and 𝑠 ∈ 𝑆. Then 𝜗𝑒 = id𝐷𝑒

, 𝐷𝑒𝑓 =
𝐷𝑒 ∩ 𝐷𝑓 and 𝜗𝑒𝑓 = id𝐷𝑒∩𝐷𝑓

. Furthermore, 𝑠𝑒𝑠∗ is idempotent and 𝐷𝑠𝑒𝑠∗ =
𝜗𝑠(𝐷𝑒 ∩ 𝐷𝑠∗𝑠).

Proof. Let 𝑥 ∈ 𝐷𝑒. Since 𝜗𝑒 is idempotent, 𝜗𝑒(𝑥) ∈ 𝐷𝑒 and 𝜗𝑒(𝜗𝑒(𝑥)) = 𝜗𝑒(𝑥).
Since 𝜗𝑒 is injective, 𝜗𝑒(𝑥) = 𝑥. Thus, 𝜗𝑒 is the identity map on its domain 𝐷𝑒.

It follows easily from the definition of multiplication in ℐ(𝑌 ) that 𝜗𝑒𝜗𝑓 =
id𝐷𝑒

id𝐷𝑓
has 𝐷𝑒 ∩ 𝐷𝑓 as domain and codomain and is the identity on it.

Since idempotents commute (see Lemma 5.34), 𝑠𝑒𝑠∗𝑠𝑒𝑠∗ = 𝑠𝑠∗𝑠𝑒𝑒𝑠∗ = 𝑠𝑒𝑠∗;
hence 𝑠𝑒𝑠∗ is idempotent. For the last statement, see [11, Proposition 4.5].

Lemmata 5.23, 5.28 and 5.32 justify the following definition:

Definition 5.38 (compare [20, Definition 5.7]). Let 𝐼(𝐷𝔊𝔯) be the universal
inverse semigroup with zero 0 for generators (𝑥, 𝑝), for 𝑝 ∈ 𝑃, 𝑥 ∈ 𝒳𝑝, and
relations

(𝑥1, 𝑝1)(𝑥2, 𝑝2) ∼ (𝑥1𝜃𝑝1
(𝑥2), 𝑝1𝑝2) (83)

(𝑥, 𝑝)∗(𝑦, 𝑝) ∼ {
(⟨𝑥 | 𝑦⟩𝑝 , 1), if [𝑥]𝑝 = [𝑦]𝑝,

0, otherwise, (84)

for 𝑝, 𝑝1, 𝑝2 ∈ 𝑃 and 𝑥, 𝑦 ∈ 𝒳𝑝, 𝑥𝑖 ∈ 𝒳𝑖, 𝑖 = 1, 2.

Lemma 5.39 (compare [20, paragraph following Definition 5.8]). The family
of maps 𝜗(𝑥,𝑝), 𝑝 ∈ 𝑃, 𝑥 ∈ 𝒳𝑝, extends to an action of the inverse semigroup
𝐼(𝐷𝔊𝔯) on Ω.

Proof. The assertion follows from Lemmata 5.23, 5.28 and 5.32.

5.5 The groupoid model as transformation groupoid
In Sections 5.3 and 5.4, Meyer’s construction of an inverse semigroup with an
action by partial homeomorphisms starting from an Ore-category shaped dia-
gram 𝐹 acting on a space (see [20, Section 5]) has been applied to the universal
action of 𝐷𝔊𝔯 on Ω in the case that 𝑃 fulfils the right Ore conditions.

In [20, Section 5], Meyer shows that when the action is universal for 𝐹, then
the transformation groupoid of the constructed action of the inverse semigroup
is a groupoid model for 𝐹. For the case that 𝑃 fulfils the right Ore conditions,
applying this to our specialisation, with 𝐷𝔊𝔯 and its universal action on Ω
underlying the construction, in this section, we obtain a groupoid model for
𝐷𝔊𝔯.

Definition 5.40 ([20, Definition 5.10], see also [11, Section 4]). Let 𝑆 be an
inverse semigroup and let 𝑌 be a topological space with an action 𝜗∶ 𝑆 → ℐ(𝑌 ).
The transformation groupoid 𝑆 ⋉ 𝑌 is defined as follows. Its object space is 𝑌,
and its set of arrows is the set of equivalence classes of pairs (𝑡, 𝑥) for 𝑡 ∈ 𝑆 and
𝑥 ∈ dom(𝜗𝑡), where (𝑡, 𝑥) ∼ (𝑢, 𝑥′) if 𝑥 = 𝑥′ and there is an idempotent element
𝑒 ∈ 𝐸(𝑆) such that 𝜗𝑒 is defined at 𝑥 = 𝑥′ and 𝑡𝑒 = 𝑢𝑒. We define the range
and source maps by s(𝑡, 𝑥) ∶= 𝑥, r(𝑡, 𝑥) = 𝜗𝑡(𝑥) and (𝑢, 𝜗𝑡(𝑥)) ⋅ (𝑡, 𝑥) = (𝑢𝑡, 𝑥)
whenever this is defined. There is a unique topology on the arrow space that
makes 𝑆 ⋉ 𝑌 an étale groupoid.
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Remark 5.41. Unlike Exel ([11]), we neither require 𝑌 to be locally compact
nor Hausdorff. Exel calls transformation groupoids groupoids of germs (see
[11, Proposition 4.17]). The term groupoid of germs might be used differently
by other authors.

Lemma 5.42 (see [11]). A basis for the topology on 𝑆 ⋉ 𝑌 is given by the slices

Θ(𝑠, 𝒰) ∶= {[𝑠, 𝑥]∼ | 𝑥 ∈ 𝒰} , (85)

for 𝑠 ∈ 𝑆 and 𝒰 ⊆ 𝐷𝑠∗𝑠 open in 𝑌. (Here the sets 𝒰 may be restricted to belong
to a given basis of the topology on 𝑌.)

Proof. The definition of Θ(𝑠, 𝒰) in (85) coincides with [11, (4.12)]. By [11,
paragraph preceding Proposition 4.14], those sets form the basis for a topology
on 𝑆 ⋉ 𝑌. By [11, Proposition 4.17], with this topology, 𝑆 ⋉ 𝑌 becomes an étale
topological groupoid. In Definition 5.40 (or equivalently [20, Definition 5.10]),
𝑆 ⋉ 𝑌 is equipped with the unique topology making 𝑆 ⋉ 𝑌 an étale groupoid.
Thus, this must be the one generated by the sets in (85). By [11, paragraph
preceding Proposition 4.18], the basic sets in (85) are slices.

In [11], the space 𝑌 acted upon is assumed to be locally compact and Haus-
dorff (see also Remark 5.41). This is however not required for the statements
cited in this proof.

Let ℒ ∶= 𝐼(𝐷𝔊𝔯) ⋉ Ω be the transformation groupoid for the action

𝜗∶ 𝐼(𝐷𝔊𝔯) → ℐ(Ω)

described in Section 5.4.

Proposition 5.43 (compare [20, Corollary 8.8]). Suppose that 𝑃 fulfils the
right Ore conditions. The étale groupoid ℒ is a groupoid model for 𝐷𝔊𝔯 (see
Definition 5.4).

Proof. For the proof, we apply [20, Proposition 5.12]. This proposition occurs
in [20, Section 5], where for a diagram (a strictly unital homomorphism of bicat-
egories with a category as domain) “𝐹” and a universal action of “𝐹” on a space
“𝑌”, an inverse semigroup “𝐼(𝐹)”, an action “𝐼(𝐹) → ℐ(𝑌 )” and the trans-
formation groupoid “𝐼(𝐹) ⋉ 𝑌” are constructed. The cited proposition states
that the transformation groupoid “𝐼(𝐹) ⋉ 𝑌” is a groupoid model for “𝐹”, if
the action of “𝐹” on “𝑌” is universal. Why can we apply [20, Proposition 5.12]
to our situation to yield our proposition? Under the “special case relation” al-
ready present in the proof of Lemma 5.17, our dynamical system 𝐷𝔊𝔯 and the
space Ω correspond to the diagram “𝐹” and the space “Ω” from [20, Section
8], respectively. Now “Ω” can be plugged in for “𝑌” in [20, Section 5]. This
“composed special case relation” can be extended by viewing the universal ac-
tion ((𝛼𝑝)𝑝∈𝑃, Ω) from Section 5.2 as a specialisation of the one of “𝐹” on “𝑌”
in [20, Section 5]. The whole construction hence leading up to 𝐼(𝐷𝔊𝔯) ⋉ Ω cor-
responds to the construction leading up to “𝐼(𝐹) ⋉ 𝑌” in [20, Section 5]; see the
references along the way. Now, since ((𝛼𝑝)𝑝∈𝑃, Ω) is universal by Lemma 5.17,
[20, Proposition 5.12] implies that ℒ = 𝐼(𝐷𝔊𝔯) ⋉ Ω is a groupoid model for
𝐷𝔊𝔯.
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Proposition 5.44. Suppose that 𝑃 fulfils the right Ore conditions. If 𝜃𝑝(𝐺) ≤ 𝐺
has finite index for all 𝑝 ∈ 𝑃, then the groupoid model, the étale groupoid ℒ,
is locally compact, that is, its object space ℒ0 = Ω is Hausdorff and locally
compact.

Proof. Suppose that 𝜃𝑝(𝐺) has finite index in 𝐺 for all 𝑝 ∈ 𝑃. Then by Lemma
4.25, 𝐷𝔊𝔯 is a diagram of proper, locally compact groupoid correspondences.
Then by [15, Theorem 6.3], the space Ω underlying the universal action is Haus-
dorff and locally compact, and (hence) the groupoid model ℒ is locally compact.
Implicitly required for the cited Theorem and its application is the fact that the
groupoid model is unique up to isomorphism, see Lemma 5.5.

Remark 5.45. Suppose that 𝑃 fulfils the right Ore conditions and that 𝜃𝑝(𝐺) ≤
𝐺 has finite index for all 𝑝 ∈ 𝑃. Since the dynamical system 𝐷𝔊𝔯 is a 𝑃-
shaped diagram in 𝔊𝔯 (see Lemma 4.29), by Remark 4.33, and because the
correspondences 𝒳𝑝, 𝑝 ∈ 𝑃, are proper by Lemma 4.25, it is “an action of 𝑃 on
𝐺 by proper correspondences” as in [1, first paragraph of Section 3.3.1].

In [1, Section 3.3.1], from such an action, another action by tight corre-
spondences ̃𝒳𝑝 over a locally compact étale groupoid (!) ̃𝒢 is constructed. In
[1, Section 3.2.1], for such a tight action, a locally compact étale groupoid ℋ is
constructed. By [1, Theorem 3.30], ℋ is a (bicategorial) colimit (see [1, Section
2.6.1]) for the original proper action in Albandik’s “𝔊𝔯”. With the direction of
1-arrows in the version 𝔊𝔯 of we use, this would be a limit. We do not con-
sider bicategorial limits here. When we apply Albandik’s construction described
above to 𝐷𝔊𝔯 under the conditions given above, by [20, Remark 8.22]14, ℋ is
identical to our groupoid model ℒ.

Remark 5.46. Suppose that 𝑃 fulfils the Ore conditions and that 𝜃𝑝(𝐺) ≤ 𝐺
is finite for all 𝑝 ∈ 𝑃. Then Ω is compact by Lemma 5.10 and a fortiori locally
compact15. Furthermore, by Proposition 7.2, 𝐼(𝐷𝔊𝔯) ⋉ Ω is Hausdorff. Thus,
by [8, Theorem 7.6], there is an isomorphism

𝐶∗(𝐼(𝐷𝔊𝔯) ⋉ Ω) ≅ 𝐼(𝐷𝔊𝔯) ⋉𝜗∗
𝐶0(Ω), (86)

where the right side is a crossed product as constructed by Sieben ([24]) for
actions of unital inverse semigroups on 𝐶∗-algebras by partial automorphisms.
It seems very plausible that, using Sieben’s theory ([24, Sections 3 and 4]) and
the definition of the semigroup crossed product ([16, Proposition 2.1]), one can
show that there is an isomorphism

𝐼(𝐷𝔊𝔯) ⋉𝜗∗
𝐶0(Ω) ≅ 𝐶(Ω) ⋊𝜗∗

𝒮×(𝐷𝔊𝔯). (87)

If this is true, and, as suggested in Remark 5.31, 𝐶(Ω)⋊𝜗∗
𝒮×(𝐷𝔊𝔯) is isomorphic

to 𝒪[𝐺, 𝑃 , 𝜃], then there is an isomorphism

𝐶∗(𝐼(𝐷𝔊𝔯) ⋉ Ω) ≅ 𝒪[𝐺, 𝑃 , 𝜃], (88)

or, put differently, 𝐼(𝐷𝔊𝔯) ⋊ Ω is a groupoid model for Stammeier’s 𝐶∗-algebra
𝒪[𝐺, 𝑃 , 𝜃]. In fact, this will be shown via product systems in Section 6, see
Corollary 6.14.

14This refers to the version of the preprint following the version in the references.
15Local compactness also follows from Proposition 5.44.
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6 Translation to 𝐶∗-correspondences
Essential product systems in the sense of Fowler ([12]) can be considered (strictly
unital) monoid shaped diagrams in ℭ𝔬𝔯𝔯, a bicategory of 𝐶∗-correspondences
whose original version was introduced by Buss, Meyer and Zhu in [10].

The dynamical systems in 𝔊𝔯 (see Definition 4.32) induce certain essential
product systems (see Remark 6.7), which can be considered dynamical systems
in ℭ𝔬𝔯𝔯. Namely, those are obtained by postcomposing to the dynamical systems
in 𝔊𝔯 a homomorphism of bicategories from 𝔊𝔯 to ℭ𝔬𝔯𝔯 which has been first
described by Albandik ([1]), related to constructions in [13], [21] and [22].

Applying this homomorphism of bicategories to the groupoid models ℒ (see
Section 5.5) in the case that 𝑃 fulfils the right Ore conditions (see Definition
5.15) yields the groupoid 𝐶∗-algebras 𝐶∗(ℒ). When 𝑃 is Ore and 𝜃𝑝(𝐺) ≤ 𝐺
has finite index for all 𝑝 ∈ 𝑃, then those groupoid 𝐶∗-algebras are the Cuntz-
Pimsner algebras of the aforementioned product systems coming from 𝐷𝔊𝔯; this
is a special case of a proposition by Albandik ([1]).

In Stammeier’s case, the product system coincides with a product system
described by Stammeier; Stammeier shows that in the finite-type case, the 𝐶∗-
algebra 𝒪[𝐺, 𝑃 , 𝜃] associated to his irreversible algebraic dynamical system coin-
cides with the Cuntz-Pimsner algebra of this product system. Hence, in Stam-
meier’s finite-type case, ℒ is a groupoid model for Stammeier’s 𝐶∗-algebra.

6.1 The bicategory ℭ𝔬𝔯𝔯 of 𝐶∗-correspondences
We recall the definition of a bicategory ℭ𝔬𝔯𝔯 of 𝐶∗-correspondences. It was
introduced by Buss, Meyer and Zhu in [10, Section 2.2]. This original version is
also used by Albandik ([1]) but we need the slightly different version described
in [5, end of Section 6]. In the latter version (the one we use), the 1-arrows go
in the other direction and the 2-arrows are not required to be invertible, as in
the original bicategory.

The objects of the bicategory ℭ𝔬𝔯𝔯 are 𝐶∗-algebras, the arrows are 𝐶∗-
correspondences:

Definition 6.1 (compare [10, Definition 2.6]). Let 𝐴 and 𝐵 be 𝐶∗-algebras. A
𝐶∗-correspondence ℰ∶ 𝐴 ← 𝐵 is a Hilbert 𝐵-module ℋ with a non-degenerate
∗-representation of 𝐴 on ℋ by adjointable operators. If 𝐴 acts on ℋ by compact
operators, the 𝐶∗-correspondence ℰ is called proper.

Let 𝐴, 𝐵 be 𝐶∗-algebras. The 2-arrows in ℭ𝔬𝔯𝔯 between two 𝐶∗-correspon-
dences ℰ, ℱ∶ 𝐴 ← 𝐵 are isometric 𝐴, 𝐵-bimodule maps 𝛼∶ ℰ → ℱ. Here,
“isometric” means that ⟨𝛼(𝑥) | 𝛼(𝑦)⟩ = ⟨𝑥 | 𝑦⟩ for 𝑥, 𝑦 ∈ ℰ. 𝐶∗-correspondences
𝐵 ← 𝐴 and biequivariant isometries between them with the usual composition
as maps form the Hom-category ℭ𝔬𝔯𝔯(𝐴, 𝐵). See [5, end of Section 6].

Given two composable 𝐶∗-correspondences ℰ∶ 𝐴 ← 𝐵, ℱ∶ 𝐵 ← 𝐶, we define
their composition ℰ ⊗ ℱ∶ 𝐴 ← 𝐶. The algebraic tensor product ℰ ⊗alg ℱ is the
universal vector space with generating set ℰ × ℱ and relations

(𝑒 ⋅ 𝑏, 𝑓) ∼ (𝑒, 𝑏 ⋅ 𝑓), (89)
(𝑒𝑐 + 𝑒′, 𝑓) ∼ (𝑒, 𝑓) ⋅ 𝑐 + (𝑒′, 𝑓), (90)
(𝑒, 𝑓𝑐 + 𝑓 ′) ∼ (𝑒, 𝑓) ⋅ 𝑐 + (𝑒, 𝑓 ′), (91)
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for 𝑒, 𝑒′ ∈ ℰ, 𝑓, 𝑓 ′ ∈ ℱ, 𝑏 ∈ 𝐵, 𝑐 ∈ ℂ, equipped with left 𝐴- and right 𝐶-actions
inherited from ℰ and ℱ, respectively, in the obvious way. The congruence class
of (𝑒, 𝑓) is denoted by 𝑒 ⊗ 𝑓. Now ℰ ⊗ ℱ is the completion of ℰ ⊗alg ℱ with
respect to the norm induced by the 𝐶-valued inner product

⟨𝑒 ⊗ 𝑓 | 𝑒′ ⊗ 𝑓 ′⟩ ∶= ⟨𝑓 ∣ ⟨𝑒 | 𝑒′⟩𝐵 𝑓 ′⟩
𝐶

, (92)

for 𝑒, 𝑒′ ∈ ℰ, 𝑓, 𝑓 ′ ∈ ℱ. This completion together with the continuous exten-
sions of the left 𝐴-and right 𝐶-actions and the 𝐶-valued inner product (92) is
a 𝐶∗-correspondence ℰ ⊗ ℱ∶ 𝐴 ← 𝐶. The horizontal composition of 2-arrows
(isometric bimodule maps) 𝛼∶ ℰ → ℰ′ and 𝛽∶ ℱ → ℱ′, for 𝐶∗-correspondences
ℰ, ℰ′ ∶ 𝐴 ← 𝐵 and ℱ, ℱ′ ∶ 𝐵 ← 𝐶, is given by

𝛼 ⊗ 𝛽∶ ℰ ⊗ ℱ → ℰ′ ⊗ ℱ′ (93)
𝑒 ⊗ 𝑓 ↦ 𝛼(𝑒) ⊗ 𝛽(𝑓). (94)

Compare [10, Section 2.2].
For 𝐶∗-algebras 𝐴, 𝐵, 𝐶, 𝐷 and correspondences ℰ∶ 𝐴 ← 𝐵, ℱ∶ 𝐵 ← 𝐶,

𝒦∶ 𝐶 ← 𝐷,
(𝑒 ⊗ 𝑓) ⊗ 𝑘 ↦ 𝑒 ⊗ (𝑓 ⊗ 𝑘) (95)

induces a unitary bimodule map

assocℰ,ℱ,𝒦 ∶ (ℰ ⊗ ℱ) ⊗ 𝒦 → ℰ ⊗ (ℱ ⊗ 𝒦). (96)

Such maps constitute the components of the associators in ℭ𝔬𝔯𝔯. For a 𝐶∗-
algebra 𝐵, the “unit” 1-arrow is given by 𝐵 interpreted as a 𝐶∗-correspondence
with the left and right regular actions of 𝐵 on itself and

⟨𝑏1 | 𝑏2⟩ ∶= 𝑏∗
1𝑏2 (97)

as 𝐵-inner product. For 𝐶∗-algebras 𝐴, 𝐶, the components of the associated
unitors at 𝐵 are given by

ℰ ⊗ 𝐵 → ℰ∶ 𝑒 ⊗ 𝑏 → 𝑒 ⋅ 𝑏 (98)
𝐵 ⊗ ℱ → ℱ∶ 𝑏 ⊗ 𝑓 → 𝑏 ⋅ 𝑓 (99)

for correspondences ℰ∶ 𝐴 ← 𝐵 and ℱ∶ 𝐵 ← 𝐶. See [5, end of Section 6].

6.2 The homomorphism from 𝔊𝔯 to ℭ𝔬𝔯𝔯
We recall the definition of a homomorphism 𝔊𝔯 → ℭ𝔬𝔯𝔯 described in [5, Section
7] going back to Albandik ([1]).

Let 𝑋 be a locally compact, locally Hausdorff topological space. For an open,
Hausdorff set 𝑈 ⊆ 𝑋, denote by 𝐶𝑐(𝑈) the complex vector space of compactly
supported continuous functions on 𝑈. For 𝑓 ∈ 𝐶𝑐(𝑈), extend 𝑓 to 𝑋 by 𝑓(𝑥) = 0
for 𝑥 ∈ 𝑋 ⧵𝑈. Let 𝔊(𝑋) be the linear span of such functions (for variable 𝑈) in
the space of functions on 𝑋. Such functions do not need to be continuous, if 𝑋
is not Hausdorff. (See [5, paragraph before Proposition 7.1].)

First, we recall the definition of the 𝐶∗-algebra for a locally compact étale
groupoid 𝒢. For 𝜉, 𝜂 ∈ 𝔊(𝒢1), let

𝜉 ∗ 𝜂(𝑔) = ∑
ℎ∈𝒢r(𝑔)

𝜉(ℎ)𝜂(ℎ−1𝑔), (100)

𝜉∗(𝑔) = 𝜉(𝑔−1). (101)
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This turns 𝔊(𝒢1) into a ∗-algebra allowing a maximal 𝐶∗-seminorm, which is a
𝐶∗-norm. (See [5, between Definitions 7.2 and 7.3].)

Definition 6.2 ([5, Definition 7.3]). The groupoid 𝐶∗-algebra 𝐶∗(𝒢) of 𝒢 is the
completion of 𝔊(𝒢1) in the largest 𝐶∗-norm.

Now, let 𝒢, ℋ be étale groupoids. We recall the definition of the 𝐶∗-algebra
𝐶∗(𝒳) associated to a locally compact étale groupoid correspondence 𝒳∶ ℋ ←
𝒢. For 𝜉, 𝜂 ∈ 𝔊(𝒳), 𝛾 ∈ 𝔊(𝒢1), 𝜁 ∈ 𝔊(ℋ) and 𝑥 ∈ 𝒳, 𝑔 ∈ 𝒢1 define

𝜉 ∗ 𝛾(𝑥) ∶= ∑
𝑔∈𝒢s(𝑥)

𝜉(𝑥 ⋅ 𝑔)𝛾(𝑔−1), (102)

⟨𝜉 | 𝜂⟩ (𝑔) ∶= ∑
{𝑥∈𝒳 | s(𝑥)=r(𝑔)}

𝜉(𝑥)𝜂(𝑥 ⋅ 𝑔) (103)

𝜁 ∗ 𝜉(𝑥) ∶= ∑
ℎ∈ℋr(𝑥)

𝜁(ℎ)𝜉(ℎ−1𝑥), (104)

see [5, (7.1),(7.2),(7.3) and Lemma 7.4]. This turns 𝔊(𝒳) into a 𝔊(ℋ1)-𝔊(𝒢1)-
bimodule with a 𝔊(ℋ1)-valued inner product satisfying certain equations (see
[5, Lemma 7.5]) such that

‖𝜉‖ ∶= ‖⟨𝜉 | 𝜉⟩‖1/2
𝐶∗(𝒢) (105)

defines a norm on 𝔊(𝒳) such that the completion 𝐶∗(𝒳) of 𝔊(𝒳) with respect to
this norm allows extensions of the left and the right action and the inner product
making it a 𝐶∗-correspondence 𝐶∗(𝒳)∶ 𝐶∗(𝒢) ← 𝐶∗(ℋ). See [5, Lemma 7.5 to
Lemma 7.7 and discussion thereafter].

Let 𝒳, 𝒳′ ∶ ℋ ← 𝒢 be locally compact étale groupoid correspondences. A
2-arrow 𝛼∶ 𝒳 → 𝒳′ is an injective, ℋ, 𝒢-equivariant, continuous map from 𝒳 to
𝒳′. By Lemma 4.16, 𝛼 is a homeomorphism onto an open subset 𝑈 of 𝒳′. Ex-
tension by zero gives an injective map 𝔊(𝒳) → 𝔊(𝒳′), which extends uniquely
to an isometric map 𝐶∗(𝛼) ∶ 𝐶∗(𝒳) → 𝐶∗(𝒳′). This map 𝐶∗(𝛼) is isometric
and 𝐶∗(ℋ), 𝐶∗(𝒢)-equivariant and thus a 2-arrow from 𝐶∗(𝒳) to 𝐶∗(𝒳′). (See
[5, paragraph following Example 7.10].)

The following lemma provides the multiplication-related data for the homo-
morphism of bicategories 𝔊𝔯 → ℭ𝔬𝔯𝔯.

Lemma 6.3 ([5, Definition 7.12]). Let 𝒳∶ 𝒦 ← ℋ and 𝒴∶ ℋ ← 𝒢 be compos-
able groupoid correspondences. There is a well defined map

𝜙0
𝒳,𝒴 ∶ 𝔊(𝒳) ⊗ 𝔊(𝒴) → 𝔊(𝒳 ∘ℋ 𝒴),

𝜙0
𝒳,𝒴(𝑓1 ⊗ 𝑓2)([𝑥, 𝑦]) = ∑

{ℎ∈ℋ0 | r(ℎ)=s(𝑥)}
𝑓1(𝑥ℎ) ⋅ 𝑓2(ℎ−1𝑦).

It extends to an isomorphism of 𝐶∗(𝒦)-𝐶∗(𝒢)-correspondences

𝜙𝒳,𝒴 ∶ 𝐶∗(𝒳) ⊗𝐶∗(ℋ) 𝐶∗(𝒴) → 𝐶∗(𝒳 ∘ℋ 𝒴).

This isomorphism is natural with respect to the 2-arrows in 𝔊𝔯.

Lemma 6.4 (see [5, Theorem 7.13]). The data given above defines a strictly
unital homomorphism of bicategories 𝐶∗ ∶ 𝔊𝔯 → ℭ𝔬𝔯𝔯.
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Remark 6.5. In [1, Section 2.5], Albandik describes a homomorphism of bi-
categories (“functor”, see [1, Definition 2.2]) from a version of 𝔊𝔯 to the version
of the bicategory ℭ𝔬𝔯𝔯 of 𝐶∗-correspondences originally described in [10]. In
both involved bicategories, the 1-arrows go in the other direction than in the
respective versions that we consider. Except for this, the different versions of
ℭ𝔬𝔯𝔯 only differ in whether 2-arrows need to be invertible, which is irrelevant
for homomorphisms from categories to “ℭ𝔬𝔯𝔯”, compare Remark 4.33. The ver-
sions of 𝔊𝔯 also only differ in the direction of 1-arrows and in whether the 2-
arrows are required to be invertible, see Remark 4.24. All this means that the
strictly unital homomorphism 𝔊𝔯 → ℭ𝔬𝔯𝔯 described above induces a strictly
unital homomorphism between the bicategories “𝔊𝔯” and “ℭ𝔬𝔯𝔯” used by Al-
bandik, which deviates essentially from ours only in that its action on 2-arrows
is a restriction to invertibles. Indeed, this induced homomorphism is the one
described by Albandik in [1, Section 2.5].

6.3 Dynamical systems as product systems
Fowler ([12]) defines product systems, which is a slightly more general notion
than our monoid shaped diagrams in ℭ𝔬𝔯𝔯. Stammeier ([26]) associates product
systems to his irreversible algebraic dynamical systems. Suppose that our dy-
namical system 𝐷𝔊𝔯 comes from Stammeier’s, that is, 𝐺, 𝑃, 𝜃 are as in Definition
3.4. Then indeed, composing the homomorphism of bicategories 𝔊𝔯 → ℭ𝔬𝔯𝔯 de-
scribed in Section 6.2 with 𝐷𝔊𝔯 gives the same product system as Stammeier’s.
We will use this in Section 6.5 to obtain Stammeier’s 𝐶∗-algebra from our rein-
terpretation of his irreversible algebraic dynamical systems as 𝐷𝔊𝔯 and 𝐷ℭ𝔬𝔯𝔯
in the finite-type case.

Lemma 6.6 (compare [2, first paragraph of Section 3], [3, Proposition 6.2]
and [1, Proposition 2.44]). A monoid-shaped diagram in ℭ𝔬𝔯𝔯 is of the form
𝐷 = (𝐴, 𝑃 , ℰ𝑝, 𝜇𝑝,𝑞) with the data

• a 𝐶∗-algebra 𝐴,

• a monoid 𝑃,

• a 𝐶∗-correspondence ℰ𝑝 ∶ 𝐴 ← 𝐴 for each 𝑝 ∈ 𝑃,

• a unitary 𝐴-bimodule map 𝜇𝑝,𝑞 ∶ ℰ𝑝 ⊗ ℰ𝑞 → ℰ𝑝⋅𝑞 for each pair 𝑝, 𝑞 ∈ 𝑃,

fulfilling

ℰ1 = 𝐴, (106)
𝜇𝑝𝑞,𝑟 ∘ (𝜇𝑝,𝑞 ∗ idℰ𝑟

) = 𝜇𝑝,𝑞𝑟 ∘ (idℰ𝑝
∗ 𝜇𝑞,𝑟) ∘ assoc𝑝,𝑞,𝑟, (107)

𝔩ℰ𝑝
= 𝜇1,𝑝 and (108)

𝔯ℰ𝑝
= 𝜇𝑝,1 (109)

for all 𝑝, 𝑞, 𝑟 ∈ 𝑃.

Proof. This directly follows from 2.9 and the definition of ℭ𝔬𝔯𝔯 in Section 6.1.

43



Remark 6.7 (see [3, discussion following Proposition 6.4], [2, first paragraph
of Section 3] and [1, Section 3.2.3]). Monoid shaped diagrams in ℭ𝔬𝔯𝔯 as in
Lemma 6.6 are product systems of essential “Hilbert bimodules”16, or essential
product systems, in the sense of Fowler [12, Definition 2.1 and last paragraph
of Section 1]. Here, essential means that the left actions on the “Hilbert bi-
modules” (roughly 𝐶∗-correspondences) are non-degenerate. Strictly speaking,
Fowler requires countable monoids. There is however no reason not to consider
Fowler’s definition in the generality of arbitrary shape monoids; countability is
neither required for the definition of a Cuntz-Pimsner algebra nor for the part
of Albandik’s use of Fowler’s theory which we need, as experts confirm. Hence
we can say that essential product systems over 𝑃 are the same as 𝑃-shaped
diagrams in ℭ𝔬𝔯𝔯.

Lemma 6.8 (compare [1, first paragraph of Section 3.2.3] and [5, second para-
graph after Theorem 7.13] and [5, Example 7.9]). Applying the homomorphism
of bicategories 𝔊𝔯 → ℭ𝔬𝔯𝔯 from Lemma 6.4 to a dynamical system in 𝔊𝔯 (that
is, a monoid-shaped diagram in 𝔊𝔯 coming from a monoid shaped diagram in
𝔊𝔯𝔭𝔐𝔫) 𝐷𝔊𝔯 = (𝐺, 𝑃 , 𝒳𝑝, 𝜇𝑝,𝑞) as in Lemma 4.30 results in the monoid-shaped
diagram 𝐷ℭ𝔬𝔯𝔯 = (𝐶∗(𝐺), 𝑃 , 𝐶∗(𝒳𝑝), 𝜇𝑝,𝑞) in ℭ𝔬𝔯𝔯 with the following data:

• 𝐶∗(𝐺) is the group 𝐶∗-algebra for 𝐺 (see Definition 6.2).

• The correspondence 𝐶∗(𝒳𝑝) ∶ 𝐶∗(𝐺) ← 𝐶∗(𝐺), for 𝑝 ∈ 𝑃, is defined as
follows: Let 𝐶𝑐(𝒳𝑝) be the complex vector space of finitely supported func-
tions 𝒳𝑝 → ℂ and denote by 𝛿𝑥, for 𝑥 ∈ 𝒳𝑝, the function

𝛿𝑥(𝑦) ∶= {1, if 𝑥 = 𝑦,
0, otherwise,

for 𝑦 ∈ 𝒳𝑝. Then equip 𝐶𝑐(𝒳𝑝) with left and right actions by 𝐶𝑐(𝐺) given
by

𝛿𝑔.𝛿𝑥 ∶= 𝛿𝑔⋅𝑥 and (110)
𝛿𝑥.𝛿𝑔 ∶= 𝛿𝑥⋅𝜃𝑝(𝑔), (111)

respectively, for 𝑥 ∈ 𝒳𝑝 = 𝐺, 𝑔 ∈ 𝐺, for each 𝑝 ∈ 𝑃, and the 𝐶∗(𝐺)-valued
inner product given by

⟨𝛿𝑥 ∣ 𝛿𝑦⟩ ∶= {
𝛿⟨𝑥 | 𝑦⟩𝑝

, if [𝑥]𝑝 = [𝑦]𝑝,
0, otherwise,

} = 𝕀[𝑥]𝑝=[𝑦]𝑝𝛿𝜃−1
𝑝 (𝑥−1𝑦) (112)

for 𝑥, 𝑦 ∈ 𝒳𝑝, 𝑝 ∈ 𝑃, where in the rightmost term, 𝑥 and 𝑦 are used as
elements of 𝐺 and 𝕀 is the indicator function. Then ‖𝑓‖ ∶= ‖⟨𝑓 | 𝑓⟩‖1/2

𝐶∗(𝐺)
defines a norm on 𝐶𝑐(𝐺) with respect to which 𝐶∗(𝒳𝑝) is the completion.
The left and right 𝐶𝑐(𝐺)-actions on 𝐶𝑐(𝒳𝑝) given by (110) and (111),
respectively, extend to 𝐶∗(𝐺)-actions on 𝐶∗(𝒳𝑝), turning 𝐶∗(𝒳𝑝) into a
𝐶∗-correspondence 𝐶∗(𝐺) ← 𝐶∗(𝐺).

16The term there means something very close to 𝐶∗-correspondences, but is used differently
elsewhere, see [9, Definition 4.1].
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• For each 𝑝, 𝑞 ∈ 𝑃, 𝜇𝑝,𝑞 is the 𝐶∗(𝐺)-biequivariant unitary map

𝐶∗(𝒳𝑝) ⊗ 𝐶∗(𝒳𝑞) → 𝐶∗(𝒳𝑝𝑞), (113)
𝛿𝑔 ⊗ 𝛿ℎ ↦ 𝛿𝑔𝜃𝑝(ℎ), (114)

for each pair 𝑝, 𝑞 ∈ 𝑃.

Definition 6.9 (compare [26, Definition 5.2]). Let 𝐴 be a 𝐶∗-algebra and ℰ a
Hilbert 𝐴-module. Let 𝑒𝑖 ∈ ℰ, for 𝑖 ∈ 𝐼, for some index set 𝐼. Then (𝑒𝑖)𝑖∈𝐼 is
called an orthonormal basis for ℰ, if

⟨𝑒𝑖 ∣ 𝑒𝑗⟩ = {1𝐴 if 𝑖 = 𝑗,
0, otherwise, for all 𝑖, 𝑗 ∈ 𝐼, (115)

𝑒 = ∑
𝑖∈𝐼

𝑒𝑖 ⟨𝑒𝑖 | 𝑒⟩ for all 𝑒 ∈ ℰ. (116)

Lemma 6.10 (compare [26, proof of Proposition 5.6]). For each 𝑝 ∈ 𝑃, an
orthonormal basis for 𝐶∗(𝒳𝑝) is given by (𝛿𝑔𝑖

)𝑖∈𝐼, where (𝑔𝑖)𝑖∈𝐼 is a family of
representants of the cosets of 𝜃𝑝(𝐺) in 𝐺 such that ([𝑔𝑖])𝑖∈𝐼 partitions 𝐺.

Proof. Fix 𝑝 ∈ 𝑃. For 𝑖, 𝑗 ∈ 𝐼, ⟨𝛿𝑔𝑖
∣ 𝛿𝑔𝑗

⟩ is 𝛿⟨𝑔𝑖 ∣ 𝑔𝑗⟩
𝑝

if [𝑔𝑖]𝑝 = [𝑔𝑗]𝑝 and 0
otherwise. The former is the case if and only if 𝑖 = 𝑗 by the choice of the family
(𝑔𝑖)𝑖∈𝐼. If 𝑖 = 𝑗, ⟨𝑔𝑖 ∣ 𝑔𝑗⟩𝑝

= 1𝐺. Hence, (115) is fulfilled for (𝛿𝑔𝑖
)𝑖∈𝐼.

Suppose that 𝑓 ∈ 𝐶𝑐(𝒳𝑝). Then there exist 𝑛 ∈ ℕ and ℎ1, … , ℎ𝑛 such that
𝑓 = ∑𝑛

𝑘=1 𝛿ℎ𝑘
𝑓𝑘. Then

∑
𝑖∈𝐼

𝛿𝑔𝑖
⟨𝛿𝑔𝑖

∣ 𝑓⟩ = ∑
𝑖∈𝐼;𝑘=1,…,𝑛

𝛿𝑔𝑖
⟨𝛿𝑔𝑖

∣ 𝛿ℎ𝑘
⟩ 𝑓𝑘 (117)

= ∑
𝑖∈𝐼;𝑘=1,…,𝑛;[𝑔𝑖]𝑝=[ℎ𝑘]𝑝

𝛿𝑔𝑖
𝛿⟨𝑔𝑖 | ℎ𝑘⟩𝑝

𝑓𝑘 =
𝑛

∑
𝑘=1

𝛿ℎ𝑘
𝑓𝑘 = 𝑓. (118)

In the second-to-last sum, for each 𝑘 = 1, … , 𝑛, at most one 𝑖 ∈ 𝐼 can occur
together with 𝑘 in a summand due to the condition [𝑔𝑖]𝑝 = [ℎ𝑘]𝑝 and the fact
that [𝑔𝑖]𝑝 ≠ [𝑔𝑗]𝑝 for distinct 𝑖, 𝑗 ∈ 𝐼; and for each 𝑘 = 1, … , 𝑛, at least one 𝑖 ∈ 𝐼
occurs together with 𝑘 in a summand, since ([𝑔𝑖])𝑖∈𝐼 covers 𝐺. Furthermore,
for 𝑖 ∈ 𝐼, 𝑘 ∈ {1, … , 𝑛} with [𝑔𝑖]𝑝 = [ℎ𝑘]𝑝, 𝑔𝑖 ⟨𝑔𝑖 | ℎ𝑘⟩𝑝 = ℎ𝑘. This explains the
simplification resulting in the next sum. Thus (116) holds for (𝛿𝑔𝑖

)𝑖∈𝐼. This
concludes the proof.

Stammeier associates a product system to his irreversible algebraic dynam-
ical system in [26, Section 5]. We show that it is a special case of 𝐷ℭ𝔬𝔯𝔯.

Proposition 6.11. Assume Stammeier’s finite-type case. Then the dynamical
system 𝐷ℭ𝔬𝔯𝔯 described in Lemma 6.8 coincides with the product system described
in [26, Proposition 5.6].

Proof. The assertion can be verified by comparing [26, Proposition 5.6] and
Lemma 6.8. Deviating from Lemma 6.8, Stammeier uses the group 𝐶∗-algebra
𝐶∗(𝐺) as underlying Banach space for the 𝐶∗-correspondence associated to 𝑝 ∈
𝑃. Consider the bijective linear map

𝐶𝑐(𝐺) → 𝐶𝑐(𝒳𝑝) ∶ 𝛿𝑔 → 𝛿𝑔 (119)
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induced by the identity of sets 𝐺 = 𝒳𝑝. We show that this map and its inverse
are each restrictions of bounded linear maps between the respective norm clo-
sures 𝐶∗(𝐺) and 𝐶∗(𝒳𝑝). This then implies that the map in (119) extends
to a linear homeomorphism between 𝐶∗(𝐺) and 𝐶∗(𝒳𝑝). Then comparing
[26, Lemma 6.8] and Lemma 6.8 reveals that those linear homeomorphisms,
for all 𝑝 ∈ 𝑃, preserve the 𝐶∗-correspondence-structure, and hence identify the
product systems, as required for the proposition. Note that the 𝐶∗(𝐺)-valued
inner products Stammeier defines on 𝐶∗(𝐺), for 𝑝 ∈ 𝑃, do not necessarily induce
the canonical 𝐶∗-norm on 𝐶∗(𝐺).

We first prove that the map in (119) is a bounded linear map. The left
𝐶∗(𝐺)-action on 𝐶∗(𝒳𝑝) consists of a bounded linear map

𝐶∗(𝐺) → 𝔹(𝐶∗(𝒳𝑝)).

Evaluating a bounded 𝐶∗(𝐺)-linear operator on 𝐶∗(𝒳𝑝) at 𝛿1𝐺
∈ 𝐶𝑐(𝐺) =

𝐶𝑐(𝒳𝑝) is a bounded map

𝔹(𝐶∗(𝒳𝑝)) → 𝐶∗(𝒳𝑝).

The composition of the last two maps, a bounded linear map, does evidently
restrict to the map in (119). Now we show that the inverse of (119) is the
restriction of a bounded linear map 𝐶∗(𝒳𝑝) → 𝐶∗(𝐺). Lemma 6.10 provides us
with an orthonormal basis for 𝐶∗(𝒳𝑝). Taking into account the requirement that
𝜃𝑝(𝐺) ≤ 𝐺 is finite, this orthonormal basis is of the form 𝛿𝑔1

, … , 𝛿𝑔𝑛
for some

𝑛 ∈ ℕ with 𝑔1, … , 𝑔𝑛 ∈ 𝐺. It induces an isomorphism of Hilbert 𝐶∗(𝐺)-modules

𝑤∶ 𝐶∗(𝒳𝑝) → 𝐶∗(𝐺)𝑛 ∶ 𝑓 → (⟨𝛿𝑔𝑖
∣ 𝑓⟩)

𝑖=1,…,𝑛
(120)

which is clearly bounded. Here, 𝐶∗(𝐺)𝑛 is the direct sum of Hilbert 𝐶∗(𝐺)-
modules (see [17]). For 𝑖 ∈ {1, … , 𝑛}, define a map

𝑣𝑖 ∶ 𝐶∗(𝐺) → 𝐶∗(𝐺)∶ 𝑎 ↦ 𝛿𝑔𝑖
𝑎.

For 𝑖 = 1, … , 𝑛, those maps are bounded, and so is the induced map

𝑣∶ 𝐶∗(𝐺)𝑛 → 𝐶∗(𝐺)∶ (𝑎𝑖)𝑖=1,…,𝑛 ↦
𝑛

∑
𝑖=1

𝑣𝑖(𝑎𝑖) =
𝑛

∑
𝑖=1

𝛿𝑔𝑖
𝑎𝑖.

It can be easily seen that 𝑣 ∘ 𝑤, a bounded map, restricts to the inverse of (119)
on 𝐶𝑐(𝑋𝑝). This concludes the proof.

6.4 Stammeier’s 𝐶∗-algebras as Cuntz-Pimsner algebras
To a product system (see Lemma 6.6 and Remark 6.7 and [12, Definition 2.1])
Fowler associates a Cuntz-Pimsner algebra (see [12, Proposition 2.9]).

Stammeier uses this to give an alternative description of his 𝐶∗-algebra in
the case of irreversible algebraic dynamical systems of finite type. Hence, the
next proposition links Stammeier’s 𝐶∗-algebra for the finite-type case to our
reinterpretation of his irreversible algebraic dynamical systems as dynamical
systems in 𝔊𝔯 and ℭ𝔬𝔯𝔯.
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Proposition 6.12 (compare [26, Theorem 5.9]). Assume Stammeier’s finite-
type case. Then Stammeier’s 𝐶∗-algebra 𝒪[𝐺, 𝑃 , 𝜃𝑝] is the Cuntz-Pimsner al-
gebra of the dynamical system 𝐷ℭ𝔬𝔯𝔯 described in Lemma 6.8 interpreted as a
product system.

Proof. Assume Stammeier’s finite-type case. Then, by [26, Theorem 5.9] Stam-
meier’s 𝐶∗-algebra 𝒪[𝐺, 𝑃 , 𝜃𝑝] is the Cuntz-Pimsner algebra associated to the
product system in [26, Proposition 5.6]. By Proposition 6.11, this product sys-
tem coincides with the dynamical system 𝐷ℭ𝔬𝔯𝔯 described in Lemma 6.8.

Of course, even in the general case, we can associate to a dynamical system
𝐷𝔊𝔯𝔭𝔐𝔫 as in Definition 3.12 the Cuntz-Pimsner algebra of 𝐷ℭ𝔬𝔯𝔯. It coincides
with Stammeier’s 𝐶∗-algebra in Stammeier’s finite-type case. We denote it by
𝒪ℭ𝔬𝔯𝔯[𝐺, 𝑃 , 𝜃], in order to avoid the impression that it is the generalisation of
the 𝐶∗-algebra from Definition 3.8 to the case when Stammeier’s conditions –
and the finite-type condition – are relaxed.

In Section 6.5, we will see that if 𝑃 fulfils the right Ore conditions and
𝜃𝑝(𝐺) ≤ 𝐺 has finite index for all 𝑝 ∈ 𝑃, then 𝒪ℭ𝔬𝔯𝔯[𝐺, 𝑃 , 𝜃] is isomorphic to
𝐶∗(ℒ) for the groupoid model ℒ from Section 5.

6.5 Stammeier’s 𝐶∗-algebras as groupoid 𝐶∗-algebras
In Section 6.3, we showed that the dynamical system 𝐷ℭ𝔬𝔯𝔯 in ℭ𝔬𝔯𝔯 is a product
system which – in the case that it comes from Stammeier’s irreversible algebraic
dynamical systems – coincides with the product system constructed by Stam-
meier. In the finite-type case, Stammeier’s 𝐶∗-algebra is the Cuntz-Pimsner
algebra of this product system.

In this section, applying a theorem by Albandik, we show – provided that
𝜃𝑝(𝐺) ≤ 𝐺 has finite index for 𝑝 ∈ 𝑃 and that 𝑃 fulfils the right Ore conditions
– that the Cuntz-Pimsner algebra of the dynamical system 𝐷ℭ𝔬𝔯𝔯 (as a product
system) is the groupoid 𝐶∗-algebra of the groupoid model ℒ constructed in
Section 5. In the case that our dynamical system comes from Stammeier’s, this
implies that ℒ is a groupoid model for Stammeier’s 𝐶∗-algebra.

Proposition 6.13. Suppose that the requirements in Remark 5.45 are fulfilled,
that is, 𝑃 fulfils the right Ore conditions and 𝜃𝑝(𝐺) ≤ 𝐺 has finite index for all
𝑝 ∈ 𝑃. Then ℒ is indeed a groupoid model for 𝒪ℭ𝔬𝔯𝔯[𝐺, 𝑃 , 𝜃], the Cuntz-Pimsner
algebra of 𝐷ℭ𝔬𝔯𝔯, that is, the latter is the groupoid 𝐶∗-algebra of ℒ.

Proof. Suppose the given conditions are fulfilled. Then 𝐷𝔊𝔯 is an action of 𝑃
in “𝔊𝔯” in Albandik’s sense. Furthermore, the groupoid model constructed in
Section 5 is identical to the groupoid “ℋ” constructed in [1, Section 3.2.1]. See
Remark 5.45. Then, getting from 𝐷𝔊𝔯 to 𝐷ℭ𝔬𝔯𝔯 corresponds to postcomposing
the “functor 𝔊𝔯 → ℭ𝔬𝔯𝔯” in Albandik’s terms to 𝐷𝔊𝔯 reinterpreted in Albandik’s
terms. Then [1, Theorem 3.36] implies that 𝒪ℭ𝔬𝔯𝔯[𝐺, 𝑃 , 𝜃], the Cuntz-Pimsner
algebra of 𝐷ℭ𝔬𝔯𝔯, is the groupoid 𝐶∗-algebra (see Section 6.2) of ℒ.

Corollary 6.14. Assume Stammeier’s finite-type case. Then Stammeier’s 𝐶∗-
algebra 𝒪[𝐺, 𝑃 , 𝜃] is the groupoid 𝐶∗-algebra of ℒ.

Proof. Suppose that the given conditions are fulfilled. Then 𝜃𝑝(𝐺) ≤ 𝐺 has
finite index for all 𝑝 ∈ 𝑃 and the Ore conditions are fulfilled (see Remark 5.16).
Thus the corollary follows from Proposition 6.13 and Proposition 6.12.
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7 Properties of the groupoid model
In this section we give sufficient criteria for the groupoid model to be Hausdorff,
effective, minimal and locally contracting, respectively.17 In Proposition 5.44,
we gave a sufficient criterion for the groupoid model to be locally compact.
Using those criteria and applying a theorem by Brown, Clark, Farthing and Sims
[7, Theorem 5.1], we prove the following simplicity criterion for 𝐶∗(ℒ) (Corollary
7.20): If 𝑃 fulfils the right Ore conditions and is countable, 𝐺 is countable,
𝜃𝑝(𝐺) ≤ 𝐺 has finite index for all 𝑝 ∈ 𝑃, 𝐶∗(ℒ) = 𝐶∗

red(ℒ), 𝜃∶ 𝑃 → Mono(𝐺)
is injective and ⋂𝑝∈𝑃 𝜃𝑝(𝐺) = {1𝐺}, then 𝐶∗(ℒ) is simple. We study which of
the optional properties which Stammeier defines for his irreversible algebraic
dynamical systems allow the application of each of our criteria.

Before we go into the specific properties of the groupoid model, we prove an
auxiliary lemma.

Lemma 7.1. If 𝑃 fulfils the right Ore conditions, then Ω’s topology has a basis
consisting only of the closed (and open) sets

𝑍Ω
(𝑥,𝑞) = {([𝑔𝑝])𝑝∈𝑃 ∈ Ω ∣ [𝑔𝑞]𝑞 = [𝑥]𝑞} (121)

for 𝑥 ∈ 𝒳𝑞 and 𝑞 ∈ 𝑃.

Proof. Suppose that 𝑃 fulfils the right Ore conditions. Let 𝑛 > 2 and let 𝑞𝑖 ∈ 𝑃,
ℎ𝑖 ∈ 𝒳𝑞𝑖

, 𝑖 = 1, … , 𝑛. Then

𝑍Ω
(ℎ1,𝑞1),…,(ℎ𝑛,𝑞𝑛) = 𝑍Ω

(ℎ1,𝑞1) ∩ ⋯ ∩ 𝑍Ω
(ℎ𝑛,𝑞𝑛). (122)

Suppose that there exists ([𝑔𝑝]𝑝)𝑝 ∈ 𝑍Ω
(ℎ1,𝑞1),…,(ℎ𝑛,𝑞𝑛). Then for all 𝑖 = 1, … , 𝑛,

[𝑔𝑞𝑖
]𝑞𝑖

= [ℎ𝑖]𝑞𝑖
. (123)

By the first Ore condition, there are 𝑠1, … , 𝑠𝑛 ∈ 𝑃 such that 𝑞 ∶= 𝑞𝑖𝑠𝑖 is constant
for varying 𝑖 = 1, … , 𝑛. By the coherence condition in the definition of Ω, (123)
implies that for all 𝑖 = 1, … , 𝑛,

[𝑔𝑞]𝑞𝑖
= [ℎ𝑖]𝑞𝑖

. (124)

Now, 𝑍Ω
(𝑔𝑞,𝑞) ⊆ 𝑍Ω

(ℎ1,𝑞1) for all 𝑖 ∈ {1, … , 𝑛}: Suppose that ([ ̃𝑔𝑝]𝑝)𝑝 ∈ 𝑍Ω
(𝑔𝑞,𝑞).

This implies [ ̃𝑔𝑞]𝑞 = [𝑔𝑞]𝑞. Applying the coherence conditions in the definition
of Ω to the left side and relaxing both sides to cosets with respect to a larger
subgroup of 𝐺, we obtain [ ̃𝑔𝑞𝑖

]𝑞𝑖
= [𝑔𝑞]𝑞𝑖

for all 𝑖 = 1, … , 𝑛. This, together with
(124), yields [ ̃𝑔𝑞𝑖

]𝑞𝑖
= [ℎ𝑖]𝑞𝑖

for all 𝑖 = 1, … , 𝑛. We have thus shown that if the
set in (122) is non-empty, then it contains a set of the desired form (121). With
Lemma 5.8, sets as in (121) are closed and open and by what we have shown,
form a basis of Ω.

7.1 When is the groupoid model Hausdorff?
Proposition 7.2. Suppose that 𝑃 fulfils the right Ore conditions and that
𝜃𝑝(𝐺) ≤ 𝐺 has finite index for all 𝑝 ∈ 𝑃. Then the groupoid model ℒ is
Hausdorff.

In particular, in Stammeier’s finite-type case, ℒ is Hausdorff.
17In fact, minimality is automatic if 𝑃 fulfils the right Ore conditions, which we need anyway

for the construction of the groupoid model which we use.
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Proof. Suppose that the given conditions hold. Then, as explained in Remark
5.45, the groupoid model ℒ is identical to a limit18 construction ℋ by Albandik
for a diagram of tight locally compact étale groupoid correspondences ̃𝒳𝑝 over
a groupoid ̃𝒢 associated to the diagram (𝒳𝑝) corresponding to 𝐷𝔊𝔯.19 For each
𝑝 ∈ 𝑃, the left 𝐺-action on 𝒳𝑝 is free. This is because, as a set, 𝒳𝑝 = 𝐺 and the
left action on 𝒳𝑝 corresponds along this identification to the regular action of the
group on itself. Then, by [1, Lemma 3.28], in the tightened diagram ( ̃𝒳𝑝), the
left actions of the groupoid on the correspondences are also free. Furthermore,
Ω is Hausdorff by Lemma 5.44. Then Albandik’s ℋ, and thus the groupoid
model ℒ, is Hausdorff by [1, Proposition 3.20].

Forget all assumptions in this proof. In Stammeier’s finite-type case, 𝜃𝑝(𝐺) ≤
𝐺 has finite index for all 𝑝 ∈ 𝑃 and the Ore conditions are fulfilled (see Remark
5.16). Hence, in that case, the first part of the proposition is applicable and
yields that ℒ is Hausdorff.

7.2 When is the groupoid model effective?
The isotropy subgroupoid Iso(𝒢) of a groupoid 𝒢 is defined as

Iso(𝒢) = {𝑔 ∈ 𝒢 | s(𝑔) = r(𝑔)} ,

see for example [25, Section 2.2].

Definition 7.3 ([25, Definition 4.2.1]). An étale topological groupoid 𝒢 is called
effective, if the interior of Iso(𝒢) consists only of units of 𝒢.

Lemma 7.4 (compare [11]). Let 𝑆 be an inverse semigroup with an action
𝜗∶ 𝑆 → ℐ(𝑌 ) by partial homeomorphisms. Then units of 𝑆 ⋉𝜗 𝑌 are of the form
[𝑒, 𝑦] where 𝑒 ∈ 𝐸(𝑆) and 𝑦 ∈ 𝐷𝑒.

Proof. Any element of 𝑆 ⋉ 𝑌 can be written as [𝑠, 𝑦] with 𝑠 ∈ 𝑆 and 𝑦 ∈ 𝐷𝑠∗𝑠.
For any object 𝑦 ∈ 𝑌, there is 𝑠 ∈ 𝑆 such that 𝑦 ∈ dom(𝜗𝑠) (see Definition 5.40).

We show that [𝑠∗𝑠, 𝑦] ∈ 𝑆⋉𝑌 is the unit for 𝑦. Let 𝑦, 𝑧 ∈ 𝑌 and 𝑠, 𝑟, 𝑡 ∈ 𝑆 such
that 𝑦 ∈ 𝐷𝑡∗𝑡 ∩𝐷𝑠∗𝑠 and 𝑧 ∈ 𝐷𝑟∗𝑟 with 𝑦 = 𝜗𝑟(𝑧). Then [𝑡, 𝑦][𝑠∗𝑠, 𝑦] = [𝑡𝑠∗𝑠, 𝑦] =
[𝑡, 𝑦]. By (3), 𝑠∗𝑠𝑟 = 𝑟𝑟∗𝑠∗𝑠𝑟. Since 𝑟∗𝑠∗𝑠𝑟 is idempotent, [𝑠∗𝑠, 𝑦][𝑟, 𝑧] =
[𝑠∗𝑠𝑟, 𝑧] = [𝑟, 𝑧]. We have shown that [𝑠∗𝑠, 𝑦] is the unit for the object 𝑦 in
𝑆 ⋉ 𝑌. Since 𝑠∗𝑠 is idempotent, this proves the assertion.

Lemma 7.5. An element [𝑠, 𝜔] ∈ 𝑆 ⋉𝜗 𝑌 is in the interior of the isotropy
subgroupoid if and only if there exists 𝑈 ⊆ 𝐷𝑠∗𝑠 open in 𝑌 with 𝜔 ∈ 𝑈 such that
𝜗𝑠|𝑈 = id𝑈.

Proof. The assertion follows easily from Lemma 5.42 and the definition of the
isotropy subgroupoid.

Before we give sufficient criteria for the groupoid model’s being effective, we
provide a technical statement about a sufficient set of criteria for transformation
groupoids of inverse semigroup actions to be effective.

18colimit in Albandik’s version of 𝔊𝔯
19More data than 𝒳𝑝, 𝑝 ∈ 𝑃, is needed for the diagram (𝒳𝑝), but since it is not of interest

in the proof, we use such shorthands in the proof to avoid the necessity to handle different
notations coming from different texts.
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Lemma 7.6. Let 𝑆 be an inverse semigroup and let 𝐴 ⊆ 𝑆 be a generating
(in the sense of inverse semigroups) subset which is closed under multiplication.
Let 𝜗∶ 𝑆 → ℐ(𝑌 ) be an action of 𝑆 by partial homeomorphisms on 𝑌 such that
𝜗|𝐴 ∶ 𝐴 → ℐ(𝑌 ) is injective. Suppose that for every 𝑠 ∈ 𝑆 and 𝑦 ∈ 𝐷𝑠∗𝑠, there
are 𝑒 ∈ 𝐸(𝑆) with 𝑦 ∈ 𝐷𝑒 and 𝑎, 𝑏 ∈ 𝐴 such that (𝑎𝑏∗)∗𝑎𝑏∗𝑒 = 𝑒 and 𝑎𝑏∗𝑒 = 𝑠𝑒.
Suppose that {𝐷𝑐𝑐∗|𝑐 ∈ 𝐴} is a basis for 𝑌. Then 𝑆 ⋉𝜗 𝑌 is effective.

Proof. In this proof, we will, for idempotents 𝑒 ∈ 𝐸(𝑆), ask the reader to “make
𝑒 smaller” in order for it to fulfil certain conditions, while retaining others. This
is to be understood as follows: 𝑒 is an idempotent with certain properties (those
to be retained), and it is possible to find another idempotent 𝑒′ with certain
properties (those to be gained), such that 𝑒𝑒′ has all the desired properties.
Then, after the “shrinking”, 𝑒 is used to denote what would otherwise be denoted
by 𝑒𝑒′.

Suppose the given prerequisites are fulfilled. Suppose 𝑠 ∈ 𝑆 and 𝑦 ∈ 𝐷𝑠∗𝑠
such that [𝑠, 𝑦] is in the interior of the isotropy subgroupoid of 𝑆 ⋉𝜗 𝑌. Then,
by Lemma 7.5 and the fact that 𝐷𝑒, 𝑒 ∈ 𝐸(𝑆), form a basis of 𝑌 (as follows
from a stronger requirement in the lemma), there is 𝑒 ∈ 𝐸(𝑆) with 𝑦 ∈ 𝐷𝑒 such
that 𝜗𝑠𝑒 = 𝜗𝑒. Since 𝑦 ∈ 𝐷𝑠∗𝑠, by a requirement in the lemma, we can pick
𝑎, 𝑏 ∈ 𝐴 and make 𝑒 smaller, while retaining 𝑦 ∈ 𝐷𝑒, in such a manner that
(𝑎𝑏∗)∗𝑎𝑏∗𝑒 = 𝑒 (this implies 𝑏𝑏∗𝑒 = 𝑏𝑏∗𝑏𝑎∗𝑎𝑏∗𝑒 = 𝑏𝑎∗𝑎𝑏∗𝑒 = 𝑒) and 𝑎𝑏∗𝑒 = 𝑠𝑒.
Then

𝜗𝑎𝑏∗𝑒 = 𝜗𝑠𝑒 = 𝜗𝑒. (125)
Let ̃𝑒 ∶= 𝑏∗𝑒𝑏. Then, due to (125),

𝜗𝑎 ̃𝑒𝑏∗ = 𝜗𝑎𝑏∗𝑒𝑏𝑏∗ = 𝜗𝑒𝑏𝑏∗ = 𝜗𝑏𝑏∗𝑒.

Multiplying both sides of the equation with 𝜗𝑏 from the right yields

𝜗𝑎 ̃𝑒 = 𝜗𝑏𝑏∗𝑒𝑏 = 𝜗𝑏 ̃𝑒 (126)

By Lemma 5.37, ̃𝑒 is idempotent and 𝜗𝑏∗(𝐷𝑒) = 𝜗𝑏∗(𝐷𝑒 ∩ 𝐷𝑏𝑏∗) = 𝐷𝑏∗𝑒𝑏 = 𝐷 ̃𝑒.
Then, since 𝜗𝑏∗(𝑦) ∈ 𝜗𝑏∗(𝐷𝑒) = 𝐷 ̃𝑒, by the requirements in the lemma, there
is 𝑐 ∈ 𝐴 such that 𝜗𝑏∗(𝑦) ∈ 𝐷𝑐𝑐∗ and 𝐷𝑐𝑐∗ ⊆ 𝐷 ̃𝑒 and hence 𝜗 ̃𝑒𝑐𝑐∗ = 𝜗𝑐𝑐∗. Then
multiplying (126) from the right with 𝜗𝑐𝑐∗𝑐 yields 𝜗𝑎𝑐 = 𝜗𝑏𝑐. Since 𝑎𝑐, 𝑏𝑐 ∈ 𝐴
(since 𝐴 is closed under products) and 𝜗|𝐴 ∶ 𝐴 → ℐ(𝑌 ) is injective, this implies
𝑎𝑐 = 𝑏𝑐. Then

𝑎(𝑏∗𝑏)(𝑐𝑐∗)𝑏∗ = 𝑎(𝑐𝑐∗)(𝑏∗𝑏)𝑏∗ = 𝑏𝑐𝑐∗𝑏∗. (127)
From 𝜗𝑏∗(𝑦) ∈ 𝐷𝑐𝑐∗, it follows that 𝑦 ∈ 𝜗𝑏(𝐷𝑐𝑐∗), and, since 𝜗𝑏∗𝑏𝑐𝑐∗ = 𝜗𝑏∗𝑏 ̃𝑒𝑐𝑐∗ =
𝜗 ̃𝑒𝑐𝑐∗ = 𝜗𝑐𝑐∗, that 𝜗𝑏∗(𝑦) ∈ 𝐷𝑏∗𝑏, hence 𝑦 ∈ 𝐷𝑏𝑏∗. By Lemma 5.37 and since 𝜗𝑡,
𝑡 ∈ 𝑆, are homeomorphisms,

𝜗𝑏(𝐷𝑐𝑐∗) ∩ 𝐷𝑏𝑏∗ = 𝜗𝑏(𝐷𝑐𝑐∗) ∩ 𝜗𝑏(𝐷𝑏∗𝑏) = 𝜗𝑏(𝐷𝑐𝑐∗ ∩ 𝐷𝑏∗𝑏) = 𝐷𝑏𝑐𝑐∗𝑏∗.

By what we have shown above, this implies 𝑦 ∈ 𝐷𝑏𝑐𝑐∗𝑏∗. Then (127) implies that
[𝑎𝑏∗, 𝑦] is a unit, and since 𝑎𝑏∗𝑒 = 𝑠𝑒, [𝑎𝑏∗, 𝑦] = [𝑠, 𝑦]. We thus showed that an
element in the interior of the isotropy groupoid of 𝑆 ⋉ 𝑌 is a unit. Hence 𝑆 ⋉ 𝑌
is effective.

Now we give lemmata providing the prerequisites for an application of Lemma
7.6 to the groupoid model.
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Lemma 7.7. Suppose that 𝑃 fulfils the right Ore conditions and that ⋂𝑝∈𝑃 𝜃𝑝(𝐺) =
{1𝐺}. Let 𝑔, ℎ ∈ 𝐺 and 𝑟 ∈ 𝑃. If [𝑔]𝑟𝑠 = [ℎ]𝑟𝑠 for all 𝑠 ∈ 𝑃, then 𝑔 = ℎ.
Proof. Suppose that the requirements in the lemma hold. Let 𝑔, ℎ ∈ 𝐺. Suppose
that 𝑔 ≠ ℎ. Then, since ⋂𝑝∈𝑃 𝜃𝑝(𝐺) = {1𝐺}, there is 𝑝 ∈ 𝑃 such that 𝑔−1ℎ ∉
𝜃𝑝(𝐺). By the Ore conditions there are 𝑠, 𝑞 ∈ 𝑃 such that 𝑟𝑠 = 𝑝𝑞. Then
𝜃𝑟𝑠(𝐺) = 𝜃𝑝𝑞(𝐺) ⊆ 𝜃𝑝(𝐺). Hence 𝑔−1ℎ ∉ 𝜃𝑟𝑠(𝐺). Then [𝑔]𝑟𝑠 ≠ [ℎ]𝑟𝑠. This
concludes the proof.

The next lemma helps telling elements of 𝐼(𝐷𝔊𝔯) apart.
Lemma 7.8. Suppose that 𝑃 fulfils the Ore conditions, that the monoid ho-
momorphism 𝜃∶ 𝑃 → Mono(𝐺) is injective and that ⋂𝑝∈𝑃 𝜃𝑝(𝐺) = {1𝐺}. If
𝜗(𝑥,𝑝) = 𝜗(𝑥′,𝑝′), then 𝑥 = 𝑥′ and 𝑝′ = 𝑝.
Proof. Suppose that the requirements in the lemma hold. Let 𝑝𝑖 ∈ 𝑃 and
𝑥𝑖 ∈ 𝒳𝑝𝑖

, 𝑖 = 1, 2. Suppose 𝜗(𝑥1,𝑝1) = 𝜗(𝑥2,𝑝2). Let 𝑔 ∈ 𝐺 be arbitrary and
define 𝑔𝑟 ∶= 𝑔 for all 𝑟 ∈ 𝑃. Then ([𝑔𝑟]𝑟)𝑟 ∈ Ω. Since 𝑃 fulfils the right Ore
conditions, there are 𝑞1, 𝑞2 ∈ 𝑃 such that 𝑝1𝑞1 = 𝑝2𝑞2. Then

[𝑥1𝜃𝑝1
(𝑔)]𝑝1𝑞1𝑠 = (𝜗(𝑥1,𝑝1)([𝑔]𝑟))𝑝1𝑞1𝑠 = (𝜗(𝑥2,𝑝2)([𝑔]𝑟))𝑝2𝑞2𝑠 = [𝑥2𝜃𝑝2

(𝑔)]𝑝2𝑞2𝑠
(128)

for all 𝑠 ∈ 𝑃. By Lemma 7.7, this implies that 𝑥1𝜃𝑝1
(𝑔) = 𝑥2𝜃𝑝2

(𝑔). This holds
for all 𝑔 ∈ 𝐺, since 𝑔 ∈ 𝐺 was assumed arbitrary. Plugging in 𝑔 ∶= 1 yields
𝑥1 = 𝑥2. Then, letting 𝑔 ∈ 𝐺 vary again, 𝜃𝑝1

(𝑔) = 𝜃𝑝2
(𝑔), for 𝑔 ∈ 𝐺, follows.

Hence 𝜃𝑝1
= 𝜃𝑝2

. By injectivity of 𝜃, 𝑝1 = 𝑝2. We have thus shown that 𝑝1 = 𝑝2
and 𝑥1 = 𝑥2, which concludes the proof.

Lemma 7.9 (compare [20, Lemma 8.11]). Suppose that 𝑃 fulfils the right Ore
conditions. Let 𝑝, 𝑞 ∈ 𝑃, 𝑥 ∈ 𝒳𝑝, 𝑦 ∈ 𝒳𝑞 and 𝜔 ∈ dom(𝜗∗

(𝑥,𝑝)𝜗𝑦,𝑞). Then there
are 𝑘, 𝑙 ∈ 𝑃 and 𝑤 ∈ 𝒳𝑘, 𝑧 ∈ 𝒳𝑙, such that [(𝑥, 𝑝)∗ ⋅ (𝑦, 𝑞), 𝜔] = [(𝑤, 𝑘) ⋅ (𝑧, 𝑙)∗, 𝜔]
in 𝐼(𝐷𝔊𝔯) ⋉ Ω.
Proof. This proof is analogous to the proof of [20, Lemma 8.11]. By the first
Ore condition, there are 𝑘, 𝑙 ∈ 𝑃 with 𝑝𝑘 = 𝑞𝑙. The codomains of 𝜗(𝑧,𝑙), namely
𝑍Ω

𝜗(𝑧,𝑙)
, for 𝑧 ∈ 𝒳𝑙, cover Ω, as is easy to see (see Lemma 5.8). Pick 𝑧 ∈ 𝒳𝑙 such

that 𝜔 ∈ 𝑍Ω
(𝑧,𝑙). Since 𝒳𝑝 ∘ 𝒳𝑘 ≅ 𝒳𝑞 ∘ 𝒳𝑙, there are 𝑤1 ∈ 𝒳𝑝, 𝑤2 ∈ 𝒳𝑘 such

that 𝜇𝑝,𝑘([𝑤1, 𝑤2]) = 𝜇𝑞,𝑙([𝑦, 𝑧]) and thus (see Lemma 5.23), (𝑤1, 𝑝)(𝑤2, 𝑘) =
(𝑦, 𝑞)(𝑧, 𝑙). Then

(𝑥, 𝑝)∗(𝑦, 𝑞)(𝑧, 𝑙) = (𝑥, 𝑝)∗(𝑤1, 𝑝)(𝑤2, 𝑘)

Since (𝑥, 𝑝)∗(𝑤1, 𝑝)(𝑤2, 𝑘) = (⟨𝑥 | 𝑤1⟩ ⋅ 𝑤2, 𝑘) ∶= (𝑤, 𝑘), we have

(𝑥, 𝑝)∗(𝑦, 𝑞)(𝑧, 𝑙)(𝑧, 𝑙)∗ = (𝑤, 𝑘)(𝑧, 𝑙)∗

where 𝑤 ∶= ⟨𝑥 | 𝑤1⟩ ⋅ 𝑤2. The idempotent (𝑧, 1)(𝑧, 1)∗, enjoying the prop-
erty 𝜔 ∈ codom(𝜗(𝑧,𝑙)) = dom(𝜗(𝑧,𝑙)(𝑧,𝑙)∗), witnesses that [(𝑥, 𝑝)∗(𝑦, 𝑞), 𝜔] =
[(𝑤, 𝑘)(𝑧, 𝑙)∗, 𝜔] in 𝐼(𝐷𝔊𝔯).

Lemma 7.10. Suppose that 𝑃 fulfils the right Ore conditions. Then 𝐼(𝐷𝔊𝔯)⋉Ω
is covered by subsets of the form

Θ((𝑥2, 𝑝2)(𝑥1, 𝑝1)∗, 𝑍Ω
(𝑥1,𝑝1)) = {[(𝑥2, 𝑝2)(𝑥1, 𝑝1)∗, 𝜔] ∣ 𝜔 ∈ 𝑍Ω

(𝑥1,𝑝1)} ,

for 𝑝1, 𝑝2 ∈ 𝑃 , 𝑥1 ∈ 𝒳𝑝1
, 𝑥2 ∈ 𝒳𝑝2

.
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Proof. For any element [𝑠, 𝜔] ∈ 𝐼(𝐷𝔊𝔯) ⋉ Ω, 𝑠 can be written as a word of
elements of 𝐼(𝐷𝔊𝔯) each having the form (𝑥, 𝑝) or (𝑥, 𝑝)∗ (this being a choice
for each single element). As long as this word is of the form

𝑎(𝑥, 𝑝)∗(𝑦, 𝑞)𝑏 (129)

for subwords 𝑎, 𝑏 of 𝑠 and 𝑝, 𝑞 ∈ 𝑃, 𝑥 ∈ 𝒳𝑝, 𝑦 ∈ 𝒳𝑞, it can be replaced by
𝑠′ ∶= 𝑎(𝑤, 𝑘)(𝑧, 𝑙)∗𝑏 for certain 𝑘, 𝑙 ∈ 𝑃, 𝑤 ∈ 𝒳𝑘, 𝑧 ∈ 𝒳𝑙, such that [𝑠, 𝜔] =
[𝑠′, 𝜔] in 𝐼(𝐷𝔊𝔯): Indeed, by Lemma 7.9, there are such 𝑘, 𝑙, 𝑤, 𝑧, such that
[(𝑥, 𝑝)∗ ⋅ (𝑦, 𝑞), 𝜔] = [(𝑤, 𝑘) ⋅ (𝑧, 𝑙)∗, 𝜔]. Hence

[𝑠, 𝜔] = [𝑎(𝑥, 𝑝)∗(𝑦, 𝑞)𝑏, 𝜔]
= [𝑎, 𝜔″] ⋅ [(𝑥, 𝑝)∗(𝑦, 𝑞), 𝜔′] ⋅ [𝑏, 𝜔]
= [𝑎, 𝜔″] ⋅ [(𝑤, 𝑘)(𝑧, 𝑙)∗, 𝜔′] ⋅ [𝑏, 𝜔]
= [𝑎(𝑤, 𝑘)(𝑧, 𝑙)∗𝑏, 𝜔]
= [𝑠′, 𝜔],

with 𝜔′ ∶= 𝜗𝑏(𝜔) and 𝜔″ ∶= 𝜗(𝑥,𝑝)∗(𝑦,𝑞)𝑏(𝜔).
After finitely many steps, the resulting word will not be of the form (129).

Since then there is no “starred pair” left of a non-starred one in it, and the
set of pairs ( ̃𝑥, ̃𝑝), ̃𝑝 ∈ 𝑃, ̃𝑥 ∈ 𝒳�̃�, is closed under taking products, it can be
contracted to the desired form (𝑥2, 𝑝2)(𝑥1, 𝑝1)∗ for 𝑝𝑖 ∈ 𝑃, 𝑥𝑖 ∈ 𝒳𝑝𝑖

. Hence
[𝑠, 𝜔] = [(𝑥2, 𝑝2)(𝑥1, 𝑝1)∗, 𝜔]. Furthermore, 𝑍Ω

(𝑝1,𝑥1) is the domain of the homeo-
morphism 𝜗(𝑥2,𝑝2)(𝑥1,𝑝1)∗. In particular, 𝜔 ∈ 𝑍Ω

(𝑝1,𝑥1). Thus, the assertion of the
lemma follows.

Lemma 7.11. Suppose that 𝑃 fulfils the Ore conditions, 𝜃∶ 𝑃 → Mono(𝐺) is
injective and that ⋂𝑝∈𝑃 𝜃𝑝(𝐺) = {1𝐺}. Then the canonical homomorphism of
semigroups 𝒮×(𝐷𝔊𝔯) → 𝐼(𝐷𝔊𝔯) is injective, that is, 𝒮×(𝐷𝔊𝔯) can be seen as a
subsemigroup of 𝐼(𝐷𝔊𝔯).

Proof. I expect that the result holds in the general case, since the relations (84)
should not identify any of the generating pairs (𝑥, 𝑝), 𝑝 ∈ 𝑃, 𝑥 ∈ 𝒳𝑝. Since
we did not prove nor need this in the general case, we show it indirectly in the
case of the assumptions in the lemma. Those assumptions imply, by Lemma
7.8, that for 𝑝, 𝑝′ ∈ 𝑃, 𝑥 ∈ 𝒳𝑝, 𝑥′ ∈ 𝒳𝑝′, if 𝜗(𝑥,𝑝) = 𝜗(𝑥′,𝑝′), then 𝑥 = 𝑥′ and
𝑝′ = 𝑝. So 𝜗∶ 𝐼(𝐷𝔊𝔯) → ℐ(Ω) witnesses that no pairs (𝑥, 𝑝),(𝑥′, 𝑝′), which are
distinct in 𝒮×(𝐷𝔊𝔯), are identified in 𝐼(𝐷𝔊𝔯). This implies the statement of the
lemma.

Proposition 7.12. Suppose that 𝑃 fulfils the right Ore conditions, that 𝜃∶ 𝑃 →
Mono(𝐺) is injective and that ⋂𝑝∈𝑃 𝜃𝑝(𝐺) = {1𝐺}. Then the groupoid model
ℒ = 𝐼(𝐷𝔊𝔯) ⋉ Ω is effective.

In particular, in Stammeier’s “minimal”, finite-type case, ℒ is effective.

Proof. Suppose that the requirements in the proposition hold. We prove the
proposition by plugging in 𝐼(𝐷𝔊𝔯) for 𝑆, Ω for 𝑌, 𝜗∶ 𝐼(𝐷𝔊𝔯) → ℐ(Ω) for 𝜗∶ 𝑆 →
ℐ(𝑌 ) and 𝒮(𝐷𝔊𝔯) for 𝐴 in Lemma 7.6 and proving that the requirements of
the lemma are fulfilled. The semigroup ℐ(𝑌 ) is a generating subsemigroup of
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𝐼(𝐷𝔊𝔯) (see Lemma 5.23, Definition 5.38 and Lemma 7.11) and hence closed
under multiplication. Furthermore, 𝜗∶ 𝐼(𝐷𝔊𝔯) → ℐ(Ω) is an action of 𝐼(𝐷𝔊𝔯)
by partial homeomorphisms on Ω, and by Lemma 7.8, its restriction to 𝒮(𝐷𝔊𝔯)
is injective.

We further need that for every 𝑠 ∈ 𝐼(𝐷𝔊𝔯) and 𝜔 ∈ 𝐷𝑠∗𝑠, there are 𝑒 ∈ 𝐸(𝑆)
with 𝜔 ∈ 𝐷𝑒 and there are 𝑝𝑖 ∈ 𝑃, 𝑥𝑖 ∈ 𝒳𝑝𝑖

, 𝑖 = 1, 2, such that

((𝑥2, 𝑝2)(𝑥1, 𝑝1)∗)∗(𝑥2, 𝑝2)(𝑥1, 𝑝1)∗𝑒 = 𝑒 and (130)
(𝑥2, 𝑝2)(𝑥1, 𝑝1)∗𝑒 = 𝑠𝑒. (131)

For arbitrary 𝑠 ∈ 𝐼(𝐷𝔊𝔯) and 𝜔 ∈ 𝐷𝑠∗𝑠, Lemma 7.10 provides 𝑒 ∈ 𝐸 with
𝜔 ∈ 𝐷𝑒 and 𝑝𝑖 ∈ 𝑃, 𝑥𝑖 ∈ 𝒳𝑝𝑖

, 𝑖 = 1, 2, which fulfil (131) and furthermore
𝜔 ∈ 𝐷((𝑥2,𝑝2)(𝑥1,𝑝1)∗)∗(𝑥2,𝑝2)(𝑥1,𝑝1)∗. This last property allows us to shrink the
idempotent 𝑒 so that (130) holds.

Lastly, the sets 𝐷(𝑥,𝑝)(𝑥,𝑝)∗ = 𝑍Ω
(𝑥,𝑝), for 𝑝 ∈ 𝑃, 𝑥 ∈ 𝒳𝑝, form a basis of Ω by

Lemma 7.1. We have thus shown that the data we plugged in fulfil all conditions
in Lemma 7.6; thus, 𝐼(𝐷𝔊𝔯) ⋉𝜗 Ω is effective.

Now forget all assumptions in this proof and instead suppose that Stam-
meier’s conditions hold and suppose that Stammeier’s “minimality” condition
holds. The latter means that ⋂𝑝∈𝑃 𝜃𝑝(𝐺) = {1𝐺}. Furthermore, the Ore condi-
tions are fulfilled (see Remark 5.16) and 𝜃 is injective (see Remark 3.14). Hence
the first part of this proposition is applicable and ℒ is effective.

7.3 When is the groupoid model minimal?
A subset 𝑈 ⊆ 𝒢0 of the object space of a groupoid 𝒢 is invariant, if for all
arrows 𝑔 ∈ 𝒢1, s(𝑔) ∈ 𝑈 implies r(𝑔) ∈ 𝑈.
Definition 7.13 ([2, Definition 6.4]). A topological groupoid 𝒢 is minimal if
its object space 𝒢0 has no open, invariant subsets besides ∅ and 𝒢0.
Proposition 7.14. Suppose that 𝑃 fulfils the right Ore conditions. Then the
groupoid model ℒ = 𝐼(𝐷𝔊𝔯) ⋉ Ω is minimal.

In particular, in Stammeier’s finite-type case, ℒ is minimal.
Proof. Suppose that 𝑈 ⊆ Ω is a non-empty invariant open subset. Then by
Lemma 7.1, there are 𝑞 ∈ 𝑃 and 𝑥 ∈ 𝒳𝑞 such that 𝑍Ω

(𝑥,𝑞) ⊆ 𝑈. By its definition
in Lemma 5.27, 𝜗(𝑥,𝑞) is a homeomorphism with domain Ω and codomain 𝑍Ω

(𝑥,𝑞) ⊆
𝑈. The inverse of this homeomorphism induces a slice 𝒰 ∶= [(𝑥, 𝑞)∗, 𝑍Ω

(𝑥,𝑞)] in
𝐼(𝐷𝔊𝔯) ⋉ Ω with s(𝒰) = 𝑍Ω

(𝑥,𝑞) ⊆ 𝑈 and r(𝒰) = Ω, see Lemma 5.42. Since 𝑈
is invariant, this implies Ω ⊆ 𝑈, that is, Ω = 𝑈. This concludes the proof that
there are no invariant subsets of Ω except for ∅ and Ω.

Now forget all assumptions in the proof and instead assume Stammeier’s
conditions hold. Then 𝑃 fulfils the right Ore conditions by Remark 5.16. Thus
the first part of the proposition is applicable and ℒ is minimal.

7.4 When is the groupoid model locally contracting?
Another question which can be interesting when studying groupoid 𝐶∗-algebras
is whether the groupoids are locally contracting, see for example [4, Proposition
2.4]. We give a sufficient criterion for the groupoid model ℒ to be locally
contracting.
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Definition 7.15 (compare [4, Definition 2.1]). A topological groupoid 𝒢 is
locally contracting if for every non-empty open subset 𝑂 of 𝒢0, there exist an
open subset 𝑉 in 𝑂 and a slice 𝒰 of 𝒢 with 𝑉 ⊆ s(𝒰) and 𝒰∗(𝑉) ⊊ 𝑉. Here, 𝒰∗
is the homeomorphism s(𝒰) → r(𝒰) induced by the slice.

Lemma 7.16. Suppose that 𝑃 fulfils the right Ore conditions. Then the groupoid
model ℒ = 𝐼(𝐷𝔊𝔯) ⋉ 𝑌 is locally contracting if and only if the set of the sets
𝑍Ω

(𝑥,𝑝), 𝑝 ∈ 𝑃, 𝑥 ∈ 𝒳𝑝, ordered by inclusion, has no minimal elements.

Proof. We first make some observations. For each 𝑝 ∈ 𝑃 and 𝑥 ∈ 𝒳𝑝, (𝒰(𝑥,𝑝))∗ =
𝜗(𝑥,𝑝) is the homeomorphism with domain Ω and codomain 𝑍Ω

(𝑥,𝑝) coming from
the slice 𝒰(𝑥,𝑝) ∶= Θ((𝑥, 𝑝), 𝑍Ω

(𝑥,𝑝)). For any 𝑝𝑖 ∈ 𝑃, 𝑥𝑖 ∈ 𝑃, 𝑖 = 1, 2, the
slice 𝒰(𝑥2,𝑝2)(𝑥1,𝑝1)∗ comes with a homeomorphism (𝒰(𝑥2,𝑝2)(𝑥1,𝑝1)∗)∗ ∶ 𝑍Ω

(𝑥1,𝑝1) →
𝑍Ω

(𝑥2,𝑝2). Sets of the form 𝑍Ω
(𝑥,𝑝), 𝑝 ∈ 𝑃 and 𝑥 ∈ 𝒳𝑝, are closed and open and

form a basis of Ω by Lemma 7.1.
Now, in order to prove one direction of the equivalence in the lemma, suppose

that ({𝑍Ω
(𝑥,𝑝) ∣ 𝑝 ∈ 𝑃 , 𝑥 ∈ 𝒳𝑝} , ⊆) has no minimal elements. Then, given any

open set 𝒪 ∈ Ω, there are 𝑝𝑖 ∈ 𝑃, 𝑥𝑖 ∈ 𝒳𝑝𝑖
, 𝑖 = 1, 2, such that 𝑍Ω

(𝑥2,𝑝2) ⊊
𝑍Ω

(𝑥1,𝑝1) ⊆ 𝒪. Since 𝑍Ω
(𝑥1,𝑝1) is already closed,

(𝒰(𝑥2,𝑝2)(𝑥1,𝑝1)∗)∗(𝑍Ω
(𝑥1,𝑝1)) = 𝑍Ω

(𝑥2,𝑝2) ⊊ 𝑍Ω
(𝑥1,𝑝1)

Since 𝒪 was chosen as an arbitrary open subset of Ω, this proves that 𝐼(𝐷𝔊𝔯)⋉Ω
is locally contracting.

Conversely, suppose that 𝐼(𝐷𝔊𝔯) ⋉ Ω is locally contracting. Assume that
there exist 𝑝 ∈ 𝑃 and 𝑥 ∈ 𝒳𝑝 such that 𝑍Ω

(𝑥,𝑝) is minimal with respect to the
subset relation. Since 𝑍Ω

(𝑥,𝑝) is open, there must be an open subset 𝑉 ⊆ 𝑍Ω
(𝑥,𝑝)

and a slice 𝒰 such that 𝒰∗(𝑉) ⊊ 𝑉. A fortiori, 𝒰∗(𝑉 ) ⊊ 𝑉. Since 𝒰∗(𝑉 ) is open,
there must be a basic set 𝑍Ω

(𝑦,𝑞) with 𝑞 ∈ 𝑃 and 𝑦 ∈ 𝒳𝑞 such that

𝑍Ω
(𝑦,𝑞) ⊆ 𝒰∗(𝑉 ) ⊊ 𝑉 ⊆ 𝑍Ω

(𝑥,𝑝).

This contradicts the minimality of 𝑍Ω
(𝑥,𝑝). Hence, the assumption that there

exists a minimal set of the form 𝑍Ω
(𝑥,𝑝), 𝑝 ∈ 𝑃, 𝑥 ∈ 𝒳𝑝, is wrong. This concludes

the proof.

Proposition 7.17. Suppose that 𝑃 fulfils the right Ore conditions, that ⋂𝑝∈𝑃 𝜃𝑝(𝐺) =
{1𝐺} and that 𝜃𝑝(𝐺) ≠ {1𝐺} for all 𝑝 ∈ 𝑃. Then the groupoid model ℒ is locally
contracting.

In particular, in Stammeier’s “minimal”, finite-type case, ℒ is locally con-
tracting.

Proof. For 𝑝 ∈ 𝑃 and ([𝑔𝑞]𝑞)𝑞 ∈ Ω, 𝜔 ∶= ([𝑔𝑞]𝑞)𝑞,

𝜔 ∈ 𝑍Ω
(1𝐺,𝑝) if and only if 𝑔𝑝 ∈ 𝜃𝑝(𝐺). (132)

Suppose that the requirements in the proposition hold. Assume that there
exists 𝑝 ∈ 𝑃 and 𝑥 ∈ 𝒳𝑝 such that 𝑍Ω

(𝑥,𝑝) is minimal in the sense that it does
not properly contain any other set of this form. Then 𝑍Ω

(1𝐺,𝑝) is also minimal,
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since any set of the form 𝑍Ω
(𝑦,𝑞), 𝑞 ∈ 𝑃, 𝑦 ∈ 𝒳𝑞, with 𝑍Ω

(𝑦,𝑞) ⊊ 𝑍Ω
(1𝐺,𝑝) could be

shifted by multiplying by 𝑥 from the left to result in a set contradicting the
minimality of 𝑍Ω

(𝑥,𝑝): Indeed, for ̃𝑥 ∈ 𝐺, ̃𝑝 ∈ 𝑃, ̃𝑦 ∈ 𝒳�̃�, 𝜔 ∶= ([𝑔𝑞]𝑞)𝑞 ∈ Ω
and ̃𝑥𝜔 ∶= ([ ̃𝑥𝑔𝑞]𝑞)𝑞, 𝜔 ∈ 𝑍Ω

( ̃𝑦,�̃�), meaning that [𝑔�̃�]�̃� = [ ̃𝑦]�̃�, holds if and only if
̃𝑥𝜔 ∈ 𝑍Ω

(�̃� ̃𝑦,�̃�), meaning that [ ̃𝑥𝑔�̃�]�̃� = [ ̃𝑥 ̃𝑦]�̃�, holds; hence 𝑍Ω
(𝑦,𝑞) ⊊ 𝑍Ω

(1𝐺,𝑝) implies
𝑍Ω

(𝑥𝑦,𝑞) ⊊ 𝑍Ω
(𝑥,𝑝).

One of the requirements in the proposition implies that there exists 1𝐺 ≠
𝑔 ∈ 𝜃𝑝(𝐺). Let 𝜔 ∶= ([𝑔] ̃𝑞) ̃𝑞. Then, by (132),

𝜔 ∈ 𝑍Ω
(1𝐺,𝑝). (133)

By the requirement that ⋂𝑟∈𝑃 𝜃𝑟(𝐺) = {1𝐺}, there must be 𝑟 ∈ 𝑃 such that
𝑔 ∉ 𝜃𝑟(𝐺). By the right Ore conditions, there are 𝑞, 𝑠 ∈ 𝑃 such that 𝑝𝑞 = 𝑟𝑠.
Then, since 𝜃𝑟𝑠(𝐺) ⊆ 𝜃𝑟(𝐺), 𝑔 ∉ 𝜃𝑝𝑞(𝐺). Then, by (132), 𝜔 ∉ 𝑍Ω

(1𝐺,𝑝𝑞). Thus,
by (133), 𝑍Ω

(1𝐺,𝑝𝑞) ⊊ 𝑍Ω
(1𝐺,𝑝), a contradiction to the minimality of 𝑍Ω

(1𝐺,𝑝). Thus,
the assumption that there exists a minimal basic set of the form 𝑍Ω

(𝑥,𝑝), 𝑝 ∈ 𝑃,
𝑥 ∈ 𝒳𝑝, is wrong. Hence, by Lemma 7.16, ℒ is locally contracting.

Now forget all assumptions in the proof and instead suppose that Stam-
meier’s conditions hold and suppose that Stammeier’s “minimality” and finite-
type conditions are fulfilled. The “minimality” condition means that ⋂𝑝∈𝑃 𝜃𝑝(𝐺) =
{1𝐺}. Furthermore, 𝑃 fulfils the right Ore conditions by Remark 5.16. Fur-
thermore, Stammeier’s conditions imply that 𝐺 is infinite, and the finite-type
condition means that 𝜃𝑝(𝐺) ≤ 𝐺 has finite index for each 𝑝 ∈ 𝑃; this implies
that for each 𝑝 ∈ 𝑃, 𝜃𝑝(𝐺) is infinite and hence not the trivial group. Hence the
first part of the proposition is applicable and ℒ is locally contracting.

7.5 A criterion for simplicity of the 𝐶∗-algebra
We provide some statements about criteria for simplicity of 𝐶∗(ℒ). For a cri-
terion in Stammeier’s work, see [26, Theorem 3.26]. Beware that we only re-
modeled his 𝐶∗-algebra 𝒪[𝐺, 𝑃 , 𝜃] by 𝐶∗(ℒ) in Stammeier’s finite-type case, see
Corollary 6.14.

Lemma 7.18. Suppose that 𝑃 fulfils the right Ore conditions and is countable.
Further suppose that 𝐺 is countable. Then ℒ is second countable.

Proof. Suppose the requirements in the lemma hold. Then by Lemma 7.1, a
basis for Ω is given by the sets 𝑍Ω

(𝑥,𝑝), 𝑝 ∈ 𝑃, 𝑥 ∈ 𝒳𝑝 = 𝐺. Since 𝑃 and 𝐺
are countable, there are only countably many such sets. This concludes the
proof.

Theorem 7.19 (compare [7, Theorem 5.1]). Suppose that 𝑃 fulfils the right Ore
conditions and is countable, that 𝐺 is countable and that 𝜃𝑝(𝐺) ≤ 𝐺 has finite
index for all 𝑝 ∈ 𝑃. Then 𝐶∗(ℒ) is simple if and only if

1. 𝐶∗(ℒ) = 𝐶∗
red(ℒ),

2. ℒ is effective.

Proof. Suppose that the required conditions hold. Then, by Lemma 7.18, ℒ is
second countable. Furthermore, by Lemma 5.44, ℒ is locally compact, and, by
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Proposition 7.2, ℒ is Hausdorff. In summary, ℒ is a second countable, locally
compact, Hausdorff, étale groupoid. Thus by [7, Lemma 3.3], ℒ is “topologically
principal”, if and only if the interior of the isotropy subgroupoid of ℒ is its
space of units, that is, if and only if it is effective in the sense we use. Thus, by
[7, Theorem 5.1], 𝐶∗(ℒ) is simple if and only if

1. 𝐶∗(ℒ) = 𝐶∗
red(ℒ),

2. ℒ is effective and

3. ℒ is minimal.

By Proposition, 7.14 is minimal. This concludes the proof.

Corollary 7.20. Suppose that 𝑃 fulfils the right Ore conditions and is countable,
that 𝐺 is countable, that 𝜃𝑝(𝐺) ≤ 𝐺 has finite index for all 𝑝 ∈ 𝑃, that 𝐶∗(ℒ) =
𝐶∗

red(ℒ), that 𝜃∶ 𝑃 → Mono(𝐺) is injective and that ⋂𝑝∈𝑃 𝜃𝑝(𝐺) = {1𝐺}. Then
𝐶∗(ℒ) is simple.

In particular, in Stammeier’s “minimal”, finite-type case, 𝐶∗(ℒ) = 𝐶∗
red(ℒ)

implies that 𝐶∗(ℒ) is simple.

Proof. The first part follows from Theorem 7.19 and Proposition 7.12.
Now suppose that Stammeier’s conditions hold. This implies that 𝑃 fulfils

the right Ore conditions and is countable, that 𝐺 is countable and, see Remark
3.14, that 𝜃 is injective. Further suppose that Stammeier’s “minimality” and
finite-type conditions hold. This means, respectively, that ⋂𝑝∈𝑃 𝜃𝑝(𝐺) = {1𝐺}
and that 𝜃𝑝(𝐺) ≤ 𝐺 has finite index for all 𝑝 ∈ 𝑃. Now all prerequisites of the
first part of the corollary except for 𝐶∗(ℒ) = 𝐶∗

red(ℒ) are fulfilled. Hence 𝐶∗(ℒ)
is simple, if 𝐶∗(ℒ) = 𝐶∗

red(ℒ).
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