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BICATEGORICAL PERSPECTIVE ON STEINBERG ALGEBRAS

FABIAN RODATZ

Abstract. We define a bicategory with ample groupoids as objects, groupoid
correspondences (namely spaces with commuting left and right actions) as
1-arrows, and continuous equivariant maps as 2-arrows. We extend the con-
struction of the Steinberg algebra for ample groupoids to a homomorphism from
this bicategory to the bicategory of rings with local units, smooth bimodules,
and bimodule homomorphisms. Then, we find an explicit construction of a
covariance ring for a finitely generated and projective diagram over an Ore
monoid in the subbicategory of unital rings. We recall the construction of a
groupoid model for a tight diagram over an Ore monoid. Finally, we prove that
the covariance ring of a diagram of bimodules, obtained from a tight diagram
of correspondences over an Ore monoid, is given by the Steinberg algebra of
the groupoid model.
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1. Introduction

The principle of algebraization suggests to transform abstract, intangible concepts
into algebraic expressions because this allows the researcher to mathematically model
and solve complex problems using algebraic methods and tools. By this method,
existing structures and relations can be analyzed and subsequently abstracted to their
essential properties, so that a profound comprehension of the actual mathematical
objects in study can be gained. According to [Ara+18] the trend of algebraization
of concepts from operator theory into algebra started with von Neumann and
Kaplansky (in 1986) and their students Berberian and Rickart, who strived to
explore what properties in operator algebra theory arise naturally from discrete
underlying structures. Quite recently, Steinberg [Ste09] introduced his Steinberg
algebras as an algebraization of the groupoid C∗-algebras first studied by Renault
[Ren80]. Currently, Meyer’s research is focused on investigating these groupoid
C*-algebras from a bicategorical standpoint. The objective of this thesis is to
identify algebraic parallels to some of his most recent findings.

In [AKM22; AM15; Alb15] groupoid C∗-algebras and related constructions of
C∗-algebras are put into a bicategorical perspective and studied from this point
of view. In [AKM22] the bicategory Grinj of (locally compact, étale) groupoids,
(locally compact, étale) correspondences, and injective continuous equivariant maps
is introduced to extend the definition of a groupoid C∗-algebra to a strictly unital
homomorphism Grinj → Corr to the bicategory Corr of C∗-correspondences. This
enables studying diagrams in Corr (that is, product systems) that were obtained
from diagrams in Grinj by composing with this homomorphism. In particular, one
can study certain bicategorical limits (that is, absolute Cuntz-Pimsner algebras)
of such diagrams, which capture many constructions of C∗-algebras coming from
combinatorial or dynamical data. In [AM15] the absolute Cuntz-Pimsner algebra
of a proper, non-degenerate product system over an Ore monoid P is constructed
explicitly through filtered colimits and a related diagram over a group (that is, a
Fell bundle over a group). Finally, in [Alb15; AM15], it is shown how to realize this
bicategorical limit of a diagram in Corr (that is, the absolute Cuntz-Pimsner algebra
of a product system) obtained from a tight Ore diagram in Grinj, as a groupoid
C∗-algebra.

This thesis identifies an algebraic counterpart to this theory, with a focus on
viewing Steinberg algebras of ample groupoids and associated constructions from
a bicategorical perspective. Since we are interested in the Steinberg algebra of
a groupoid, we restrict ourselves to ample groupoids, which have a sufficiently
rich base for their topology (that we call an ample base), so that the Steinberg
algebra is manageable and interesting to consider. We first define the bicategory Gra
of ample groupoids, ample groupoid correspondences, and continuous equivariant
maps. Now, the Steinberg algebra is a ring with local units, that is, an object in
the bicategory Rings of rings with local units, smooth bimodules, and bimodule
homomorphisms, which serves as the algebraic analogue to the bicategory Corr
of C∗-correspondences. So we extend the definition of the Steinberg algebra to
a strictly unital homomorphism A∶Gra → Rings. Note that by composing with
this homomorphism, every diagram in Gra induces a diagram in Rings. Next, we
explicitly construct a bicategorical limit, namely the covariance ring, of a finitely
generated and projective (fgp) Ore diagram in Rings through filtered colimits and a
related lax diagram over a group. Finally, we prove that for a diagram in Rings
that is induced by a tight Ore diagram in Gra, the covariance ring can be realized
as the Steinberg algebra of a groupoid.

The main goal of this thesis is to formulate these algebraic versions of the results
and to work out the proofs properly. It remains for future studies to consider concrete
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examples such as group actions on spaces, (higher-rank) graphs, and self-similar
groups and to apply the obtained results to them.

This thesis is structured as follows. In Section 2, we introduce ample groupoids
and discuss that the compact slices form an ample base for their topology. In
Section 3 we introduce groupoid actions on spaces and define ample groupoid
correspondences as spaces with commuting left and right groupoid actions, where
the right action is particularly well-behaved. We show that the compact slices form
an ample base for their topology. Finally, we take a closer look at proper and tight
correspondences. In Section 4, we introduce the remaining necessary data to define
the bicategory Gra of ample correspondences and also introduce the subbicategories
of cocompact groupoids and proper/tight ample correspondences. These Sections 2–4
were structured analogously to [AKM22, Section 2-6], where the bicategory Grinj is
introduced. In Section 5, we recall the bicategory Rings of smooth bimodules and the
subbicategory Ringsu of unital rings, as well as the subbicategory Ringsfgp of unital
rings and fgp bimodules that were all introduced in [Mey22a] in detail. We also prove
some standard results on fgp modules. In Section 6, we define the Steinberg module
of a topological space and prove that the Steinberg module of a topological space with
an ample base is particularly manageable. We then define multiplicative structures
(given by convolution) to turn the Steinberg module of an ample groupoid into an
algebra and of an ample correspondence into a bimodule. After that, we prove that
the Steinberg bimodule of a proper correspondence over a cocompact groupoid is fgp.
In Section 7, we extend the construction of the Steinberg algebra into a strictly unital
homomorphism A∶Gra →Rings of bicategories, analogously to the construction of
the homomorphism Grinj → Corr in [AKM22]. In Section 8, we define filtered colimits
and explicitly construct them in the categories Top,R -Mod,Ring,AbGroup, and Set.
We do this as a preparation since we need these constructions in the following
sections. In Section 9, we recall the definitions of (lax) diagrams, (lax) covariant
representations, and (lax) covariance rings in Ringsu from [Mey22a]. We explicitly
construct a covariance ring for an fgp Ore diagram F in Ringsu by building a lax
diagram O out of filtered colimits and proving that the covariance ring of F is given
by the lax covariance ring of O, analogously to the construction of an absolute
Cuntz-Pimsner algebra in [AM15, Theorem 3.16]. In Section 10, we give a brief
review of diagrams in Gra and groupoid models studied in [Mey22b]. We recall the
explicit construction of a groupoid model for a tight Ore diagram in Gra, which is
done for Grinj in [Alb15]. In Section 11, we prove that the Steinberg algebra of the
groupoid model of a tight Ore diagram is the covariance ring of the induced fgp Ore
diagram in Ringsu, analogously to the proof in [Alb15].

Note that throughout this thesis a ring is not necessarily commutative nor unital
unless explicitly stated, except for the ring R, introduced at the beginning of
Section 6, which we always assume to be commutative and unital.



BICATEGORICAL PERSPECTIVE ON STEINBERG ALGEBRAS 5

2. Ample groupoids

We start by introducing ample groupoids G, which are topological groupoids
with a sufficiently well-behaved topological structure, so that the Steinberg module
(introduced in Section 6) is an interesting object. Namely, we want to find an ample
base for the topology on G. We introduce slices, which are open subsets respecting
the structure, and we show that the compact slices form an ample base for the
topology on G. The ample groupoids are the objects in the bicategory Gra.

We start by defining a topological groupoid.

Definition 2.1. A groupoid G is a small category where every morphism is invertible.
A topological groupoid is a groupoid G with a topology on the object set G0 and on
the morphism set G such that the maps

● r, s∶ G → G0 the range and source maps;
● G ×s,G0,r G → G, (g, h) ↦ g ⋅ h, the composition map;
● G → G, g ↦ g−1, the inverse map; and
● G0 → G, x↦ 1x, the unit map

are continuous.

One can think of a (topological) groupoid as a generalization of a (topological)
group. In a group, we can multiply any two elements. In a groupoid, this does
not always work. We may only multiply two elements that have a fitting range
and source. So we can think of a groupoid as a group where multiplication is only
partially defined.

Example 2.2. A (topological) groupoid G where the category has only one object is
the same as a (topological) group.

We denote the preimages of the range and source maps of x ∈ G0, respectively, as
Gx ∶= r−1(x) and Gx ∶= s−1(x).

From now on, when we say “groupoid”, we always mean a topological groupoid.

Definition 2.3. A topological space X is called totally disconnected, if the only
connected subsets are singletons.

Definition 2.4. A groupoid G is called
● cocompact, if G0 is compact;
● étale, if r and s are local homeomorphisms;
● locally compact, if G0 is Hausdorff and locally compact and G is locally

compact;
● totally disconnected, if G0 is totally disconnected.

We call a groupoid ample, if it is étale, locally compact, and totally disconnected.

First, we collect some basic properties of the relevant topological terms.

Lemma 2.5. For topological spaces X,Y and a local homeomorphism f ∶X → Y ,
we have

● if X is Hausdorff, then any subset A ⊂X is Hausdorff;
● if X is totally disconnected, then any subset A ⊂X is totally disconnected;
● if Y is totally disconnected, then X is totally disconnected; and
● if Y is locally compact and Hausdorff, then X is locally compact and locally

Hausdorff.

Proof. The first and second statements are immediate from the definition.
For the third statement, we take a connected subset A ⊂ X. Since f is a local

homeomorphism and hence continuous also f(A) ⊂ Y is connected. Now, Y is
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totally disconnected and thus f(A) is a singleton set, that is, f(A) = {y} for some
y ∈ Y . Thus, A ⊂ f−1(f(A)) = f−1(y) is a connected subset of the fiber of y ∈ Y .
Now, fibers of local homeomorphisms are discrete, and hence A is also a singleton
set.

For the fourth statement, take x ∈X and an open neighborhood U ⊂X of x such
that f ∣U ∶U → f(U) is a homeomorphism. Since f is a local homeomorphism, it
is an open map. Now, since Y is locally compact and Hausdorff, the open subset
f(U) is locally compact as well. Furthermore, as a subset of a Hausdorff space, it is
Hausdorff. Thus, U is locally compact and Hausdorff. Hence, X is locally compact
and locally Hausdorff. □

Remark 2.6. Note that for an ample groupoid G, the object space G0 is locally
compact, Hausdorff and totally disconnected. Since we have local homeomorphisms
r, s∶ G → G0, Lemma 2.5 shows that the groupoid G itself is locally compact, locally
Hausdorff and totally disconnected. But G is not necessarily Hausdorff.

Definition 2.7. A slice1 of a groupoid G is an open subset U ⊂ G such that r∣U
and s∣U are homeomorphisms onto an open subset of G0. We denote the set of all
slices as Gop and the subset of all compact slices as Ga.

We get the following alternative classification of étale groupoids.

Lemma 2.8. A groupoid G is étale if and only if the topology on G has a base of
slices.

Proof. Given an étale groupoid G and a point x ∈ G, we find open neighborhoods
x ∈ U,V of x such that r∣U and s∣V are homeomorphisms onto their images, which
are open, as local homeomorphisms are open maps. Hence, W ∶= U ∩ V is an open
neighborhood of x and a slice. Note that open subsets of slices are still slices. Hence,
the slices form a base for the topology. The other direction is immediate. □

There is always the trivial unit slice.

Lemma 2.9. If G is a locally compact, étale groupoid, then G0 ⊂ G is an open subset
and thus a slice, which is called the unit slice.

Proof. See [Exe08, Proposition 3.2]. □

Furthermore, we get a result about ample groupoids, providing an equivalent
definition.

Proposition 2.10. A locally compact, étale groupoid is ample if and only if the
compact slices Ga form a base for the topology on G.

Proposition 2.10 is immediate from the following two lemmas.

Lemma 2.11. Take a locally compact, Hausdorff space X. Then the following are
equivalent:

● X is totally disconnected;
● there is a clopen2 base for the topology on X;
● there is a compact open base B for the topology on X.

Proof. For the forward direction in the first equivalence, we refer to [AT08, Proposi-
ton 3.1.7, p.136]. For the other direction, take a subset A ⊂ X with x, y ∈ A and
x ≠ y. Now, as X is Hausdorff, {y}c is open, and thus we find a clopen set B ∈ B
such that x ∈ B ⊂ {y}c. Thus, A = (A∩B) ∪ (A∩Bc) with x ∈ A∩B and y ∈ A∩Bc

are both non-empty open subsets of A. Hence, A is not connected.

1In some literature, a slice is also called a bisection.
2Short for closed and open.
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For the forward direction in the second equivalence, we show that the set of all
compact open subsets is a base. For x ∈ U ⊂X open, because of local compactness,
we find some compact K and open V such that c ∈ V ⊂K ⊂ U . Using the assumption,
we find a clopen subset W ∈ B with x ∈ W ⊂ V ⊂ K. As a closed subset of the
compact set K, the space W is compact as well. The other direction is immediate
since every compact subset in a Hausdorff space is closed. □

Lemma 2.12. For a locally compact, étale groupoid G, there exists a base of compact
open sets for the topology on G0 if and only if the compact slices Ga form a base for
the topology on G.

Proof. See [Ste09, Proposition 3.6, p.696]. □

We now take a closer look at the sets Gop of slices and Ga ⊂ Gop of compact slices
for a locally compact, étale groupoid G. The following Proposition 2.13 shows that
they form inverse semigroups (note that associativity of the multiplication of the
slices is inherited from G). Furthermore, Gop is even an inverse monoid where the
identity element is given by the unit slice G0 ∈ Gop.

Proposition 2.13. Given a locally compact, étale groupoid G and two slices U,V ⊂ G,
then

UV ∶= {uv ∈ G ∣ u ∈ U, v ∈ V with s(u) = r(v)}
U−1 ∶= {u−1 ∈ G ∣ u ∈ U}

are again slices. Furthermore, U−1 ∈ Gop is the unique element, so that U = UU−1U
and U−1 = U−1UU−1.

If G is ample and U,V ⊂ G are compact slices, then UV and U−1 are again
compact slices.

Proof. For the first part, see [Exe08, Proposition 3.8]. For the second part, note
that as u = uu−1u, we immediately get U ⊂ UU−1U . For the other direction, take
uv−1w ∈ UU−1U . Now, as U is a slice, the composability of u, v−1,w already implies
u = v = w and hence uv−1w = u ∈ U . The proof of U−1 = U−1UU−1 is analogous.

Finally, for the third part, we take two compact slices U,V ⊂ G. Since G0

is Hausdorff, any pullback over G0 is a closed subset of the product. Hence,
G ×s,G0,r G ⊂ G × G is closed. Now, as U,V ⊂ G are compact, so is the space
U × V ⊂ G × G, and as G ×s,G0,r G is closed, the intersection U ×s,G0,r V is compact
as well. Thus, the set UV , which is the image of U ×s,G0,r V under the continuous
composition map, is compact. Similarly, the set U−1, which is the image of U under
the continuous inversion map, is compact. □

Furthermore, in Section 6, we are interested in the Steinberg module AR (G) of an
ample groupoid G. To get an explicit presentation of the module, we need to find a
sufficiently well-behaved base for the topology (to be able to apply Propositions 6.3
and 6.4). We call such a base an ample base.

Definition 2.14. For a topological space X, we call a base B ample if it is stable
under taking compact open subsets (that is, if B ∈ B and A ⊂ B is a compact open
subset, then A ∈ B) and if its sets U ∈ B are compact and Hausdorff.

Note that the base of compact slices Ga of an ample groupoid G is ample, as
an open subset of a slice is again a slice, since r and s stay injective on a subset.
Furthermore, any slice is homeomorphic to a subset of the Hausdorff space G0 and
is hence Hausdorff.

Example 2.15. Consider the groupoid G given by a topological group. Now, the
object space of G is given by the singleton set, and hence a slice of G is given
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by a point in G. Thus, G is étale if and only if G is discrete (using Lemma 2.8).
Since a discrete group G is locally compact and the singleton set is locally compact,
Hausdorff, and totally disconnected, a topological group G is an ample groupoid if
and only if it is discrete. The compact slices of a discrete group are given by {g}
for all g ∈ G.
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3. Groupoid actions and ample groupoid correspondences

In this section, we introduce groupoid actions on topological spaces. One can
think of a groupoid action on a topological space as a generalization of a group
action on a topological space, where the multiplication is only partially defined.
Since we are only interested in locally compact, étale groupoids, we usually drop
these adjectives. So from now on, when we say “groupoid”, we always mean an
étale, locally compact groupoid.

Afterward, we introduce groupoid correspondences, which are topological spaces
with commuting left and right groupoid actions, so that the right action is particu-
larly well-behaved. We follow closely the definitions and results from [AKM22], where
groupoids and groupoid correspondences are introduced. Since we are mainly inter-
ested in ample groupoids, we investigate correspondences between ample groupoids
and see what properties they inherit from their ample groupoids. We define slices
on correspondences X and as it turns out the compact slices X a form an ample
base for the topology on X and hence the Steinberg module of X is interesting to
study. The ample correspondences are the 1-arrows in the bicategory Gra.

We start with all the relevant definitions.
Definition 3.1 ([AKM22, Definition 2.3]). Let G be a groupoid. A right G-space
is a topological space X with a continuous map s∶ X → G0, called the anchor map,
and a continuous map

mult∶ X ×s,G0,r G → X , X ×s,G0,r G ∶= {(x, g) ∈ X × G ∣ s(x) = r(g)},
which we denote multiplicatively as ⋅, such that

(1) s(x ⋅ g) = s(g) for x ∈ X , g ∈ G with s(x) = r(g);
(2) (x ⋅ g1) ⋅ g2 = x ⋅ (g1 ⋅ g2) for x ∈ X , g1, g2 ∈ G with s(x) = r(g1), s(g1) = r(g2);
(3) x ⋅ s(x) = x for all x ∈ X .

Similarly, one can define a left G-space with r∶ X → G0 as the anchor map.
Sometimes, we just write “xg” and mean “x ⋅ g”. We sometimes also write sX , rX

and sG , rG to distinguish between the respective range and source maps, if there is
a chance of confusing them.
Definition 3.2 ([AKM22, Definition 2.4]). The orbit space X/G is the quotient X/∼G
with the quotient topology, where x ∼G y if there is an element g ∈ G with s(x) = r(g)
and x ⋅ g = y. We always write p∶ X → X/G for the orbit space projection.
Definition 3.3. A right G-space X is called cocompact, if the orbit space X/G is
compact.
Definition 3.4 ([AKM22, Definition 2.5]). Let X and Y be right G-spaces. A
continuous map f ∶ X → Y is G-equivariant if s(f(x)) = s(x) for all x ∈ X and
f(x ⋅ g) = f(x) ⋅ g for all x ∈ X , g ∈ G with s(x) = r(g).
Definition 3.5 ([AKM22, Definition 2.6]). Let X be a right G-space and Z a space.
A continuous map f ∶ X → Z is G-invariant if f(x ⋅ g) = f(x) for all x ∈ X , g ∈ G with
s(x) = r(g).
Definition 3.6. Let G be a groupoid and X a right G-space. An open subset
U ⊂ X such that the projection map p∣U ∶U → X/G is a homeomorphism is called a
fundamental domain of X .

Next, we establish a technical result.
Lemma 3.7. For a groupoid G, a right G-space X and a subset V ⊂ X such that
s∣V ∶V → s(V ) is a homeomorphism, the projection map

πG ∶V ×s,G0,r G → r−1
G
(sX (V )) ⊂ G, (x, g) ↦ g,
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is a homeomorphism.

Proof. The map is continuous by definition. Furthermore, the canonical embedding
ι∶ r−1
G
(sX (V )) → G and the continuous map

r−1
G
(sX (V )) s(V ) V

r s∣−1
V

make the relevant fiber product square commute, so we get a unique continuous
map

r−1
G
(sX (V )) → V ×s,G0,r G, g ↦ (s∣−1

V (r(g)), g).
Now, this map defines a continuous inverse to πG and hence πG is a homeomorphism.

□

3.1. Basic groupoid actions. We are mainly interested in spaces X with a well-
behaved right G-action, which in our case means a basic right G-action with a
Hausdorff orbit space X/G and a locally homeomorphic anchor map s∶ X → G0. We
start by exploring basic right actions.

Definition 3.8 ([AKM22, Definition 2.7]). A right G-space X is basic if the following
map is a homeomorphism onto its image with the subspace topology from X ×X :

(3.9) f ∶ X ×s,G0,r G → X ×X , (x, g) ↦ (x ⋅ g, x).

Definition 3.10 ([AKM22, Definition 2.13]). A right G-space is free if the map
in (3.9) is injective; equivalently, x ⋅ g = x for x ∈ X , g ∈ G with s(x) = r(g) implies
g = s(x).

So, in particular, every basic action is free, that is, for x, y ∈ X an element g ∈ G
with xg = y is unique. One can think of a basic action as a free action, where this
unique g ∈ G is chosen in a continuous way, as the following Lemma 3.13 shows.

Definition 3.11 (compare [AKM22, Definition and Lemma 3.4]). Let X be a space
with a basic right G-action. Let p∶ X → X/G be the orbit space projection. The
image of the map (3.9) is the subset X ×X/G X = X ×p,X/G,pX of all (x1, x2) ∈ X ×X
with p(x1) = p(x2). The inverse to the map in (3.9) induces a continuous map

(3.12) X ×X/G X
∼Ð→ X ×s,G0,r G

prGÐÐ→ G, (x1, x2) ↦ ⟨x2 ∣x1⟩.
That is, ⟨x1 ∣x2⟩ is defined for x1, x2 ∈ X with p(x1) = p(x2) in X/G, and it is the
unique g ∈ G with s(x1) = r(g) and x2 = x1g.

Now, this map gives rise to an equivalent characterization of a right G-action
being basic:

Lemma 3.13 (compare [AKM22, Definition and Lemma 3.4.]). A right G-action
on a topological space X is basic if and only if the g ∈ G with x2 = x1g for x1, x2 ∈ X
with p(x1) = p(x2) is unique and the resulting map X ×X/G X → G, (x1, x2) ↦ g, is
continuous.

Proof. See [AKM22, Definition and Lemma 3.4]. □

Furthermore, for basic actions, the orbit space projection map is well-behaved:

Lemma 3.14 (compare [AKM22, Lemma 2.12]). Let G be a groupoid. The orbit
space projection p∶ X → X/G for a basic G-action is a surjective local homeomorphism.

Proof. See [AKM22, Lemma 2.12]. □

A fundamental domain of a basic right G-space X already fully describes it:
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Lemma 3.15. Let X be a basic right G-space and U ⊂ X a fundamental domain.
Then the multiplication map

U ×s,G0,r G → X , (u, g) ↦ ug,

is a homeomorphism.

Proof. The above-defined map is continuous by definition, and we can define a
continuous inverse by

X → U ×s,G0,r G, x↦ (ux, ⟨ux ∣x⟩),
where ux ∶= p∣−1

U (p(x)) ∈ U is the unique element in U with p(ux) = p(x). □

Note that if we define a right G-space structure on U ×s,G0,r G by multiplying
in the second component, this homeomorphism is actually a homeomorphism of
G-spaces, that is, a G-equivariant homeomorphism.

3.2. Ample groupoid correspondences. Now, we are ready to introduce ample
groupoid correspondences. These are the 1-arrows in the bicategory of ample
groupoids Gra. In [AKM22] groupoid correspondences are introduced. We recall
the important definitions and results and investigate ample correspondences, that
is, correspondences between ample groupoids. We define slices as open subsets
of X that are well-behaved with the right G-structure. As it turns out, an ample
correspondence X inherits enough of the structure on the ample groupoid G, implying
that the compact slices form an ample base for the topology on X . Hence, we get an
explicit presentation of the Steinberg module AR (X) in Section 6. We start with
the definition of a groupoid correspondence.

Definition 3.16 (compare [AKM22, Definition 3.1]). Let H and G be groupoids.
A groupoid correspondence X ∶H ← G from G to H is a space X with commuting
actions of H on the left and G on the right such that

● the right anchor map s∶ X → G0 is a local homeomorphism;
● the right G-action is basic; and
● the right orbit space X/G is Hausdorff.

That the actions of H and G commute means that s(h ⋅ x) = s(x), r(x ⋅ g) = r(x),
and (h ⋅x) ⋅ g = h ⋅ (x ⋅ g) for all g ∈ G, x ∈ X , h ∈ H with s(h) = r(x) and s(x) = r(g),
where s∶ X → G0 and r∶ X → H0 are the anchor maps.

If both H and G are ample, we call X ∶H ← G an ample groupoid correspondence.

We sometimes just write “correspondence”, and mean “groupoid correspondence”.

Definition 3.17 (compare [AKM22, Definition 7.2]). Let G and H be groupoids.
A slice of a groupoid correspondence X ∶H ← G is an open subset V ⊆ X such that
the right anchor map s∣V and the orbit space projection p∣V are homeomorphisms
onto open subsets of G0 and X/G, respectively. Denote the set of all slices as X op

and the subset of all compact slices as X a.

Example 3.18. For a groupoid G, we can canonically define a groupoid correspondence
G∶G ← G with the obvious left and right actions of G by multiplication and the
range and source maps r, s∶ G → G0 as left and right anchor maps. Thus, the right
anchor map s is a local homeomorphism, as G is étale. Furthermore, for p∶ G → G/G
it is easy to check that p(x) = p(y) ⇔ r(x) = r(y), hence r induces an isomorphism
G/G ≅ G0. Thus, G/G is Hausdorff. Additionally, the right action is basic, as the
map

f ∶ G ×s,G0,r G → G × G, (x, g) ↦ (x ⋅ g, x),
has image G ×r,G0,r G and we can define a continuous inverse map

G ×r,G0,r G → G ×s,G0,r G, (x, y) ↦ (y, y−1x).
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Hence, G is indeed a groupoid correspondence, and the definition of a slice of G
as a groupoid and of G as a groupoid correspondence coincide.

Remark 3.19. For a groupoid correspondence X ∶H ← G, the right anchor map
s∶ X → G0 is a local homeomorphism by definition and the orbit space projection
p∶ X → X/G is a surjective local homeomorphism by Lemma 3.14. This implies that
every point in X has a slice as an open neighborhood. Since open subsets of slices
are again slices (similar to Lemma 2.8), we get that the topology on X has a base
of slices X op.

By Proposition 2.10, a groupoid is ample if and only if the compact slices form a
base for the topology on G. We get a similar result for groupoid correspondences
X ∶H ← G if G is an ample groupoid. Thus, in particular, this holds for ample
correspondences.

Proposition 3.20. Let G and H be groupoids and X ∶H ← G a groupoid correspon-
dence. If G is ample, then the set of compact slices X a is an ample base for the
topology on X .

Proof. The proof is inspired by and thus analogous to the proof of Lemma 2.12.
In Remark 3.19 we establish that the slices form a base for the topology on X ,

hence we only need to prove that every slice is a union of compact slices. A slice
U ⊂ X is homeomorphic via s∣U to the open set s∣U(U) ⊂ G0, which is equal to a
union of compact open subsets Ai ⊂ G0 for some i ∈ I (by Lemma 2.11, using that
G is ample). Thus, U = (s∣U)−1(⋃i∈I Ai) = ⋃i∈I(s∣U)−1(Ai) is a union of compact
open subsets of the slice U , and hence they are compact slices.

Finally, this base is ample, as any U ∈ X a is by definition compact and homeo-
morphic to a subset of the Hausdorff space G0 and hence Hausdorff. Additionally,
any compact open subset of a slice is again a compact slice, since p and s stay
injective on a subset of a slice. □

Furthermore, we get a result similar to Proposition 2.13.

Lemma 3.21 (compare [AKM22, Lemma 7.7]). Let X ∶H ← G be a groupoid
correspondence. Consider slices V1, V2 ⊆ X , W ⊆ G and Z ⊆ H. Then the following
subsets are also slices:

V1W ∶= {xg ∣ x ∈ V1, g ∈W, s(x) = r(g)} ⊆ X ,
⟨V1 ∣V2⟩ ∶= {⟨x1 ∣x2⟩ ∣ x1 ∈ V1, x2 ∈ V2, p(x1) = p(x2)} ⊆ G,

ZV1 ∶= {hx ∣ h ∈ Z, x ∈ V1, s(h) = r(x)} ⊆ X .

If X is an ample correspondence and V1, V2 ⊆ X , W ⊆ G and Z ⊆ H are all compact
slices, then V1W , ⟨V1 ∣V2⟩ and ZV1 are compact slices again.

Proof. For the first part, see [AKM22, Lemma 7.7]. For the second part, note
that since G0,H0,X/G are Hausdorff, any pullback over them is a closed subset of
the product, for example, H×s,H0,r X ⊂ H ×X is closed. Thus, the closed subsets
V1 ×s,H0,r W , V1 ×p,X/G,p V2, Z ×s,G0,r V2 of the compact sets V1 ×W , V1 ×V2, Z ×V2
are again compact. Now, the defined sets are just images of these compact sets
under the canonical continuous maps

H×s,H0,r X → X ; X ×p,X/G,p X → G; X ×s,G0,r G ↦ X ,

and hence are compact as well. □

We get a similar result as in Remark 2.6 for ample correspondences.
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Remark 3.22. Note that for an ample groupoid correspondence X , the object space
G0 is a locally compact, totally disconnected, Hausdorff space. Since we have a
local homeomorphism s∶ X → G0, Lemma 2.5 implies that the correspondence X
itself is locally compact, locally Hausdorff and totally disconnected. But X is not
necessarily Hausdorff.

3.3. On proper and tight correspondences. We now consider particularly well-
behaved ample correspondences, namely proper and tight ample correspondences.
We are interested in proper ample correspondences X ∶H ← G over cocompact
groupoids, since then G is ample and the right G-action is cocompact and given
these properties, we can prove our main result of this subsection, Theorem 3.29.
The theorem states that correspondences of this form are given by a disjoint union
of open G-subsets of G, as a right G-space. In simple terms, as a right G-space X
has a particularly manageable form and is rather easy to deal with (for example, in
Subsection 6.4). So first, we define proper and tight correspondences.

Definition 3.23 (compare [AKM22, Definition 3.3]). A correspondence X ∶H ← G
is proper if the map r̃∶ X /G → H0 induced by r is proper, that is, the preimage of
every compact set is compact. It is tight if r̃ is a homeomorphism.

Note that any tight correspondence is proper, therefore the results of this section
apply to them as well. For a groupoid correspondence X ∶H ← G where H is
cocompact, there is an equivalent definition of X being proper.

Lemma 3.24. Let X ∶H ← G be a groupoid correspondence where H is cocompact.
Then X is proper if and only if the right G-action on X is cocompact.

Proof. For X proper, the map r̃∶ X /G → H0 is proper. Since H0 is compact, the
preimage of H0 under r̃ given by X/G is compact, as well. For the other direction,
let K ⊂ H0 be a compact subset. Since H0 is Hausdorff, this implies that K is
closed. Now, as r̃ is continuous, r−1(K) ⊂ X/G is closed in the compact space X/G
and hence compact. □

Now, we want to investigate correspondences X ∶H ← G where G is ample and the
right G-action is cocompact, since these are the key properties we use in the following
results. Note that any proper correspondence X ∶H ← G where H is cocompact and
G is ample, is of this form (by Lemma 3.24). For a correspondence X ∶H ← G where
G is ample and the right G-action is cocompact, we know by definition that the
orbit space X/G is compact and Hausdorff. Furthermore, since G is ample, applying
the following Lemma 3.25 to the orbit space projection p∶ X → X/G shows that X/G
is totally disconnected. We may apply this lemma, since compactness implies local
compactness, by Lemma 3.14 the projection is a surjective local homeomorphism,
and by Proposition 3.20 the compact slices form a compact open base for the
topology on X .

Lemma 3.25. Consider two topological spaces X,Y with Y locally compact and
Hausdorff and a surjective local homeomorphism f ∶X → Y . If there is a base of
compact open subsets for the topology on X, then Y is totally disconnected.

Proof. We want to prove that there is a base of compact open subsets for the topology
on Y , since by Lemma 2.11, this implies that Y is totally disconnected. Consider
an open subset U ⊂ Y and a point y ∈ U . Since f is surjective, we find x ∈X with
f(x) = y. Now, as f is a local homeomorphism and thus continuous, f−1(U) ⊂ X
is an open neighborhood of x. Hence, we find a compact open subset K ⊂X with
x ∈ K ⊂ f−1(U). Now, as f is a local homeomorphism, it is open and continuous,
and thus f(K) ⊂ Y is open and compact. Furthermore, y ∈ f(K) ⊂ f(f−1(U)) = U .
Hence, the image of the compact open base on X is a compact open base on Y . □
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So, by the above discussion for a correspondence X ∶H ← G where G is ample and
the right G-action is cocompact, we know that X/G is a compact, Hausdorff and
totally disconnected space, that is, a so-called Stone space.

Lemma 3.26. A compact, Hausdorff and totally disconnected topological space X
is finitely ultraparacompact, that is, every open cover has a finite disjoint clopen
refinement.

Proof. Consider an open cover X = ⋃i∈I Ui of X. By Lemma 2.11, there is a base
B of clopen sets for the topology on X. Hence, we can write every Ui as a union
of elements of the base and get X = ⋃j∈J Bj , where for all j, there is an i such
that Bj ⊂ Ui and Bj ∈ B clopen in X. Hence, this is a clopen refinement. Now,
as X is compact we get X = ⋃n

j=1Bj . We define Vj ∶= Bj ∖ (⊔j−1
i=1 Bj), which is a

finite intersection of clopen sets and hence clopen in X. Furthermore, it is a finite
refinement of the open cover {Ui}i∈I , and the Vj are disjoint by definition. □

Now, we can use these results to construct a fundamental domain of a correspon-
dence X ∶H ← G, if G is ample and the right G-action is cocompact.

Proposition 3.27. Consider a correspondence X ∶H ← G where G is ample and the
right G-action is cocompact. Then there are disjoint compact slices U1, . . . , Un of X
such that X/G = ⊔n

i=1 p(Ui) and U ∶= ⊔n
i=1Ui is a fundamental domain of X , that is,

the projection p∣U ∶U → X/G is a homeomorphism.

Proof. There is an open cover of compact slices X = ⋃i∈I Wi of X by Proposition 3.20.
As p∶ X → X/G is a surjective local homeomorphism (and thus an open map), we get
an open cover X/G = ⋃i∈I p(Wi) of the compact, Hausdorff and totally disconnected
space X/G. Then, by Lemma 3.26, we find a finite disjoint clopen refinement
X/G = ⊔n

i=1 Vi. As Vi ⊂ X/G is a closed subset of a compact space, it is compact
itself. Furthermore, since it is a refinement for each Vi, there is a j ∈ I such
that Vi ⊂ p(Wj). Now, as Wj is a slice, p∣Wj is a homeomorphism and hence
Ui ∶= p∣−1

Wj
(Vi) ≅ Vi is a compact open subset of Wj , and hence a compact slice in X

with p(Ui) = Vi. Furthermore, for i ≠ j we have

Ui ∩Uj ⊂ p−1(p(Ui ∩Uj)) ⊂ p−1(p(Ui) ∩ p(Uj)) ⊂ p−1(∅) = ∅

and hence the Ui are disjoint compact slices of X , so that for U ∶= ⊔n
i=1Ui the

projection p∣U ∶U → X/G is a homeomorphism. □

Remark 3.28. Note that the fundamental domain U ∶= ⊔n
i=1Ui ⊂ X is a compact

open subset such that p∣U ∶U → X/G is a homeomorphism, but it is not necessarily
a slice of X , since s∣U might not be injective.

Finally, we get our main result. By Lemma 3.24, the theorem applies to proper
correspondences X ∶H ← G where H is cocompact and G is ample. Thus, it also
applies to proper ample correspondences X ∶H ← G where H and G are cocompact
(as we use it in Subsection 6.4) and to tight correspondences X ∶G ← G where G is
cocompact (as we use it in Section 11).

Theorem 3.29. For a correspondence X ∶H ← G where G is ample and the right
G-action is cocompact, there are compact open subsets K1, . . . ,Kn ⊂ G0 such that
the correspondence X is given by

X ≅
n

⊔
i=1
r−1
G
(Ki) ⊂

n

⊔
i=1
G

as a right G-space.
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Proof. By Proposition 3.27 we find disjoint compact slices U1, . . . , Un of X such
that X/G = ⊔n

i=1 p(Ui) and U ∶= ⊔n
i1
Ui is a fundamental domain of X . Now, the

correspondence X is given by

X = U ×s,G0,r G = (
n

⊔
i=1
Ui) ×s,G0,r G =

n

⊔
i=1
(Ui ×s,G0,r G)

as a right G-space using Lemma 3.15 and the fact that disjoint union behaves well
with fiber products. Furthermore, by Lemma 3.7 we have Ui ×s,G0,r G ≅ r−1

G
(sX (Ui))

as right G-spaces. Now, Ki ∶= sX (Ui) ⊂ G0 is compact and open, since s is a local
homeomorphism and Ui is compact and open, and we get

X ≅
n

⊔
i=1
r−1
G
(Ki)

as right G-spaces. □
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4. The bicategory of ample groupoid correspondences

We now want to introduce the necessary information to make ample groupoids
and ample groupoid correspondences into a bicategory Gra. In [Mey22b] the bicat-
egory GR of (étale) groupoids, (étale) groupoid correspondences, and continuous
equivariant maps is introduced in detail. In [AKM22] the bicategory Grinj ⊂ GR of
(locally compact, étale) groupoids, (locally compact, étale) correspondences, and
injective continuous equivariant maps is introduced. Furthermore, it is hinted that
one could also define the bicategory Gr of (locally compact, étale) groupoids, (locally
compact, étale) correspondences, and continuous equivariant maps (see [AKM22,
Remark 6.2]). Thus, we have a chain of bicategories

Grinj ⊂ Gr ⊂ GR.

Now, we are interested in the subbicategory

Gra ⊂ Gr ⊂ GR

of ample groupoids, ample correspondences, and continuous equivariant maps. Note
that compared to the bicategory Gr, we only restrict ourselves on the object level
by only considering ample groupoids. As 1-arrows and 2-arrows, we just take all
the 1-arrows and 2-arrows in Gr. In this section, we give a short recap on all the
important data involved in the bicategory Gra of ample groupoids, ample groupoid
correspondences, and equivariant continuous maps. For explicit proofs that this
data indeed defines a bicategory, we refer to [AKM22], where it is proven in detail
that Grinj is a bicategory, and it is hinted that Gr is a bicategory as well. Now,
as Gra ⊂ Gr is just restricting the objects, it is a bicategory as well. Finally, we
also mention the important subbicategory of cocompact groupoids and proper/tight
correspondences

Grco,tight ⊂ Grco,proper ⊂ Gra.

We start by recalling all the relevant data for the bicategory Gra. The objects
are given by ample groupoids G. The 1-arrows are ample groupoid correspondences
X ∶H ← G and we take continuous H,G-equivariant maps X → Y as 2-arrows X ⇒ Y .
Note that 2-arrows are always local homeomorphisms.

Lemma 4.1 (compare [AKM22, Lemma 6.1]). Let X ,Y∶H ⇇ G be groupoid corre-
spondences. Any continuous H,G-equivariant map f ∶ X → Y is a local homeomor-
phism and injective on U ∈ X a.

Proof. For the first part, see [AKM22, Lemma 6.1]. Furthermore, for x, y ∈ U ∈ X a

with f(x) = f(y), we get s(x) = s(f(x)) = s(f(y)) = s(y) and hence x = y. So f is
injective on U ∈ X a. □

Now, for two ample groupoids G,H, the ample correspondences X ∶H ← G and
continuous H,G-equivariant maps X → Y indeed form a category Gra(G,H) where
unit 2-arrows 1X are given by the identity maps and the (vertical) product of
2-arrows is given by usual composition of maps, which is associative.

Next, we want to construct a functor ○G ∶Gra(G,H) ×Gra(K,G) → Gra(K,H),
defining a product on 1-arrows and a (horizontal) product on 2-arrows. First, we
define a product on 1-arrows. For ample groupoids H and G and ample groupoid
correspondences X ∶H ← G and Y∶G ← K, the composition groupoid correspondence
X ○G Y is defined by the following construction (compare [AKM22, Section 5]). Let

X ×G0 Y ∶= X ×s,G0,r Y ∶= {(x, y) ∈ X × Y ∣ s(x) = r(y)}.
Let G act on X ×G0 Y by the diagonal action

g ⋅ (x, y) ∶= (x ⋅ g−1, g ⋅ y)
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for x ∈ X , y ∈ Y and g ∈ G with s(g) = r(y) = s(x). Let X ○G Y be the orbit space of
this action, with [x, y] ∈ X ○G Y denoting the orbit of (x, y) ∈ X ×G0 Y. Note that
since the right G-action on X is basic, the diagonal action is basic as well. Hence,
by Lemma 3.14, the orbit space projection X ×s,G0,r Y → X ○G Y is a surjective local
homeomorphism.

The maps r(x, y) ∶= r(x) and s(x, y) ∶= s(y) on X ×G0 Y are invariant for this
action, and thus induce maps r∶ X ○G Y → H0 and s∶ X ○G Y → K0. These are the
anchor maps for the commuting actions of H on the left and K on the right, which
we define by

h ⋅ [x, y] ∶= [h ⋅ x, y], [x, y] ⋅ k ∶= [x, y ⋅ k]
for all h ∈ H, x ∈ X , y ∈ Y, k ∈ K with s(h) = r(x), s(x) = r(y), and s(y) = r(k).
This is well-defined because [h ⋅x ⋅ g−1, g ⋅ y] = [h ⋅x, y] and [x ⋅ g−1, g ⋅ y ⋅ k] = [x, y ⋅ k]
for g ∈ G with s(g) = s(x) = r(y).

This construction indeed gives us an ample correspondence.

Proposition 4.2 (compare [AKM22, Proposition 5.7]). The actions of H and K
on X ○G Y are well-defined and turn this into an ample groupoid correspondence
H ← K. If both correspondences X and Y are proper or tight, then so is X ○G Y.

Proof. See [AKM22, Proposition 5.7]. □

Furthermore, we want to find an ample base for the topology on these spaces.
We start with a technical Lemma 4.3. It immediately implies Proposition 4.4, which
gives us an ample base. Note that we formulate this technical Lemma 4.3 in a more
general form than we need here so that we can use it in a slightly different situation
in Section 10.

Lemma 4.3. Consider an ample correspondence X ∶H ← G, a left G-space Y with an
ample base B for its topology and the orbit space projection π∶ X ×s,G0,rY → X ○GY of
the diagonal action as defined above. For U ∈ X a and V ∈ B such that s(U) ⊃ r(V ),
we denote UV ∶= π(U ×s,G0,r V ) and let BX○GY denote the set of all these UV . Then
BX○GY is an ample base for the topology on X ○G Y.

Proof. First, note that since the right G-action on X is basic, the diagonal action is
basic as well, and hence by Lemma 3.14, the orbit space projection is a surjective
local homeomorphism. Now, U ×s,G0,r V is open as U and V are open, and hence
UV is open as well (since local homeomorphisms are open maps). Furthermore,
since G0 is Hausdorff, any pullback over G0 is a closed subset of the product. Hence,
X ×s,G0,rY ⊂ X ×Y is closed. Now, as U ⊂ X , V ⊂ Y are compact, also U ×V ⊂ X ×Y
is compact, and as X ×s,G0,r Y is closed the intersection U ×s,G0,r V is compact as
well. Thus, the image of U ×s,G0,r V under the continuous quotient map given by
UV is compact.

Next, we prove that πU,V ∶= π∣U×s,G0,rV ∶U ×s,G0,r V → UV is a homeomorphism.
Using that p∣U is injective it is easy to check that πU,V is injective as well, and by
definition πU,V is surjective. Hence, it is a bijective local homeomorphism, that is,
a homeomorphism. Thus, UV ≅ U ×s,G0,r V is Hausdorff, as U ×s,G0,r V ⊂ U ×V is a
subset of the product of the Hausdorff sets U,V . Thus, the UV are indeed compact
Hausdorff open subsets of X ○G Y.

To see that they form a base, we start with an open subset W ⊂ X ○G Y and
a point [x, y] ∈ W . Now, since the preimage under the quotient map is open in
X ×s,G0,r Y, we find an open subset W̃ ⊂ X × Y such that the preimage is given by
W̃ ∩ X ×s,G0,r Y. Hence, (x, y) ∈ W̃ and thus we find a compact slice U ∈ X a and a
V ∈ B with (x, y) ∈ U × V ⊂ W̃ . Finally, we get [x, y] ∈ UV ⊂W . Now, if we replace
V with some V ∈ B that is a subset of r−1

Y
(s(U)) ∩ V containing y, we additionally

get s(U) ⊃ r(V ).
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Finally, we want to show that this base BX○GY is stable under taking compact
open subsets. For UV ∈ BX○GY we have seen that UV ≅ U ×s,G0,r V via πU,V . Now,
the maps

U ×s,G0,r V → V, (u, v) ↦ v, (s∣−1
U (r(v)), v) ↤ v,

define a homeomorphism, hence UV ≅ V and thus any compact open subset of UV
is given by UW for a compact open subset W ⊂ V . As B is stable under taking
compact open subsets, we get W ∈ B and hence UW ∈ BX○GY . □

Proposition 4.4. Consider two ample groupoid correspondences X ∶H ← G and
Y∶G ← K. Then for U ∈ X a, V ∈ Ya with s(U) ⊃ r(V ) the set of all

UV ∶= {[x, y] ∣ (x, y) ∈ U ×s,G0,r V } ⊂ X ○G Y
is an ample base for the topology of the composition groupoid correspondence X ○G Y.
Additionally, for (x, y) ∈ X ×s,G0,r Y we have [x, y] ∈ UV if and only if there is a
unique g ∈ G with s(g) = r(y) = s(x) such that xg−1 ∈ U and gy ∈ V .

Proof. The first part is a corollary of Lemma 4.3, as the compact slices of Y form
an ample base for the topology on Y. The second statement is proven in [AKM22,
Lemma 7.14]. □

We can now define the (horizontal) product of 2-arrows. For ample groupoid
correspondences X1,X2∶H ⇇ G and Y1,Y2∶ G ⇇ K and 2-arrows f1∶ X1 ⇒ X2 and
f2∶ Y1 ⇒ Y2, we define their horizontal product as

f1 ○G f2∶ X1 ○G Y1 ⇒X2 ○G Y2, [x, y] ↦ [f1(x), f2(y)],
which is again a 2-arrow. Furthermore, it is easy to check that 1X ○G 1Y = 1X○GY ,
and that the horizontal product commutes with the vertical product. Hence, ○G is
indeed a functor.

For each ample groupoid G, we define the unit 1-arrow G∶G ← G as the trivial
correspondence, as discussed in Example 3.18.

The following Lemma 4.5 describes the uniters and associators, which are invert-
ible natural 2-arrows.

Lemma 4.5 (compare [AKM22, Lemma 6.3, 6.4]). Let X ∶H ← G and Xi∶ Gi ← Gi+1
for 1 ≤ i ≤ 3 be ample groupoid correspondences. The uniters are given by the maps

lX ∶H ○H X → X , [h,x] ↦ h ⋅ x,
rX ∶ X ○G G → X , [x, g] ↦ x ⋅ g,

which are continuous H,G-equivariant homeomorphisms, which are natural with
respect to continuous H,G-equivariant maps X → X ′.

The associator is given by the map

assoc∶ X1 ○G2 (X2 ○G3 X3) → (X1 ○G2 X2) ○G3 X3, [x1, [x2, x3]] ↦ [[x1, x2], x3],
which is a continuous G1,G4-equivariant homeomorphism, which is natural with
respect to continuous Gi,Gi+1-equivariant maps αi∶ Xi → X ′i for 1 ≤ i ≤ 3.

Proof. See [AKM22, Lemma 6.3, 6.4]. □

Finally, we have completed describing all the data involved in defining the
bicategory Gra. In [AKM22, Proposition 6.5], it is discussed that Grinj is indeed a
bicategory, that is, that the triangle and pentagon diagrams commute. Thus, also
Gra is indeed a bicategory as the triangle and pentagon diagrams are the same.

Additionally, the ample groupoids and tight/proper ample correspondences form
subbicategories Grtight ⊂ Grproper ⊂ Gra, respectively (using Proposition 4.2). If
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we restrict ourselves even further to cocompact ample groupoids and tight/proper
ample correspondences, we get the subbicategories

Grco,tight ⊂ Grco,proper ⊂ Gra,

which we use in Section 10 and Section 11.
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5. The bicategory of smooth bimodules

Before we define the Steinberg algebra of an ample groupoid, let us introduce the
bicategory in which it lives. This section briefly introduces the bicategory Rings
of rings with local units, smooth bimodules, and bimodule homomorphisms. Note
that a ring is not necessarily unital nor commutative. We want to consider the full
subbicategory Ringsu ⊂Rings of unital rings and bimodules and the subbicategory
Ringsfgp ⊂Ringsu of unital rings and finitely generated and projective bimodules.
Hence, we have three relevant bicategories

Ringsfgp ⊂Ringsu ⊂Rings

that we are interested in. For a more detailed introduction, we refer to [Mey22a],
where the bicategory Ringsu of unital rings and bimodules is introduced and dis-
cussed in detail. All the relevant bicategories are actually subbicategories of the
bicategory RNG of self-induced rings, smooth bimodules, and bimodule homomor-
phisms briefly introduced in [Mey22a, Exercise 4.6.24].

Since the Steinberg algebra of an ample groupoid is not necessarily a unital ring
(see Proposition 6.12), we have to allow non-unital rings as well. Now, non-unital
rings and arbitrary bimodules can get quite difficult to deal with and might not
even form a bicategory. So, we want to restrict ourselves to a more manageable
class of rings, as well as bimodules.

Definition 5.1. A ring S is called self-induced, if the canonical multiplication map
S ⊗S S → S, a⊗ b↦ ab, is an isomorphism.

Definition 5.2. Let S be a ring and M a left S-module. We call M smooth if the
canonical multiplication map S ⊗S M →M is an isomorphism.

Similarly, we define smooth right and bimodules.

According to [Mey22a, Exercise 4.6.24] the self-induced rings, smooth bimodules,
and bimodule homomorphisms form a bicategory RNG. Now, our Steinberg algebras
are not just self-induced, but have an even stronger property, namely they have
local units.

Definition 5.3. A ring S has local units E ⊂ S, if every e ∈ E is an idempotent3

and for any finite set {s1, . . . , sn} ⊂ S, we can find e ∈ E such that sie = si = esi for
all i = 1, . . . , n.

The rings with local units form a subclass of the self-induced rings.

Proposition 5.4. If a ring S has local units E, then it is self-induced.

Proof. Given s ∈ S we take a local unit e ∈ E of s and then e⊗s↦ es = s. Hence, the
multiplication map is surjective. For the injectivity start with ∑n

i=1 aibi = ∑m
j=1 xjyj

and take a local unit e ∈ E of a1, . . . , an, x1 . . . , xm. Then
n

∑
i=1
ai ⊗ bi =

n

∑
i=1
eai ⊗ bi =

n

∑
i=1
e⊗ aibi = e⊗

n

∑
i=1
aibi

= e⊗
m

∑
j=1

xjyj =
m

∑
j=1

e⊗ xjyj =
m

∑
j=1

exj ⊗ yj =
m

∑
j=1

xj ⊗ yj

and hence the map is indeed an isomorphism. □

Furthermore, smooth bimodules over rings with local units are well-behaved.
Note that one can formulate and prove an analogous statement to the following
Proposition 5.5 for right S-modules.

3That is, e ∈ S such that e2
= e.
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Proposition 5.5. Consider a ring S with local units E and a left S-module M .
Then, M is a smooth S-module if and only if for all m ∈M there is an s ∈ S with
sm =m.

Proof. If M is smooth the map mult∶S⊗SM →M is surjective and hence for m ∈M
we find si ∈ S, mi ∈M for i = 1, . . . , n such that m =mult(∑n

i=1 si ⊗mi) = ∑n
i=1 simi.

Now, if we take a local unit s for s1, . . . , sn, we have

sm =mult(s⊗m) =mult(s⊗
n

∑
i=1
simi)

=mult(
n

∑
i=1
ssi ⊗mi) =mult(

n

∑
i=1
si ⊗mi) =

n

∑
i=1
simi =m.

In the other direction, the surjectivity of S⊗S M →M is immediate as for m ∈M
we take as a preimage s⊗m. For the injectivity start with ai, xj ∈ S, bi, yj ∈M with
∑n

i=1 aibi = ∑m
j=1 xjyj and take a local unit e ∈ E of a1, . . . , an, x1 . . . , xm. Then by

the same argument as in the proof of Proposition 5.4 we get ∑n
i=1 ai⊗bi = ∑m

j=1 xj⊗yj ,
and hence the map is indeed an isomorphism. □

Finally, we can define the bicategory Rings of rings with local units, smooth
bimodules, and bimodule homomorphisms as the full subbicategory Rings ⊂ RNG,
where we restrict only the objects to rings with local units and take all the 1-arrows
and 2-arrows. We quickly recall the relevant data from [Mey22a].

Theorem 5.6. The following data defines the bicategory Rings of smooth bimodules:
● rings with local units S as objects;
● smooth S,T -bimodules M ∶S ← T as 1-arrows, with the tensor product as the

product and the canonical S,S-bimodule S with multiplication as the unit
arrow for S;
● S,T -bimodule homomorphisms f ∶M → N as 2-arrow, with composition as

(vertical) product and tensor product as (horizontal) product;
● the associators are given by the bimodule isomorphisms

(M1 ⊗S M2) ⊗T M3 →M1 ⊗S (M2 ⊗T M3),
(m1 ⊗m2) ⊗m3 ↦m1 ⊗ (m2 ⊗m3); and

● the uniters are given by the canonical multiplication maps
S ⊗S M →M, s⊗m↦ sm,

M ⊗T T →M, m⊗ t↦mt,

which are isomorphisms, since M is a smooth bimodule.

Proof. In [Mey22a, Exercise 4.6.24] the bicategory RNG of self-induced rings and
smooth bimodules is introduced. Now, by Lemma 5.4 every ring with local units is
self-induced and hence our bicategory Rings is just the full subbicategory of RNG
where we restrict ourselves to rings with local units. □

Now, in [Mey22a] the full subbicategory Ringsu ⊂Rings of unital rings, bimodules,
and bimodule homomorphism is introduced in detail. Furthermore, the concept
of bicategorical limits is introduced and examined, which we use in Section 9 and
Section 11. For this, we need to restrict ourselves even further to particularly
well-behaved bimodules over unital rings, namely finitely generated and projective
bimodules.

Definition 5.7. Let S be a unital ring and M a right S-module. Then we say
● M is finitely generated, if there are k ∈ N and a surjective right S-module

homomorphism Sk →M ; and
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● P is projective, if for every surjective right S-module homomorphism
f ∶N →M and every right S-module homomorphism g∶P →M , there exists
a right S-module homomorphism h∶P → N such that f ○ h = g.

For unital rings S,T , we call an S,T -bimodule M finitely generated and projective,
or in short fgp, if the right T -module M is finitely generated and projective.

Example 5.8. For a unital ring S, the right S-module S is fgp. It is finitely
generated, as the identity map is surjective. To see that it is projective, we take
f ∶N → M surjective and g∶Sk → M two right S-module homomorphisms. Now,
there exists n ∈ N such that f(n) = g(1) and hence we can define the right S-module
homomorphism h∶S → N ; s↦ ns. Finally, we have

(f ○ h)(s) = f(h(1))s = f(n)s = g(1)s = g(s)
for all s ∈ S and hence f ○ h = g.

Remark 5.9. We want to consider the bicategory Ringsfgp of unital rings, fgp
bimodules, and bimodule homomorphisms. For Ringsfgp to actually be a well-
defined subbicategory Ringsfgp ⊂ Ringsu, we need that the tensor product of fgp
bimodules is again an fgp bimodule. This can be seen using the characterization from
[Mey22a, Theorem 4.1.13] that states that for unital rings S,T , an S,T -bimodule
M is fgp if and only if the functor M ⊗T − preserves limits.

Next, we want to establish some properties and technical results on fgp modules.
We start with the most important one, which is the main reason why we want to
consider fgp modules.

Theorem 5.10. For any unital ring S and right S-modules M,N the dual module
M∗ ∶= Hom−,S(M,S) is a left S-module via (s ⋅f)(x) ∶= s ⋅f(x) and there is a natural
abelian group homomorphism

N ⊗S M
∗ → Hom−,S(M,N), n⊗ f ↦ [m↦ n ⋅ f(m)].

If M is fgp, this natural homomorphism is an isomorphism of abelian groups.

Proof. See [Mac63, Proposition 4.2 on p.147]. □

Note that this basically tells us that for an fgp module M , the abelian group
Hom−,S(M,N) is not that big and stays manageable. In Section 9 we work with
these abelian groups and make use of this statement. Finally, we assemble all the
technical results on this matter that we need.

Lemma 5.11. For a unital ring S and fgp right S-modules M1, . . . ,Mn, their direct
sum ⊕n

i=1Mi is an fgp right S-module.

Proof. Fix the canonical homomorphisms ιj ∶Mj → ⊕n
i=1Mi. Consider f ∶N → M

surjective and g∶⊕n
i=1Mi →M two right S-module homomorphisms. Then for each

i = 1, . . . , n we find hi∶Mi → N such that f ○ hi = g ○ ιi. Now, with the universal
property of the direct sum, we find h∶⊕n

i=1Mi → N such that h ○ ιi = hi for all
i = 1, . . . , n. Thus, we get

(f ○ h) ○ ιi = f ○ hi = g ○ ιi
and hence by the uniqueness part of the universal property of the direct sum, it
follows that f ○ h = g. □

Lemma 5.12. Consider two right S-modules P and Q such that Q is fgp and a
right S-module homomorphism r∶Q→ P that admits a splitting map, that is, a map
s∶P → Q such that r ○ s = idP . Then P is fgp.
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Proof. Since r ○ s = idP it follows that r∶Q→ P is surjective. Now, as Q is finitely
generated there is a surjection Sn → Q and hence we get a surjection Sn → Q→ P ,
and P is finitely generated as well.

Consider f ∶N →M surjective and g∶P →M two right S-module homomorphisms.
Then, as Q is projective, there is a map h′∶Q → N such that f ○ h′ = g ○ r. Hence,
for h ∶= h′ ○ s∶P → Q→ N we have

f ○ h = f ○ h′ ○ s = g ○ r ○ s = g.
Thus, P is projective as well, and hence P is fgp. □

Lemma 5.13. Let e ∈ S be an idempotent. Then the right S-submodule eS ⊂ S is
fgp.

Proof. By Example 5.8 the right S-module S is fgp. Now, we have a surjective right
S-module homomorphism

m∶S → eS, r ↦ er

and the canonical inclusion ι∶ eS → S is a splitting for m, since (m○ ι)(er) = e2r = er
for all r ∈ S. Hence, by Lemma 5.12 the right S-module eS is fgp. □

Lemma 5.14. Let e ∈ S be an idempotent and M a right S-module. Then the
multiplication map

M ⊗S Se→Me, m⊗ re↦mre,

is an isomorphism of abelian groups.

Proof. The map defined above is induced by the S-balanced map
M × Se→Me, (m,re) ↦mre,

which is well-defined as for r, r′ ∈ S with re = r′e we get mre = mr′e. Hence, it
induces a well-defined map on the tensor product. Now, an inverse map is given by

Me→M ⊗S Se, me↦m⊗ e.
This map is well-defined as e = ee ∈ Se and for me =m′e we get

m⊗ e =m⊗ ee =me⊗ e =m′e⊗ e =m′ ⊗ ee =m′ ⊗ e.
The defined maps are inverse to one another, since mr ⊗ e =m⊗ re. □

Lemma 5.15. Let e ∈ S be an idempotent. Then the map
Hom−,S(eS,S) → Se, f ↦ f(e)

is an isomorphism of left S-modules.

Proof. Note first that e = ee ∈ eS, hence f(e) ∈ S is defined, and
f(e) = f(ee) = f(e)e ∈ Se.

The map is injective, since any right S-module homomorphism f ∶ eS → S is uniquely
defined by f(e), as for any r ∈ S we have f(er) = f(e)r. Furthermore, it is surjective
as any re ∈ Se defines a right S-module homomorphism eS → S, er′ ↦ rer′. The
map is obviously left S-linear, where the left S-module structure on Hom−,S(eS,S)
is given by (r ⋅ f)(x) ∶= r ⋅ f(x). □

Lemma 5.16. Let M1, . . . ,Mn be left S-modules and M ∶= ⊕n
i=1Mi the direct sum

with the canonical embeddings ιi∶Mi →M and N a right S-module. Then the map

N ⊗S M →
n

⊕
i=1
N ⊗S Mi, y ⊗ (xi)ni=1 ↦ (y ⊗ xi)ni=1

is an abelian group isomorphism.
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Proof. It is easy to check that the map (y, (xi)ni=1) ↦ (y ⊗ xi)ni=1 is S-balanced and
hence induces a well-defined map as such. For the other direction, it is easy to
check, that the maps N ×Mi → N ⊗M , (y, xi) ↦ y ⊗ ιi(xi), are S-balanced and
thus define group homomorphisms N ⊗S Mi → N ⊗S M that assemble into a group
homomorphism

n

⊕
i=1
N ⊗S Mi → N ⊗S M, (y ⊗ xi)ni=1 ↦ y ⊗ (xi)ni=1

that defines an inverse to our map. □

Lemma 5.17. Let M1, . . . ,Mn,N be right S-modules and M ∶= ⊕n
i=1Mi the direct

sum with the canonical embeddings ιi∶Mi →M , then the map

Hom−,S(M,N) →
n

⊕
i=1

Hom−,S(Mi,N), f ↦ (f ○ ιi)ni=1

is a left S-module isomorphism.

Proof. The map is by definition left S-linear and well-defined, and an inverse map
is given by

n

⊕
i=1

Hom−,S(Mi,N) → Hom−,S(M,N), (fi)ni=1 ↦ f̃

with f̃((mi)ni=1) ∶= ∑n
i=1 fi(mi) for (mi)ni=1 ∈M . □

Finally, we get an equivalent characterization of a right S-module being fgp:

Proposition 5.18. Consider a unital ring S and a right S-module M . Then M
is fgp if and only if there are k ∈ N and an idempotent matrix e ∈Matk×k(S) (that
is, e2 = e) such that M ≅ eSk, that is M is isomorphic as a right S-module to the
image of e.

Proof. Take an fgp S-module M . Since it is finitely generated, we find k ∈ N and
a surjective right S-module homomorphism f ∶Sk →M . As M is projective, there
exists a right S-module homomorphism h∶M → Sk such that f ○ h = id. Now, the
right S-module homomorphism h ○ f ∶Sk → Sk is given by a matrix e ∈Matk×k(S),
which is an idempotent matrix, as

e2 = h ○ f ○ h ○ f = h ○ id ○ f = e.
Finally, since f ○ h = id, h is injective and hence M is isomorphic to the image of
h. Since f is surjective the image of e = h ○ f is given by the image of h and hence
M ≅ eSk.

For the other direction, we note that the canonical embedding eSk → Sk is a
splitting map for the right S-module homomorphism e∶Sk → eSk, since e is an
idempotent matrix. Now, by Example 5.8 and Lemma 5.11 Sk is fgp, and hence by
Lemma 5.12 also M ≅ eSk is fgp. □
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6. Steinberg algebras and bimodules

In this section, we define the Steinberg algebra AR (G) of an ample groupoid G,
as Steinberg did in [Ste09, Chapter 4]. In particular, AR (G) is a (not necessarily
commutative nor unital) ring. But we prove that it has local units, so it is an object
in the bicategory of smooth bimodules Rings. We generalize the construction of
the Steinberg algebra of an ample groupoid to ample groupoid correspondences
X ∶H ← G and make AR (X) into a smooth AR (H) ,AR (G)-bimodule. Hence,
AR (G) is an object, and AR (X) is a 1-arrow in the bicategory of smooth bimodules
Rings. In the following Section 7, we also construct an AR (H) ,AR (G)-bimodule
homomorphism A(f)∶AR (X) → AR (Y) for every 2-arrow f ∶ X ⇒ Y in Gra and
embed these constructions into a strictly unital homomorphism A∶Gra →Rings of
bicategories.

We start in the greatest generality by defining the Steinberg module AR (X) of an
arbitrary topological space X. Then, for X = G an ample groupoid, we can define a
multiplicative structure on AR (G) to define the Steinberg algebra of G. After that,
for X = X an ample correspondence, we can define a left and right action on AR (X)
to define the Steinberg bimodule of X .

From now on until the end of this thesis, we fix a commutative, unital ring R
with the discrete topology.

6.1. Steinberg modules of topological spaces. Fix a topological space X. Let R
be the fixed commutative, unital ring with the discrete topology. The set of all maps
RX ∶= {ξ∶X → R} is an R-module by pointwise addition and scalar multiplication.
For a subset F ⊂ RX , we write ⟨F ⟩R ⊂ RX for the smallest R-submodule of RX

generated by F . Furthermore, for a subset A ⊂X, we define 1A, the characteristic
map of A, via

1A∶X → R, x↦
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ A
0, x /∈ A.

This map is continuous if and only if A ⊂X is clopen. It is easy to check that a map
ξ ∈ RX is continuous if and only if it is locally constant. For a subset U ⊂X and a
map ξ∶U → R, we can define its extension by zero map ξ̃ ∈ RX by putting ξ̃∣U ∶= ξ
and ξ̃∣X∖U ∶= 0. Hence, for any map ξ ∈ Cc(U,R) (that is, ξ∶U → R is continuous
with compact support supp(ξ) ∶= ξ−1(R ∖ {0}) ⊂X) we get ξ̃ ∈ RX .

Proposition and Definition 6.1. Consider a topological space X. The Steinberg
module of X is the R-submodule AR (X) of RX described in the following equivalent
ways:

(1) ⟨ξ̃ ∣ ξ ∈ Cc(U,R) for U ⊂X a Hausdorff open subset⟩
R

;
(2) {ξ ∣ supp(ξ) compact Hausdorff open and ξ∣supp(ξ) continuous};
(3) ⟨1U ∣ U ⊂X a compact Hausdorff open subset⟩

R
.

Proof. We prove that (1) ⊂ (2) ⊂ (3) ⊂ (1).
For the first inclusion, take a Hausdorff open subset U ⊂X and a map ξ ∈ Cc(U,R).

Since subsets of Hausdorff spaces are Hausdorff, supp(ξ̃) = supp(ξ) is Hausdorff.
Furthermore, ξ is continuous and R discrete, hence supp(ξ) is open in U and as U is
open in X, it is also open in X. Thus, supp(ξ̃) is a compact Hausdorff open subset.
As ξ̃ is continuous on U , it is also continuous on the open subset supp(ξ̃) ⊂ U .

For the second inclusion, we take a map ξ∶X → R with U ∶= supp(ξ) ⊂ X
compact Hausdorff open, such that ξ∣U is continuous. We get that ξ(U) ⊂ R is
compact and hence (since R is discrete) ξ(U) = {r1, . . . , rn} is finite. Now, the
subset Ui ∶= ξ−1(ri) ⊂ supp(ξ) is closed in a compact space and thus is a compact
space itself. Furthermore, Ui is open in X (since ξ∣supp(ξ) is continuous and supp(ξ)
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is open). Additionally, as a subset of the Hausdorff space supp(ξ), it is Hausdorff
itself. Furthermore, we have U = ξ−1(0) ⊔U1 ⊔ ⋅ ⋅ ⋅ ⊔Un and hence get ξ = ∑n

i=1 ri1Ui .
The third inclusion is immediate. □

Note that the elements of the Steinberg module are not necessarily continuous.
For example, the characteristic map 1U of a compact Hausdorff open subset U ⊂X
does not need to be continuous, as U is not necessarily closed. If we assume X to
be a Hausdorff space, then U is indeed closed, and hence 1U is actually continuous.
In this case, we get AR (X) = Cc(X,R), that is, the Steinberg module is exactly the
space of all continuous maps with compact support.

Now, we want to establish some general properties of the Steinberg module. First,
taking the Steinberg module commutes with coproducts.

Lemma 6.2. For a disjoint union X = ⊔i∈I Xi, the Steinberg module over R

AR (⊔
i∈I

Xi) ≅⊕
i∈I

AR (Xi)

is given by the direct sum of R-modules.

Proof. We use Definition (2) of the Steinberg module. We start by defining the
extension by zero maps

ιi∶AR (Xi) → AR (X) , ξ ↦ ξ̃,

which are R-module homomorphisms. They are well-defined since Xi ⊂X is open.
Now, for any family of R-module homomorphisms fi∶AR (Xi) → B and ξ ∈ AR (X),
take S ∶= supp(ξ) ⊂ X compact Hausdorff open and define Si ∶= S ∩Xi. Then, as
Xi ⊂X clopen, we get Si ⊂Xi compact Hausdorff open. Hence, S = ⊔i Si and as S
is compact, we can write S = ⊔n

i=1 Si. Now, ξi ∶= ξ∣Xi is continuous on its support Si

and thus ξi ∈ AR (Xi). We define the map

f ∶AR (X) → B, ξ ↦
n

∑
i=1
fi(ξi).

It is an R-module homomorphism, since fi are R-module homomorphisms. Further-
more, we have (f ○ ιi)(ξ) = f(ξ̃) = fi(ξ̃∣Xi) = fi(ξ) for all i and ξ ∈ AR (Xi), that is,
f ○ ιi = fi for all i. For another R-module homomorphism g∶AR (X) → B such that
g ○ ιi = fi we get

g(ξ) = g (
n

∑
i=1
ξ̃i) =

n

∑
i=1
g(ξ̃i) =

n

∑
i=1
(g ○ ιi)(ξi) =

n

∑
i=1
fi(ξi) = f(ξ)

and hence f is unique. □

Secondly, for topological spaces with an ample base (as defined in Definition 2.14),
the Steinberg module is generated by the characteristic functions of the elements of
the base.

Proposition 6.3. Consider a topological space X with an ample base B for its
topology. Then the Steinberg module is given by

AR (X) = ⟨1B ∣ B ∈ B⟩R.

Proof. We use Definition (3) of the Steinberg module. Then the set on the right is
obviously a subset of the one on the left. For the other direction, take a compact
Hausdorff open U ⊂X. Since B is a base and U is compact, we find finitely many
Ui ∈ B with i = 1, . . . , n such that U = ⋃n

i=1Ui. Now, as U is Hausdorff and Ui

compact, Ui ⊂ U is closed. Thus, Ui ⊂ U is clopen. Now, for i = 1, . . . , n define
Wi ∶= Ui ∖ (⋃i

j=1Uj), which are disjoint clopen subsets of U and U = ⊔n
i=1Wi. As U

is open in X and Ui ⊂ U is open, the Wi are open in X. Furthermore, as Wi ⊂ U is
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closed and U is compact, the Wi are compact as well. Thus, Wi ⊂ Ui is an open and
compact subset and hence Wi ∈ B. Finally, we have 1U = ∑n

i=1 1Wi with Wi ∈ B. □

Furthermore, the Steinberg module is almost given by the free module over the
characteristic functions of the elements of an ample base B, except that we of course
have 1U⊔V = 1U + 1V for all U ⊔ V,U,V ∈ B. The following result is inspired by
[Li22, Lemma 2.2].

Proposition 6.4. Consider a topological space X with an ample base B for its
topology. Then the kernel of the surjective R-module homomorphism

π∶ ⊕
B∈B

R ⋅ 1B → AR (X)

is given by the R-submodule

S ∶= ⟨1U⊔V − 1U − 1V ∣ U,V,U ⊔ V ∈ B⟩R
and hence AR (X) is given by the quotient of ⊕B∈BR ⋅ 1B by S.

Proof. First, we note that the defined R-submodule is obviously in the kernel. Thus,
we get an induced well-defined R-module homomorphism

π̃∶⊕B∈BR ⋅ 1B /S → AR (X) , f mod S ↦ π(f).

For the other direction, we take f ∶= ∑n
i=1 ri1Bi ∈ ⊕B∈BR ⋅ 1B such that π(f) = 0

and now want to prove that f ∈ S. Now, we find U1, . . . , Um ∈ B such that for all
i = 1, . . . , n there is a j = 1, . . . ,m such that Bi ⊂ Uj (at first just take m = n and
Ui = Bi). We now prove by induction over m that f ≡ 0 mod S and hence f ∈ S.

For m = 1 we get that Bi ⊂ U1 for all i = 1, . . . , n. Now, the Bi are compact open
subsets of the Hausdorff space U1 and hence are clopen in U1. We can make them
disjoint by defining B′i ∶= Bi ∖ (⋃i

j=1Bj) for i = 1, . . . , n. The B′i are disjoint clopen
subsets of U1, and hence are compact open subsets. Thus, as U1 ∈ B is an element of
the ample base B we get B′i ∈ B. Furthermore, we have Bi = B′1 ⊔ ⋅ ⋅ ⋅ ⊔B′i and thus

ri1Bi ≡ ri(1B′1 + ⋅ ⋅ ⋅ + 1B′i) mod S

for all i = 1, . . . , n (by induction on i, using that S is additively closed). Hence, we
get

f ≡
n

⊕
i=1
r̃i1B′i mod S

for fitting r̃i ∈ R. Now, as π(f) = 0 we get π̃(⊕n
i=1 r̃i1B′i) = 0 and hence as the B′i

are disjoint, we get r̃i = 0 for all i and thus f ≡ 0 mod S.
Now, for the induction step, we start with f ∶= ∑n

i=1 ri1Bi
with ri ∈ R ∖ {0} and

want to find f̃ such that f ≡ f̃ mod S and such that m − 1-many Uj are sufficient
for f̃ . We first take all Bi ⊂ Um and make them disjoint (as done for m = 1). Now,
f mod S is equal to the disjointed version modulo S, so by renaming we can assume
that all Bi ⊂ Um are disjoint. Next, we fix one of the i such that Bi ⊂ Um. Let
J ⊂ {1, . . . , n} denote all the j = 1, . . . , n such that Bj /⊂ Um. Then Bi ⊂ ⋃j∈J Bj ,
since otherwise there is an x ∈ Bi such that x /∈ Bj for all j ∈ J and hence x /∈ Bj for
all j ∈ {1, . . . n}∖ {i} (as the remaining Bj are the subsets of Um that are disjoint to
Bi) and then ri = π(f)(x) = 0, which is a contradiction to our assumptions. Now, as
Bi ⊂ ⋃j∈J Bj , for all x ∈ Bi, we find j ∈ J such that x ∈ Bj and hence x is an element
of the open subset Bi ∩Bj ⊂X. So there is some B′x ∈ B such that x ∈ B′x ⊂ Bi ∩Bj .
Now, Bi = ⋃x∈Bi

B′x and for each B′x there is a j ∈ J such that B′x ⊂ Bj . As Bi is
compact we find finitely many such B′x covering it, that is, we get Bi = ⋃l

k=1B
′

k with
B′k ∈ B and for all k there is a j ∈ J such that B′k ⊂ Bj . Since all the B′k are in Bi we
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can make them disjoint (similar to m = 1) and after renaming we get Bi = ⊔l
k=1B

′

k

with B′k ∈ B and for all k there is a j ∈ J such that B′k ⊂ Bj . Hence, we have

f = ri1Bi +∑
j/=i

rj1Bj ≡ ri

l

∑
k=1

1B′
k
+∑

j/=i

rj1Bj mod S

and after repeating this process for the other Bi ⊂ Um we have found our f ′ that
only needs U1, . . . , Um−1 and for which the induction hypothesis applies. Hence, we
get f ≡ f ′ ≡ 0 mod S. □

Next, we want to define an induced map on the Steinberg modules for sufficiently
well-behaved maps on sufficiently well-behaved topological spaces.

Definition 6.5. Consider two topological spaces X,Y with an ample base B for
the topology on X and a local homeomorphism f ∶X → Y that is injective on U ∈ B.
Define the map

f∗∶AR (X) → AR (Y ) , α ↦
⎡⎢⎢⎢⎢⎣
y ↦ ∑

x∈f−1(y)

α(x)
⎤⎥⎥⎥⎥⎦
.

Proposition 6.6. The above-defined map f∗ is a well-defined R-module homomor-
phism that sends 1U to 1f(U) for all U ∈ B. Furthermore, we have (f ○f ′)∗ = f∗ ○f ′∗
for two composable such maps f, f ′.

Proof. We first want to check that the map is well-defined. It is easy to check that
the map is R-linear. Since AR (X) is generated by 1U for U ∈ B (by Proposition 6.3)
it is sufficient to check that it is well-defined on these. Since f is open and continuous,
f(U) ⊂ Y is again a compact open subset. Furthermore, as f is injective on U , we
have f(U) ≅ U , and hence U is Hausdorff. Now, for y ∈ f(U) we find a unique x ∈ U
such that f(x) = y (as f is injective on U) and hence

f∗(1U)(y) = ∑
x∈f−1(U)

1U(x) = 1.

For y /∈ f(U) any x ∈ f−1(y) is not in U and hence 1U(x) = 0 and

f∗(1U)(y) = ∑
x∈f−1(U)

1U(x) = 0.

Thus, we get that 1U is mapped to 1f(U) for all U ∈ B and 1f(U) ∈ AR (Y ) (using
Definition (3) of the Steinberg module) and hence f∗ is well-defined.

It is easy to check that the second part follows from

(f ○ f ′)−1(z) = ⋃
y∈f−1(z)

(f ′)−1(y)

for all z ∈ Z. □

6.2. Steinberg algebras of ample groupoids. Now, we turn our attention
to an ample groupoid G. We want to consider the Steinberg module AR (G) of
G and define a multiplicative structure on it, turning it into an R-algebra. We
start by investigating the given R-module AR (G). By Proposition 3.20 (and using
Example 3.18) the compact slices Ga form an ample base for the topology on G.
Thus, we can apply Proposition 6.3 to G and the ample base Ga.

Corollary 6.7. For an ample groupoid G, we have that

AR (G) = ⟨1U ∣ U ∈ Ga⟩R .

Proof. Is immediate from Proposition 6.3 and the discussion above. □
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Next, we want to define a multiplicative structure on the Steinberg module AR (G)
of an ample groupoid G that turns it into an R-algebra. That is, we need to define
a multiplicative structure on G that turns it into a (not necessarily commutative
nor unital) ring and behaves well with the R-module structure.

Definition 6.8 (compare [Ste09, Definition 4.4]). For an ample groupoid G, a
multiplicative structure on AR (G) is given by the convolution

(ξ ∗ η)(g) = ∑
h∈Gr(g)

ξ(h)η(h−1g)

for ξ, η ∈ AR (G) and g ∈ G.

It is not obvious that for ξ, η ∈ AR (G) the convolution ξ ∗ η defines a function
G → R, as the (seemingly infinite) sum does not need to be defined in R. Neither is
it obvious that this function is in AR (G). But it is well known that the convolution
is R-bilinear and hence it is sufficient to look at the convolution of two characteristic
maps of compact slices since they generate the Steinberg algebra (by Corollary 6.7).

Proposition 6.9. For an ample groupoid G and U,V ⊂ G compact slices, the
composition UV is again a compact slice and we get 1U ∗ 1V = 1UV .

Proof. That UV is a compact slice follows from Proposition 2.13. The proof of
1U ∗ 1V = 1UV is done in [Ste09, Proposition 4.5]. In Proposition 6.19 we prove a
more general statement (see Remark 6.20). □

It is now immediate that the convolution is well-defined, that is, that the sum is
finite for all g ∈ G and that the defined function is again in AR (G). Furthermore, it is
well known that AR (G) with convolution is indeed an R-module with a compatible
ring structure, that is, an R-algebra. Note that the ring structure is not necessarily
commutative.

Definition 6.10 (compare [Ste09, Definition 4.12]). A map ξ ∈ AR (G) such that,
firstly, for g ∈ G with r(g) ≠ s(g) we have ξ(g) = 0, and secondly, for g, h ∈ G with
s(g) = r(g) = s(h) we have f(hgh−1) = f(g), is called a class function.

Proposition 6.11 (compare [Ste09, Proposition 4.13]). For an ample groupoid G,
the center of the Steinberg algebra AR (G) is given by the set of class functions.

Proof. See [Ste09, Proposition 4.13]. □

Furthermore, the ring structure is not necessarily unital:

Proposition 6.12 (compare [Ste09, Proposition 4.11]). For an ample groupoid G
the Steinberg algebra AR (G) is unital if and only if the unit slice G0 is compact,
that is, G is cocompact.

Proof. The proof boils down to the fact that 1G0 is the unique map behaving like a
unit with respect to convolution, and it is an element of AR (G) if and only if the
unit slice G0 is compact (for details see [Ste09, Proposition 4.11]). □

So our ring AR (G) is not necessarily unital, but at least we always find local
units:

Proposition 6.13. For an ample groupoid G, the set

E ∶= {1U ∣ U ⊂ G0 compact open}

is a set of local units of AR (G).
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Proof. The set E is a subset of AR (G), since any compact open subset of G0 is a
compact slice. Furthermore, the elements of E are idempotents, as

1U ∗ 1U = 1UU = 1U .

Now, given finitely many ξ1, . . . , ξn ∈ AR (G), each given by ξi = ∑V ∈Ξi
rV 1V for

finite subsets Ξi ⊂ Ga and rV ∈ R. We define

U ∶=
n

⋃
i=1
⋃

V ∈Ξi

r(V ) ∪ s(V ) ⊂ G0.

Since r, s are open continuous maps and the finite union of compact sets is compact,
we get 1U ∈ E. Now, for all i = 1, . . . , n and V ∈ Ξi we have V U = V = UV and thus

ξi ∗ 1U = ∑
V ∈Ξi

rV 1V U = ξi = ∑
V ∈Ξi

rV 1UV = 1U ∗ ξi.

Hence, E is indeed a set of local units. □

Thus, the Steinberg algebra AR (G) of an ample groupoid is indeed an object in
the bicategory Rings of rings with local units and smooth bimodules.

Example 6.14. For an ample groupoid G given by a discrete group the compact
slices are given by {g} for all g ∈ G (see Example 2.15). Now, by Proposition 6.4 the
Steinberg algebra of G is given by the free R-module generated by δg ∶= 1{g} with
multiplication given by

δg ⋅ δh ∶= 1{g} ∗ 1{h} = 1{gh} = δgh.

Thus, the Steinberg algebra of a discrete group is the group ring
AR (G) = ⊕

g∈G

R ⋅ δg = R[G].

6.3. Steinberg bimodules of ample correspondences. Now, we turn our
attention to ample correspondences X . We want to define a left multiplication by
AR (H) and a right multiplication by AR (G) on the Steinberg module AR (X) of
the ample correspondence X to turn it into a smooth AR (H) ,AR (G)-bimodule.
First, we investigate the R-module AR (X). By Proposition 3.20 the compact slices
X a form an ample base for the topology on X . Thus, we can apply Proposition 6.3
on X and the ample base X a.

Corollary 6.15. For an ample correspondence X , we have that
AR (X) = ⟨1U ∣ U ∈ X a⟩R .

Proof. Is immediate from Proposition 6.3 and the discussion above. □

Now, we define the AR (H) ,AR (G)-bimodule structure on AR (X).

Definition 6.16. For an ample groupoid correspondence X ∶H ← G we get two
R-algebras (hence in particular they are rings) AR (H) ,AR (G) and an R-module
AR (X) and we define an AR (H) ,AR (G)-bimodule structure on AR (X) by

(α ∗ ξ)(x) ∶= ∑
g∈Gs(x)

α(xg−1) ⋅ ξ(g)(6.17)

(ζ ∗ α)(x) ∶= ∑
h∈Hr(x)

ζ(h) ⋅ α(h−1x)(6.18)

for ζ ∈ AR (H), α ∈ AR (X), ξ ∈ AR (G) and x ∈ X .

Again, it is not obvious that these convolutions define functions X → R, as
the (seemingly infinite) sum does not need to be defined in R. Furthermore, it is
not obvious that the functions are in AR (X) and that this definition indeed gives
AR (X) a bimodule structure. But similar to convolutions on groupoids, it is easy
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to check that this convolution is R-bilinear and thus this follows from the following
Proposition 6.19, using that the Steinberg modules of X ,H and G are generated by
characteristic functions of compact slices (by Corollary 6.15 and Corollary 6.7).

Proposition 6.19. Consider an ample groupoid correspondence X ∶H ← G and
compact slices U ⊂ H, V ⊂ X and W ⊂ G. Then 1U ∗ 1V = 1UV , as well as
1V ∗ 1W = 1V W .

Proof. First, note that by Corollary 6.15 and Corollary 6.7 the functions 1U ,1V

and 1W are actually elements of the respective Steinberg modules. Furthermore,
UV,V W ⊂ X are again compact slices by Lemma 3.21 and their characteristic maps
1UV ,1V W are indeed elements of AR (X). Next we want to prove the equalities
1U ∗ 1V = 1UV and 1V ∗ 1W = 1V W . For x ∈ X we get

(1V ∗ 1W )(x) = ∑
g∈Gs(x)

1V (xg−1) ⋅ 1W (g) = ∑
g∈(s∣W )−1(s(x))

1V (xg−1)

=
⎧⎪⎪⎨⎪⎪⎩

1V (xg−1), if ∃g ∈W with s(g) = s(x)
0, else

=
⎧⎪⎪⎨⎪⎪⎩

1, if ∃g ∈W with s(g) = s(x) and xg−1 ∈ V
0, else

= 1V W

as (s∣W )−1(s(x)) is either empty or the singleton set. An analogous computation
shows 1U ∗ 1V = 1UV . □

Hence, both left and right multiplication by convolution are well-defined, that is,
the sums are finite, and the defined functions are indeed in AR (X). Furthermore,
it is now easy to check that the left and right multiplications are compatible, that
is, that (ζ ∗ α) ∗ ξ = ζ ∗ (α ∗ ξ). Hence, this convolution indeed gives AR (X) an
AR (H) ,AR (G)-bimodule structure.

Note that this Proposition 6.19 is a more general formulation of Proposition 6.9
using that one can view G as the trivial groupoid correspondence G∶G ← G (by
Example 3.18). The proof above is inspired by the proof of [AKM22, Lemma 7.7]
and the proof of Proposition 6.9, which can be found in [Ste09, Proposition 4.5].

Remark 6.20. In Example 3.18 we have discussed that the slices of the trivial
correspondence G∶G ← G are exactly the slices of the groupoid G. Thus, the
Steinberg algebra of G as a groupoid and as a correspondence are the same sets. If
we take a closer look at the definition of the convolution on AR (G) and of the left
and right action of AR (G) on AR (G), one can see that they are all equal to

(ξ ∗ η)(g) = ∑
xy=g

ξ(x) ⋅ η(y).

Hence, the defined AR (G) ,AR (G)-bimodule structure on AR (G) is by definition
exactly the trivial one given by multiplication.

Now, we get to our next result, which says that this bimodule AR (X) is indeed a
smooth bimodule and hence a 1-arrow in the bicategory Rings of smooth bimodules.

Proposition 6.21. The above-defined bimodule structure on AR (X) is smooth.

Proof. Since both AR (H) and AR (G) have local units (by Proposition 6.13), using
Proposition 5.5 we only need to prove that for all α ∈ AR (X) there are ζ ∈ AR (H)
and ξ ∈ AR (G) such that ζ ∗ α = α = α ∗ ξ. First, consider α = 1U for U ∈ X a. Since
U is compact and r is continuous, r(U) ⊂ H0 is a compact subset. As H0 ⊂ H
open and Ha is a base for the topology on H (by Lemma 2.9 and Proposition 2.10),
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for all h ∈ r(U) there is a compact slice Vh ∈ Ha with h ∈ Vh ⊂ H0. Thus, we get
r(U) ⊂ ⋃h∈r(U) Vh ⊂ H0 and because of compactness we find V1 . . . , Vn such that
r(U) ⊂ ⋃n

i=1 Vi ⊂ H0. Now, V ∶= ⋃n
i=1 Vi ⊂ H0 is a compact slice (as a finite union

of compact sets, it is again compact) and since r(U) ⊂ V we get V U = U . For
α = ∑m

i=1 ri1Ui we find for each Ui a compact slice Vi ⊂ H0 such that ViUi = Ui. Then
V ∶= ⋃m

i=1 Vi ⊂ H0 is again a compact slice and we get V Ui = Ui for all i = 1, . . . ,m.
Thus, for ζ ∶= 1V ∈ Ha, we get ζ ∗α = 1V ∗∑m

i=1 ri1Ui = ∑m
i=1 ri1V Ui = ∑m

i=1 ri1Ui = α.
Analogously, one can construct ξ ∈ AR (G) such that α ∗ ξ = α. Actually, since s is
an open map (by Definition 3.16 it is a local homeomorphism) this case is easier
since we can just take V ∶= ⋃m

i=1 s(Ui) and ξ ∶= 1V , as s(Ui) ⊂ G0 is open. Hence,
AR (X) is indeed a smooth bimodule. □

Remark 6.22. Furthermore, from the proof of Proposition 6.21, we can see that the
characteristic functions 1U ∈ AR (X) not only span AR (X) as a R-module, but also
as a right AR (G)-module (and as a left AR (H)-module).

6.4. Right modules of proper correspondences. We now want to get a better
understanding of the Steinberg bimodule of a proper ample correspondence X ∶H ← G
with H,G cocompact. We assume that H and G are cocompact, so that the Steinberg
algebras AR (H) and AR (G) are unital (by Proposition 6.12). We show that for
cocompact H and G and a proper ample correspondence X ∶H ← G the Steinberg
bimodule AR (X) is a finitely generated and projective (fgp) right AR (G)-module.
This is not surprising as by Theorem 3.29 the correspondence X is rather trivial as
a right G-module, so its Steinberg bimodule AR (X) should also be rather trivial as
a right AR (G)-module.

Recall that for a proper ample correspondence X ∶H ← G with H,G cocompact
there are compact open subsets K1, . . . ,Kn ∈ G0 such that the correspondence X is
given by

X ≅
n

⊔
i=1
r−1
G
(Ki)

as a right G-space by Theorem 3.29 (and the discussion right above it). Next, we
want to use the following Lemma 6.23 for Y ∶= G and V ∶=Ki.

Lemma 6.23. Let Y∶H ← G be an ample correspondence and V ⊂ H0 a compact
open subset. Then the right AR (G)-submodule AR (r−1

Y
(V )) of AR (Y) is given by

1V ∗AR (Y).

Proof. We want to show that the two submodules AR (r−1
Y
(V )) ,1V ∗ AR (Y)

of AR (Y) coincide. We use Definition (3) of the Steinberg module. Consider
1W ∈ AR (r−1

Y
(V )) with W ⊂ r−1

Y
(V ) a compact Hausdorff open subset. Then

rY(W ) ⊂ rY(r−1
Y
(V )) ⊂ V and hence VW =W and

1W = 1V W = 1V ∗ 1W ∈ 1V ∗AR (Y) .
For the other direction, take 1V ∗1W ∈ 1V ∗AR (Y) with W ⊂ Y a compact Hausdorff
open subset. Then rY(VW ) ⊂ rH(V ) = V and hence VW ⊂ r−1

Y
(V ). Thus, we get

1V ∗ 1W = 1V W ∈ AR (r−1
Y
(V )). □

Hence, we get AR (r−1
G
(Ki)) = 1Ki ∗AR (G) and since the compact open subset

Ki ⊂ G0 is a slice of G, we get 1Ki ∈ AR (G). Furthermore, since Ki ⊂ G0 we have
KiKi = Ki and thus 1Ki ∗ 1Ki = 1KiKi = 1Ki and hence 1Ki is an idempotent of
AR (G). So by Lemma 5.13 the right AR (G)-submodule

AR (r−1
G
(Ki)) = 1Ki ∗AR (G) ⊂ AR (G)

is fgp.
Finally, we have all the tools we need to prove the following Theorem 6.24.
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Theorem 6.24. Consider two cocompact ample groupoids H,G and a proper corre-
spondence X ∶H ← G. Then the right AR (G)-module AR (X) is given by

AR (X) ≅
n

⊕
i=1

1Ki ∗AR (G)

for compact open Ki ⊂ G0 and hence is fgp.

Proof. By Theorem 3.29 we find compact open Ki ⊂ G0 such that X ≅ ⊔n
i=1 r

−1
G
(Ki).

Now, by Lemma 6.2 and Lemma 6.23 we have

AR (X) ≅ AR (
n

⊔
i=1
r−1
G
(Ki)) =

n

⊕
i=1
AR (r−1

G
(Ki)) =

n

⊕
i=1

1Ki ∗AR (G)

as right AR (G)-modules. By the discussion below Lemma 6.23 the right AR (G)-
modules AR (r−1

G
(Ki)) are fgp and hence their direct sum ⊕n

i=1AR (r−1
G
(sX (Ui)))

is fgp as well (by Lemma 5.11). Thus, AR (X) is an fgp right AR (G)-module. □
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7. The homomorphism to rings

In this section, we show that the definition of the Steinberg algebra of an am-
ple groupoid and the Steinberg bimodule of an ample groupoid correspondence
can be extended to a strictly unital homomorphism A∶Gra → Rings from the bi-
category of ample correspondences to the bicategory of smooth bimodules. We
define the Steinberg algebra of an ample groupoid and the Steinberg bimodule
of an ample correspondence in Section 6, so what is left to do is to construct an
AR (H) ,AR (G)-bimodule homomorphism A(f)∶AR (X) → AR (Y) for every contin-
uous H,G-equivariant map f ∶ X ⇒ Y and show that it is functorial. Furthermore,
we need to define a multiplication map µX ,Y ∶AR (X)⊗AR(G)

AR (Y) → AR (X ○G Y)
and, in the end, prove that all the data indeed has the properties of a strictly unital
homomorphism of bicategories. Finally, previous results show that the homomor-
phism restricts to a strictly unital homomorphism A∶Grco,proper → Ringsfgp. We
use the latter in Section 11.

Again, we fix a (commutative, unital) ring R with the discrete topology. First,
we have to define the homomorphism on 2-arrows. For ample correspondences
X ,Y ∈ Gra(G,H) and a 2-arrow f ∶ X ⇒ Y, that is, a continuous H,G-equivariant
map f ∶ X → Y, we want to construct an AR (H) ,AR (G)-bimodule homomorphism
A(f)∶AR (X) → AR (Y). We use the construction from Proposition 6.6 and show
that it has all the desired properties.

Lemma 7.1. Consider a continuous H,G-equivariant map f ∶ X → Y. Then the
R-linear map

A(f) ∶= f∗∶AR (X) → AR (Y) , α ↦
⎡⎢⎢⎢⎢⎣
y ↦ ∑

x∈f−1(y)

α(x)
⎤⎥⎥⎥⎥⎦
,

is an AR (H) ,AR (G)-bimodule homomorphism that sends 1U to 1f(U) for all com-
pact slices U ∈ X a.

Proof. By Proposition 3.20 the compact slices X a form an ample base for the
topology on X . By Lemma 4.1 f is a local homeomorphism and injective on U ∈ X a.
Thus, we can apply Proposition 6.6 to get a well-defined R-linear map A(f) ∶= f∗
that sends 1U to 1f(U) for U ∈ X a. So we only need to check that this map is indeed
an AR (H) ,AR (G)-bimodule homomorphism. We have

A(f)(α ∗ ξ)(y) = ∑
x∈f−1(y)

(α ∗ ξ)(x) = ∑
x∈f−1(y)

∑
g∈Gs(x)

α(xg−1) ⋅ ξ(g)

= ∑
g∈Gs(y)

∑
x∈f−1(y)

α(xg−1) ⋅ ξ(g) = ∑
g∈Gs(y)

A(f)(α)(yg−1) ⋅ ξ(g)

= (A(f)(α) ∗ ξ)(y)
for α ∈ AR (X), ξ ∈ AR (G) and y ∈ Y. Similarly, we get A(f)(ζ ∗ α) = ζ ∗A(f)(α)
for ζ ∈ AR (H), α ∈ AR (X). □

Proposition 7.2. For ample groupoids G,H the construction above defines a functor
AG,H∶Gra(G,H) →Rings(AR (G) ,AR (H)),

X ↦ AR (X) ,
f ∶ X → Y ↦ A(f)∶AR (X) → AR (Y) .

Proof. The functor is well-defined, since by Proposition 6.21 AR (X) is indeed a
smooth bimodule and by Lemma 7.1 A(f) is indeed a bimodule homomorphism.
Now, the identity map is sent to the identity map. Thus, we have

AG,H(1X ) = 1AR(X)
.
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Additionally, for f ∶ Y → Z and f ′∶ X → Y we also get
AG,H(f ○ f ′) = AG,H(f) ○AG,H(f ′)

since (f ○ f ′)∗ = f∗ ○ f ′∗ (by Proposition 6.6). Thus, AG,H is indeed a functor. □

Secondly, we want to define the natural bimodule isomorphisms µX ,Y .

Definition 7.3. For ample correspondences X ∶H ← G, Y∶G ← K define the map
µX ,Y ∶AR (X) ×AR (Y) → AR (X ○G Y) ,

(α,β) ↦
⎡⎢⎢⎢⎢⎣
[x, y] ↦ ∑

g∈Gs(x)

α(xg−1) ⋅ β(gy)
⎤⎥⎥⎥⎥⎦
.

Proposition 7.4. The above-defined map µX ,Y is well-defined and AR (G)-balanced.
Thus, it induces a unique group homomorphism

µX ,Y ∶AR (X) ⊗AR(G)
AR (Y) → AR (X ○G Y) .

This group homomorphism µX ,Y is an AR (H) ,AR (K)-bimodule homomorphism
and is natural in X and Y.

Proof. Note first that [x, y] ↦ ∑g∈Gs(x) α(xg
−1) ⋅ β(gy) does not depend on the

representation of [x, y], since a different representative (xg̃−1, g̃y) ∈ [x, y] only
changes the order of the summands. To prove that this actually defines a function
X ○G Y → R that lies in AR (X ○G Y), we first see that the definition is R-linear in
α and β, so it is sufficient to consider α = 1U and β = 1V for U ∈ X a, V ∈ Ya (using
Corollary 6.15). Using Proposition 4.4 it is easy to check that 1U ⊗1V is sent to 1UV

and 1UV ∈ AR (X ○G Y). Thus, for any α ∈ AR (X) and β ∈ AR (Y) the function
µX ,Y(α⊗ β) is indeed well-defined (that is, independent of the representative and
the sum is finite and hence defined in R) and an element of AR (X ○G Y).

Furthermore, it is easy to check that µX ,Y is additive in both arguments and
hence by the following computation it is AR (G)-balanced. We have

µX ,Y(α ∗ ξ, β) = ∑
g∈Gs(x)

(α ∗ ξ)(xg−1) ⋅ β(gy)

= ∑
g∈Gs(x)

∑
h∈Gs(xg−1)

α(xg−1h−1) ⋅ ξ(h) ⋅ β(gy)

= ∑
h∈Gr(g)

∑
g∈Gs(x)

α(x(hg)−1) ⋅ ξ(h) ⋅ β(gy)

= ∑
h∈Gr(k)

∑
k∈Gs(x)

α(xk−1) ⋅ ξ(h) ⋅ β(h−1ky)

= ∑
k∈Gs(x)

α(xk−1) ⋅ (ξ ∗ β)(ky)

= µX ,Y(α, ξ ∗ β)
for α ∈ AR (X) , ξ ∈ AR (G) , β ∈ AR (Y) and [x, y] ∈ X ○G Y. Now, by the universal
property of the tensor product, we get a unique induced group homomorphism µX ,Y .
With the canonical AR (H) ,AR (K)-bimodule structure on AR (X) ⊗AR(G)

AR (Y),
the group homomorphism µX ,Y is also an AR (H) ,AR (K)-bimodule homomorphism,
since we have

µX ,Y(ζ ∗ (α⊗ β))([x, y]) = µX ,Y((ζ ∗ α) ⊗ β)([x, y])
= ∑

g∈Gs(x)

(ζ ∗ α)(xg−1) ⋅ β(gy)

= ∑
g∈Gs(x)

∑
h∈Hr(xg−1)

ζ(h) ⋅ α(h−1xg−1) ⋅ β(gy)
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= ∑
h∈Hr(x)

ζ(h) ⋅ ( ∑
g∈Gs(h−1x)

α(h−1xg−1) ⋅ β(gy))

= ∑
h∈Hr([x,y])

ζ(h) ⋅ µX ,Y(α⊗ β)(h−1[x, y])

= (ζ ∗ µX ,Y(α⊗ β))([x, y])
for ζ ∈ AR (H) , α ∈ AR (X) , β ∈ AR (Y) and [x, y] ∈ X ○G Y. Analogously, we have

µX ,Y((α⊗ β) ∗ η)([x, y]) = µX ,Y(α⊗ (β ∗ η))([x, y])
= ∑

g∈Gs(x)

α(xg−1) ⋅ (β ∗ η)(gy)

= ∑
g∈Gs(x)

α(xg−1) ⋅ ( ∑
k∈Ks(gy)

β(gyk−1) ⋅ η(k))

= ∑
k∈Ks(y)

( ∑
g∈Gs(x)

α(xg−1) ⋅ β(gyk−1)) ⋅ η(k)

= ∑
k∈Ks(y)

µX ,Y(α⊗ β)([x, y]k−1) ⋅ η(k)

= (µX ,Y(α⊗ β) ∗ η)([x, y])
for α ∈ AR (X) , β ∈ AR (Y) , η ∈ AR (K) , and [x, y] ∈ X ○G Y.

For the naturality we need to prove that for ample correspondences X ,X ′∶H ← G
and Y,Y ′∶ G ← K with 2-arrows f ∶ X ⇒ X ′ and f ′∶ Y ⇒ Y ′ the diagram

AR (X) ⊗AR(G)
AR (Y) AR (X ○G Y)

AR (X ′) ⊗AR(G)
AR (Y ′) AR (X ′ ○G Y ′)

µX ,Y

≅

A(f)⊗AR(G)A(f
′
) A(f○Gf ′)

µX′,Y′

≅

commutes. We have
(A(f ○G f ′) ○ µX ,Y)(α⊗ β)([x′, y′])

= ∑
[x,y]∈(f○f ′)−1([x′,y′])

µX ,Y(α⊗ β)([x, y])

= ∑
[x,y]∈(f○f ′)−1([x′,y′])

∑
g∈Gs(x)

α(xg−1) ⋅ β(gy)

= ∑
g∈Gs(x′)

[x,y]∈(f○f ′)−1
([x′,y′])

α(xg−1) ⋅ β(gy)

= ∑
g∈Gs(x′)

x∈f−1
(x′)

y∈f ′−1
(y′)

α(xg−1) ⋅ β(gy)

= ∑
g∈Gs(x′)

( ∑
x∈f−1(x′g−1)

α(x)) ⋅ ( ∑
y∈f ′−1

(gy′)
β(y))

= ∑
g∈Gs(x′)

A(f)(α)(x′g−1) ⋅A(f ′)(β)(gy′)

= µX ′,Y ′(A(f)(α) ⊗A(f ′)(β))([x′, y′])

= (µX ′,Y ′ ○ (A(f) ⊗A(f ′)))(α⊗ β)([x′, y′])

for α ∈ AR (X) , β ∈ AR (Y) and [x′, y′] ∈ X ′ ○G Y ′. □

The following result is inspired by [Mil23, Proposition 2.9].
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Lemma 7.5. The group homomorphism

µX ,Y ∶AR (X) ⊗AR(G)
AR (Y) → AR (X ○G Y)

is an isomorphism.

Proof. We want to define a map

AR (X ○G Y) → AR (X) ⊗AR(G)
AR (Y)

that is an inverse to µX ,Y . By Proposition 4.4 the set BX○GY is an ample base
for the topology of X ○G Y and thus we can apply Proposition 6.4 to get that the
Steinberg module AR (X ○G Y) is given by the quotient of the direct sum

⊕
UV ∈BX○GY

R ⋅ 1UV

by
⟨1UV − 1U1V1 − 1U2V2 ∣ U1V1, U2V2, UV = U1V1 ⊔U2V2 ∈ BX○GY⟩

as an R-module. Now, at first we define the R-module homomorphism

⊕
UV ∈BX○GY

R ⋅ 1UV → AR (X) ⊗AR(G)
AR (Y) , 1UV ↦ 1U ⊗ 1V

and check that it is well-defined. Take U1, U2 ∈ X a and V1, V2 ∈ Ya with s(Ui) ⊃ r(Vi)
for i = 1, 2 such that U1V1 = U2V2. Then we get the compact slice W ∶= ⟨U1 ∣U2⟩ ⊂ G
(by Lemma 3.21) and it is easy to check that we have V1 =WV2, U1W = U2s(W )
and s(W )V2 = V2. Thus, we get

1U1 ⊗ 1V1 = 1U1 ⊗ 1W V2 = 1U1 ⊗ 1W1V2 = 1U11W ⊗ 1V2

= 1U1W ⊗ 1V2 = 1U2s(W ) ⊗ 1V2 = 1U21s(W ) ⊗ 1V2

= 1U2 ⊗ 1s(W )1V2 = 1U2 ⊗ 1s(W )V2 = 1U2 ⊗ 1V2

and hence the map is well-defined. Next, we check that

⟨1UV − 1U1V1 − 1U2V2 ∣ U1V1, U2V2, UV = U1V1 ⊔U2V2 ∈ BX○GY⟩

is in the kernel of this R-module map. Take U1V1, U2V2, UV = U1V1 ⊔U2V2 ∈ BX○GY ,
then, without loss of generality (see the end of the proof of Lemma 4.3), we have
U = U1 = U2 and V = V1 ⊔ V2 for V1, V2 ∈ Ya such that UV = UV1 ⊔UV2. So we get

1UV ↦ 1U ⊗ 1V = 1U ⊗ 1V1 + 1U ⊗ 1V2 .

Thus, the map descends to a well-defined R-module homomorphism

AR (X ○G Y) → AR (X) ⊗AR(G)
AR (Y)

that sends 1UV ↦ 1U ⊗ 1V and is hence inverse to µX ,Y . □

Finally, we can combine all the discussed data above to a strictly unital homo-
morphism Gra →Rings.

Theorem 7.6. We can combine the constructions above to a strictly unital homo-
morphism

A∶Gra →Rings

given by the data:
● a map on objects given by G ↦ AR (G) sending an ample groupoid G to its

Steinberg algebra AR (G);
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● for G,H ∈ Gra the functor
AG,H∶Gra(G,H) →Rings(AR (G) ,AR (H) ),

X ↦ AR (X) ,
f ∶ X → Y ↦ A(f)∶AR (X) → AR (Y) ,

that sends an ample correspondence X to its Steinberg bimodule AR (X) and
a continuous equivariant map f to the bimodule homomorphism A(f); and
● for ample correspondences X ∶H ← G, Y∶G ← K natural (in X and Y)

bimodule isomorphisms
µX ,Y ∶AR (X) ⊗AR(G)

AR (Y) → AR (X ○G Y) .

Proof. The homomorphism is well-defined on objects, because of Proposition 6.13
and Proposition 5.4. The functor on 1- and 2-arrows is defined and handled
in Proposition 7.2. The definition of µX ,Y can be found in Definition 7.3 and
Proposition 7.4. In Proposition 7.4 and Lemma 7.5, we show that it has all the
necessary properties. In Remark 6.20, we discuss that our homomorphism is indeed
strictly unital.

Thus, all that is left to prove is that the three required diagrams commute. For
ample correspondences X ∶H ← G, Y∶G ← K and Z∶K ← E the diagram

(AR (X) ⊗AR(G)
AR (Y) ) ⊗AR(K)

AR (Z) AR (X ○G Y) ⊗AR(K)
AR (Z)

AR (X) ⊗AR(G)
(AR (Y) ⊗AR(K)

AR (Z) ) AR ((X ○G Y) ○K Z)

AR (X) ⊗AR(G)
AR (Y ○K Z) AR (X ○G (Y ○K Z))

µX ,Y⊗id

≅

assoc≅ µX○GY,Z≅

id⊗µY,Z≅ A(assoc)≅

µX ,Y○KZ

≅

commutes, because for α ∈ AR (X) , β ∈ AR (Y) , γ ∈ AR (Z) and x ∈ X , y ∈ Y, z ∈ Z
going counterclockwise, we get

(µX ,Y○KZ ○ id⊗ µY,Z ○ assoc)((α⊗ β) ⊗ γ)([x, [y, z]])

= µX ,Y○KZ(α,µY,Z(β ⊗ γ))([x, [y, z]])

= ∑
g∈Gs(x)

α(xg−1) ⋅ µY,Z(β ⊗ γ)(g[y, z])

= ∑
g∈Gs(x)

α(xg−1) ⋅ ∑
k∈Ks(y)

β(gyk−1) ⋅ γ(kz)

= ∑
g∈Gs(x)

∑
k∈Ks(y)

α(xg−1) ⋅ β(gyk−1) ⋅ γ(kz).

And going clockwise, we get

(A(assoc) ○ µX○GY,Z ○ µX ,Y ⊗ id)((α⊗ β) ⊗ γ)([x, [y, z]])

= µX○GY,Z(µX ,Y(α,β), γ)([[x, y], z])

= ∑
k∈Ks([x,y])

µX ,Y(α,β)([x, y]k−1) ⋅ γ(kz)

= ∑
k∈Ks([x,y])

∑
g∈Gs(x)

α(xg−1) ⋅ β(gyk−1) ⋅ γ(kz)

= ∑
g∈Gs(x)

∑
k∈Ks(x)

α(xg−1) ⋅ β(gyk−1) ⋅ γ(kz).
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Hence, we have the same result and thus the maps are the same and the diagram
commutes. For an ample correspondence X ∶H ← G the diagram

AR (X) ⊗AR(G)
AR (G)

AR (X) AR (X ○G G)

mult ≅
µX ,G

≅

A(rX )

≅

commutes, since for α ∈ AR (X) , ξ ∈ AR (G) and x ∈ X , we have

(A(rX ) ○ µX ,G)(α⊗ ξ)(x) = µX ,G(α, ξ)([x, s(x)])

= ∑
g∈Gs(x)

α(xg−1) ⋅ ξ(gs(x))

= ∑
g∈Gs(x)

α(xg−1) ⋅ ξ(g)

= (α ∗ ξ)(x)
=mult(α⊗ ξ)(x).

Analogously, the diagram

AR (H) ⊗AR(H)
AR (X)

AR (X) AR (H ○H X)

mult ≅
µH,X

≅

A(lX )

≅

commutes. Hence, all the required diagrams indeed commute, turning A into a
strictly unital homomorphism. □

Remark 7.7. Restricting the domain bicategory Gra to the subbicategory Grco,proper
of cocompact ample groupoids and proper correspondences leads to a strictly unital
homomorphism

A∶Grco,proper →Ringsfgp,

since for a cocompact ample groupoid G, the Steinberg algebra AR (G) is unital
(by Proposition 6.12) and for a proper ample correspondence X ∶H ← G between
cocompact groupoids H,G the Steinberg bimodule is fgp (by Theorem 6.24).
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8. Filtered colimits

In this section, we take a little excursion and establish the necessary knowledge
on filtered colimits in the categories Top, Ring, AbGroup, Set and R -Mod for the
fixed (commutative and unital) ring R, that we need in the next sections. The
knowledgeable reader may only skim over or even skip this section.

Filtered colimits form a particularly manageable class of colimits since they
behave well with the forgetful functors Ring → Set, Ring → AbGroup, as well as
AbGroup → Set. In general, forgetful functors like these are only right adjoints
and hence behave well with limits, but not with arbitrary colimits (for example
they do not preserve coproducts). That is why we want to restrict ourselves to
filtered colimits, which these functors actually preserve and create. This means that
we can explicitly construct filtered colimits in Set and we can define a canonical
abelian group and unital ring structure on them to turn them into filtered colimits
in AbGroup and Ring. Furthermore, we can define a canonical topology on the
filtered colimit in Set to get the filtered colimit in Top. This is less surprising, since
this actually works with all colimits in Top, as the forgetful functor U ∶Top→ Set is
also a left adjoint and hence preserves all colimits. The same goes for the forgetful
functor U ∶R -Mod→ AbGroup, and hence a filtered colimit in R -Mod is given by the
filtered colimit in AbGroup with a canonical R-module structure. We deal with the
two more believable cases last and in less detail

So now, first, what is a filtered colimit? A filtered colimit is a colimit of a diagram
over a filtered category. A filtered category can be viewed as the generalization of
a filtered preorder. A preorder4 (X,≤) is called filtered, if for any two elements
x, y ∈ X there is an upper bound, that is, an element u ∈ X such that x ≤ u and
y ≤ u. For example, the preorder (N,≤) is filtered. This notion of being filtered can
be generalized to categories.
Definition 8.1 ([AM15, Definition 3.6]). A category J is called filtered, if it is
non-empty and

(F1) for two objects x, y in J , there is an object z in J and arrows f ∈ J (x, z),
g ∈ J (y, z); and

(F2) for two arrows f, g ∈ J (x, y), there is an object z in J and an arrow
k ∈ J (y, z) with kf = kg.

Definition 8.2. For a diagram F ∶ C → D over a filtered category C that admits a
colimit, we denote its colimit by limÐ→F and call it a filtered colimit.

As mentioned above, the category induced by a filtered preorder (for example,
(N,≤)) is an important example of a filtered category. Now, the colimit of a diagram
over (N,≤) is called an inductive limit and is very well understood. This is also
where we borrow our notation for a filtered colimit from, as limÐ→F is the standard
notation for an inductive limit. The colimit of a diagram over a filtered category
can be viewed as a generalization of an inductive limit and behaves similarly. If we
have a diagram over a countable filtered category, the colimit actually is given by
an inductive limit (see Lemma 8.11 and Lemma 8.12).

From now on we fix a small filtered category C. Let D be one of the categories
Ring, AbGroup or Set. We define D as a placeholder for all three of these categories
to cover all three cases in one go. Let F ∶ C → D be a diagram over C in D. Now, we
want to construct a colimit of F in D.
Definition 8.3. Define the set

O⊔ ∶= ⊔
c∈C0

F (c)

4A preorder is a reflexive and transitive binary relation.
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and the equivalence relation generated by (x, c) ∼ (Ff(x), d) for all c, d ∈ C0,
x ∈ F (c) and f ∶ c → d ∈ C. Let O∼ be the set of equivalence classes with elements
denoted as [x, c] ∈ O∼. We get canonical maps ιc∶F (c) → O∼, x↦ [x, c].

In case D = AbGroup, that is, (F (c),+) is an abelian group for every c ∈ C0, we
define an abelian group structure on O∼ by

[x, c] + [y, d] ∶= [Ff(x) + Fg(y), z]

for c, d ∈ C0, x ∈ F (c), y ∈ F (d) and z ∈ C0, f ∶ c→ z, g∶d→ z (given by (F1)). In case
D = Ring, that is, (F (c),+, ⋅) is a unital ring for every c ∈ C0, we define a unital ring
structure on the set O∼, where addition is defined as above and multiplication is
given by

[x, c] ⋅ [y, d] ∶= [Ff(x) ⋅ Fg(y), z]

for c, d ∈ C0, x ∈ F (c), y ∈ F (d) and z ∈ C0, f ∶ c→ z, g∶d→ z (given by (F1)).

Remark 8.4. Note that the equivalence relation ∼ generated by (x, c) ∼ (Ff(x), d)
is given by the relation defined as

(x, c) ∼ (y, d) ∶⇔ ∃f ∶ c→ e, g∶d→ e such that Ff(x) = Fg(y)
for all x ∈ F (c), y ∈ F (d). Because of transitivity, any equivalence relation generated
by (x, c) ∼ (Ff(x), d) must contain these relations, and hence it is sufficient to check
that this relation indeed is an equivalence relation. Now, reflexivity and symmetry
follow by definition, and (F1) and (F2) (from Definition 8.1) together imply that
the defined relation is transitive.

Lemma 8.5. For D = AbGroup (D = Ring, resp.) the above-defined addition (and
multiplication, resp.) is well-defined and satisfies all the abelian group axioms (unital
ring axioms, resp.) turning O∼ into an abelian group (unital ring, resp.). The
canonical maps ιc∶F (c) → O∼, x ↦ [x, c] are group homomorphism (unital ring
homomorphism, resp.) and define a cone ι∶F ⇒O∼.

Proof. First, we prove that the operations on O∼ are well-defined. We denote the
operation as ∗ to prove the case ∗ ∶= + and ∗ ∶= ⋅ simultaneously. This works since
the definition of both operations is

[x, c] ∗ [y, d] ∶= [Ff(x) ∗ Fg(y), z].
for c, d ∈ C0, x ∈ F (c), y ∈ F (d) and z ∈ C0, f ∶ c → z, g∶d → z (given by (F1) in
Definition 8.1). Now, we take different representations [Fa1(x), c′] = [x, c] and
[Fa2(y), d′] = [y, d] given by a1∶ c→ c′, a2∶d→ d′ ∈ C and by (F1) we get z′ ∈ C0 and
f ′∶ c′ → z′, g′∶d′ → z′. Now, again by (F1) we find z′′ ∈ C0 and f ′′∶ z → z′′, g′′∶ z′ → z′′.
Hence, we have two parallel maps

c
g′′○f ′○a1ÐÐÐÐÐÐÐÐÐÐÐÐ→→

f ′′○f
z′′

and by (F2) we find n ∈ C0 and k1∶ z′′ → n such that k1 ○ g′′ ○ f ′ ○ a1 = k1 ○ f ′′ ○ f .
Now, we have two parallel maps

d
k1○f

′′
○gÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→→

k1○g′′○g′○a2

n

and hence by (F2) we find m ∈ C0 and k2∶n→m such that
k2 ○ k1 ○ f ′′ ○ g = k2 ○ k1 ○ g′′ ○ g′ ○ a2.

Now, with k ∶= k2 ○ k1 we get that
[x, c] ∗ [y, d] = [Ff(x) ∗ Fg(y), z]
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= [F (k ○ f ′′)(Ff(x) ∗ Fg(y)),m]

= [F (k ○ f ′′ ○ f)(x) ∗ F (k ○ f ′′ ○ g)(y),m]
= [F (k ○ g′′ ○ f ′ ○ a1)(x) ∗ F (k ○ g′′ ○ g′ ○ a2)(y),m]

= [F (k ○ g′′)(F (f ′ ○ a1)(x) ∗ F (g′ ○ a2)(y)),m]

= [F (f ′ ○ a1)(x) ∗ F (g′ ○ a2)(y), z′]
= [F (a1)(x), c′] ∗ [F (a2)(y), d′]

using that F (k ○f ′′) and F (k ○ g′′) preserve the ∗ structure and that F is functorial.
Hence, ∗ is well-defined.

Secondly, given a finite number of elements in O∼ using (F1) repeatedly, we can
choose representations that are all in the same F (c) for some suitable c ∈ C0. Hence,
O∼ inherits all the abelian group (unital ring, resp.) axioms from F (c). In the unital
ring case, the unit of O∼ is given by [1, c] for any c ∈ C0.

Finally, by the construction of the abelian group (unital ring, resp.) struc-
ture on O∼ the canonical maps ιc∶F (c) → O∼ are group homomorphisms (unital
ring homomorphism, resp.). Furthermore, they are natural in f ∶ c → d ∈ C as
(ιd ○ Ff)(x) = [Ff(x), d] = [x, c] = ιc(x) for all x ∈ F (c). □

In other words, in any case for D the constructed O∼ is an object in D and
ι∶F → O∼ is a cone. Now, we want to prove that they indeed form a colimit of the
diagram F , that is, that ι∶F → O∼ is universal.

Proposition 8.6. The object O∼ ∈ D and the cone ι∶F ⇒O∼ form a colimit of the
diagram F in the category D, that is, we have limÐ→F = O∼.

Proof. Consider an object S ∈ D and a cone under F with nadir S called α∶F ⇒ S.
Now, α is given by morphisms αc∶F (c) → S (that is, maps/group homomor-
phism/unital ring homomorphism, respectively, depending on D) that are natural
in c, that is, αc = αd ○ Ff for all f ∶ c→ d ∈ C. Now, we can define the map

α̃∶O∼ → S, [x, c] ↦ αc(x).
This map is well-defined by the naturality of the αc. Furthermore, if we have an
operation ∗ on objects of D (that is, in case D = AbGroup or D = Ring) then

α̃([x, c] ∗ [y, d]) = α̃([Ff(x) ∗ Fg(y), z]) = αz(Ff(x) ∗ Fg(y))

= αz(Ff(x)) ∗ αz(Fg(y)) = α̃([Ff(x), z]) ∗ α̃([Fg(y), z])

= α̃([x, c]) ∗ α̃([y, d])

for c, d ∈ C0, x ∈ F (c), y ∈ F (d) and z ∈ C0, f ∶ c → z, g∶d → z (given by (F1) in
Definition 8.1). Additionally, in case D = Ring we have

α̃([1, c]) = αc(1) = 1 ∈ S.
Hence (for all cases of D) α̃ is indeed a morphism in D.

Now, by construction α̃ is the unique morphism such that αc = α̃ ○ ιc for all
c ∈ C0. □

Finally, since the construction of the colimits in Set, AbGroup, and Ring are the
same, we get the following Corollary 8.7.

Corollary 8.7. The forgetful functors
U ∶Ring→ AbGroup,

U ∶AbGroup→ Set, and
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U ∶Ring→ Set

create and preserve filtered colimits.

Furthermore, the previous results can be extended to the category of topological
spaces and continuous maps Top. If we consider the case D = Top and define the
topology on O∼ to be the quotient topology of the disjoint union topology of the F (c),
then by definition, the maps ιc∶F (c) → O∼ are continuous and for any topological
space S a map α̃∶O∼ → S is continuous if and only if αc = α̃○ ιc is continuous. Hence,
they also form a colimit in the category of topological spaces Top.

Corollary 8.8. The topological space O∼ with the canonical topology and the cone
ι∶F ⇒O∼ form a colimit of the diagram F in the category Top.

The same is true for the category of R-modules and R-module homomorphisms
R -Mod for the fixed (commutative and unital) ring R. In the case that D = R -Mod
the abelian groups F (c) have an R-module structure and the morphisms Ff are
R-module homomorphisms. So we can define an R-module structure on O∼ by
r ⋅ [x, c] ∶= [rx, c], which is well-defined as Ff(rx) = rFf(x). Then by definition,
the group homomorphisms ιc∶F (c) → O∼ are R-module homomorphisms and for any
cone given by R-module homomorphisms αc∶F (c) → S the unique map α̃∶O∼ → S
is an R-module homomorphism. Hence, O∼ also forms a colimit in the category of
R-modules R -Mod.

Corollary 8.9. The abelian group O∼ with the canonical R-module structure and
the cone ι∶F ⇒O∼ form a colimit of the diagram F in the category R -Mod.

Finally, we collect some results that give some insight into the relation between
filtered colimits and inductive limits. For this, we introduce the notion of a final
functor, which is a functor we can precompose our diagram with, to change the
domain of the diagram but preserve the colimit.

Definition 8.10. For two categories I,J , a functor F ∶ I → J is called final if for
all j ∈ J the comma categories j ↓ F are non-empty and connected (that is, there is
a finite zigzag of arrows between any two objects).

Lemma 8.11. Given a final functor L∶ I → J and a functor F ∶ J → C such that
the colimit of FL exists, then the colimit of F exists and is canonically isomorphic
to the colimit of FL.

Proof. See [Mac71, IX 3) Theorem 1]. □

Lemma 8.12 ([AM15, Lemma 3.12]). If J is a countable, filtered category, then
there is a final functor (N,≤) → J.

Proof. See [AM15, Lemma 3.12]. □

Hence, given a diagram over a countable filtered category in a category where
inductive limits exist (for example, Top, R -Mod, Ring, AbGroup or Set), the colimit
of this diagram exists and is given by an inductive limit.
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9. Ore diagrams of bimodules and covariance rings

In this section, we want to introduce certain diagrams in Rings and construct a
strong covariance ring which is a bicategorical limit for these diagrams. The theory
of diagrams and their covariance rings we want to build on is developed in [Mey22a]
for the bicategory Ringsu of unital rings and bimodules. So, we need to restrict
ourselves to this full subbicategory Ringsu ⊂ Rings. In [Mey22a] diagrams over
arbitrary categories in Ringsu, and lax and strong covariance rings are introduced.
It is shown that assembling the data from such a diagram into one universal ring
gives the lax covariance ring. So, we can explicitly compute lax covariance rings.
For diagrams in the subbicategory Ringsfgp ⊂Ringsu of fgp bimodules, the strong
covariance ring is given by the Cohn localization of the lax covariance ring at
specific maps. Now, the Cohn localization of a ring is a rather abstract object
and not very explicit. To work with the strong covariance ring in Section 11, we
need a more explicit version of the strong covariance ring. In Section 11, we are
only interested in diagrams over Ore monoids, that is, small categories with only
one object and a certain cancellation condition on the morphisms. We call these
diagrams Ore diagrams. Then, for an Ore diagram F in Ringsfgp, we construct
the strong covariance ring explicitly. We do this by first constructing a related lax
diagram O in Ringsu and showing that the strong covariance ring of F is given by
the lax covariance ring of O, which we can compute explicitly.

9.1. Diagrams over monoids and covariance rings. We start by recalling the
notion of a monoid and a (lax) diagram over a monoid in the bicategory Ringsu.
Definition 9.1. A monoid is a small category with exactly one object. In other
words, it is a set P equipped with an associative binary operation and an identity
element 1.

From now on, we fix a monoid P for this subsection. Sometimes we might also
view this category P as a strict bicategory with only identity 2-arrows and still call
it P . Now, we define a (lax) diagram over a monoid P in Ringsu. Since we are only
interested in (lax) diagrams over monoids in Ringsu in this section, we sometimes
just write “(lax) diagrams” and mean “(lax) diagrams over monoids in Ringsu“.
Definition 9.2. A lax diagram in Ringsu over the monoid P is a strictly unital
morphism F∶P →Ringsu, that is, it is described by the data F = (P,Fp, µp,q) with

● a unital ring F1 ∈Rings0
u;

● for every p ∈ P an F1,F1-bimodule Fp (for p = 1 this is the trivial F1,F1-
bimodule F1);
● for every p, q ∈ P an F1,F1-bimodule homomorphism µp,q ∶Fp ⊗F1 Fq → Fpq;

such that µ1,q is the left uniter lFq , µp,1 is the right uniter rFp and the diagram

Fp ⊗F1 Fq ⊗F1 Ft Fp ⊗F1 Fqt

Fpq ⊗F1 Ft Fpqt

µp,q⊗id

id⊗µq,t

µp,qt

µpq,t

commutes for all p, q, t ∈ P .
If, additionally, the µp,q are isomorphisms (that is, if F is a homomorphism) we

call F a diagram in Ringsu.5

Definition 9.3. A lax diagram F is called fgp, if for all p ∈ P the F1,F1-bimodules
Fp are fgp, that is, if the right F1-modules Fp are finitely generated and projective.

5Sometimes we call a diagram a strong diagram to distinguish it from a lax diagram. Note that
not every lax diagram is a diagram, but every diagram is a lax diagram.
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Note that a (lax) diagram in the bicategory Ringsu is analogously defined to
a diagram in a category. Now, in category theory, we are interested in the limit
of a diagram F , which is a representing object of the cone functor, where a cone
over F with summit D is a natural transformation D⇒F . Similarly, a (lax) limit
in a bicategory is defined by considering (lax) cones D ⇒ F and some universal
object representing the (lax) cone morphism. Note that (lax) limits in bicategories
are only defined up to equivalence, which in the bicategory of bimodules Ringsu is
Morita equivalence.6 To get a more rigid definition of a bicategorical (lax) limit in
Ringsu, we introduce (lax) covariance rings. We define a (lax) covariance ring of a
lax diagram F to be the universal unital ring representing particularly manageable
cones, called (lax) covariant representations. The (lax) covariant ring is actually
defined up to unital ring isomorphisms, and by Proposition 9.12, it is also a (lax)
limit for the diagram F .

We start by defining a (lax) covariant representation of F on a unital ring D.
Definition 9.4. For a lax diagram in Ringsu given by F = (P,Fp, µp,q) and a unital
ring D ∈Rings0

u, a lax covariant representation of F on D is described by the data
ν = (ν̃1, νp) with

● a left F1-action on D turning it into an F1,D-bimodule (with the trivial
right D-action on D), that is, a ring homomorphism ν̃1∶F1 → End−,D(D);
● for every p ∈ P an F1,D-bimodule homomorphism νp∶Fp ⊗F1 D →D;

such that ν1 is the left uniter lF1 and the diagram

Fp ⊗F1 Fq ⊗F1 D Fp ⊗F1 D

Fpq ⊗F1 D D

µp,q⊗id

id⊗νq

νp

νpq

commutes.
If the νp are isomorphisms, we call ν a strong covariant representation of F on

D; or just covariant representation of F on D.
Now, we want to translate this definition into a different form, using the tensor-

hom adjunction given by Theorem 9.6. We denote the left F1-action on D multi-
plicatively.
Remark 9.5. It is easy to check, that for two unital rings F1,D and an F1,D-bimodule
V the abelian group End−,D(V ) has an F1,F1-bimodule structure, given by

(a ⋅ f)(v) ∶= af(v)
(f ⋅ a)(v) ∶= f(av)

for all f ∈ End−,D(V ) and a ∈ F1.
Theorem 9.6 (Tensor-hom adjunction). For two unital rings F1,D an F1,F1-
bimodule Fp and an F1,D-bimodule V the map

HomF1,D(Fp ⊗F1 V,V ) → HomF1,F1 (Fp,End−,D(V )), f ↦ f̃

given by f̃(x)(v) = f(x⊗ v), is an isomorphism of groups.
Proof. See [Mac63, Corollary 3.2 on p.145]. □

Now, in our definition of a (lax) covariant representation, we impose ν1 = lF1

or, in other words, ν1 and ν̃1 are adjoint to one another. Thus, we do not need to
include ν̃1 in the data of a (lax) covariant representation ν, and from now on, we
just write ν = (νp).

6For more details on bicategorical (lax) limits in the bicategory Ringsu see [Mey22a].
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In general, using the tensor-hom adjunction, the F1,D-bimodule homomorphisms
νp∶Fp⊗F1D →D correspond exactly to their adjoint F1,F1-bimodule homomorphisms
ν̃p∶Fp → End−,D(D), where the F1,F1-bimodule structure on End−,D(D) is given
by Remark 9.5.

Furthermore, we have an isomorphism End−,F1(D) ≅D of unital rings and F1,F1-
bimodules, where the F1,F1-bimodule structure on D is given by taking ν̃1 and
multiplying from the left or right, respectively. Thus, the F1,D-bimodule homomor-
phisms νp∶Fp ⊗F1 D → D correspond exactly to F1,F1-bimodule homomorphisms
νp∶Fp →D for all p ∈ P , where ν1∶Fp →D is a ring homomorphism that induces the
F1,F1-bimodule structure on D.

Proposition 9.7. A lax covariant representation ν = (νp) of a lax diagram F on a
unital ring D is given exactly by maps νp∶Fp →D for all p ∈ P such that

● ν1 is a ring homomorphism;
● for all p ∈ P the maps νp are group homomorphisms;
● for all x ∈ Fp, y ∈ Fq we have νpq(µp,q(x⊗ y)) = νp(x)νp(y).

Proof. The discussion above explains how we get the maps νp and their respective
homomorphism properties. What is left to translate is the commutativity of the
diagram and that the maps νp are F1,F1-bimodule homomorphism. It is easy to
check that the commutativity of the diagram means exactly that

νpq(µp,q(x⊗ y)) = νp(x)νp(y)

for all x ∈ Fp, y ∈ Fq. By construction this already implies that the maps νp are
F1,F1-bimodule homomorphisms (where the F1,F1-bimodule structure on D is the
obvious structure induced by ν1). □

Remark 9.8. Now, using this notation, a lax covariant representation ν = (νp) is
strong if and only if the induced maps

νp∶Fp ⊗F1 D →D, x⊗ d↦ νp(x)d,

are bijective.

Thus, the three maps
● νp∶Fp ⊗F1 D →D;
● ν̃p∶Fp → End−,D(D);
● νp∶Fp →D;

all contain the same data and hence describe the same object. We try to distinguish
between the three different versions by using the notation νp, ν̃p and νp.

Now, we want to define the covariance ring as the representing object of a fitting
functor from the category of unital rings Ring to the category of sets Set.

Definition 9.9. For a lax diagram F and a unital ring D, we define the set of all
covariant representations CovRep(D,F) of F on D and turn them into a functor

CovRep(−,F)∶Ring→ Set,

D ↦ CovRep(D,F),
f ∶D →D′ ↦ f∗∶CovRep(D,F) → CovRep(D′,F),

where f∗ maps νp to f ○ νp for all p ∈ P .

Definition 9.10. For a lax diagram F , we call a unital ring Ω ∈ Ring that represents
the functor CovRep(−,F) a strong covariance ring of F ; or just covariance ring of
F .
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Note that covariance rings are representing objects in the category of unital rings
and hence unique up to unital isomorphisms (by the Yoneda Lemma, see [Mac71,
p. 61]).
Remark 9.11. Similarly, one can define the lax covariance ring of F as the repre-
senting object of the functor sending a ring D to all lax covariant representations of
F on D. The lax covariance ring is given by the following construction:

Given a lax diagram F = (P,Fp, µp,q) we can take the direct sum of all the
F1,F1-bimodules

F ∶= ⊕
p∈P

Fp

to get an abelian group. For p, q ∈ P and a ∈ Fp, b ∈ Fq we define the multiplication
a ⋅ b ∶= µp,q(a⊗ b) ∈ Fpq

and extend it linearly to F , that is, for fp ∈ Fp, eq ∈ Fq (and almost all of the fp

and eq are equal to zero, respectively)

∑
p∈P

fp ⋅ ∑
q∈P

eq ∶= ∑
p,q∈P

fp ⋅ eq ∈ F.

Now, because of the first conditions in Definition 9.2 this multiplication has a unit
1 ∈ F1 ⊂ F and because of the commutative diagram it is associative. Since the µp,q

are F1,F1-bimodule maps, the defined multiplication is distributive with respect
to the abelian group structure on F . Hence, F is a (not necessarily commutative)
unital P -graded ring.

This defines the lax covariance ring since using Proposition 9.7 a lax covariant
representation is given by abelian group homomorphisms νp∶Fp →D, which we can
assemble into the group homomorphism

ν∶ ⊕
p∈P

Fp →D.

The extra conditions on the (νp)p∈P translate exactly into ν being a unital ring
homomorphism. Thus, one can check that we indeed get a natural isomorphism

CovReplax(−,F) ≅ Ring (⊕
p∈P

Fp,−)

and hence the covariance ring is given by ⊕p∈P Fp. For a detailed proof, see [Mey22a,
Proposition 4.6.7].

Now, both constructions actually give us a (lax) bicategorical limit.
Proposition 9.12 (compare [Mey22a, Proposition 4.7.15]). Let F∶P →Ringsu be
a diagram. A lax covariance ring of F is also a lax limit of this diagram, and a
covariance ring of F is also a limit.
Proof. See [Mey22a, Proposition 4.7.15]. □

Hence, to find a (lax) limit for a (lax) diagram F = (P,Fp, µp,q), it is sufficient
to find a (lax) covariance ring. The construction of the lax covariance ring is
immediate. Constructing the strong covariance ring of a (lax) diagram can be more
difficult. First, we need to get a better understanding of what it means for a lax
covariant representation (νp∶Fp →D)p∈P of F on some unital ring D to be strong.
Denote by S ∶= ⊕p∈P Fp the lax covariance ring of F . We define the right S-module
homomorphisms

Ψp∶Fp ⊗F1 S → S, xp ⊗ (xpi)ni=1 ↦ (µp,pi(xp ⊗ xpi))
n

i=1

for each p ∈ P . Now, according to the following Lemma 9.13 the lax covariant
representation (νp)p∈P is strong if and only if the maps Ψp ⊗S idD are invertible for
all p ∈ P .
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Lemma 9.13. For each p ∈ P , the map νp is invertible if and only if Ψp ⊗S idD is
invertible.

Proof. The diagram

Fp ⊗F1 D D

(Fp ⊗F1 S) ⊗S D S ⊗S D

νp

Ψp⊗id

≅ ≅

commutes, since the multiplication of S on D is given by the unital ring homomor-
phism ν∶S →D.

Thus, for each p ∈ P the map νp is invertible if and only if the map Ψp ⊗S idD is
invertible. □

In [Mey22a] it is shown that for fgp diagrams7 the strong covariance ring exists
and is given by the Cohn localization of the lax covariance ring at the maps Ψp

(see [Mey22a, Proposition 4.6.13]). Now, the Cohn localization of a ring is a rather
abstract object and not very explicit. In Section 11 we need an explicit version of a
covariance ring for fgp diagrams over well-behaved monoids, namely Ore monoids.
So in the next subsection, we explicitly construct a covariance ring for fgp Ore
diagrams.

9.2. Covariance ring of fgp Ore diagrams. In this subsection, we want to
explicitly construct a covariance ring OF for an fgp Ore diagram F , that is, a
diagram over an Ore monoid in the subbicategory Ringsfgp ⊂Ringsu of unital rings
and fgp bimodules. Note that this covariance ring is a Cohn localization of the lax
covariance ring, so our construction might be useful as an explicit construction of a
Cohn localization for certain rings. We start by introducing what it means for a
monoid P to be Ore.

Definition 9.14 (compare [AM15, Definition 3.7]). For a monoid P , the two
properties

(O1) For all x1, x2 ∈ P , there are y1, y2 ∈ P such that x1y1 = x2y2.
(O2) For all x, y1, y2 ∈ P such that xy1 = xy2, there is a z ∈ P such that y1z = y2z.

are called the Ore conditions. We call P an Ore monoid, if it has these two properties.

Note that the Ore conditions are some sort of cancellation conditions on the
monoid.

Example 9.15. Any group is an Ore monoid and any commutative monoid is an Ore
monoid. For more examples of Ore monoids see [AM15, Examples 3.8–3.11].

We impose these conditions because, first, there is a convenient construction of a
group completion for an Ore monoid (see Definition 9.16), which we are going to
use. Secondly, these conditions are equivalent to the coslice category CP ∶= ∗ ↓ P op

(see Definition 9.17) being filtered, which we need to get well-behaved colimits of
diagrams over these categories (in Definition 9.23 and Definition 9.29).

So from now on, we fix an Ore monoid P and an fgp Ore diagram F = (P,Fp, µp,q),
that is, a diagram F∶P →Ringsu over an Ore monoid P such that the bimodules
Fp are fgp.

7In [Mey22a] the notion of a diagram is kept more general. A diagram is defined to be a
morphism over a category with finitely many objects.
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9.2.1. The strategy. Our construction can be separated into the following steps:
Step 1: We construct a fitting group G (namely the group completion of P , see

Definition 9.16) and an induced lax diagram O over G in Ringsu given by Og for
all g ∈ G (see Corollary 9.37).

Step 2: We prove that the covariant representations functor CovRep(−,F) of F
and the lax covariant representations functor CovReplax(−,O) of O are naturally
isomorphic (Theorem 9.48).

Step 3: We conclude by the Yoneda Lemma ([Mac71, p. 61]) that since the
functors are naturally isomorphic their representing objects are isomorphic as well,
and thus the covariance ring OF of F is given by the lax covariance ring of O, which
by Remark 9.11 is explicitly given by

OF ≅ ⊕
g∈G

Og.

Step 1: Constructing a related lax diagram over the group completion. First, we
need to define the group completion G of the Ore monoid P .

Definition 9.16. For an Ore monoid P define the group completion G of P as the
set of equivalence classes

G ∶= P × P /∼ ,
where we define (p1, p2) ∼ (q1, q2) if there are t1, t2 ∈ P with p1t1 = q1t2 and
p2t1 = q2t2. We denote an element of G represented by (p1, p2) as p1p

−1
2 ∈ G. The

group operation in G is given by

p1p
−1
2 ⋅ q1q

−1
2 ∶= (p1t1)(q2t2)−1

where t1, t2 ∈ P are such that p2t1 = q1t2 (given by (O1)) and the neutral element of
the group is e ∶= 11−1 ∈ G the equivalence class of (1,1).

For more details on this group construction and proof that this is indeed a
group, see [AM15, after Definition 3.6]. The canonical monoid homomorphism
P → G, p ↦ p1−1 is not necessarily injective, but we still sometimes write “p ∈ G”
and mean the element p1−1 ∈ G for p ∈ P .

Next, we want to construct a lax diagram O = (G,Og, ωg,h), that is, a strictly
unital morphism O∶G→Ringsu.

We start by constructing a unital ring Oe as the filtered colimit of a functor we
need to define. Afterward, we analogously define the abelian groups Og for any
g ∈ G. To justify our notation, we prove that for g ∶= e, we have Og ≅ Oe as abelian
groups. Finally, we show that they can be assembled into a strictly unital morphism
O∶G→Ringsu, that is, a lax diagram over G in Ringsu.

First, we construct a functor to Ring whose colimit we define as Oe. We introduce
the domain category.

Definition 9.17. For a monoid P define the associated coslice category CP ∶= ∗ ↓ P op

with
● P as the set of objects;
● P × P as the set of arrows, where (p, q)∶p→ pq for p, q ∈ P ; and
● composition is defined as

(pq, t) ⋅ (p, q) ∶= (p, qt)
for p, q, t ∈ P .

Note that the unit arrows are given by (p,1) for all p ∈ P .

The category CP is closely related to the monoid P . If we unpack the definition
of the category CP being filtered, it is easy to check that the conditions (F1) and
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(F2) directly translate into the Ore conditions (O1) and (O2). Since we assumed P
to be Ore, we get that CP is filtered.

Now, for morphisms (p, q) ∈ CP , we want to define unital ring homomorphisms
φp,q.

Definition 9.18. For p, q ∈ P define the maps
φp,q ∶End−,F1(Fp) → End−,F1(Fpq), T ↦ µp,q ○ (T ⊗F1 idFq) ○ µ−1

p,q.

Remark 9.19. It is easy to check, that for a unital ring F1 and a right F1-module
M the abelian group End−,F1(M) is a unital ring, where multiplication is given by
composition.

Applying the Remark 9.19 to M = Fp and M = Fpq we see that both the domain
and the codomain of φp,q are unital rings, and hence we can formulate the following
Lemma 9.20.

Lemma 9.20. The maps φp,q defined above are unital ring homomorphisms.

Proof. For φp,q the additivity is immediate from the additivity of µp,q, µ−1
p,q and

− ⊗ id. For the multiplicativity we have
φp,q(S ○ T ) = µp,q ○ (S ○ T ⊗F1 idFq) ○ µ−1

p,q

= µp,q ○ (S ⊗F1 idFq) ○ (T ⊗F1 idFq) ○ µ−1
p,q

= µp,q ○ (S ⊗F1 idFq) ○ µ−1
p,q ○ µp,q ○ (T ⊗F1 idFq) ○ µ−1

p,q

= φp,q(S) ○ φp,q(T )
for all S,T ∈ EndF1,F1(Fp). Finally, we have φp,q(id) = id and hence φp,q is indeed
a unital ring homomorphism. □

Next, we need that the φp,q respect the concatenation structure on CP .

Lemma 9.21. For all p, q, t ∈ P we have
(1) φp,qt = φpq,t ○ φp,q; and
(2) φp,1 = idEnd−,F1(Fp)

.

Proof. The first statement is equivalent to that the diagram

Fpq ⊗R Ft Fp ⊗R Fq ⊗R Ft Fp ⊗R Fq ⊗R Ft Fpq ⊗R Ft

Fpqt Fp ⊗R Fqt Fp ⊗R Fqt Fpqt

µpq,t≅ id⊗Rµq,t≅

µp,q⊗Rid

≅

µp,q⊗Rid

≅

id⊗Rµq,t≅

T⊗id⊗id

µpq,t≅

µp,qt

≅

µp,qt

≅

T⊗id

commutes for all T ∈ End−,F1(Fp). Now, this diagram commutes, since the left and
right square commute by Definition 9.2 and the middle square commutes because
tensor is a bifunctor.

The second statement is equivalent to the naturality of µp,1 = rFp , the right uniter,
in T . □

Now, by Remark 9.19 the sets End−,F1(Fp) are unital rings and by Lemma 9.20
the maps φp,q are unital ring homomorphisms. Furthermore, by Lemma 9.21 the
maps φp,q behave in a functorial way. Hence, we can define the following functor.

Definition 9.22. We define a functor from the filtered category CP to the category
Ring of unital rings and unital ring homomorphisms via

EF ∶ CP → Ring,

p↦ End−,F1(Fp),
(p, q) ↦ φp,q.
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Next, we want to define Oe ∶= colimEF to be the colimit of this functor. Since P
is Ore, the domain category CP is filtered and hence the colimit of EF is a filtered
colimit Oe ∶= limÐ→EF in Ring. Thus, we can use our results from Section 8. In the
case that P is countable (or equivalently CP is countable) Lemma 8.12 gives us the
existence of a final functor and Lemma 8.11 gives us that the colimit of EF is given
as the inductive limit of the composition with the final functor. In the general case,
we need to refer to Definition 8.3 and Proposition 8.6.

Let us recall the explicit construction of the unital colimit ring Oe and universal
cone ι∶EF ⇒Oe for this filtered diagram EF .

Definition 9.23. Define the set

O⊔,e ∶= ⊔
p∈P

End−,F1(Fp)

and the equivalence relation generated by

(x, p) ∼ (φp,q(x), pq)
for all p, q ∈ P and x ∈ End−,F1(Fp). Let Oe be the set of equivalence classes with
elements denoted as [x, p] ∈ Oe. Define a ring structure on Oe via

[x, p] + [y, q] ∶= [φp,t(x) + φq,s(y), pt],
[x, p] ⋅ [y, q] ∶= [φp,t(x) ○ φq,s(y), pt]

for p, q ∈ P , x ∈ End−,F1(Fp), y ∈ End−,F1(Fq) and t, s ∈ P with pt = qs (given by
(O1)). Furthermore, we have canonical unital ring homomorphisms

ιp∶End−,F1(Fp) → Oe, x↦ [x, p],
that assemble into a cone ι∶EF ⇒Oe.

Now, applying Proposition 8.6 to the functor EF gives us the following Corol-
lary 9.24.

Corollary 9.24. The unital ring Oe and the cone ι∶EF ⇒Oe form a colimit for
the functor EF .

In other words, for any unital ring S ∈ Ring and cone α∶EF ⇒ S, there is a
unique unital ring homomorphism α̃∶Oe → S such that αp = α̃ ○ ιp for all p ∈ P .

Next, we want to generalize the construction of the ring Oe to abelian groups Og

for all g ∈ G. To justify our notation, we want that Og ≅ Oe as an abelian group if
g ∶= e ∈ G is the neutral element, which is not obvious by construction but proven in
Lemma 9.32.

First, we want to define a generalization Cg
P of the category CP . We do not quite

get Ce
P = CP as one might wish, but we get Lemma 9.31, which is sufficient so that

Og ≅ Oe.

Definition 9.25 ([AM15, Definition 3.14]). Fix an element g ∈ G and define the
set of representatives

Rg ∶= {(p1, p2) ∈ P × P ∣ p1p
−1
2 = g ∈ G}.

Define the associated category Cg
P with

● Rg as the set of objects;
● Rg × P as the set of arrows, where (p1, p2, q)∶ (p1, p2) → (p1q, p2q); and
● composition is defined as

(p1q, p2q, t) ⋅ (p1, p2, q) = (p1, p2, qt).
for p1, p2, q, t ∈ P .
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It is easy to check that Cg
P are indeed categories for all g ∈ G. Furthermore, if P

is an Ore monoid, then the categories Cg
P are filtered by [AM15, Lemma 3.15].

For morphisms (p1, p2, q) ∈ Cg
P , we want to define abelian group homomorphisms

φp1,p2,q.
Definition 9.26. For (p1, p2) ∈ Rg and q ∈ P define the maps
φp1,p2,q ∶Hom−,F1(Fp2 , Fp1) → Hom−,F1(Fp2q, Fp1q), T ↦ µp1,q○(T⊗F1 idFq)○µ−1

p2,q.

Lemma 9.27. For (p1, p2) ∈ Rg the maps φp1,p2,q are group homomorphisms.
Furthermore, we have φp1q,p2q,t ○φp1,p2,q = φp1,p2,qt and φp1,p2,1 = idHom−,F1(Fp2 ,Fp1)

.
Proof. The proof is analogous to the proofs of Lemma 9.20 and Lemma 9.21. □

Hence, the constructions combine into a functor HF,g analogously to EF .
Definition 9.28. For g ∈ G we define a functor from the filtered category Cg

P to
the category AbGroup of abelian groups and group homomorphisms via

HF,g ∶ Cg
P → AbGroup,

(p1, p2) ↦ Hom−,F1(Fp2 , Fp1),
(p1, p2, q) ↦ φp1,p2,q.

As before, we can explicitly construct a colimit for the functor HF,g by applying
our results from Section 8 to this explicit case. Let us recall how the colimit group
Og and universal cone ιg ∶HF,g ⇒Og are defined.
Definition 9.29. Define the set

O⊔,g ∶= ⊔
(p1,p2)∈Rg

Hom−,F1(Fp2 , Fp1)

and the equivalence relation generated by
(x, (p1, p2)) ∼ (φp1,p2,q(x), (p1q, p2q))

for all (p1, p2) ∈ Rg, q ∈ P and x ∈ Hom−,F1(Fp2 , Fp1). Let Og be the set of
equivalence classes with elements denoted as [x, (p1, p2)] ∈ Og. Define an abelian
group structure on Og via

[x, (p1, p2)] + [y, (q1, q2)] ∶= [φp1,p2,t(x) + φq1,q2,s(y), (p1t, p2t)]
for (p1, p2), (q1, q2) ∈ Rg, x ∈ Hom−,F1(Fp2 , Fp1), y ∈ Hom−,F1(Fq2 , Fq1) and t, s ∈ P
such that p1t = q1s and p2t = q2s (given by p1p

−1
2 = g = q1q

−1
2 ).

Furthermore, we have canonical group homomorphisms
ιp1,p2 ∶Hom−,F1(Fp2 , Fp1) → Og

for all (p1, p2) ∈ Rg that assemble into a cone ιg ∶HF,g ⇒Og.
Now, applying Proposition 8.6 to the functor HF,g gives us the following Corol-

lary 9.30.
Corollary 9.30. The abelian group Og and the cone ιg ∶HF,g ⇒Og form a colimit
for the functor HF,g.

Finally, we want to argue why, if g ∶= e ∈ G is the neutral element, we get Og ≅ Oe

as abelian groups.
Lemma 9.31. The functor

d∶ CP → Ce
P ,

p↦ (p, p),
(p, q) ↦ (p, p, q),

is final.
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Proof. It is easy to check that this is indeed a functor. For finality, we note first
that for (p1, p2) ∈ Re the comma category (p1, p2) ↓ d has as objects t ∈ P such that
p1t = p2t and arrows t ↝ s are given by q ∈ P such that tq = s. Now, (p1, p2) ∈ Re

is equivalent to the existence of a t ∈ P such that p1t = p2t. Hence, t is an object
in the comma category, that is, it is non-empty. To show it is connected we take
t, s ∈ (p1, p2) ↓ d and by (O1) we find x1, x2 ∈ P such that tx1 = sx2. Hence, we get
the zigzag of arrows

t↝ tx1 = sx2 ↝s

in (p1, p2) ↓ d connecting t and s. □

Lemma 9.32. Let g ∶= e ∈ G be the neutral element in G. Then the abelian group
Og is isomorphic to Oe (as abelian groups).

Proof. Consider the forgetful functor U ∶Ring→ AbGroup and g ∶= e ∈ G, the neutral
element. By Corollary 9.24 and Corollary 8.7 the colimit of

U ○EF ∶ CP → Ring→ AbGroup

is given by U(Oe), that is, by Oe viewed as an abelian group. Furthermore, the
diagram

Ring

CP C1
P AbGroup

U

d

EF

HF,g

commutes and thus U(Oe) is the colimit of HF,g ○ d. By Lemma 9.31, the functor
d is final, and hence by Lemma 8.11 the colimit of HF,g is canonically isomorphic
to U(Oe). Finally, by Corollary 9.30 the colimit of HF,g is Og, hence we have a
canonical isomorphism Og ≅ U(Oe) of abelian groups. □

Next, we construct an Oe,Oe-bimodule structure on the Og and Oe,Oe-bimodule
homomorphisms ωg,h∶Og ⊗Oe Oh → Ogh for all g, h ∈ G.

Definition 9.33. Consider g, h ∈ G represented by g = p1p
−1
2 , h = q1q

−1
2 and t1, t2 ∈ P

such that p2t1 = q1t2, and hence gh = (p1t1)(q2t2)−1. We define the map

wg,h∶Og ×Oh → Ogh,

([x, (p1, p2)], [y, (q1, q2)]) ↦ [φp1,p2,t1(x) ○ φq1,q2,t2(y), (p1t1, q2t2)].

Lemma 9.34. The map wg,h is well-defined.

Proof. For the definition we need to choose representatives (p1, p2) ∈ Rg, (q1, q2) ∈ Rh

for g, h ∈ G and t1, t2 ∈ P such that p2t1 = q1t2. First, we check the independence
of the choice of t1, t2. So take t1, t2 as above and let s1, s2 ∈ P with p2s1 = q1s2.
Now, by (O1) we find x1, x2 ∈ P with t1x1 = s1x2. Hence, we get q1t2x1 = p2t1x1 =
p2s1x2 = q1s2x2 and by (O2) we find n ∈ P such that t2x1n = s2x2n. Hence, with
b1 ∶= x1n and b2 ∶= x2n, we get t1b1 = s1b2 and t2b1 = s2b2. What is left to prove is
that

φp1t1,q2t2,b1(φp1,p2,t1(x) ○ φq1,q2,t2(y)) = φp1s1,q2s2,b2(φp1,p2,s1(x) ○ φq1,q2,s2(y)),

which is equivalent to that the diagram
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Fq2t2b1

Fq2t2 ⊗F1 Fb1 Fq2s2 ⊗F1 Fb2

Fq2 ⊗F1 Ft2 ⊗F1 Fb1 Fq2 ⊗F1 Ft2b1 Fq2 ⊗F1 Fs2 ⊗F1 Fb2

Fq1 ⊗F1 Ft2 ⊗F1 Fb1 Fq1 ⊗F1 Ft2b1 Fq1 ⊗F1 Fs2 ⊗F1 Fb2

Fq1t2 ⊗F1 Fb1 Fq1t2b1 Fq1s2 ⊗F1 Fb2

Fp2 ⊗F1 Ft1 ⊗F1 Fb1 Fp2 ⊗F1 Ft1b1 Fp2 ⊗F1 Fs1 ⊗F1 Fb2

Fp1 ⊗F1 Ft1 ⊗F1 Fb1 Fp1 ⊗F1 Ft1b1 Fp1 ⊗F1 Fs1 ⊗F1 Fb2

Fp1t1 ⊗F1 Fb1 Fp1s1 ⊗F1 Fb2

Fp1t1b1

µq2t2,b1

≅

µq2,t2⊗id ≅ µq2,s2⊗id≅

id⊗µt2,b1

≅

µq2s2,b2

≅

µq2,t2b1≅

id⊗µs2,b2

≅

y⊗id⊗id y⊗id⊗idy⊗id

id⊗µs2,b2

≅

id⊗µt2,b1

≅

µq1,t2⊗id ≅ µq1,s2⊗id≅

µp2,t1⊗id ≅ µp2,s1⊗id≅

id⊗µt1,b1

≅

id⊗µs1,b2

≅

µq1,t2b1≅

µq1t2,b1

≅

µp2,t1b1≅

µq1s2,b2

≅

id⊗µt1,b1

≅

id⊗µs1,b2

≅

x⊗idx⊗id⊗id x⊗id⊗id

µp1,t1⊗id ≅ µp1,s1⊗id≅

µp1t1,b1

≅

µp1s1,b2

≅

µp1,t1b1≅

commutes. The commutativity of the small squares is either obvious or by Defini-
tion 9.2. Thus, the map is indeed independent of the choices of t1, t2.

Next, we want to check that the map is independent of the choices of the
representatives of [x, (p1, p2)] and [y, (q1, q2)]. Take [x, (p1, p2)] = [x′, (p′1, p′2)] and
[y, (q1, q2)] = [y′, (q′1, q′2)] then there are n,n′ ∈ P such that (p1n, p2n) = (p′1n′, p′2n′)
and φp1,p2,n(x) = φp′1,p′2,n′(x′). Similarly, by definition we find m,m′ ∈ P such that
(q1m,q2m) = (q′1m′, q′2m′) and φq1,q2,m(y) = φq′1,q′2,m′(y′). Next, we take t1, t2 ∈ P
such that p2nt1 = q1mt2. Hence, we also have p′2n′t1 = q′1m′t2. So we get

φp1,p2,nt1(x) ○ φq1,q2,mt2(y) = φp1n,p2n,t1(φp1,p2,n(x)) ○ φq1m,q2m,t2(φq1,q2,m(y))
= φp′1n′,p′2n′,t1(φp′1,p′2,n′(x′)) ○ φq′1m′,q′2m′,t2(φq′1,q′2,m′(y′))
= φp′1,p′2,n′t1(x′) ○ φq′1,q′2,m′t2(y′)

using Lemma 9.27 and hence the map is well-defined. □

Now, in particular, we get maps we,g ∶Oe ×Og → Og and wg,e∶Og ×Oe → Og for
all g ∈ G and it is easy to check that this defines an Oe,Oe-bimodule structure on
Og for every g ∈ G (it basically boils down to checking that concatenation of maps
is well-behaved).

Lemma 9.35. The map wg,h is Oe-balanced for all g, h ∈ G, and hence induces a
unique Oe,Oe-bimodule homomorphism ωg,h∶Og ⊗Oe Oh → Ogh. Furthermore, ωe,g
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and ωg,e are given by left and right multiplication and the diagram

Og ⊗Oe
Oh ⊗Oe Ok Ogh ⊗Oe

Ok

Og ⊗Oe Ohk Oghk

id⊗ωh,k

ωg,h⊗id

ωgh,k

ωg,hk

commutes for all g, h, k ∈ G.

Proof. For the additivity in both arguments, we note that since the map is indepen-
dent of the choice of representative, we can, without loss of generality, assume that
the two summands are in the same Hom−,F1(Fp2 , Fp1). Then as φp1,p2,t is additive
by Lemma 9.27 and composition distributes over addition, the additivity of wg,h

follows for each argument.
For g, h, k ∈ G and x̃ ∈ Og, ỹ ∈ Oh and z̃ ∈ Ok we can choose representatives such

that these elements are given by x̃ = [x, (p1, p2)], ỹ = [y, (p2, p3)] and z̃ = [z, (p3, p4)].
Then the equality
(9.36) wgh,k(wg,h(x̃, ỹ), z̃) = wg,hk(x̃,wh,k(ỹ, z̃))
is immediate from the associativity of composition. Now, (9.36) with h ∶= e already
implies that wg,h isOe-balanced and compatible with the left and right multiplication
by Oe. Hence, we get the unique induced Oe,Oe-bimodule homomorphism ωg,h. We
have defined the left and right multiplication to be exactly ωe,g and ωg,e. Finally,
the commutativity of the diagram follows from (9.36). □

Finally, we can assemble all the above results. Since the group G is also a monoid
we can view it as a category with one object and G as its set of morphisms. In the
following, we view this category G as a strict bicategory with only identity 2-arrows.

Corollary 9.37. The data
O∶G→Ringsu,

g ↦ Og

with the Oe,Oe-bimodule homomorphisms ωg,h∶Og ⊗Oe Oh → Ogh for all g, h ∈ G
assembles into a strictly unital morphism of bicategories, that is, a lax diagram in
Ringsu over the group G.

Proof. By Definition 9.23 the object Oe is indeed a unital ring and by the discussion
above Lemma 9.35 the Og are indeed Oe,Oe-bimodules. Furthermore, because of
Lemma 9.35 the ωg,h are indeed Oe,Oe-bimodule homomorphisms and the necessary
diagrams commute. □

As discussed in Remark 9.11, we can define a G-graded ring OF ∶= ⊕g∈GOg

induced by the diagram O that is the lax covariance ring of O.

Definition 9.38. Define OF to be the G-graded ring
OF ∶= ⊕

g∈G

Og = ⊕
g∈G

limÐ→
(p1,p2)∈Rg

Hom−,F1(Fp2 , Fp1),

where multiplication is defined as
a ⋅ b ∶= ωg,h(a⊗ b) ∈ Ogh

for g, h ∈ G, a ∈ Og, b ∈ Oh and extended distributively to OF .

Since the maps ωg,h∶Og ⊗Oe Oh → Ogh are not necessarily invertible, our lax
diagram O is not a strong diagram. But the following technical lemma implies
Proposition 9.40 saying that some ωg,h actually are invertible. Note that the
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End−,F1(Fp1)-module structure on the homomorphism sets is given by pre- and
postcomposition.

Lemma 9.39. For p ∈ P , (p1, p2) ∈ Rg, the concatenation map
Ip,p1,p2 ∶Hom−,F1(Fp1 , Fpp1) ⊗End−,F1(Fp1)

Hom−,F1(Fp2 , Fp1) → Hom−,F1(Fp2 , Fpp1),
f1 ⊗ f2 ↦ f1 ○ f2,

is an isomorphism of abelian groups, with
φpp1,p2,t(Ip,p1,p2(f1 ⊗ f2)) = Ip,p1t,p2t(φpp1,p1,t(f1) ⊗ φp1,p2,t(f2))

for all f1 ∈ Hom−,F1(Fp1 , Fpp1), f2 ∈ Hom−,F1(Fp2 , Fp1) and t ∈ P .

Proof. Using that µp,q ∶Fp ⊗F1 Fq → Fpq is an isomorphism (according to Defini-
tion 9.2), Theorem 5.10 and a canonical isomorphism, we get a chain of isomorphisms
of abelian groups

Hom−,F1(Fp1 , Fpp1) ⊗End−,F1(Fp1)
Hom−,F1(Fp2 , Fp1), µp,p1(x⊗ x1)ϕ1 ⊗ y1ϕ2

(Fpp1 ⊗F1 F
∗

p1
) ⊗Fp1⊗F1 F ∗p1

(Fp1 ⊗F1 F
∗

p2
), (µp,p1(x⊗ x1) ⊗ ϕ1) ⊗ (y1 ⊗ ϕ2)

(Fp ⊗F1 (Fp1 ⊗F1 F
∗

p1
)) ⊗Fp1⊗F1 F ∗p1

(Fp1 ⊗F1 F
∗

p2
), (x⊗ (x1 ⊗ ϕ1)) ⊗ (y1 ⊗ ϕ2)

Fp ⊗F1 Fp1 ⊗F1 F
∗

p2
, x⊗ x1ϕ1(y1) ⊗ ϕ2

Fpp1 ⊗F1 F
∗

p2
, µp,p1(x⊗ x1ϕ1(y1)) ⊗ ϕ2

Hom−,F1(Fp2 , Fpp1), µp,p1(x⊗ x1ϕ1(y1))ϕ2

≅

≅

≅

≅

≅

with x ∈ Fp, x1 ∈ Fp1 , ϕ1 ∈ F ∗p1
, y1 ∈ Fp1 and ϕ2 ∈ F ∗p2

. For f1 = µp,p1(x ⊗ x1)ϕ1,
f2 = y1ϕ2 the chain of isomorphisms sends f1 ⊗ f2 to

µp,p1(x⊗ x1ϕ1(y1))ϕ2 = µp,p1(x⊗ x1)ϕ1(y1ϕ2) = f1 ○ f2.

Now, arbitrary f1, f2 are given by finite sums of these and thus are also mapped to
their concatenation. Hence, the chain of isomorphisms is exactly the map Ip,p1,p2 as
defined above. Furthermore, we have
φpp1,p2,t(Ip,p1,p2(f1⊗f2)) = φpp1,p2,t(f1 ○ f2)

= µpp1,t ○ ((f1 ○ f2) ⊗F1 idFt
) ○ µ−1

p2,t

= µpp1,t ○ (f1 ⊗F1 idFt) ○ µ−1
p1,t ○ µp1,t ○ (f2 ⊗F1 idFt) ○ µ−1

p2,t

= φpp1,p1,t(f1) ○ φp1,p2,t(f2)
= Ip,p1t,p2t(φpp1,p1,t(f1) ⊗ φp1,p2,t(f2))

for f1 ∈ Hom−,F1(Fp1 , Fpp1), f2 ∈ Hom−,F1(Fp2 , Fp1) and t ∈ P . □

Proposition 9.40. For all p ∈ P (with the notation p ∶= p1−1 ∈ G) and g ∈ G the
Oe,Oe-bimodule homomorphisms ωp,g ∶Op ⊗Oe Og → Opg are isomorphisms.

Proof. The proof is basically just that the isomorphism Ip,p1,p2 from Lemma 9.39
descends to the filtered colimits. We first prove surjectivity and then injectivity by
reducing it to the fact that Ip,p1,p2 is surjective and injective.

Take g = g1g
−1
2 , then p = (pg1)g−1

1 and pg = (pg1)g−1
2 . Take y ∈ Opg. Then

there is (p1, p2) ∈ Rpg and f ∈ Hom−,F1(Fp2 , Fp1) such that y = [f, (p1, p2)]. Since
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p1p
−1
2 = pg = (pg1)g−1

2 , there are t1, t2 ∈ P such that p1t1 = pg1t2 and p2t1 = g2t2.
Thus, after rechoosing the representative of y, we can, without loss of generality,
assume that y = [f, (pp1, p2)] for g = p1p

−1
2 and f ∈ Hom−,F1(Fp2 , Fpp1). Since

Ip,p1,p2 is surjective (see Lemma 9.39) we find ϕi ∈ Hom−,F1(Fp1 , Fpp1) and ψi ∈
Hom−,F1(Fp2 , Fp1) such that Ip,p1,p2(∑n

i=1 ϕi ⊗ ψi) = f . Hence,

f = Ip,p1,p2(
n

∑
i=1
ϕi ⊗ ψi) =

n

∑
i=1
ϕi ○ ψi.

Now, x ∶= ∑n
i=1 [ϕi, (pp1, p1)] ⊗ [ψi, (p1, p2)] ∈ Op ⊗Oe Og and

ωp,g(x) = ωp,g(
n

∑
i=1
[ϕi, (pp1, p1)] ⊗ [ψi, (p1, p2)])

=
n

∑
i=1
ωp,g([ϕi, (pp1, p1)] ⊗ [ψi, (p1, p2)])

=
n

∑
i=1
[ϕi ○ ψ, (pp1, p2)]

= [
n

∑
i=1
ϕi ○ ψ, (pp1, p2)]

= [f, (pp1, p2)]
= y

and thus ωp,g is surjective.
For injectivity, we start with x, y ∈ Op ⊗Oe Og such that ωp,g(x) = ωp,g(y). Now,

they are given by x = ∑n
i=1 xi ⊗x′i and y = ∑m

j=1 yj ⊗ y′j for xi, yj ∈ Op and x′i, y′j ∈ Og.
So for these finitely many elements xi, yj ∈ Op we can choose representations that
all lie in the same Hom−,F1(Fp2 , Fp1), with p1p

−1
2 = p1−1 after lifting these, we

can, without loss of generality, assume that they lie in the same Hom−,F1(Ft, Fpt).
Similarly, for the finitely many x′i, y′j ∈ Og, we find representations that are all in the
same Hom−,F1(Fg2 , Fg1) with g = g1g

−1
2 . Now, we find t1, t2 ∈ P such that tt1 = g1t2.

Hence, after lifting them again, we can, without loss of generality, assume that
we find (p1, p2) ∈ Rg and representations xi = [ϕi, (pp1, p1)], yj = [ψj , (pp1, p1)],
x′i = [ϕ′i, (p1, p2)] and y′j = [ψ′j , (p1, p2)]. Then,

ωp,g(x) = ωp,g(
n

∑
i=1
xi ⊗ x′i)

=
n

∑
i=1
ωp,g([ϕi, (pp1, p1)] ⊗ [ϕ′i, (p1, p2)])

=
n

∑
i=1
[ϕi ○ ϕ′i, (pp1, p2)]

=
n

∑
i=1
[Ip,p1,p2(ϕi ⊗ ϕ′i), (pp1, p2)]

= [Ip,p1,p2(
n

∑
i=1
ϕi ⊗ ϕ′i), (pp1, p2)]

and analogously ωp,g(y) = [Ip,p1,p2(∑m
j=1 ψj ⊗ψ′j), (pp1, p2)]. Thus ωp,g(x) = ωp,g(y)

implies

[Ip,p1,p2(
n

∑
i=1
ϕi ⊗ ϕ′i), (pp1, p2)] = [Ip,p1,p2(

m

∑
j=1
, ψj ⊗ ψ′j), (pp1, p2)]
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and by definition of the equivalence relation (see Remark 8.4) and after using (O2),
there is a t ∈ P such that

φpp1,p2,t(Ip,p1,p2(
n

∑
i=1
ϕi ⊗ ϕ′i)) = φpp1,p2,t(Ip,p1,p2(

m

∑
j=1

ψj ⊗ ψ′j)).

Next we can apply the second part of Lemma 9.39 to get

Ip,p1t,p2t(
n

∑
i=1
φpp1,p1,t(ϕi) ⊗ φp1,p2,t(ϕ′i)) = Ip,p1t,p2t(

m

∑
j=1

φpp1,p1,t(ψj) ⊗ φp1,p2,t(ψ′j))

and thus
n

∑
i=1
φpp1,p1,t(ϕi) ⊗ φp1,p2,t(ϕ′i) =

m

∑
j=1

φpp1,p1,t(ψj) ⊗ φp1,p2,t(ψ′j)

as Ip,p1t,p2t is injective (by Lemma 9.39). Hence, their images under the well-defined
map

Hom−,F1(Fp1 , Fpp1) ⊗End−,F1(Fp1)
Hom−,F1(Fp2 , Fp1) → Op ⊗Oe Og,

a⊗ b↦ [a, (pp1, p)] ⊗ [b, (p1, p2)]
are equal. Now, the images are also given by x and y and thus x = y. Hence, the
map is injective. □

Now, this gives us some information about the map Ψp (from Lemma 9.13) for
p ∈ P .

Corollary 9.41. For p ∈ P (with the notation p ∶= p1−1 ∈ G) the map
Ψp∶Op ⊗Oe ⊕

g∈G

Og → ⊕
g∈G

Og

is an isomorphism of abelian groups. Furthermore, for any lax covariant representa-
tion (αg ∶Og →D)p∈P of O on a unital ring D the maps

αp∶Op ⊗Oe D →D, x⊗ d↦ αg(x)d,
are isomorphisms.

Proof. By Proposition 9.40 the maps ωp,g ∶Op ⊗Oe Og → Opg are invertible for all
g ∈ G, and hence the direct sum of all these maps is also invertible. After using that
direct sums and tensor products commute and that G is a group, the direct sum
of the invertible maps ωp,g is exactly the map Ψp∶Op ⊗Oe ⊕g∈GOg → ⊕g∈GOg as
defined in Lemma 9.13. Thus, Ψp is invertible.

Now, since Ψp is invertible, Ψp ⊗ id is invertible and hence, by Lemma 9.13, the
map αp is invertible. □

Step 2: Natural isomorphism between the (lax) covariant representations. Next, we
prove that there are natural isomorphisms between the covariant representations of
F and the lax covariant representations of O. We do this by explicitly constructing
a map between them and proving that it is bijective and natural.

We start with a technical result, which we need for this construction. Note that the
canonical ring homomorphism F1 ≅ End−,F1(F1) → Oe defines a left F1-module struc-
ture on Oe that is given by a ⋅ [f, t] ∶= [a ⋅f(−), t] for all a ∈ F1, t ∈ P, f ∈ End−,F1(F1).

Lemma 9.42. For all p ∈ P (with the notation p ∶= p1−1 ∈ G) there is a well-defined
F1-balanced map

Fp ×Oe → Op, (x, [f, t]) ↦ [µp,t(x⊗ f(−)), (pt, t)],

that descends to an isomorphism

κp∶Fp ⊗F1 Oe → Op, x⊗ [f, t] ↦ [µp,t(x⊗ f(−)), (pt, t)],
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of abelian groups.

Proof. For x ∈ Fp, t ∈ P , f ∈ End−,F1(F1), the map µp,t(x⊗ f(−)) is indeed a right
F1-module homomorphism since f and µp,t are. We also need to show that (x, [f, t])
is mapped to the same element in Op, as (x, [φt,q(f), tq]) is for all q ∈ P . Now,

(x, [φt,q(f), tq]) is mapped to [µp,tq(x⊗φt,q(f)(−)), (ptq, tq)], which is represented
by the map that sends an element z ∈ Ftq that is given by z = µt,q(a⊗ b) for a ∈ Ft,
b ∈ Fq, to

µp,tq(x⊗ φt,q(f)(z)) = µp,tq(x⊗ µt,q(f(a) ⊗ b)).

Now, (x, [f, t]) is sent to

[µp,t(x⊗ f(−)), (pt, t)] = [φpt,t,q(µp,t(x⊗ f(−))), (ptq, tq)],

which is represented by a map that sends z = µt,q(a⊗ b) to

µpt,q(µp,t(x⊗ f(a)) ⊗ b).

According to the commutative square in Definition 9.2, the two terms are equal
and, since every element in Ftq is given by a finite sum of elements of the form
µt,q(a⊗ b), the maps coincide. Thus, the map is indeed well-defined.

The map is F1-balanced since the tensor product and µp,t are additive, and since
the tensor product behaves well with multiplication of F1 in the middle. Hence, it
descends to the tensor product as a homomorphism κp of abelian groups.

What is left to show is that κp is an isomorphism. Note that the proof is quite
similar to the proof of Proposition 9.40. We again first define an isomorphism similar
to Ip,p1,p2 in Lemma 9.39. For this, we make repeated use of Theorem 5.10. For all
t ∈ P , the theorem gives us a chain of isomorphisms of abelian groups

Fp ⊗F1 Hom−,F1(Ft, Ft) Fp ⊗F1 Ft ⊗F1 F
∗

t Fpt ⊗F1 F
∗

t Hom−,F1(Ft, Fpt),

x⊗ yψ(−) x⊗ y ⊗ ψ µp,t(x⊗ y) ⊗ ψ µp,t(x⊗ y)ψ(−),

≅ ≅ ≅

which we call kt. Hence, for any f ∈ Hom−,F1(Ft, Ft), we find yi ∈ Ft, ψi ∈ F ∗t such
that f = ∑n

i=1 yψ and the chain of isomorphisms sends

x⊗ f ↦
n

∑
i=1
µp,t(x⊗ yi)ψi(−) = µp,t(x⊗

n

∑
i=1
yiψi(−)) = µp,t(x⊗ f(−)).

Note that κp(x⊗ [f]) = [kt(x⊗ f), (pt, t)] for all f ∈ End−,F1(Ft).
Next, we want to prove that κp is bijective using the fact that kt is. For

injectivity we take x̃, ỹ ∈ Fp ⊗F1 Oe with κp(x̃) = κp(ỹ). Now, x̃ and ỹ are given by
x̃ = ∑n

i=1 xi ⊗ [fi] and ỹ = ∑m
j=1 yj ⊗[hi] with n,m ∈ N, xi, yj ∈ Fp and [fi], [hj] ∈ Oe

for i = 1, . . . , n and j = 1, . . . ,m. Now, without loss of generality, we have fi, hj ∈
End−,F1(Ft) for some t ∈ P . Denote x = ∑n

i=1 xi ⊗ fi and y = ∑m
j=1 yj ⊗ hi then

[kt(x), (pt, t)] = κp(x) = κp(y) = [kt(y), (pt, t)]

and hence there is a q ∈ P such that φpt,t,q(kt(x)) = φpt,t,q(kt(y)). The calculations
we did for well-definedness give that

φpt,t,q(kt(x)) =
n

∑
i=1
φpt,t,q(kt(xi ⊗ fi)) =

n

∑
i=1
ktq(xi ⊗φt,q(fi)) = ktq(

n

∑
i=1
xi ⊗φt,q(fi))
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Hence
ktq(

n

∑
i=1
xi ⊗ φt,q(fi)) = ktq(

m

∑
j=1

yj ⊗ φt,q(hj))

and as ktq is injective we get
n

∑
i=1
xi ⊗ φt,q(fi) =

m

∑
j=1

yj ⊗ φt,q(hj)

and hence their images under the well-defined map
Fp ⊗F1 End−,F1(Ftq) → Fp ⊗F1 Oe a⊗ b↦ a⊗ [b, tq]

are equal as well. Now, the images are given by x̃ and ỹ. Hence, x̃ = ỹ and the map
is injective.

For surjectivity we take (p1, p2) ∈ Rp and [f, (p1, p2)] ∈ Op. Now, there is a t′ ∈ P
such that p1t

′ = pp2t
′, and hence with t = p2t

′ we get p1p
−1
2 = ptt−1. So, without loss

of generality, we can start with [f, (pt, t)] ∈ Op for f ∈ Hom−,F1(Ft, Fpt). As kt is
surjective there is an

x = ∑
i

xi ⊗ fi ∈ Fp ⊗F1 Hom−,F1(Ft, Ft)

with kt(x) = f . Hence, x̃ = ∑i xi ⊗ [fi, t] ∈ Fp ⊗F1 Oe and

κp(x̃) = [kt(x), (pt, t)] = [f, (pt, t)]
so κp is indeed surjective. □

We want to define a map βD ∶CovRep(D,F) → CovReplax(D,O). We fix a unital
ring D and a covariant representation ν = (νp) of F on D (using Proposition 9.7).
We now construct a lax covariant representation (Θg)g∈G of O on D.

Definition 9.43. For p ∈ P define the maps
ϑp∶End−,F1(Fp) → End−,D(D), T ↦ νp ○ (T ⊗F1 idD) ○ ν−1

p ,

and for (p1, p2) ∈ Rg define the maps

ϑp1,p2 ∶Hom−,F1(Fp2 , Fp1) → End−,D(D), T ↦ νp1 ○ (T ⊗F1 idD) ○ ν−1
p2
.

Lemma 9.44. The maps ϑp are unital ring homomorphisms and the maps ϑp1,p2

are group homomorphisms. Furthermore, for all p, q ∈ P and (p1, p2) ∈ Rg we have
(1) ϑpq ○ φp,q = ϑp; and
(2) ϑp1q,p2q ○ φp1,p2,q = ϑp1,p2 .

Hence, the ϑp can be combined into a cone ϑe∶EF ⇒ End−,D(D) and the ϑp1,p2 can
be combined into a cone ϑg ∶HF,g ⇒ End−,D(D).

Proof. The proof that the maps are homomorphisms is completely analogous to the
proof of Lemma 9.20. The second equality is exactly that the diagram

Fp2q ⊗F1 D Fp2 ⊗F1 Fq ⊗D D Fp1 ⊗F1 Fq ⊗D D Fp1q ⊗F1 D

D Fp2 ⊗F1 D Fp1 ⊗F1 D D

νp2q≅

µp2,q⊗id

≅

id⊗νq≅

µp1,q⊗id

≅

id⊗νq≅

T⊗id⊗id

νp1q≅

νp2

≅

νp1

≅

T⊗id

commutes. Now, this diagram commutes, since the left and right squares commute
by Definition 9.4 and the middle square commutes by simple calculation.

The first equality follows from the second one, since we have φp,q = φp,p,q and
ϑp = ϑp,p as maps.

Finally, since all the maps are homomorphisms in their respective categories and
the equalities say exactly that they are natural, they indeed define cones. □
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To justify our ambiguous notation, we need to argue why for g ∶= e the cones ϑe

and ϑg are “equal”. Using the notation from Lemma 9.32 it is easy to check that
Uϑe = ϑgd,

that is, they are equal up to whiskering with the canonical functors.
Now, by Corollary 9.24 the unital ring Oe is a colimit of EF and hence it factors

through any cone. This of course also holds for the cones ϑe.

Corollary 9.45. There is a unique unital ring homomorphism Θe∶Oe → End−,D(D)
such that the diagram

End−,F1(Fp)

Oe End−,D(D)
ιp

ϑp

Θe

commutes for all p ∈ P .

Similarly, by Corollary 9.30 for all g ∈ G the abelian group Og is a colimit of
HF,g and hence it factors through any cone. Again, this also holds for the cones ϑg.

Corollary 9.46. There is a unique group homomorphism Θg ∶Og → End−,D(D)
such that the diagram

Hom−,F1(Fp2 , Fp1)

Og End−,D(D)
ιp1,p2

ϑp1,p2

Θg

commutes for all (p1, p2) ∈ Rg.

Note that if g ∶= e ∈ G is the neutral element, we actually have an equality of
maps Θg = Θe after composing with the canonical isomorphisms.

Now, we use the characterization of covariant representations of O on D from
Proposition 9.7. By abuse of notation, we write Θg for the map Og →D, as well as
the map Og → End−,D(D), using that End−,D(D) ≅D as unital rings.

Proposition 9.47. The data
Θe∶Oe →D;
Θg ∶Og →D;

defines a lax covariant representation (Θg)g∈G of O on D.

Proof. By construction, Θe is a unital ring homomorphism and the maps Θg are
group homomorphisms for all g ∈ G. We need to prove that

Θgh(ωg,h(x⊗ y)) = Θg(x)Θh(y)

for all g, h ∈ G and x ∈ Og, y ∈ Oh. For x = [a, (p1, p2)] ∈ Og, y = [b, (q1, q2)] ∈ Oh,
we find t1, t2 ∈ P such that p2t1 = q1t2 (by (O1)). Hence, we have new repre-
sentatives x = [φp1,p2,t1(a), (p1t1, p2t1)] and y = [φq1,q2,t2(b), (q1t2, q2t2)]. Thus,
without loss of generality, take (p1, p2) ∈ Rg, (p2, p3) ∈ Rh and representing
objects a ∈ Hom−,F1(Fp2 , Fp1), b ∈ Hom−,F1(Fp3 , Fp2) with x = [a, (p1, p2)] and
y = [b, (p2, p3)]. Then after identifying the unital rings End−,D(D) ≅D, we get

Θgh(ωg,h(x⊗ y)) = Θgh([a ○ b, (p1, p3)]) = (Θgh ○ ιp1,p3)(a ○ b)

= ϑp1,p3(a ○ b) = νp1 ○ ((a ○ b) ⊗ idD) ○ ν−1
p3

= νp1 ○ (a⊗ idD) ○ ν−1
p2
○ νp2 ○ (b⊗ idD) ○ ν−1

p3
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= ϑp1,p2(a) ○ ϑp2,p3(b) = (Θg ○ ιp1,p2)(a) ○ (Θh ○ ιp2,p3)(b)
= Θg(x)Θh(y).

Hence, this indeed is a lax covariant representation. □

Thus, we can now assign a lax covariant representation of O to every covariant
representation of F . So we only need to establish that this assignment is bijective
and natural.

Theorem 9.48. Consider an fgp Ore diagram F = (P,Fp, µp,q), that is, a strictly
unital homomorphism F∶P →Ringsfgp over an Ore monoid P . Let O = (G,Og, ωg,h)
be the associated lax diagram in Ringsu we constructed above (see Corollary 9.37).
Then the map

βD ∶CovRep(D,F) → CovReplax(D,O), (νp) ↦ (Θg),
where (Θg) is the induced lax covariant representation (see Proposition 9.47), defines
a natural isomorphism β∶CovRep(−,F) ⇒ CovReplax(−,O).

Proof. By Proposition 9.47 the map is indeed well-defined, so we only need to prove
that it is bijective and natural in D. We start with the injectivity.

Let (ϑp) and (ϑ′p) be two covariant representations of F , such that the induced
lax covariant representations (Θg) and (Θ′g) of O are equal. Then

ϑp1,p2 = Θg ○ ιp1,p2 = Θ′g ○ ιp1,p2 = ϑ′p1,p2

are equal for all g ∈ G and (p1, p2) ∈ Rg. By precomposing with the canonical
group isomorphism (for p = 1 even ring isomorphism) Fp ≅ Hom−,F1(F1, Fp) we get
ϑp,1 = ν̃p. Finally, ν̃p = ϑp,1 = ϑ′p,1 = ν̃′p and hence νp = ν′p.

For surjectivity, we start with a lax covariant representation α of O on D. By
Proposition 9.7 a lax covariant representation is given by group homomorphisms
αg ∶Og →D for all g ∈ G such that αe∶Oe →D is a ring homomorphism and for all
x ∈ Og, y ∈ Oh we have αgh(ωg,h(x⊗ y)) = αg(x)αh(y). We now define

νp∶Fp Hom−,F1(F1, Fp) Op D
≅ ιp,1 αp

for all p ∈ P (with the notation p ∶= p1−1 ∈ G). First, νp are group homomorphisms
as concatenations of group homomorphisms. Furthermore, for p = 1, the map ν1 is
actually given by a concatenation of unital ring homomorphisms and thus is also a
unital ring homomorphism. Next, we want to prove that

νpq(µp,q(x⊗ y)) = νp(x)νp(y)
for all x ∈ Fp, y ∈ Fq. Note that for x ∈ Fp we get the associated right F1-module
homomorphism multx∶F1 → Fp, a↦ xa, and analogously for y ∈ Fq, µp,q(x⊗y) ∈ Fpq.
Now, φp,1,q(multx) = µp,q(x⊗ −) and hence

[multx, (p,1)] = [φp,1,q(multx), (pq, q)] = [µp,q(x⊗ −), (pq, q)].
Thus, we get

[multµp,q(x⊗y), (pq,1)] = [µp,q(x⊗ −) ○multy, (pq,1)]

= ωp,q([µp,q(x⊗ −), (pq, q)] ⊗ [multy, (q,1)])

= ωp,q([multx, (p,1)] ⊗ [multy, (q,1)]).

Thus, the equality
νpq(µp,q(x⊗ y)) = (αpq ○ ιpq,1)(multµp,q(x⊗y))

= αpq([multµp,q(x⊗y), (pq,1)])
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= αpq(ωp,q([multx, (p,1)] ⊗ [multy, (q,1)]))

= αp([multx, (p,1)])αq([multy, (q,1)])
= νp(x)νp(y)

holds. Hence, the defined ν = (νp) is indeed a lax covariant representation of F on
D. Next, we want to prove that it is a strong covariant representation, that is, that
νp∶Fp ⊗F1 D →D is an isomorphism for all p ∈ P . The diagram

Fp ⊗F1 D D

(Fp ⊗F1 Oe) ⊗Oe D Op ⊗Oe D

≅

κp⊗id

≅

νp

αp≅

commutes, as µp,1(x⊗ idF1(−)) =multx. The left map is a canonical isomorphism,
the bottom map is an isomorphism by Lemma 9.42 and the right map αp is an
isomorphism by Corollary 9.41. Thus, also νp is an isomorphism. Hence, ν = (νp) is
a covariant representation of F on D.

Finally, we need to prove that βD maps ν to α, that is, that Θg = αg for all
g ∈ G. If we identify D ≅ End−,D(D) we need to show that for (p1, p2) ∈ Rg and
T ∈ Hom−,F1(Fp2 , Fp1) we have

νp1 ○ (T ⊗F1 idD) ○ ν−1
p2
=multαg([T,(p1,p2)]).

This is exactly that the diagram

Fp2 ⊗F1 D D

Fp1 ⊗F1 D D

multαg([T,(p1,p2)])

νp2

≅

νp1

≅

T⊗id

commutes. The diagram indeed commutes, since we have

(νp1 ○ (T ⊗F1 idD))(x⊗ d) = αp1([multT x, (p1,1)])d

= αp1(ωp1p−1
2 ,p2([T, (p1, p2)] ⊗ [multx, (p2,1)]))d

= αg([T, (p1, p2)])αp2([multx, (p2,1)])d
= (multαg([T,(p1,p2)]) ○ νp2)(x⊗ d)

for all x ∈ Fp2 , d ∈D. Hence, βD is also surjective and thus a bijection.
Finally, we want to prove that βD is natural in D. Take a unital ring homomor-

phism f ∶D → S. If we unpack the definitions, what we need to prove boils down
to

f((νp1 ○ (T ⊗ id) ○ ν−1
p2
)(1)) = (f∗(νp1) ○ (T ⊗ id) ○ f∗(νp2))(1)

for g ∈ G, (p1, p2) ∈ Rg, and T ∈ Hom−,F1(Fp2 , Fp1). So if we take x ∶= ∑n
i=1 xi ⊗ di

in Fp2 ⊗F1 D such that νp2(x) = 1, then f∗(νp2)(∑n
i=1 xi ⊗ f(di)) = 1 and hence

f((νp1 ○ (T ⊗ id) ○ ν−1
p2
)(1)) = f ((νp1 ○ (T ⊗ id))(

n

∑
i=1
xi ⊗ di))

=
n

∑
i=1
f(νp1(T (xi))di)
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=
n

∑
i=1
f(νp1(T (xi)))f(di)

= f∗(νp1)(
n

∑
i=1
T (xi) ⊗ f(di))

= (f∗(νp1) ○ (T ⊗ id) ○ f∗(νp2))(1).
So, β is indeed a natural isomorphism. □

Step 3: The conclusion. In the end, we can draw our desired conclusion. From
Theorem 9.48 it is immediate that the lax covariance ring OF (as defined in
Definition 9.38) is a covariance ring of F .

Corollary 9.49. For an fgp Ore diagram F = (P,Fp, µp,q), the covariance ring of
F is given by the lax covariance ring OF of the lax diagram O in Ringsu, that is, by

OF = ⊕
g∈G

Og = ⊕
g∈G

limÐ→
(p1,p2)∈Rg

Hom−,F1(Fp2 , Fp1),

where multiplication is given by concatenation.

Proof. By Theorem 9.48 we have a natural isomorphism of functors
CovRep(−,F) ≅ CovReplax(−,O).

By Remark 9.11 the unital ring OF as constructed in Definition 9.38 is the repre-
senting object of the functor CovReplax(−,O). The multiplication is given by the
maps ωg,h, which are defined to be the concatenation of the equivalence classes of
right F1-module homomorphisms. By the Yoneda Lemma (see [Mac71, p. 61]) the
unital ring OF is then also the representing object of CovRep(−,F) and hence the
strong covariance ring of F . □
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10. Ore diagrams of ample correspondences and groupoid models

In this section, we introduce diagrams in Gra over monoids P and their groupoid
models. We recall the explicit construction of a groupoid model for tight Ore
diagrams in Gra, as done in [Alb15] and [Mey22b]. We follow closely the definitions
and results from [Alb15] and [Mey22b]. A tight Ore diagram in Gra is analogous to
an fgp Ore diagram in Ringsu, and a groupoid model is analogous to a covariance
ring. The construction of the groupoid model of a tight Ore diagram in Gra is
also quite similar to the construction of a covariance ring of an fgp Ore diagram in
Ringsu in Subsection 9.2. The similarity of the constructions leads to Section 11,
where we prove that the Steinberg algebra of the groupoid model is isomorphic
to the covariance ring of the induced fgp Ore diagram of bimodules. For a more
detailed and general review of diagrams and groupoid models in GR, we refer to
[Mey22b]. For a review of Ore diagrams and a detailed construction of the groupoid
model of a tight Ore diagram in Grinj, we refer to [Alb15].

10.1. Diagrams of ample correspondences and groupoid models. We fix a
monoid P . We start by defining a (proper/tight) diagram in Gra.

Definition 10.1 (compare [Mey22b, Proposition 3.1]). A diagram in Gra is a
strictly unital homomorphism P → Gra over P , that is, it is described by the data
X = (P,G,Xp, µp,q) with

● an ample groupoid G;
● ample correspondences Xp∶ G ← G for all p ∈ P ;
● isomorphisms of correspondences µp,q ∶ Xp ○G Xq

∼Ð→ Xpq for all p, q ∈ P ;
such that

(1) X1 for the unit 1 ∈ P is the identity correspondence G on G;
(2) µp,1∶ Xp ○G G

∼Ð→ Xp and µ1,p∶ G ○G Xp
∼Ð→ Xp for p ∈ P are the canonical left

and right uniters lXp , rXp described in Lemma 4.5;
(3) for all p, q, t ∈ P , the diagram of isomorphisms

(10.2)

(Xp ○G Xq) ○G Xt

Xp ○G (Xq ○G Xt)

Xpq ○G Xt

Xp ○G Xqt

Xpqtassociator

µp,q○G idXt

idXp○Gµq,t

µpq,t

µp,qt

commutes.
If all the ample correspondences Xp are tight (proper, resp.), we call the

diagram X tight (proper, resp.).

Next, we assemble all the relevant definitions to define a groupoid model. From
now on, we fix a diagram X = (P,G,Xp, µp,q) in Gra.

Definition 10.3 (compare [Mey22b, Definition 4.5]). Let Y be a topological space.
An X-action on Y consists of α = (αp, r) with

● a continuous map r∶Y → G0;
● open, continuous, surjective maps αp∶ Xp ×s,G0,r Y → Y for p ∈ P , denoted

multiplicatively as αp(γ, y) = γ ⋅ y;
such that
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(10.3.1) r(γ2 ⋅ y) = r(γ2) and γ1 ⋅ (γ2 ⋅ y) = (γ1 ⋅ γ2) ⋅ y for p, q ∈ P , γ1 ∈ Xp, γ2 ∈ Xq,
and y ∈ Y with s(γ1) = r(γ2), s(γ2) = r(y);

(10.3.2) if γ ⋅ y = γ′ ⋅ y′ for γ, γ′ ∈ Xp, y, y′ ∈ Y , there is η ∈ G with γ′ = γ ⋅ η and
y = η ⋅ y′.

Note that since G = X1 the multiplication map α1 is a left G-action on Y
(see [Mey22b, Lemma 4.6]).

Definition 10.4 (compare [Mey22b, Definition 4.8]). A continuous map φ∶Y → Y ′

between two topological spaces with X-actions is X-equivariant if r(φ(y)) = r(y)
and φ(γ ⋅ y) = γ ⋅ φ(y) for all p ∈ P , y ∈ Y and γ ∈ Xp with s(γ) = r(y).

Definition 10.5 (compare [Mey22b, Definition 4.13]). A groupoid model for
X-actions is an ample groupoid U with natural bijections between the sets of
U-actions and X-actions on Y for all spaces Y .

We call these bijections natural if a continuous map Y → Y ′ is U-equivariant if
and only if it is X-equivariant. These bijections for all spaces Y can be combined
into an isomorphism between the categories of U-actions and X-actions.

Furthermore, groupoid models are unique up to isomorphism.

Proposition 10.6 (compare [Mey22b, Proposition 4.16]). Let U and U ′ be two
groupoid models for X-actions. There is a unique groupoid isomorphism U ≅ U ′ that
is compatible with the equivalence between actions of U , U ′ and X.

Proof. See [Mey22b, Proposition 4.16]. □

Finally, a groupoid model of a diagram X is indeed a bicategory theoretical limit
of the diagram.

Theorem 10.7 (compare [Mey22b, Theorem 10.6]). A groupoid model U for a
diagram X∶P → Gra is also a limit for X in Gra.

Proof. See [Mey22b, Theorem 10.6]. □

10.2. The groupoid model of a tight Ore diagram. We want to recall the
construction of a groupoid model for a tight Ore diagram. We follow closely the
construction in [Alb15] and [Mey22b], where this is done for tight Ore diagrams in
Grinj and for tight diagrams of Ore shape8 in GR, respectively. One might note the
similarity of the following construction with our construction of the covariance ring
OF in Section 9.

We start by fixing an Ore monoid P and a tight Ore diagram X = (P,G,Xp, µp,q)
in Gra. Recall from Section 9, that we can define the group completion G of P (see
Definition 9.16), and for each g ∈ G the set

Rg ∶= {(p1, p2) ∈ G ∣ p1p
−1
2 = g ∈ G},

and the filtered category Cg
P with Rg as the set of objects and Rg × P as the set of

arrows (see Definition 9.25). Next, we fix some g ∈ G and want to build a functor
from the filtered category Cg

P to the category of topological spaces Top.

Definition 10.8. For (p1, p2) ∈ Rg define the topological space

Xp1 ○G X ∗p2
∶= Xp1 ×s,G0,s Xp2 /∼

to be the quotient space of Xp1×s,G0,sXp2 by the equivalence relation (x, y) ∼ (xg, yg)
for all g ∈ G with s(x) = s(y) = r(g). We denote its elements by [x, y] ∈ Xp1 ○G X ∗p2

.

8A diagram of Ore shape is a diagram over a small category that satisfies certain right Ore
conditions. This is a generalization of an Ore diagram.
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Remark 10.9. For a groupoid G and right G-space X , we can define the left G-space
X ∗ by taking r ∶= s as an anchor map, and

mult∶ G ×s,G0,r X ∗ → X ∗, (g, x) ↦ xg−1,

as the multiplication map. Now, if the right G-space X is basic, X/G is Hausdorff
or s is a local homeomorphism then the left G-space X ∗ has the same properties,
respectively. This justifies the notation in Definition 10.8 and explains the similarity
to the definition of a composition of correspondences from Section 4. Furthermore,
this shows that Xp1 ○G X ∗p2

is given as the orbit space of a basic right G-action, and
hence the orbit space projection Xp1 ×s,G0,s Xp2 → Xp1 ○G X ∗p2

is a surjective local
homeomorphism (by Lemma 3.14).

We can now find an ample base for the topology of Xp1 ○G X ∗p2
.

Corollary 10.10. For all U ∈ X a
p1
, V ∈ X a

p2
with s(U) ⊃ s(V ) the set of all

UV ∶= {[x, y] ∣ (x, y) ∈ U ×s,G0,s V } ⊂ Xp1 ○G X ∗p2

is an ample base for the topology of Xp1 ○G X ∗p2
. We denote this base by BXp1○GX

∗
p2

.

Proof. This is immediate from Lemma 4.3. □

Next, we want to define a continuous map for every (p1, p2q) ∈ Rg × P .

Definition 10.11. For (p1, p2) ∈ Rg and q ∈ P define the map
αq

p1,p2
∶ Xp1 ○G X ∗p2

→ Xp1q ○G X ∗p2q, [x, y] ↦ [xz, yz],
where z ∈ Xq is an element such that s(x) = s(y) = r(z) and with the notation
xz ∶= µp1,q([x, z]) ∈ Xp1q.

Since Xg is tight, the map r∶ X /G → G0 is a homeomorphism and hence the
element z ∈ Xq is unique up to right multiplication by some g ∈ G.

Lemma 10.12 (compare [Alb15, Lemma 3.6]). The above-defined map αq
p1,p2

is well-
defined, a local homeomorphism and injective on all UV ∈ BXp1○GX

∗
p2

. Furthermore,

αt
p1q,p2q ○ αq

p1,p2
= αqt

p1,p2

and α1
p1,p2

= idXp1○GX
∗
p2

for all (p1, p2) ∈ Rg and t, q ∈ P .

Proof. See [Alb15, Lemma 3.6]. Note that in the proof it is shown that αq
p1,p2

is
injective on all UV ∈ BXp1○GX

∗
p2

. □

Hence, the data above defines a functor.

Definition 10.13. For g ∈ G, we define a functor from the filtered category Cg
P to

the category of topological spaces (denoted as Top) via
HX,g ∶ Cg

P → Top

(p1, p2) ↦ Xp1 ○G X ∗p2

(p1, p2, q) ↦ αq
p1,p2

.

Now, we can take the colimit of this functor. Since Cg
P is filtered, we can apply

our results from Section 8. Applying Corollary 8.8 gives us an explicit construction
of the colimit.

Definition 10.14. Define the topological space Hg to be the colimit of the functor
HX,g, that is, it is given by the set

Hg ∶= limÐ→
(p1,p2)∈Rg

Xp1 ○G X ∗p2
= ⊔(p1,p2)∈Rg

Xp1 ○G X ∗p2 /∼
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where the equivalence relation is generated by [x1, x2] ∼ αq
p1,p2
([x1, x2]) for all

[x1, x2] ∈ Xp1 ○G X ∗p2
and (p1, p2) ∈ Rg, t ∈ P , with the canonical topology.

Lemma 10.15 (compare [Alb15, Lemma 3.9]). The canonical maps
λp1,p2 ∶ Xp1 ○G X ∗p2

→Hg, and
λ∶ ⊔
(p1,p2)∈Rg

Xp1 ○G X ∗p2
→Hg

are local homeomorphisms. The first map is injective on all UV ∈ BXp1○GX
∗
p2

.

Proof. For the first map see [Alb15, Lemma 3.9]. From this, it is immediate that
the second map is a local homeomorphism, due to the topology of the disjoint union.
Now, the maps λp1,p2 are injective on all UV ∈ BXp1○GX

∗
p2

because the maps αq
p1,p2

are (by Lemma 10.12). □

Next, we want to find an ample base for this topological space.

Proposition 10.16. The set
BHg ∶= {λp1,p2(U) ∣ U ∈ BXp1○GX

∗
p2
, (p1, p2) ∈ Rg}

is an ample base for the topology on Hg.

Proof. Consider U ∈ BXp1○GX
∗
p2

. By Corollary 10.10, U is a compact Hausdorff
open subset. As λp1,p2 is a local homeomorphism and injective on U , we get that
λp1,p2(U) ⊂ Hg is a compact Hausdorff open subset. The set defines a base, since
for h ∈ Hg and an open h ∈ W ⊂ Hg, we find (p1, p2) ∈ Rg and x ∈ Xp1 ○G X ∗p2

such that λp1,p2(x) = h. Then x ∈ λ−1
p1,p2
(W ) ⊂ Xp1 ○G X ∗p2

open and hence we
find U ∈ BXp1○GX

∗
p2

such that x ∈ U ⊂ λ−1
p1,p2
(W ) ⊂ Xp1 ○G X ∗p2

. Thus, we get
h = λp1,p2(x) ∈ λp1,p2(U) ⊂W and BHg indeed defines a compact Hausdorff base of
Hg.

Finally, we want to check that the base is stable under taking compact open
subsets. Consider U ∈ BXp1○GX

∗
p2

and a compact open subset W ⊂ λp1,p2(U).
Since λp1,p2 ∣U ∶U → λp1,p2(U) defines a homeomorphism, the compact subset W is
homeomorphic via λp1,p2 ∣U to a compact open subset V ⊂ U . As BXp1○GX

∗
p2

is stable
under taking compact open subsets (by Corollary 10.10), we get V ∈ BXp1○GX

∗
p2

and
hence W = λp1,p2(V ) ∈ BHg . □

The following Lemma 10.17 gives that for λp1,p2(U) ∈ BHg
the U ∈ BXp1○GX

∗
p2

is
unique up to lifting along αt

p1,p2
.

Lemma 10.17. Consider (p1, p2), (q1, q2) ∈ Rg and U1 ∈ Xp1 ○G X ∗p2
, U2 ∈ BXq1○GX

∗
q2

such that λp1,p2(U1) = λq1,q2(U2), then we find t1, t2 ∈ P such that (p1t1, p2t1) =
(q1t2, q2t2) and αt1

p1,p2
(U1) = αt2

q1,q2
(U2).

Proof. First, we find t1, t2 ∈ P such that (p1t1, p2t1) = (q1t2, q2t2). Then U ′1 ∶=
αt1

p1,p2
(U1) and U ′2 ∶= αt2

p1,p2
(U2) are two compact Hausdorff open subsets (since the

maps α are local homeomorphisms that are injective on U1, U2 by Lemma 10.12) of
the same space Xp1t1 ○G X ∗p2t1

= Xq1t2 ○G X ∗q2t2
. Now,

λp,q(U ′1) = (λp,q ○ αt1
p1,p2
)(U1) = λp1,p2(U1)

= λq1,q2(U2) = (λp,q ○ αt2
p1,p2
)(U2)

= λp,q(U ′2)
for (p, q) ∶= (p1t1, p2t1) = (q1t2, q2t2). Furthermore, since the maps αt

p1,p2
are

injective on U1 and the maps αt
q1,q2

are injective on U2 for all t ∈ P (by Lemma 10.12),
the maps αt

p,q are also injective on U ′1, U
′

2 for all t ∈ P .
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Thus, we can, without loss of generality, assume that U1, U2 ⊂ Xp1 ○G X ∗p2
are

compact Hausdorff open subsets such that λp1,p2(U1) = λp1,p2(U2) and the αt
p1,p2

are injective on U1, U2 for all t ∈ P .
Consider u1 ∈ U1, then there is u2 ∈ U2 such that λp1,p2(u1) = λp1,p2(u2). Thus,

there are q, q′ ∈ P such that (p1q, p2q) = (p1q
′, p2q

′) and αq
p1,p2
(u1) = αq′

p1,p2
(u2). By

(O2) (in Definition 9.14), we find z ∈ P such that qz = q′z. Hence, Lemma 10.12
implies

αt
p1,p2
(u1) = (αz

p1q,p2q ○ αq
p1,p2
)(u1) = (αz

p1q′,p2q′ ○ αq′
p1,p2
)(u2) = αt

p1,p2
(u2)

for t ∶= qz = q′z. Now take B1,B2 ∈ BXp1○GX
∗
p2

so that ui ∈ Bi ⊂ Ui for i = 1, 2. Then,

αt
p1,p2
(u1) ∈ αt

p1,p2
(B1) ∩ αt

p1,p2
(B2) ⊂ Xp1t ○G X ∗p2t

is an open neighborhood and as αt
p1,p2

is continuous, we find V ∈ BXp1○GX
∗
p2

with
u1 ∈ V ⊂ U1 such that αt

p1,p2
(V ) ⊂ αt

p1,p2
(B1) ∩ αt

p1,p2
(B2). Now, αt

p1,p2
is injective

on Bi for i = 1, 2. Next, we define W ∶= (αt
p1,p2
∣B2)−1(αt

p1,p2
(V )). That is, a compact

open subset of B2 ∈ BXp1○GX
∗
p2

and hence W ∈ BXp1○GX
∗
p2

. Furthermore, we have
u2 ∈ W . So, we have found two neighborhoods V,W ∈ BXp1○GX

∗
p2

of u1 and u2,
respectively, such that αt

p1,p2
(V ) = αt

p1,p2
(W ).

Now, since we find such a V for every u1 ∈ U1, we cover U1 with these V and use
that U1 is compact to find finitely many compact Hausdorff open subsets V1, . . . , Vn

such that U1 = ⋃n
i=1 Vi. If we take the corresponding compact Hausdorff open subsets

W1, . . . ,Wn such that αti
p1,p2
(Vi) = αti

p1,p2
(Wi) for i = 1, . . . , n and fitting ti ∈ P , we

get U2 = ⋃n
i=1Wi. After using (O1) (in Definition 9.14) n − 1 times on the t1, . . . , tn

(and Lemma 10.12) we can, without loss of generality, assume that t ∶= t1 = ⋅ ⋅ ⋅ = tn.
So we found t ∈ P such that αt

p1,p2
(Vi) = αt

p1,p2
(Wi) and hence we get

αt
p1,p2
(U1) = αt

p1,p2
(

n

⋃
i=1
Vi) =

n

⋃
i=1
αt

p1,p2
(Vi)

=
n

⋃
i=1
αt

p1,p2
(Wi) = αt

p1,p2
(

n

⋃
i=1
Wi)

= αt
p1,p2
(U2),

which is the desired result. □

Finally, we define an ample groupoid that will turn out to be the groupoid model
for the tight Ore diagram X = (P,G,Xp, µp,q) in Gra.

Definition 10.18. Define the topological groupoid
H ∶= ⊔

g∈G

Hg = ⊔
g∈G

limÐ→
(p1,p2)∈Rg

Xp1 ○G X ∗p2

with
● object set H0 ∶= G0;
● range map and source maps r([x1, x2]) ∶= r(x1) and s([x1, x2]) ∶= r(x2);
● composition [x1, x2] ⋅ [x2, x3] ∶= [x1, x3];
● inversion [x1, x2]−1 ∶= [x2, x1]; and
● units [x,x].

Theorem 10.19. The above-defined data H is indeed an ample topological groupoid
and a groupoid model for X.

Proof. By [Alb15, Proposition 3.10] the above-defined data H is indeed a locally
compact, étale, topological groupoid. Since G is ample, the object set H0 = G0 of H
is totally disconnected, and hence H is an ample groupoid. By [Mey22b, Theorem
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8.18] H is a groupoid model of X in the bicategory GR and hence as H ∈ Gr0
a it is a

groupoid model of X in Gra as well. □

Remark 10.20 (compare [Alb15, Remark 3.14]). For the neutral element e ∈ G, the
topological space He is a clopen subgroupoid of H (and hence ample as well).

Finally, we want to find an ample base of compact slices on H to be able to
compute the Steinberg algebra of this space in Section 11.

Proposition 10.21. The set
BH ∶= ⋃

g∈G

BHg

is an ample base of compact slices on H.

Proof. By the topology of the disjoint union and Proposition 10.16 the set indeed is
an ample base for the topology on H. So we only need to check that its elements
are indeed slices, that is, that the range and source maps are injective on them.
Consider UV ∈ BXp1○GX

∗
p2

and [x, y], [x′, y′] ∈ λp1,p2(UV ) with x,x′ ∈ U , y, y′ ∈ V .
First, assume that s([x, y]) = s([x′, y′]), that is, r(y) = r(y′). As Xp2 is a tight
correspondence there is a g ∈ G with r(g) = s(y′) such that y = y′g and hence
p(y) = p(y′g) = p(y′). Since V is a slice and y, y′ ∈ V , it follows that y = y′.
Furthermore, we get s(x) = s(y) = s(y′) = s(x′) and as x,x′ are in the same slice U ,
we get x = x′ as well. Hence, [x, y] = [x′, y′] and thus s is injective on λp1,p2(UV ).
The proof that r is injective on λp1,p2(UV ) is analogous. □
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11. Steinberg algebras of groupoid models

In this section, we combine all the results from earlier sections into our main result.
As before, we fix a (commutative, unital) ring R with the discrete topology. We also
fix a tight Ore diagram X = (P,G,Xp, µp,q) in Gra such that G is cocompact, that is,
a strictly unital homomorphism in Grco,tight ⊂ Grco,proper over an Ore monoid P . In
Section 10, we constructed a groupoid model H of this diagram. We now want to
show that the Steinberg algebra of the groupoid model H is the covariance ring of
an induced Ore diagram in Ringsfgp. In Section 7, we constructed a strictly unital
homomorphism A∶Grco,proper →Ringsfgp (by Remark 7.7) that we can compose this
diagram with, to get an Ore diagram

F ∶= A ∗X = (P,F1 ∶= AR (G) , Fp ∶= AR (Xp) , µF
p,q ∶= A(µX

p,q) ○ µA
p,q).

in Ringsfgp (using the usual composition of morphisms between bicategories as
described in [Mey22a, Proposition 4.7.10]). Thus, we will apply our results from
Section 9 to get that the covariance ring of F is given by OF (by Corollary 9.49).
Note, that we have an additional R-module structure on all the Fp that behaves well
with the relevant maps µF

p,q and thus also with φp1,p2,q. Hence, we get a canonical
R-module structure on the covariance ring OF (see Corollary 8.9) that turns it into
an R-algebra.

Now, we want to prove that the Steinberg algebra of the groupoid model AR (H)
is isomorphic to the covariance ring OF of the diagram F = A∗X as a unital ring and
R-module. In other words, we prove that A∶Gra →Rings preserves these particular
bicategorical limits.

We start by taking a closer look at the groupoid model H of X. It is given by

H = ⊔
g∈G

Hg = ⊔
g∈G

limÐ→
(p1,p2)∈Rg

Xp1 ○G X ∗p2
.

We might note a similarity with the covariance ring of F given by

OF = ⊕
g∈G

Og = ⊕
g∈G

limÐ→
(p1,p2)∈Rg

Hom−,AR(G)
(AR (Xp2) ,AR (Xp1) ).

By Lemma 6.2, the Steinberg module of the disjoint union is given by the direct
sum of the Steinberg modules, that is, we get an isomorphism

AR (H) = AR

⎛
⎝⊔g∈G

Hg

⎞
⎠
≅ ⊕

g∈G

AR (Hg)

of R-modules. So, if we first prove that

AR (Xp1 ○G X ∗p2
) ≅ Hom−,AR(G)

(AR (Xp2) ,AR (Xp1) )
are isomorphic as R-modules (see Proposition 11.1), and then that

AR (Hg) = AR (limÐ→Xp1 ○G X ∗p2
) ≅ limÐ→AR (Xp1 ○G X ∗p2

)

are isomorphic as R-modules, that is, that taking the Steinberg module commutes
with filtered colimits (see Proposition 11.5), we get that the objects are isomorphic
as R-modules. We also need to carefully handle the unital ring structure on both
objects and prove that the isomorphism preserves it (see Proposition 11.3) to finally
get our main result, namely, that

AR (H) ≅ OF
are isomorphic as R-modules and unital rings (by Theorem 11.6).

We start by rewriting the R-modules Hom−,AR(G)
(AR (Xp2) ,AR (Xp1) ) for g ∈ G

and (p1, p2) ∈ Rg.
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Proposition 11.1. Consider two proper ample correspondences X ∶G ← G, Y∶G ← G
for a cocompact groupoid G. Then there are compact open subsets K1, . . . ,Kn ⊂ G0

such that
Y ≅

n

⊔
i=1
r−1
G
(Ki)

as a right G-space and the maps

X ○G Y∗ →
n

⊔
i=1
s−1
X
(Ki), [x, y] ↦ xy−1, [x, s(x)] ↤ x,

define a homeomorphism. Furthermore, the map
IX ,Y ∶AR (X ○G Y∗) → Hom−,AR(G)

(AR (Y) ,AR (X) ),

f ↦

⎡⎢⎢⎢⎢⎢⎢⎣

β ↦ [x↦ ∑
y∈Y

s(y)=s(x)

f([x, y])β(y)]

⎤⎥⎥⎥⎥⎥⎥⎦

,

is an isomorphism of R-modules.

Proof. By Theorem 3.29 we find compact open subsets K1, . . . ,Kn ⊂ G0 such that
the correspondence Y is given by

Y ≅
n

⊔
i=1
r−1
G
(Ki)

as a right G-space. Hence, we get a chain of homeomorphisms

X ○G Y∗ ≅ X ○G (
n

⊔
i=1
r−1
G
(Ki))

∗

≅
n

⊔
i=1
X ○G (r−1

G
(Ki))

∗

≅
n

⊔
i=1
X ○G s−1

G
(Ki) ≅

n

⊔
i=1
s−1
X
(Ki),

where the second equality is given by the canonical isomorphism, the third equality
can be seen using Remark 10.9 and the fourth is given by the homeomorphism

X ○G s−1
G
(Ki) → s−1

X
(Ki), [x, g] ↦ xg, [x, s(x)] ↤ x.

One can check that if we chase through the homeomorphisms, we get the defined
maps. Next this gives a chain of isomorphisms of abelian groups

AR (X ○G Y∗) ≅
n

⊕
i=1
AR (s−1

X
(Ki)) ≅

n

⊕
i=1
AR (X) ∗ 1Ki

≅
n

⊕
i=1
AR (X) ⊗AR(G)

(AR (G) ∗ 1Ki
)

≅
n

⊕
i=1
AR (X) ⊗AR(G)

Hom−,AR(G)
(1Ki ∗AR (G) ,AR (G) )

≅ AR (X) ⊗AR(G)
Hom−,AR(G)

(
n

⊕
i=1

1Ki ∗AR (G) ,AR (G) )

≅ AR (X) ⊗AR(G)
Hom−,AR(G)

(AR (Y) ,AR (G) )
≅ AR (X) ⊗AR(G)

AR (Y)∗

≅ Hom−,AR(G)
(AR (Y) ,AR (X) ),

where the first equality is given by Lemma 6.2 and the homeomorphism above, the
second works analogously to Lemma 6.23, the third is given by Lemma 5.14, the
fourth is given by Lemma 5.15, the fifth is given by Lemma 5.16 together with
Lemma 5.17, the sixth is Theorem 6.24, the seventh is by the definition of the dual
module and the eighth is given by Theorem 5.10. Now, if we prove that this chain of
isomorphisms is actually given by the above-defined R-module homomorphism, we
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are done. We start with f ∈ AR (X ○G Y)∗ such that we can find some α ∈ AR (X)
and ξi ∈ AR (s−1

G
(Ki)) for i = 1, . . . , n such that

f([x, y]) = (α ∗ ξi)(xy−1)

for all x ∈ X , y ∈ s−1
G
(Ki) such that s(x) = s(y). Now, if we map f through the chain

of isomorphisms and evaluate it at β ∈ AR (r−1
G
(Ki)) ⊂ AR (Y) and x ∈ X , we get

(α ∗ (multξi)ni=1(β))(x). Now, we also have

(α ∗ (multξi)ni=1(β))(x) = (α ∗ (ξi ∗ β))(x)
= ∑

g∈Gs(x)

α(xg−1)(ξi ∗ β)(g)

= ∑
g∈Gs(x)

α(xg−1) ∑
y∈Gs(g)

ξi(gy−1)β(y)

= ∑
y∈Gs(x)

∑
g∈Gs(x)

α(xg−1)ξi(gy−1)β(y)

= ∑
y∈Gs(x)

∑
g∈Gr(y)

α(xy−1g−1)ξi(g)β(y)

= ∑
y∈Gs(x)

(α ∗ ξi)(xy−1)β(y)

= ∑
y∈Y

s(y)=s(x)

f([x, y])β(y)

= IX ,Y(f)(β)(x)
and hence the chain of isomorphisms is indeed given by the above-defined map, as
an arbitrary map f ∈ AR (X ○G Y)∗ is given by a finite sum of these. Finally, it is
easy to check that the above-defined map is an R-module homomorphism. □

Thus, we have Hom−,AR(G)
(AR (Xp2) ,AR (Xp1) ) ≅ AR (Xp1 ○G X ∗p2

). To prop-
erly extend this isomorphism to Og = limÐ→Hom−,AR(G)

(AR (Xp2) ,AR (Xp1) ), we
need to understand how it behaves with the maps

φp1,p2,q ∶Hom−,AR(G)
(AR (Xp2) ,AR (Xp1) ) → Hom−,AR(G)

(AR (Xp2q) ,AR (Xp1q) )
that define this filtered colimit in Definition 9.26.

Proposition 11.2. The local homeomorphisms αq
p1,p2
∶ Xp1 ○G X ∗p2

→ Xp1q ○G X ∗p2q

from Definition 10.11 induce R-module homomorphisms (via Definition 6.5 and
Proposition 6.6)

(αq
p1,p2
)
∗
∶AR (Xp1 ○G X ∗p2

) → AR (Xp1q ○G X ∗p2q) ,

f ↦
⎡⎢⎢⎢⎢⎣
y ↦ ∑

x∈(αq
p1,p2)

−1(y)

f(x)
⎤⎥⎥⎥⎥⎦
,

so that the diagram

AR (Xp1 ○G X ∗p2
) AR (Xp1q ○G X ∗p2q)

Hom−,AR(G)
(AR (Xp2) ,AR (Xp1) ) Hom−,AR(G)

(AR (Xp2q) ,AR (Xp1q) )

(αq
p1,p2)∗

IXp1 ,Xp2
≅ IXp1q,Xp2q ≅

φp1,p2,q

commutes. Furthermore, the IXp1 ,Xp2
descend to R-module isomorphisms

Ig ∶Og → limÐ→AR (Xp1 ○G X ∗p2
)
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for all g ∈ G that assemble into an isomorphism
I∶OF → ⊕

g∈G

limÐ→AR (Xp1 ○G X ∗p2
)

of R-modules.

Proof. The induced map is given by Definition 6.5 since Xp1 ○G X ∗p2
has an ample

base BXp1○GX
∗
p2

such that αq
p1,p2

is injective on it (by Lemma 10.12) and hence it
is indeed a well-defined R-module homomorphism (by Proposition 6.6). Consider
f ∈ AR (Xp1 ○G X ∗p2

), ϕ ∈ AR (Xp2) , ψ ∈ AR (Xq) and [xp1 , xq] ∈ Xp1 ○G X ∗q . We
denote ϕψ ∶= µFp2,q(ϕ⊗ ψ) and xp1q ∶= µX

p1,q([xp1 , xq]). Then we have

(IXp1q,Xp2q ○ (αq
p1,p2
)
∗
)(f)(ϕψ)(xp1q)

= ∑
xp2q∈Xp2q

s(xp2q)=s(xp1q)

(αq
p1,p2
)
∗
(f)([xp1q, xp2q]) ⋅ ϕψ(xp2q)

= ∑
xp2q∈Xp2q

s(xp2q)=s(xp1q)

∑
x∈Xp1○GX

∗
p2

αq
p1,p2(x)=[xp1q,xp2q]

f(x) ⋅ ϕψ(xp2q)

= ∑
xp2∈Xp2

s(xp2)=s(xp1)

f([xp1 , xp2]) ⋅ ϕψ(µX
p2,q([xp2 , xq]))

= ∑
xp2∈Xp2

s(xp2)=s(xp1)

f([xp1 , xp2]) ∑
g∈Gs(xp2 )

ϕ(xp2g
−1) ⋅ ψ(gxq)

= ∑
g∈Gs(xp1 )

∑
xp2∈Xp2

s(xp2)=s(g)

f([xp1g
−1, xp2g

−1]) ⋅ ϕ(xp2g
−1) ⋅ ψ(gxq)

= ∑
g∈Gs(xp1 )

∑
xp2∈Xp2

s(xp2)=r(g)

f([xp1g
−1, xp2]) ⋅ ϕ(xp2) ⋅ ψ(gxq)

= ∑
g∈Gs(xp1 )

IXp1 ,Xp2
(f)(ϕ)(xp1g

−1) ⋅ ψ(gxq)

= µA
p1,q (IXp1 ,Xp2

(f)(ϕ) ⊗ ψ) ([xp1 , xq])

= µA
p1,q((IXp1 ,Xp2

(f) ⊗ id)(ϕ⊗ ψ))([xp1 , xq])

= (µFp1,q ○ (IXp1 ,Xp2
(f) ⊗ id) ○ (µFp2,q)−1(ϕψ))(xp1q)

= (φp1,p2,q ○ IXp1 ,Xp2
)(f)(ϕψ)(xp1q)

where the third equality is true because the sets
{xp2 ∈ Xp2 ∣ s(xp2) = s(xp1)}

{(xp2q, x) ∈ Xp2q × (Xp1 ○G X ∗p2
) ∣ s(xp2q) = s(xp1q), αq

p1,p2
(x) = [xp1q, xp2q]}

are bijective via the map

xp2 ↦ (µX
p2,q([xp2 , xq]), [xp2 , xp1])

and hence the diagram commutes. Thus, the R-module isomorphisms IXp1 ,Xp2
descend to R-module isomorphisms

Ig ∶Og = limÐ→Hom−,AR(G)
(AR (Xp2) ,AR (Xp1) ) ≅ limÐ→AR (Xp1 ○G X ∗p2

)
of the colimits of the respective diagrams, and we can assemble them into an
R-module isomorphism I∶OF →⊕g∈G limÐ→AR (Xp1 ○G X ∗p2

). □
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Now, the multiplication on OF is defined via ωg,h, which is induced by the
concatenation of maps given by the map

Hom−,AR(G)
(AR (Xp2) ,AR (Xp1) ) ×Hom−,AR(G)

(AR (Xp3) ,AR (Xp2) ) Hom−,AR(G)
(AR (Xp3) ,AR (Xp1) ),

(f1, f2) f1 ○ f2.

After applying the fitting isomorphisms IXp,Xq , this induces a well-defined map

⋆∶AR (Xp1 ○G X ∗p2
) ×AR (Xp2 ○G X ∗p3

) → AR (Xp1 ○G X ∗p3
) ,

(f1, f2) ↦ f1 ⋆ f2 ∶= I−1
p1,p3
(Ip1,p2(f1) ○ Ip2,p3(f2)),

that has the same properties as ωg,h and hence induces a unital ring structure on
⊕g∈G limÐ→AR (Xp1 ○G X ∗p2

).

Proposition 11.3. The above-defined map ⋆ induces a multiplication on the R-
module ⊕g∈G limÐ→AR (Xp1 ○G X ∗p2

) that turns it into a unital ring such that the
R-module isomorphism I∶OF →⊕g∈G limÐ→AR (Xp1 ○G X ∗p2

) is also an isomorphism
of unital rings. Furthermore, it is explicitly given by

(f1 ⋆ f2)([x1, x3]) ∶= ∑
x2∈Xp2

s(x2)=s(x1)

f1([x1, x2])f2([x2, x3])

for f1 ∈ AR (Xp1 ○G X ∗p2
), f2 ∈ AR (Xp2 ○G X ∗p3

) and [x1, x3] ∈ Xp1 ○G X ∗p3
.

Proof. Using the isomorphism of abelian groups I∶OF →⊕g∈G limÐ→AR (Xp1 ○G X ∗p2
)

the ring structure on OF induces a ring structure on ⊕g∈G limÐ→AR (Xp1 ○G X ∗p2
) such

that I is by definition a unital ring homomorphism. Since the isomorphism I is
given by the isomorphisms IXp,Xq and the multiplication on the unital ring OF is
defined via the map ωg,h∶Og ⊗Oe Oh → Ogh, which is induced by concatenation, this
definition breaks down exactly to the definition of ⋆ above.

The explicit formula for ⋆ follows immediately from
I1,3(f1 ⋆ f2)(β)(x1) = ∑

x3∈Xp3
s(x3)=s(x1)

(f1 ⋆ f2)([x1, x3])β(x3)

= ∑
x3∈Xp3

s(x3)=s(x1)

∑
x2∈Xp2

s(x2)=s(x1)

f1([x1, x2])f2([x2, x3])β(x3)

= ∑
x2∈Xp2

s(x2)=s(x1)

f1([x1, x2]) ∑
x3∈Xp3

s(x3)=s(x2)

f2([x2, x3])β(x3)

= ∑
x2∈Xp2

s(x2)=s(x1)

f1([x1, x2])I2,3(β)(x2)

= (I1,2 ○ I2,3)(β)(x2)

for f1 ∈ AR (Xp1 ○G X ∗p2
) , f2 ∈ AR (Xp2 ○G X ∗p3

) , β ∈ AR (Xp3) and x1 ∈ Xp1 . □

Remark 11.4. Note that since X1 = G we get X1 ○G X ∗1 ≅ G and, it is easy to check
that the above-defined multiplicative structure ⋆ on AR (X1 ○G X ∗1 ) is exactly the
known ring structure on AR (G).

Next, we want to relate the R-module limÐ→AR (Xp1 ○G X ∗p2
) to the Steinberg

module ofHg. Note that sinceHg = limÐ→Xp1○GX ∗p2
we prove that taking the Steinberg

module commutes with sufficiently well-behaved filtered colimits of topological
spaces.
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Proposition 11.5. The Steinberg module of Hg is isomorphic to the direct limit

AR (Hg) ≅ limÐ→AR (Xp1 ○G X ∗p2
)

as an R-module.

Proof. We start with the diagram in R -Mod, given by the R-module homomorphisms

(αq
p1,p2
)
∗
∶AR (Xp1 ○G X ∗p2

) → AR (Xp1q ○G X ∗p2q)

for all (p1, p2) ∈ Rg and q ∈ P . The cone maps λp1,p2 ∶ Xp1 ○G X ∗p2
→ Hg are local

homeomorphisms that are injective on BXp1○GX
∗
p2

(by Lemma 10.15) and hence by
Proposition 6.6 they induce R-module homomorphisms

(λp1,p2)∗∶AR (Xp1 ○G X ∗p2
) → AR (Hg) .

Now, since λp1,p2 = λp1q,p2q ○ αq
p1,p2

we get (λp1,p2)∗ = (λp1q,p2q)∗ ○ (αq
p1,p2
)
∗

(by
Proposition 6.6) and hence the (λp1,p2)∗ indeed define a cone under the diagram
with nadir AR (Hg). Thus, we get a unique R-module homomorphism

Jg ∶ limÐ→AR (Xp1 ○G X ∗p2
) → AR (Hg) , [f, (p1, p2)] ↦ (λp1,p2)∗(f),

that sends
[1U , (p1, p2)] ↦ (λp1,p2)∗(1U) = 1λp1,p2(U)

for all U ∈ BXp1○GX
∗
p2

.
Next, we want to define an inverse to this map. By Proposition 10.16 we find an

ample base BHg on Hg and thus by Proposition 6.4 the Steinberg module AR (Hg)
is given by the quotient of the direct sum

⊕
V ∈BHg

R ⋅ 1V

by
⟨1U⊔V − 1U − 1U ∣ U,V,U ⊔ V ∈ BHg ⟩

as an R-module. Now, we can define the R-module homomorphism

⊕
V ∈BHg

R ⋅ 1V → limÐ→AR (Xp1 ○G X ∗p2
) , 1V ↦ [1U , (p1, p2)],

where V ∈ BHg
is given by V ∶= λp1,p2(U) for U ∈ BXp1○GX

∗
p2

. This is well-
defined, since for (p1, p2), (q1, q2) ∈ Rg and U1 ∈ BXp1○GX

∗
p2
, U2 ∈ BXq1○GX

∗
q2

such
that λp1,p2(U1) = λq1,q2(U2) we find t1, t2 ∈ P such that (p1t1, p2t1) = (q1t2, q2t2)
and αt1

p1,p2
(U1) = αt2

p1,p2
(U2) (by Lemma 10.17). Hence, we get

[1U1 , (p1, p2)] = [(αt1
p1,p2
)∗(1U1), (p1t1, p2t2)] = [1α

t1
p1,p2(U1)

, (p1t1, p2t1)]

= [1α
t2
q1,q2(U2)

, (q1t2, q2t2)] = [(αt2
q1,q2
)∗(1U2), (q1t2, q2t2)]

= [1U2 , (q1, q2)],

that is, the map is well-defined.
Next, we want to show that this R-module homomorphism descends to the

quotient AR (Hg). Consider V = V1 ⊔ V2, V1, V2 ∈ BHg . Thus, V = λp1,p2(U) for
some U ∈ BXp1○GX

∗
p2

. As λp1,p2 ∣U is a homeomorphism onto its image we can define
the compact open subsets Ui ∶= λp1,p2 ∣−1

U (Vi) ⊂ U and hence we have Ui ∈ BXp1○GX
∗
p2

(as BXp1○GX
∗
p2

is stable under taking compact open subsets) and Vi = λp1,p2(Ui) by
definition for i = 1,2. Hence, our R-module homomorphism maps 1V to

[1U , (p1, p2)] = [1U1⊔U2 , (p1, p2)] = [1U1 , (p1, p2)] + [1U2 , (p1, p2)],
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which is exactly the image of 1V1 +1V2 . Thus, the R-module homomorphism indeed
descends to the quotient and gives us a well-defined R-module homomorphism

AR (Hg) → limÐ→AR (Xp1 ○G X ∗p2
) , 1λp1,p2(U)

↦ [1U , (p1, p2)]
for all U ∈ BXp1○GX

∗
p2

. Now, this homomorphism is inverse to Jg and hence Jg is
indeed an R-module isomorphism. □

Finally, we get our main result that the covariance ring of a diagram of bimodules
F obtained from an Ore diagram of correspondences X in Grco,tight is given by the
Steinberg algebra of the groupoid model H of X.

Theorem 11.6. Consider an Ore diagram X = (P,G,Xp, µp,q) in Grco,tight with
a groupoid model H. Then the Steinberg algebra of the groupoid model H gives
the covariance ring of the diagram F ∶= A ∗ X in Ringsfgp, that is, we have an
isomorphism

AR (H) ≅ OF
of R-modules and unital rings.

Proof. Using Lemma 6.2 and Proposition 11.5 we get an isomorphism
AR (H) ≅ ⊕

g∈G

AR (Hg) ≅ ⊕
g∈G

limÐ→AR (Xp1 ○G X ∗p2
)

of R-modules given by
J ∶⊕

g∈G

limÐ→AR (Xp1 ○G X ∗p2
) → AR (H) , [f, (p1, p2)] ↦ (λp1,p2)∗(f)

for [f, (p1, p2)] ∈ limÐ→AR (Xp1 ○G X ∗p2
) with g = p1p

−1
2 , f ∈ AR (Xp1 ○G X ∗p2

) and
(λp1,p2)∗(f) ∈ AR (Hg) ⊂ AR (H).

Now, we want to show that this is also an isomorphism of unital rings. We
take ϕ,ψ ∈ ⊕g∈G limÐ→AR (Xp1 ○G X ∗p2

). Since J is additive and independent of the
representative, it is sufficient to consider ϕ = [f1, (p1, p2)], ψ = [f2, (q1, q2)] for
f1 ∈ AR (Xp1 ○G X ∗p2

), f2 ∈ AR (Xp2 ○G X ∗p3
) and p1, p2, p3 ∈ P . Now, for all z ∈ H we

get

J (ϕ ⋆ ψ)(z) = J ([f1 ⋆ f2, (p1, p3)])(z)
= (λp1,p3)∗(f1 ⋆ f2)(z)
= ∑
[x1,x3]∈Xp1○GX

∗
p3

λp1,p3([x1,x3])=z

(f1 ⋆ f2)([x1, x3])

= ∑
[x1,x3]∈Xp1○GX

∗
p3

λp1,p3([x1,x3])=z

∑
x2∈Xp2

s(x2)=s(x1)

f1([x1, x2])f2([x2, x3])

= ∑
x∈Xp1○GX

∗
p2 ,y∈Xp2○GX

∗
p3

λp1,p2(x)λp2,p3(y)=z

f1(x) ⋅ f2(y)

= ∑
xy=z

(λp1,p2)∗(f1)(x) ⋅ (λp2,p3)∗(f2)(y)

= ((λp1,p2)∗(f1) ∗ (λp2,p3)∗(f2))(z)
= (J (ϕ) ∗ J (ψ))(z),

and hence J (ϕ ⋆ ψ) = J (ϕ) ∗ J (ψ). Now, the multiplicative unit of

⊕
g∈G

limÐ→AR (Xp1 ○G X ∗p2
)
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is [1G0 , (1,1)] with 1G0 ∈ AR (G) ≅ AR (X1 ○G X ∗1 ) (using G ≅ X1 ○G X ∗1 and Re-
mark 11.4). It is mapped under J to

J ([1G0 , (1,1)]) = λ1,1(1G0) = 1λ1,1(G0) = 1H0 ,

where the last equality follows from the definition of H0 as it is defined in [Alb15].
Hence, the R-module isomorphism J is also a unital ring isomorphism giving

⊕
g∈G

limÐ→AR (Xp1 ○G X ∗p2
) ≅ AR (H) .

Additionally, by Proposition 11.2 and Proposition 11.3 we have an isomorphism
OF ≅ ⊕

g∈G

limÐ→AR (Xp1 ○G X ∗p2
)

of R-modules and unital rings. So finally, we can compose these two isomorphisms
of R-modules and unital rings to get the desired isomorphism. □
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