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ABSTRACT. We define a bicategory with ample groupoids as objects, groupoid
correspondences (namely spaces with commuting left and right actions) as
l-arrows, and continuous equivariant maps as 2-arrows. We extend the con-
struction of the Steinberg algebra for ample groupoids to a homomorphism from
this bicategory to the bicategory of rings with local units, smooth bimodules,
and bimodule homomorphisms. Then, we find an explicit construction of a
covariance ring for a finitely generated and projective diagram over an Ore
monoid in the subbicategory of unital rings. We recall the construction of a
groupoid model for a tight diagram over an Ore monoid. Finally, we prove that
the covariance ring of a diagram of bimodules, obtained from a tight diagram
of correspondences over an Ore monoid, is given by the Steinberg algebra of
the groupoid model.
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1. INTRODUCTION

The principle of algebraization suggests to transform abstract, intangible concepts
into algebraic expressions because this allows the researcher to mathematically model
and solve complex problems using algebraic methods and tools. By this method,
existing structures and relations can be analyzed and subsequently abstracted to their
essential properties, so that a profound comprehension of the actual mathematical
objects in study can be gained. According to [Ara+18] the trend of algebraization
of concepts from operator theory into algebra started with von Neumann and
Kaplansky (in 1986) and their students Berberian and Rickart, who strived to
explore what properties in operator algebra theory arise naturally from discrete
underlying structures. Quite recently, Steinberg [Ste09] introduced his Steinberg
algebras as an algebraization of the groupoid C*-algebras first studied by Renault
[Ren80]. Currently, Meyer’s research is focused on investigating these groupoid
C*-algebras from a bicategorical standpoint. The objective of this thesis is to
identify algebraic parallels to some of his most recent findings.

In [AKM22; AM15; Alb15] groupoid C*-algebras and related constructions of
C*-algebras are put into a bicategorical perspective and studied from this point
of view. In [AKM22] the bicategory ®v,; of (locally compact, étale) groupoids,
(locally compact, étale) correspondences, and injective continuous equivariant maps
is introduced to extend the definition of a groupoid C*-algebra to a strictly unital
homomorphism &t;,; - €orr to the bicategory Corr of C*-correspondences. This
enables studying diagrams in Corr (that is, product systems) that were obtained
from diagrams in &tj,; by composing with this homomorphism. In particular, one
can study certain bicategorical limits (that is, absolute Cuntz-Pimsner algebras)
of such diagrams, which capture many constructions of C*-algebras coming from
combinatorial or dynamical data. In [AM15] the absolute Cuntz-Pimsner algebra
of a proper, non-degenerate product system over an Ore monoid P is constructed
explicitly through filtered colimits and a related diagram over a group (that is, a
Fell bundle over a group). Finally, in [Alb15; AM15], it is shown how to realize this
bicategorical limit of a diagram in Corr (that is, the absolute Cuntz-Pimsner algebra
of a product system) obtained from a tight Ore diagram in ®v;,;, as a groupoid
C*-algebra.

This thesis identifies an algebraic counterpart to this theory, with a focus on
viewing Steinberg algebras of ample groupoids and associated constructions from
a bicategorical perspective. Since we are interested in the Steinberg algebra of
a groupoid, we restrict ourselves to ample groupoids, which have a sufficiently
rich base for their topology (that we call an ample base), so that the Steinberg
algebra is manageable and interesting to consider. We first define the bicategory &t
of ample groupoids, ample groupoid correspondences, and continuous equivariant
maps. Now, the Steinberg algebra is a ring with local units, that is, an object in
the bicategory Rings of rings with local units, smooth bimodules, and bimodule
homomorphisms, which serves as the algebraic analogue to the bicategory Cott
of C*-correspondences. So we extend the definition of the Steinberg algebra to
a strictly unital homomorphism A:&r, - Rings. Note that by composing with
this homomorphism, every diagram in &t, induces a diagram in Rings. Next, we
explicitly construct a bicategorical limit, namely the covariance ring, of a finitely
generated and projective (fgp) Ore diagram in Rings through filtered colimits and a
related lax diagram over a group. Finally, we prove that for a diagram in Rings
that is induced by a tight Ore diagram in &t,, the covariance ring can be realized
as the Steinberg algebra of a groupoid.

The main goal of this thesis is to formulate these algebraic versions of the results
and to work out the proofs properly. It remains for future studies to consider concrete
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examples such as group actions on spaces, (higher-rank) graphs, and self-similar
groups and to apply the obtained results to them.

This thesis is structured as follows. In Section 2, we introduce ample groupoids
and discuss that the compact slices form an ample base for their topology. In
Section 3 we introduce groupoid actions on spaces and define ample groupoid
correspondences as spaces with commuting left and right groupoid actions, where
the right action is particularly well-behaved. We show that the compact slices form
an ample base for their topology. Finally, we take a closer look at proper and tight
correspondences. In Section 4, we introduce the remaining necessary data to define
the bicategory ®t, of ample correspondences and also introduce the subbicategories
of cocompact groupoids and proper/tight ample correspondences. These Sections 2—4
were structured analogously to [AKM22, Section 2-6], where the bicategory ®ry; is
introduced. In Section 5, we recall the bicategory SRings of smooth bimodules and the
subbicategory Rings,, of unital rings, as well as the subbicategory MRings,,, of unital
rings and fgp bimodules that were all introduced in [Mey22a] in detail. We also prove
some standard results on fgp modules. In Section 6, we define the Steinberg module
of a topological space and prove that the Steinberg module of a topological space with
an ample base is particularly manageable. We then define multiplicative structures
(given by convolution) to turn the Steinberg module of an ample groupoid into an
algebra and of an ample correspondence into a bimodule. After that, we prove that
the Steinberg bimodule of a proper correspondence over a cocompact groupoid is fgp.
In Section 7, we extend the construction of the Steinberg algebra into a strictly unital
homomorphism A: &t, - Rings of bicategories, analogously to the construction of
the homomorphism &v;,; - Corr in [AKM22]. In Section 8, we define filtered colimits
and explicitly construct them in the categories Top, R-Mod,Ring, AbGroup, and Set.
We do this as a preparation since we need these constructions in the following
sections. In Section 9, we recall the definitions of (lax) diagrams, (lax) covariant
representations, and (lax) covariance rings in Rings, from [Mey22a]. We explicitly
construct a covariance ring for an fgp Ore diagram F in Rings, by building a lax
diagram O out of filtered colimits and proving that the covariance ring of F is given
by the lax covariance ring of O, analogously to the construction of an absolute
Cuntz-Pimsner algebra in [AM15, Theorem 3.16]. In Section 10, we give a brief
review of diagrams in ®t, and groupoid models studied in [Mey22b]. We recall the
explicit construction of a groupoid model for a tight Ore diagram in &t,, which is
done for ®t;,; in [Alb15]. In Section 11, we prove that the Steinberg algebra of the
groupoid model of a tight Ore diagram is the covariance ring of the induced fgp Ore
diagram in Rings,,, analogously to the proof in [Alb15].

Note that throughout this thesis a ring is not necessarily commutative nor unital
unless explicitly stated, except for the ring R, introduced at the beginning of
Section 6, which we always assume to be commutative and unital.
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2. AMPLE GROUPOIDS

We start by introducing ample groupoids G, which are topological groupoids
with a sufficiently well-behaved topological structure, so that the Steinberg module
(introduced in Section 6) is an interesting object. Namely, we want to find an ample
base for the topology on G. We introduce slices, which are open subsets respecting
the structure, and we show that the compact slices form an ample base for the
topology on G. The ample groupoids are the objects in the bicategory &t,.

We start by defining a topological groupoid.

Definition 2.1. A groupoid G is a small category where every morphism is invertible.
A topological groupoid is a groupoid G with a topology on the object set G° and on
the morphism set G such that the maps

e 7,5:G —» G° the range and source maps;

e Gxs60,G -G, (g9,h) = g-h, the composition map;

e GG, g~ g', the inverse map; and

e G5 G, 1., the unit map

are continuous.

One can think of a (topological) groupoid as a generalization of a (topological)
group. In a group, we can multiply any two elements. In a groupoid, this does
not always work. We may only multiply two elements that have a fitting range
and source. So we can think of a groupoid as a group where multiplication is only
partially defined.

Ezample 2.2. A (topological) groupoid G where the category has only one object is
the same as a (topological) group.

We denote the preimages of the range and source maps of z € GV, respectively, as
G*=r"(z) and G, == s (z).
From now on, when we say “groupoid”, we always mean a topological groupoid.

Definition 2.3. A topological space X is called totally disconnected, if the only
connected subsets are singletons.

Definition 2.4. A groupoid G is called
e cocompact, if G° is compact;
e ¢tale, if r and s are local homeomorphisms;
e locally compact, if G° is Hausdorff and locally compact and G is locally
compact;
o totally disconnected, if G is totally disconnected.

We call a groupoid ample, if it is étale, locally compact, and totally disconnected.
First, we collect some basic properties of the relevant topological terms.

Lemma 2.5. For topological spaces X,Y and a local homeomorphism f: X =Y,
we have

if X is Hausdorff, then any subset A c X is Hausdorff;
if X is totally disconnected, then any subset A c X 1is totally disconnected;
if Y is totally disconnected, then X is totally disconnected; and

if Y is locally compact and Hausdorff, then X is locally compact and locally
Hausdorff.

Proof. The first and second statements are immediate from the definition.
For the third statement, we take a connected subset A ¢ X. Since f is a local
homeomorphism and hence continuous also f(A) c Y is connected. Now, Y is
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totally disconnected and thus f(A) is a singleton set, that is, f(A) = {y} for some
yeY. Thus, Ac f’l(f(A)) = f!(y) is a connected subset of the fiber of y € Y.
Now, fibers of local homeomorphisms are discrete, and hence A is also a singleton
set.

For the fourth statement, take x € X and an open neighborhood U c X of x such
that fly:U — f(U) is a homeomorphism. Since f is a local homeomorphism, it
is an open map. Now, since Y is locally compact and Hausdorff, the open subset
f(U) is locally compact as well. Furthermore, as a subset of a Hausdorff space, it is
Hausdorff. Thus, U is locally compact and Hausdorff. Hence, X is locally compact
and locally Hausdorff. O

Remark 2.6. Note that for an ample groupoid G, the object space G° is locally
compact, Hausdorff and totally disconnected. Since we have local homeomorphisms
r,5:G - G°, Lemma 2.5 shows that the groupoid G itself is locally compact, locally
Hausdorff and totally disconnected. But G is not necessarily Hausdorff.

Definition 2.7. A slice! of a groupoid G is an open subset U c G such that 7|y
and s|y are homeomorphisms onto an open subset of G°. We denote the set of all
slices as G°P and the subset of all compact slices as G?.

We get the following alternative classification of étale groupoids.

Lemma 2.8. A groupoid G is étale if and only if the topology on G has a base of
slices.

Proof. Given an étale groupoid G and a point x € G, we find open neighborhoods
2 €U,V of x such that r|y and s|y are homeomorphisms onto their images, which
are open, as local homeomorphisms are open maps. Hence, W := U nV is an open
neighborhood of x and a slice. Note that open subsets of slices are still slices. Hence,
the slices form a base for the topology. The other direction is immediate. O

There is always the trivial unit slice.

Lemma 2.9. If G is a locally compact, étale groupoid, then G° c G is an open subset
and thus a slice, which is called the unit slice.

Proof. See [Exe08, Proposition 3.2]. O

Furthermore, we get a result about ample groupoids, providing an equivalent
definition.

Proposition 2.10. A locally compact, étale groupoid is ample if and only if the
compact slices G* form a base for the topology on G.

Proposition 2.10 is immediate from the following two lemmas.

Lemma 2.11. Take a locally compact, Hausdorff space X. Then the following are
equivalent:

e X is totally disconnected;
o there is a clopen® base for the topology on X ;
o there is a compact open base B for the topology on X.

Proof. For the forward direction in the first equivalence, we refer to [AT08, Proposi-
ton 3.1.7, p.136]. For the other direction, take a subset A ¢ X with z,y € A and
x +y. Now, as X is Hausdorff, {y}¢ is open, and thus we find a clopen set B € B
such that x € B c {y}°. Thus, A= (AnB)u(AnDB°) withze AnB and y € An B°
are both non-empty open subsets of A. Hence, A is not connected.

In some literature, a slice is also called a bisection.
2Short for closed and open.
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For the forward direction in the second equivalence, we show that the set of all
compact open subsets is a base. For x € U ¢ X open, because of local compactness,
we find some compact K and open V such that ce V ¢ K c U. Using the assumption,
we find a clopen subset W € B with x € W ¢ V c K. As a closed subset of the
compact set K, the space W is compact as well. The other direction is immediate
since every compact subset in a Hausdorff space is closed. U

Lemma 2.12. For a locally compact, étale groupoid G, there exists a base of compact
open sets for the topology on G if and only if the compact slices G* form a base for
the topology on G.

Proof. See [Ste09, Proposition 3.6, p.696]. O

We now take a closer look at the sets G°P of slices and G? c G°P of compact slices
for a locally compact, étale groupoid G. The following Proposition 2.13 shows that
they form inverse semigroups (note that associativity of the multiplication of the
slices is inherited from G). Furthermore, G°P is even an inverse monoid where the
identity element is given by the unit slice G° € G°P.

Proposition 2.13. Given a locally compact, étale groupoid G and two slices U,V c G,
then

UV::{uveg|u€U,v€V withs(u):r(v)}
Ut={u'eGlueclU}

are again slices. Furthermore, U™' € G°P is the unique element, so that U = UU U
and UL =UtUUL.

If G is ample and U,V c G are compact slices, then UV and U™' are again
compact slices.

Proof. For the first part, see [Exe08, Proposition 3.8]. For the second part, note
that as u = uvu™'u, we immediately get U c UU~'U. For the other direction, take
ww™tw e UUTU. Now, as U is a slice, the composability of u,v™!,w already implies
w=v=w and hence uv™*w = u € U. The proof of U~! = U1UU! is analogous.
Finally, for the third part, we take two compact slices U,V c G. Since G°
is Hausdorff, any pullback over G° is a closed subset of the product. Hence,
G xsg0,G c GxGis closed. Now, as U,V c G are compact, so is the space
UxVcGxG,and as G x,go, G is closed, the intersection U x, go . V' is compact
as well. Thus, the set UV, which is the image of U x, go , V under the continuous
composition map, is compact. Similarly, the set U™, which is the image of U under
the continuous inversion map, is compact. O

Furthermore, in Section 6, we are interested in the Steinberg module Ag (G) of an
ample groupoid G. To get an explicit presentation of the module, we need to find a
sufficiently well-behaved base for the topology (to be able to apply Propositions 6.3
and 6.4). We call such a base an ample base.

Definition 2.14. For a topological space X, we call a base B ample if it is stable
under taking compact open subsets (that is, if B € B and A c B is a compact open
subset, then A € B) and if its sets U € B are compact and Hausdorff.

Note that the base of compact slices G* of an ample groupoid G is ample, as
an open subset of a slice is again a slice, since r and s stay injective on a subset.
Furthermore, any slice is homeomorphic to a subset of the Hausdorff space G° and
is hence Hausdorff.

Ezxample 2.15. Consider the groupoid G given by a topological group. Now, the
object space of G is given by the singleton set, and hence a slice of G is given
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by a point in G. Thus, G is étale if and only if G is discrete (using Lemma 2.8).
Since a discrete group G is locally compact and the singleton set is locally compact,
Hausdorff, and totally disconnected, a topological group G is an ample groupoid if
and only if it is discrete. The compact slices of a discrete group are given by {g}
for all g€ G.
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3. GROUPOID ACTIONS AND AMPLE GROUPOID CORRESPONDENCES

In this section, we introduce groupoid actions on topological spaces. One can
think of a groupoid action on a topological space as a generalization of a group
action on a topological space, where the multiplication is only partially defined.
Since we are only interested in locally compact, étale groupoids, we usually drop
these adjectives. So from now on, when we say “groupoid”, we always mean an
étale, locally compact groupoid.

Afterward, we introduce groupoid correspondences, which are topological spaces
with commuting left and right groupoid actions, so that the right action is particu-
larly well-behaved. We follow closely the definitions and results from [AKM22], where
groupoids and groupoid correspondences are introduced. Since we are mainly inter-
ested in ample groupoids, we investigate correspondences between ample groupoids
and see what properties they inherit from their ample groupoids. We define slices
on correspondences X and as it turns out the compact slices X* form an ample
base for the topology on X and hence the Steinberg module of X is interesting to
study. The ample correspondences are the 1-arrows in the bicategory &rt,.

We start with all the relevant definitions.

Definition 3.1 ([AKM22, Definition 2.3]). Let G be a groupoid. A right G-space
is a topological space X with a continuous map s: X — G°, called the anchor map,
and a continuous map
mult: X x5 go,, G > X, X %560, G:={(z,9) e X xG|s(z) =r(g)},
which we denote multiplicatively as -, such that
(1) s(z-g)=s(g) for x € X, g € G with s(x) =r(g);

(2) (z:91)-g2=2-(g1-92) for x € X, g1, 92 € G with s(x) =7(g1), s(g1) =7(g2);
(3) z-s(x)=x forall z e X.

Similarly, one can define a left G-space with r: X - G° as the anchor map.
Sometimes, we just write “xg” and mean “x - g”. We sometimes also write sy, rx

and sg,rg to distinguish between the respective range and source maps, if there is
a chance of confusing them.

Definition 3.2 ([AKM22, Definition 2.4]). The orbit space X' /G is the quotient X' /~g
with the quotient topology, where  ~g y if there is an element g € G with s(x) = r(g)
and z - g =y. We always write p: X — X /G for the orbit space projection.

Definition 3.3. A right G-space X is called cocompact, if the orbit space X /G is
compact.

Definition 3.4 ([AKM22, Definition 2.5]). Let X and Y be right G-spaces. A
continuous map f:X — Y is G-equivariant if s(f(x)) = s(x) for all x € X and
flx-g)=f(x) g forall xeX, geG with s(x)=r(g).

Definition 3.5 (JAKM22, Definition 2.6]). Let X be a right G-space and Z a space.
A continuous map f: X — Z is G-invariant if f(z-g) = f(z) for all x € X, g € G with
s(x) =7(g)-

Definition 3.6. Let G be a groupoid and X a right G-space. An open subset

U c X such that the projection map p|y:U — X/G is a homeomorphism is called a
fundamental domain of X.

Next, we establish a technical result.

Lemma 3.7. For a groupoid G, a right G-space X and a subset V c X such that
sly:V = s(V) is a homeomorphism, the projection map

7TgIV Xs)g07rg—>ré1(SX(V))Cg7 (l‘,g)’—’gv
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is a homeomorphism.

Proof. The map is continuous by definition. Furthermore, the canonical embedding
urg'(sx(V)) - G and the continuous map

g (sx (V) 5 s(v) v

make the relevant fiber product square commute, so we get a unique continuous
map

’I“él(SX(V)) -V xsg0,G, g (s|{/1(r(g)),g).

Now, this map defines a continuous inverse to mg and hence 7g is a homeomorphism.

O

3.1. Basic groupoid actions. We are mainly interested in spaces X with a well-
behaved right G-action, which in our case means a basic right G-action with a
Hausdorff orbit space X'/G and a locally homeomorphic anchor map s: X - G°. We
start by exploring basic right actions.

Definition 3.8 ([AKM22, Definition 2.7]). A right G-space X is basic if the following
map is a homeomorphism onto its image with the subspace topology from X x X:

(3.9) [i X x5g0,G—>XxX, (z,9) = (z-g,2).
Definition 3.10 ([AKM22, Definition 2.13]). A right G-space is free if the map
in (3.9) is injective; equivalently, - g =z for x € X, g € G with s(x) =7(g) implies
g=s(x).

So, in particular, every basic action is free, that is, for x,y € X an element g € G

with zg = y is unique. One can think of a basic action as a free action, where this
unique g € G is chosen in a continuous way, as the following Lemma 3.13 shows.

Definition 3.11 (compare [AKM22, Definition and Lemma 3.4]). Let X be a space
with a basic right G-action. Let p:X — X/G be the orbit space projection. The
image of the map (3.9) is the subset X x /g X = X x,, x/g, X of all (z1,22) € X x X
with p(z1) = p(z2). The inverse to the map in (3.9) induces a continuous map
~ pr

(3.12) X xxigX = X x560,.G g, (1, 72) P (22| 21).
That is, (x1|x2) is defined for x1, 22 € X with p(x1) = p(z2) in X/G, and it is the
unique g € G with s(x1) =7(g) and x2 = z1g.

Now, this map gives rise to an equivalent characterization of a right G-action

being basic:

Lemma 3.13 (compare [AKM22, Definition and Lemma 3.4.]). A right G-action
on a topological space X is basic if and only if the g € G with x5 = x1g9 for x1,x5 € X
with p(x1) = p(x2) is unique and the resulting map X xx,;g X - G, (x1,72) = g, 18
continuous.

Proof. See [AKM22, Definition and Lemma 3.4]. O
Furthermore, for basic actions, the orbit space projection map is well-behaved:

Lemma 3.14 (compare [AKM22, Lemma 2.12]). Let G be a groupoid. The orbit
space projection p: X — X |G for a basic G-action is a surjective local homeomorphism.

Proof. See [AKM22, Lemma 2.12]. O

A fundamental domain of a basic right G-space X already fully describes it:
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Lemma 3.15. Let X be a basic right G-space and U c X a fundamental domain.
Then the multiplication map

UxsgorG—=>X,  (u,g)ug,
is a homeomorphism.

Proof. The above-defined map is continuous by definition, and we can define a
continuous inverse by

X_)UXS,QD,T ga xH(u$7(u$|x>)v
where wu, = p|;} (p(x)) € U is the unique element in U with p(u;) = p(x). d

Note that if we define a right G-space structure on U x, go ,, G by multiplying
in the second component, this homeomorphism is actually a homeomorphism of
G-spaces, that is, a G-equivariant homeomorphism.

3.2. Ample groupoid correspondences. Now, we are ready to introduce ample
groupoid correspondences. These are the l-arrows in the bicategory of ample
groupoids &t,. In [AKM22] groupoid correspondences are introduced. We recall
the important definitions and results and investigate ample correspondences, that
is, correspondences between ample groupoids. We define slices as open subsets
of X that are well-behaved with the right G-structure. As it turns out, an ample
correspondence X inherits enough of the structure on the ample groupoid G, implying
that the compact slices form an ample base for the topology on X'. Hence, we get an
explicit presentation of the Steinberg module Ar (X) in Section 6. We start with
the definition of a groupoid correspondence.

Definition 3.16 (compare [AKM22, Definition 3.1]). Let H and G be groupoids.
A groupoid correspondence X:H « G from G to H is a space X with commuting
actions of H on the left and G on the right such that

e the right anchor map s: X - G° is a local homeomorphism;

e the right G-action is basic; and

e the right orbit space X' /G is Hausdorfl.
That the actions of H and G commute means that s(h-x) = s(x), r(x-g) = r(z),
and (h-z)-g=h-(x-g) forall ge G, x € X, h e H with s(h) = r(z) and s(z) =r(g),
where s: X - G° and r X - H are the anchor maps.

If both H and G are ample, we call X:H < G an ample groupoid correspondence.

We sometimes just write “correspondence”, and mean “groupoid correspondence”.

Definition 3.17 (compare [AKM22, Definition 7.2]). Let G and H be groupoids.
A slice of a groupoid correspondence X:H < G is an open subset V' ¢ X’ such that
the right anchor map s|y and the orbit space projection ply are homeomorphisms
onto open subsets of G° and X' /G, respectively. Denote the set of all slices as X°P
and the subset of all compact slices as X?.

Ezample 3.18. For a groupoid G, we can canonically define a groupoid correspondence
G:G < G with the obvious left and right actions of G by multiplication and the
range and source maps r,s:G - G° as left and right anchor maps. Thus, the right
anchor map s is a local homeomorphism, as G is étale. Furthermore, for p:G - G/G
it is easy to check that p(x) = p(y) < r(x) =r(y), hence r induces an isomorphism
G/G = G°. Thus, G/G is Hausdorff. Additionally, the right action is basic, as the
map
fiGx560,G—>GxG, (z,9) ~ (z-g,2),

has image G %, go » G and we can define a continuous inverse map

g ><7.7go7r g - g XS,QO,T g7 (J?, y) e (yay_lx)-
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Hence, G is indeed a groupoid correspondence, and the definition of a slice of G
as a groupoid and of G as a groupoid correspondence coincide.

Remark 3.19. For a groupoid correspondence X:H « G, the right anchor map
s:X - GO is a local homeomorphism by definition and the orbit space projection
p: X - X/G is a surjective local homeomorphism by Lemma 3.14. This implies that
every point in X has a slice as an open neighborhood. Since open subsets of slices
are again slices (similar to Lemma 2.8), we get that the topology on X has a base
of slices A°P.

By Proposition 2.10, a groupoid is ample if and only if the compact slices form a
base for the topology on G. We get a similar result for groupoid correspondences
X:H < G if G is an ample groupoid. Thus, in particular, this holds for ample
correspondences.

Proposition 3.20. Let G and H be groupoids and X:H < G a groupoid correspon-
dence. If G is ample, then the set of compact slices X* is an ample base for the
topology on X.

Proof. The proof is inspired by and thus analogous to the proof of Lemma 2.12.

In Remark 3.19 we establish that the slices form a base for the topology on X,
hence we only need to prove that every slice is a union of compact slices. A slice
U c X is homeomorphic via sl to the open set s|y(U) c G°, which is equal to a
union of compact open subsets A; c G° for some i € I (by Lemma 2.11, using that
G is ample). Thus, U = (s|ly) ™ (Ujer 4i) = Uier (s|lo) "1 (A;) is a union of compact
open subsets of the slice U, and hence they are compact slices.

Finally, this base is ample, as any U € X is by definition compact and homeo-
morphic to a subset of the Hausdorff space G and hence Hausdorff. Additionally,
any compact open subset of a slice is again a compact slice, since p and s stay
injective on a subset of a slice. O

Furthermore, we get a result similar to Proposition 2.13.

Lemma 3.21 (compare [AKM22, Lemma 7.7]). Let X:H <« G be a groupoid
correspondence. Consider slices V1,Vo € X, W € G and Z € H. Then the following
subsets are also slices:

ViW = {zg|xeVi, geW, s(z)=r(9)} € X,
(Vi|Va) = {{z1|22) |21 € Vi, wa € Vo, p(an) = p(22)} €6,
Z‘/vl = {h{L’|hEZ, CEEV17 S(h):r([L‘)}EX

If X is an ample correspondence and V1,Vo € X, W € G and Z € H are all compact
slices, then ViW , (V1 |Va) and ZVy are compact slices again.

Proof. For the first part, see [AKM22, Lemma 7.7]. For the second part, note
that since G, H", X' /G are Hausdorff, any pullback over them is a closed subset of
the product, for example, H x5 30 , X ¢ H x X is closed. Thus, the closed subsets
Vixsa0, W, Vix, x/6p Ve, Z xggo, Va of the compact sets Vi x W, Vi x Vo, Z xV,
are again compact. Now, the defined sets are just images of these compact sets
under the canonical continuous maps

fHXs,’HO,rX_)X; Xxp7X/g7pX_)g; XXS,QO,rg'_)Xa

and hence are compact as well. O

We get a similar result as in Remark 2.6 for ample correspondences.
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Remark 3.22. Note that for an ample groupoid correspondence X, the object space
G is a locally compact, totally disconnected, Hausdorff space. Since we have a
local homeomorphism s: X - G° Lemma 2.5 implies that the correspondence X
itself is locally compact, locally Hausdorff and totally disconnected. But X is not
necessarily Hausdorff.

3.3. On proper and tight correspondences. We now consider particularly well-
behaved ample correspondences, namely proper and tight ample correspondences.
We are interested in proper ample correspondences X:H < G over cocompact
groupoids, since then G is ample and the right G-action is cocompact and given
these properties, we can prove our main result of this subsection, Theorem 3.29.
The theorem states that correspondences of this form are given by a disjoint union
of open G-subsets of G, as a right G-space. In simple terms, as a right G-space X
has a particularly manageable form and is rather easy to deal with (for example, in
Subsection 6.4). So first, we define proper and tight correspondences.

Definition 3.23 (compare [AKM22, Definition 3.3]). A correspondence X:H « G
is proper if the map 7 X /G — H° induced by r is proper, that is, the preimage of
every compact set is compact. It is tight if 7 is a homeomorphism.

Note that any tight correspondence is proper, therefore the results of this section
apply to them as well. For a groupoid correspondence X:H « G where H is
cocompact, there is an equivalent definition of X being proper.

Lemma 3.24. Let X:H < G be a groupoid correspondence where H is cocompact.
Then X is proper if and only if the right G-action on X is cocompact.

Proof. For X proper, the map 7 X /G — H° is proper. Since H° is compact, the
preimage of #° under 7 given by X'/G is compact, as well. For the other direction,
let K c H° be a compact subset. Since H is Hausdorff, this implies that K is
closed. Now, as 7 is continuous, 7~} (K) c X/G is closed in the compact space X'/G
and hence compact. [l

Now, we want to investigate correspondences X:H < G where G is ample and the
right G-action is cocompact, since these are the key properties we use in the following
results. Note that any proper correspondence X:H « G where H is cocompact and
G is ample, is of this form (by Lemma 3.24). For a correspondence X:H < G where
G is ample and the right G-action is cocompact, we know by definition that the
orbit space X' /G is compact and Hausdorff. Furthermore, since G is ample, applying
the following Lemma 3.25 to the orbit space projection p: X - X' /G shows that X /G
is totally disconnected. We may apply this lemma, since compactness implies local
compactness, by Lemma 3.14 the projection is a surjective local homeomorphism,
and by Proposition 3.20 the compact slices form a compact open base for the
topology on X.

Lemma 3.25. Consider two topological spaces X,Y with Y locally compact and
Hausdorff and a surjective local homeomorphism f: X — Y. If there is a base of
compact open subsets for the topology on X, then'Y is totally disconnected.

Proof. We want to prove that there is a base of compact open subsets for the topology
on Y, since by Lemma 2.11, this implies that Y is totally disconnected. Consider
an open subset U c Y and a point y € U. Since f is surjective, we find x € X with
f(z) =y. Now, as f is a local homeomorphism and thus continuous, f~}(U) c X
is an open neighborhood of x. Hence, we find a compact open subset K c X with
re K c f1(U). Now, as f is a local homeomorphism, it is open and continuous,
and thus f(K) cY is open and compact. Furthermore, y € f(K) c f(f‘l(U)) =U.
Hence, the image of the compact open base on X is a compact open base on Y. [
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So, by the above discussion for a correspondence X:H < G where G is ample and
the right G-action is cocompact, we know that X' /G is a compact, Hausdorff and
totally disconnected space, that is, a so-called Stone space.

Lemma 3.26. A compact, Hausdorff and totally disconnected topological space X
18 finitely ultraparacompact, that is, every open cover has a finite disjoint clopen
refinement.

Proof. Consider an open cover X = ;e; U; of X. By Lemma 2.11, there is a base
B of clopen sets for the topology on X. Hence, we can write every U, as a union
of elements of the base and get X = U,c; Bj, where for all j, there is an i such
that B; c U; and B; € B clopen in X. Hence, this is a clopen refinement. Now,
as X is compact we get X = Uj_; B;. We define Vj := Bj ~ (|_|g:11 B;), which is a
finite intersection of clopen sets and hence clopen in X. Furthermore, it is a finite
refinement of the open cover {U;};cs, and the V; are disjoint by definition. O

Now, we can use these results to construct a fundamental domain of a correspon-
dence X:H « G, if G is ample and the right G-action is cocompact.

Proposition 3.27. Consider a correspondence X:H < G where G is ample and the
right G-action is cocompact. Then there are disjoint compact slices Uy, ..., U, of X
such that X|G =1L, p(U;) and U := U, U; is a fundamental domain of X, that is,
the projection ply:U — X [G is a homeomorphism.

Proof. There is an open cover of compact slices X = U,;c; W; of X by Proposition 3.20.
As p: X - X/G is a surjective local homeomorphism (and thus an open map), we get
an open cover X /G = U;er p(W;) of the compact, Hausdorff and totally disconnected
space X/G. Then, by Lemma 3.26, we find a finite disjoint clopen refinement
X/G =1~ Vi. AsV; c X/G is a closed subset of a compact space, it is compact
itself. Furthermore, since it is a refinement for each V;, there is a j € I such
that V; ¢ p(W;). Now, as W; is a slice, p|Wj is a homeomorphism and hence
U := p|§[}j (Vi) 2V; is a compact open subset of W}, and hence a compact slice in X
with p(U;) = V;. Furthermore, for i # j we have

UinUjcp (p(U; nUp)) cp (p(U:) np(U;)) cp™(2) = @

and hence the U; are disjoint compact slices of X, so that for U := | |I*; U; the
projection p|y:U — X/G is a homeomorphism. O

Remark 3.28. Note that the fundamental domain U := ||}, U; ¢ X is a compact
open subset such that p|g:U - X'/G is a homeomorphism, but it is not necessarily
a slice of X, since s|y might not be injective.

Finally, we get our main result. By Lemma 3.24, the theorem applies to proper
correspondences X:H < G where H is cocompact and G is ample. Thus, it also
applies to proper ample correspondences X:H <« G where ‘H and G are cocompact
(as we use it in Subsection 6.4) and to tight correspondences X:G <« G where G is
cocompact (as we use it in Section 11).

Theorem 3.29. For a correspondence X:H < G where G is ample and the right
G-action is cocompact, there are compact open subsets Ki,...,K, c G such that
the correspondence X is given by

X x| g (K) e g
i-1 i=1

as a right G-space.
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Proof. By Proposition 3.27 we find disjoint compact slices Uy, ...,U, of X such
that X/G = LIiL,; p(U;) and U := LI}’ U; is a fundamental domain of X'. Now, the
correspondence X is given by

xX=U Xs,G0,r Gg= (l_l Uz) Xs,G0,r G = |_|(Uz Xs,GOr g)
i=1 =1

as a right G-space using Lemma 3.15 and the fact that disjoint union behaves well
with fiber products. Furthermore, by Lemma 3.7 we have U; x5 go , G 2 rél(sX(Ui))
as right G-spaces. Now, K; := sx(U;) ¢ G° is compact and open, since s is a local
homeomorphism and U; is compact and open, and we get

n
X = Hrél(Ki)

as right G-spaces. O



16 FABIAN RODATZ

4. THE BICATEGORY OF AMPLE GROUPOID CORRESPONDENCES

We now want to introduce the necessary information to make ample groupoids
and ample groupoid correspondences into a bicategory &t,. In [Mey22b] the bicat-
egory B of (étale) groupoids, (étale) groupoid correspondences, and continuous
equivariant maps is introduced in detail. In [AKM22] the bicategory &tin; ¢ &R of
(locally compact, étale) groupoids, (locally compact, étale) correspondences, and
injective continuous equivariant maps is introduced. Furthermore, it is hinted that
one could also define the bicategory &t of (locally compact, étale) groupoids, (locally
compact, étale) correspondences, and continuous equivariant maps (see [AKM22,
Remark 6.2]). Thus, we have a chain of bicategories

QStinj c &t c BA.
Now, we are interested in the subbicategory
Gr, c Bt c BGR

of ample groupoids, ample correspondences, and continuous equivariant maps. Note
that compared to the bicategory ®r, we only restrict ourselves on the object level
by only considering ample groupoids. As l-arrows and 2-arrows, we just take all
the 1-arrows and 2-arrows in &t. In this section, we give a short recap on all the
important data involved in the bicategory ®t, of ample groupoids, ample groupoid
correspondences, and equivariant continuous maps. For explicit proofs that this
data indeed defines a bicategory, we refer to [AKM22], where it is proven in detail
that &ty is a bicategory, and it is hinted that &t is a bicategory as well. Now,
as &t, c &t is just restricting the objects, it is a bicategory as well. Finally, we
also mention the important subbicategory of cocompact groupoids and proper /tight
correspondences
Qﬁtco,tight c Qﬁtco,proper c Q5ta~

We start by recalling all the relevant data for the bicategory ®t,. The objects
are given by ample groupoids G. The 1-arrows are ample groupoid correspondences
X:H < G and we take continuous H,G-equivariant maps X — ) as 2-arrows X = ).
Note that 2-arrows are always local homeomorphisms.

Lemma 4.1 (compare [AKM22, Lemma 6.1]). Let X,Y:H & G be groupoid corre-
spondences. Any continuous H,G-equivariant map f: X — Y is a local homeomor-
phism and injective on U € X°.

Proof. For the first part, see [AKM22, Lemma 6.1]. Furthermore, for z,y ¢ U € X¢

with f(z) = f(y), we get s(z) = s(f(2)) = s(f(y)) = s(y) and hence z =y. So f is
injective on U € X°. U

Now, for two ample groupoids G, H, the ample correspondences X:H « G and
continuous H,G-equivariant maps X — ) indeed form a category &, (G, H) where
unit 2-arrows ly are given by the identity maps and the (vertical) product of
2-arrows is given by usual composition of maps, which is associative.

Next, we want to construct a functor og: &r, (G, H) x Gt,(K,G) - &t (K,H),
defining a product on l-arrows and a (horizontal) product on 2-arrows. First, we
define a product on l-arrows. For ample groupoids ‘H and G and ample groupoid
correspondences X:H <« G and Y:G « K, the composition groupoid correspondence
X og Y is defined by the following construction (compare [AKM22, Section 5]). Let

X xgoYi=X xgg0, Y= {(x,y) eX x)Y|s(x)= r(y)}
Let G act on & xgo YV by the diagonal action

g-(zy)=(x-g",9-y)
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forze X, yeY and g € G with s(g) =r(y) = s(x). Let X og Y be the orbit space of
this action, with [z,y] € X og Y denoting the orbit of (x,y) € X xgo ). Note that
since the right G-action on X is basic, the diagonal action is basic as well. Hence,
by Lemma 3.14, the orbit space projection X x5 go » V — X og Y is a surjective local
homeomorphism.

The maps r(z,y) = r(z) and s(z,y) = s(y) on X xgo Y are invariant for this
action, and thus induce maps 7 X og Y - H? and s: X og ) - K°. These are the
anchor maps for the commuting actions of H on the left and K on the right, which
we define by

h'[.’t,y]iz[h'(ﬂ,y], [%y]-k::[m,y-k]
forall he H, x € X, y €Y, k € K with s(h) = r(z), s(z) = r(y), and s(y) = r(k).
This is well-defined because [h-2-g7 %, g-y] = [h-z,y] and [z-g71,g-y-k] = [z,y- k]
for g € G with s(g) = s(z) = r(y).
This construction indeed gives us an ample correspondence.

Proposition 4.2 (compare [AKM22, Proposition 5.7]). The actions of H and K
on X og Y are well-defined and turn this into an ample groupoid correspondence
H < K. If both correspondences X and Y are proper or tight, then so is X og Y.

Proof. See [AKM22, Proposition 5.7]. O

Furthermore, we want to find an ample base for the topology on these spaces.
We start with a technical Lemma 4.3. It immediately implies Proposition 4.4, which
gives us an ample base. Note that we formulate this technical Lemma 4.3 in a more
general form than we need here so that we can use it in a slightly different situation
in Section 10.

Lemma 4.3. Consider an ample correspondence X:H < G, a left G-space Y with an
ample base B for its topology and the orbit space projection m: X x4 go Y - X og) of
the diagonal action as defined above. For U € X* and V € B such that s(U) > r(V),
we denote UV = w(U x4.go, V) and let Bxo,y denote the set of all these UV. Then
Bxogy is an ample base for the topology on X og ).

Proof. First, note that since the right G-action on X" is basic, the diagonal action is
basic as well, and hence by Lemma 3.14, the orbit space projection is a surjective
local homeomorphism. Now, U x5 go . V' is open as U and V are open, and hence
UV is open as well (since local homeomorphisms are open maps). Furthermore,
since G° is Hausdorff, any pullback over G° is a closed subset of the product. Hence,
A xg5g0,YcAxYisclosed. Now, as U c &,V c Y are compact, also UxV c X' xY
is compact, and as X x, go . J is closed the intersection U x, go . V' is compact as
well. Thus, the image of U x4 go ,, V under the continuous quotient map given by
UV is compact.

Next, we prove that 7y v = 7T|U><5 g0, V' U xsgo,V = UV is a homeomorphism.
Using that p|y is injective it is easy to check that my,v is injective as well, and by
definition 7y is surjective. Hence, it is a bijective local homeomorphism, that is,
a homeomorphism. Thus, UV 2 U x, go,. V is Hausdorff, as U x5 go, VcUxV is a
subset of the product of the Hausdorff sets U, V. Thus, the UV are indeed compact
Hausdorff open subsets of X og ).

To see that they form a base, we start with an open subset W c X og J and
a point [x,y] € W. Now, since the preimage under the quotient map is open in
& x5 go Y, we find an open subset W c X x Y such that the preimage is given by
WnXx xs.go, Y. Hence, (z,y) € W and thus we find a compact slice U € X* and a
V € B with (z,y) € U x V c W. Finally, we get [x,y] e UV ¢ W. Now, if we replace
V with some V € B that is a subset of ri,l(s(U )) NV containing y, we additionally
get s(U) or(V).
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Finally, we want to show that this base Bxo,y is stable under taking compact
open subsets. For UV € Byo,y we have seen that UV 2 U x, go , V via 7y,y. Now,
the maps

Uxggo, V=V, (uv)ru, (s|_U1(r(v)),v) “ v,

define a homeomorphism, hence UV 2 V and thus any compact open subset of UV
is given by UW for a compact open subset W c V. As B is stable under taking
compact open subsets, we get W € B and hence UW € Bx.,y. [l

Proposition 4.4. Consider two ample groupoid correspondences X:H < G and
V:G <« K. Then for U e X* Ve Y* with s(U) or(V) the set of all

Uv := {[xay] | (x,y) eU Xs,G0,r V} cXogy

is an ample base for the topology of the composition groupoid correspondence X og Y.
Additionally, for (x,y) € X x;.go, Y we have [z,y] € UV if and only if there is a
unique g € G with s(g) = r(y) = s(x) such that xg™* e U and gy e V.

Proof. The first part is a corollary of Lemma 4.3, as the compact slices of ) form
an ample base for the topology on ). The second statement is proven in [AKM22,
Lemma 7.14]. O

We can now define the (horizontal) product of 2-arrows. For ample groupoid
correspondences X7, Xo:H £ G and Vy,)V2:G £ K and 2-arrows f1: X] = A5 and
f2: V1 = Vo, we define their horizontal product as

J10g f2: X1 06 Y1 = X 0g Vo, (z,y] ~ [f1(2), ()],

which is again a 2-arrow. Furthermore, it is easy to check that 1x og 1y = 1xo,y,
and that the horizontal product commutes with the vertical product. Hence, og is
indeed a functor.

For each ample groupoid G, we define the unit 1-arrow G:G < G as the trivial
correspondence, as discussed in Example 3.18.

The following Lemma 4.5 describes the uniters and associators, which are invert-
ible natural 2-arrows.

Lemma 4.5 (compare [AKM22, Lemma 6.3, 6.4]). Let X:H < G and X;:G; < Gin1
for 1<i <3 be ample groupoid correspondences. The uniters are given by the maps

ly:Hoy X - X, [h,z] > h-x,
rx:XogG->X,  [z.g]ma-g,
which are continuous H,G-equivariant homeomorphisms, which are natural with

respect to continuous H,G-equivariant maps X — X'
The associator is given by the map

assoc: X og, (X og, X3) = (X1 og, Xa) og, X3, [xh [552,563]] > [[$1>$2]7$3],

which is a continuous Gy, Gs-equivariant homeomorphism, which is natural with
respect to continuous G;, Giv1-equivariant maps o;: Xy — X! for 1 <i< 3.

Proof. See [AKM22, Lemma 6.3, 6.4]. O

Finally, we have completed describing all the data involved in defining the
bicategory &t,. In [AKM22, Proposition 6.5], it is discussed that ®t;,; is indeed a
bicategory, that is, that the triangle and pentagon diagrams commute. Thus, also
Br, is indeed a bicategory as the triangle and pentagon diagrams are the same.

Additionally, the ample groupoids and tight/proper ample correspondences form
subbicategories Gtiight © Btproper C Bta, respectively (using Proposition 4.2). If



BICATEGORICAL PERSPECTIVE ON STEINBERG ALGEBRAS 19

we restrict ourselves even further to cocompact ample groupoids and tight/proper
ample correspondences, we get the subbicategories

®tco,tight c 6tco,proper c 6ta7

which we use in Section 10 and Section 11.
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5. THE BICATEGORY OF SMOOTH BIMODULES

Before we define the Steinberg algebra of an ample groupoid, let us introduce the
bicategory in which it lives. This section briefly introduces the bicategory Rings
of rings with local units, smooth bimodules, and bimodule homomorphisms. Note
that a ring is not necessarily unital nor commutative. We want to consider the full
subbicategory Rings, c Rings of unital rings and bimodules and the subbicategory
Ringsg,, c Rings,, of unital rings and finitely generated and projective bimodules.
Hence, we have three relevant bicategories

Ringsg,, c Rings,, c Rings

that we are interested in. For a more detailed introduction, we refer to [Mey22a),
where the bicategory Rings, of unital rings and bimodules is introduced and dis-
cussed in detail. All the relevant bicategories are actually subbicategories of the
bicategory RS of self-induced rings, smooth bimodules, and bimodule homomor-
phisms briefly introduced in [Mey22a, Exercise 4.6.24].

Since the Steinberg algebra of an ample groupoid is not necessarily a unital ring
(see Proposition 6.12), we have to allow non-unital rings as well. Now, non-unital
rings and arbitrary bimodules can get quite difficult to deal with and might not
even form a bicategory. So, we want to restrict ourselves to a more manageable
class of rings, as well as bimodules.

Definition 5.1. A ring S is called self-induced, if the canonical multiplication map
S®sS— S a®b~ ab, is an isomorphism.

Definition 5.2. Let S be a ring and M a left S-module. We call M smooth if the
canonical multiplication map S ®¢ M — M is an isomorphism.
Similarly, we define smooth right and bimodules.

According to [Mey22a, Exercise 4.6.24] the self-induced rings, smooth bimodules,
and bimodule homomorphisms form a bicategory R91®. Now, our Steinberg algebras
are not just self-induced, but have an even stronger property, namely they have
local units.

Definition 5.3. A ring S has local units E c S, if every e € E is an idempotent®
and for any finite set {s1,...,$,} ¢S, we can find e € E such that s;e = s; = es; for
alli=1,...,n.

The rings with local units form a subclass of the self-induced rings.
Proposition 5.4. If a ring S has local units E, then it is self-induced.

Proof. Given s € S we take a local unit e € E of s and then e® s — es = s. Hence, the
multiplication map is surjective. For the injectivity start with 37, a;b; = ij=1 ;Y5
and take a local unit e€ E of ay,...,an,21...,%,,. Then

n n n n
Zai®bi = Zeai@)bi = Ze@aibi :6®Zaibi
=1 =1 =1 =1

m

m m m
=e® Z{Ejyj = Z@@.’Ejyj = Zexj ®yY; = Zl’j ® Y;
j=1 j=1 j=1 j=1

and hence the map is indeed an isomorphism. O

Furthermore, smooth bimodules over rings with local units are well-behaved.
Note that one can formulate and prove an analogous statement to the following
Proposition 5.5 for right S-modules.

3That is, e € S such that e? = e.
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Proposition 5.5. Consider a ring S with local units E and a left S-module M.
Then, M is a smooth S-module if and only if for all m € M there is an s € S with
sm=m.

Proof. If M is smooth the map mult: S®g M — M is surjective and hence for m € M
we find s; € S, m; € M for i =1,...,n such that m = mult(¥}, s; ®m;) = X1, s;m.
Now, if we take a local unit s for sq,...,s,, we have

sm = mult(s ® m) = mult (s ®> simi)
i=1

n n n

= mult (z S$5; ® mi) = mult (Z 5 ® mi) = z s;m; = m.
i=1 i=1 i=1

In the other direction, the surjectivity of S®g M — M is immediate as for m ¢ M

we take as a preimage s ® m. For the injectivity start with a;, z; € S, b;,y; € M with

Yt aibi = XL vjy; and take a local unit e € E of ay,...,a,,%1 ..., 7. Then by
the same argument as in the proof of Proposition 5.4 we get Y | a; ®b; = Z;-Zl T;®Yj,
and hence the map is indeed an isomorphism. 1

Finally, we can define the bicategory fRings of rings with local units, smooth
bimodules, and bimodule homomorphisms as the full subbicategory Rings c RIS,
where we restrict only the objects to rings with local units and take all the 1-arrows
and 2-arrows. We quickly recall the relevant data from [Mey22a).

Theorem 5.6. The following data defines the bicategory Rings of smooth bimodules:

e rings with local units S as objects;

e smooth S, T-bimodules M:S < T as 1-arrows, with the tensor product as the
product and the canonical S,S-bimodule S with multiplication as the unit
arrow for S;

e S T-bimodule homomorphisms f: M — N as 2-arrow, with composition as
(vertical) product and tensor product as (horizontal) product;

e the associators are given by the bimodule isomorphisms

(My ®s Ma) @ M3 - My ®s (Ma ®1 Ms3),
(m1 ®ms) ®msz > my1 ®(ms®ms); and
e the uniters are given by the canonical multiplication maps
S®s M — M, $®m — sm,
MerT - M, m®t~ mt,
which are isomorphisms, since M is a smooth bimodule.
Proof. In [Mey22a, Exercise 4.6.24] the bicategory RNG of self-induced rings and
smooth bimodules is introduced. Now, by Lemma 5.4 every ring with local units is
self-induced and hence our bicategory Rings is just the full subbicategory of SRS
where we restrict ourselves to rings with local units. O
Now, in [Mey22a] the full subbicategory Rings,, c Rings of unital rings, bimodules,
and bimodule homomorphism is introduced in detail. Furthermore, the concept
of bicategorical limits is introduced and examined, which we use in Section 9 and
Section 11. For this, we need to restrict ourselves even further to particularly
well-behaved bimodules over unital rings, namely finitely generated and projective
bimodules.
Definition 5.7. Let S be a unital ring and M a right S-module. Then we say

e M is finitely generated, if there are k € N and a surjective right S-module
homomorphism S* - M; and
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e P is projective, if for every surjective right S-module homomorphism
f:N - M and every right S-module homomorphism g: P - M, there exists
a right S-module homomorphism h: P - N such that foh=g.

For unital rings S, T, we call an S, T-bimodule M finitely generated and projective,
or in short fgp, if the right T-module M is finitely generated and projective.

FEzample 5.8. For a unital ring S, the right S-module S is fgp. It is finitely
generated, as the identity map is surjective. To see that it is projective, we take
f:N - M surjective and ¢:S* - M two right S-module homomorphisms. Now,
there exists n € N such that f(n) = g(1) and hence we can define the right S-module
homomorphism h: S - N;s ~ ns. Finally, we have

(Foh)(s)=f(h(1))s = f(n)s=g(1)s = g(s)
for all s € S and hence foh =g.

Remark 5.9. We want to consider the bicategory Fingsg,, of unital rings, fgp
bimodules, and bimodule homomorphisms. For Ringsg,, to actually be a well-
defined subbicategory Rings,,, c Rings,,, we need that the tensor product of fgp
bimodules is again an fgp bimodule. This can be seen using the characterization from
[Mey22a, Theorem 4.1.13] that states that for unital rings S, T, an S,T-bimodule
M is fgp if and only if the functor M ®p — preserves limits.

Next, we want to establish some properties and technical results on fgp modules.
We start with the most important one, which is the main reason why we want to
consider fgp modules.

Theorem 5.10. For any unital ring S and right S-modules M, N the dual module
M* :=Hom_ g(M,S) is a left S-module via (s-f)(x) = s- f(x) and there is a natural
abelian group homomorphism

N®gM* - Hom_ g(M,N), ne fr[memn- f(m)].
If M s fgp, this natural homomorphism is an isomorphism of abelian groups.

Proof. See [Mac63, Proposition 4.2 on p.147]. O

Note that this basically tells us that for an fgp module M, the abelian group
Hom_ s(M, N) is not that big and stays manageable. In Section 9 we work with
these abelian groups and make use of this statement. Finally, we assemble all the
technical results on this matter that we need.

Lemma 5.11. For a unital ring S and fgp right S-modules M, ..., M, their direct
sum @i M; is an fgp right S-module.

Proof. Fix the canonical homomorphisms ¢;: M; - @7, M;. Consider f:N - M
surjective and ¢: @, M; - M two right S-module homomorphisms. Then for each
i=1,...,n we find h;: M; — N such that foh; = got;. Now, with the universal
property of the direct sum, we find h: @] ; M; -» N such that ho; = h; for all
i=1,...,n. Thus, we get

(foh)oti=fohi=gou
and hence by the uniqueness part of the universal property of the direct sum, it

follows that foh =g. O

Lemma 5.12. Consider two right S-modules P and Q) such that Q is fgp and a
right S-module homomorphism r:@Q — P that admits a splitting map, that is, a map
5:P — @ such that ros=1idp. Then P is fgp.
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Proof. Since r o s =idp it follows that @ — P is surjective. Now, as @ is finitely
generated there is a surjection S™ — @) and hence we get a surjection S™ - @ — P,
and P is finitely generated as well.

Consider f: N — M surjective and g: P — M two right S-module homomorphisms.
Then, as Q is projective, there is a map h’:Q — N such that foh/=gor. Hence,
for hi=h'os:P - @Q — N we have

foh=foh'os=goros=g.
Thus, P is projective as well, and hence P is fgp. O
Lemma 5.13. Let e €S be an idempotent. Then the right S-submodule eS c S is
Jop.

Proof. By Example 5.8 the right S-module S is fgp. Now, we have a surjective right
S-module homomorphism

m:S — eS, r—er

and the canonical inclusion ¢:eS — S is a splitting for m, since (moc)(er) = e*r = er
for all r € S. Hence, by Lemma 5.12 the right S-module €S is fgp.

Lemma 5.14. Let e € S be an idempotent and M a right S-module. Then the
multiplication map
M ®g Se - Me, m® re — mre,

18 an isomorphism of abelian groups.
Proof. The map defined above is induced by the S-balanced map
M x Se - Me, (m,re) » mre,

which is well-defined as for r,r’ € S with re = r’e we get mre = mr’e. Hence, it
induces a well-defined map on the tensor product. Now, an inverse map is given by

Me - M ®g Se, me > me® e.
This map is well-defined as e = ee € Se and for me = m’e we get
me®e=meec=me®e=m'e®e=m'@ee=m'®e.
The defined maps are inverse to one another, since mr ® e =m Q@ re. (|
Lemma 5.15. Let e € .S be an idempotent. Then the map
Hom_ g(eS,S) — Se, frf(e)
is an isomorphism of left S-modules.

Proof. Note first that e = ee € €S, hence f(e) € S is defined, and
f(e) = f(ee) = f(e)e € Se.

The map is injective, since any right S-module homomorphism f:eS — S is uniquely
defined by f(e), as for any r € S we have f(er) = f(e)r. Furthermore, it is surjective
as any re € Se defines a right S-module homomorphism eS — S,er’ — rer’. The
map is obviously left S-linear, where the left S-module structure on Hom_ g(eS,.S)

is given by (r- f)(z) =7 f(z). O

Lemma 5.16. Let M, ..., M, be left S-modules and M := @ M, the direct sum
with the canonical embeddings t;: M; - M and N a right S-module. Then the map

NeosM - @N g M, Y® (zi)isg = (y® i)y

i=1

s an abelian group isomorphism.
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Proof. Tt is easy to check that the map (y7 (z:)y) = (y® ;) is S-balanced and
hence induces a well-defined map as such. For the other direction, it is easy to
check, that the maps N x M; > N® M, (y,z;) — y ® ¢;(x;), are S-balanced and
thus define group homomorphisms N ® g M; - N ® ¢ M that assemble into a group
homomorphism

n
DN esM; > Neos M, (yezi)iy = y®(w:)i,
=1

that defines an inverse to our map. U

Lemma 5.17. Let My,...,M,,N be right S-modules and M := @, M, the direct
sum with the canonical embeddings t;: M; — M, then the map

Hom_ g(M,N) - @ Hom_ s(M;,N), e (fou)i,

i=1
is a left S-module isomorphism.

Proof. The map is by definition left S-linear and well-defined, and an inverse map
is given by

@Hom—ys(Mi’ N) - Hom—,S(Ma N)a (fz ?:1 = f
i=1

with f((ml)le) =Yg fi(my) for (m), € M. O
Finally, we get an equivalent characterization of a right S-module being fgp:

Proposition 5.18. Consider a unital ring S and a right S-module M. Then M
is fgp if and only if there are k € N and an idempotent matriz e € Matgxx(S) (that
is, e? = e) such that M = eS*, that is M is isomorphic as a right S-module to the
image of e.

Proof. Take an fgp S-module M. Since it is finitely generated, we find k € N and
a surjective right S-module homomorphism f: S* - M. As M is projective, there
exists a right S-module homomorphism h: M — S* such that f ok =id. Now, the
right S-module homomorphism h o f: S¥ - S* is given by a matrix e € Maty.x(S),
which is an idempotent matrix, as

e?=hofohof=hoidof=e.

Finally, since f o h =id, h is injective and hence M is isomorphic to the image of
h. Since f is surjective the image of e = h o f is given by the image of A and hence
M =eS*.

For the other direction, we note that the canonical embedding eS* - S* is a
splitting map for the right S-module homomorphism e: S* - eS*, since e is an
idempotent matrix. Now, by Example 5.8 and Lemma 5.11 S* is fgp, and hence by
Lemma 5.12 also M = eS* is fgp. (]
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6. STEINBERG ALGEBRAS AND BIMODULES

In this section, we define the Steinberg algebra Ag (G) of an ample groupoid G,
as Steinberg did in [Ste09, Chapter 4]. In particular, Ag (G) is a (not necessarily
commutative nor unital) ring. But we prove that it has local units, so it is an object
in the bicategory of smooth bimodules Rings. We generalize the construction of
the Steinberg algebra of an ample groupoid to ample groupoid correspondences
X:H <« G and make Ag(X) into a smooth Ag (H),Ar(G)-bimodule. Hence,
Agr (G) is an object, and AR (X) is a l-arrow in the bicategory of smooth bimodules
Rings. In the following Section 7, we also construct an Ag (H),Ar (G)-bimodule
homomorphism A(f):Ar (X) - Ar(Y) for every 2-arrow f:X = Y in &t, and
embed these constructions into a strictly unital homomorphism A: &r, - Rings of
bicategories.

We start in the greatest generality by defining the Steinberg module Ar (X) of an
arbitrary topological space X. Then, for X = G an ample groupoid, we can define a
multiplicative structure on Ag (G) to define the Steinberg algebra of G. After that,
for X = X an ample correspondence, we can define a left and right action on Ag (X)
to define the Steinberg bimodule of X.

From now on until the end of this thesis, we fix a commutative, unital ring R
with the discrete topology.

6.1. Steinberg modules of topological spaces. Fix a topological space X. Let R
be the fixed commutative, unital ring with the discrete topology. The set of all maps
RX :={&: X —» R} is an R-module by pointwise addition and scalar multiplication.
For a subset F' ¢ RX, we write (F)r ¢ R for the smallest R-submodule of RX
generated by F. Furthermore, for a subset A c X, we define 1 4, the characteristic
map of A, via

1, z€A

0, z¢A.

This map is continuous if and only if A c X is clopen. It is easy to check that a map
€ € RX is continuous if and only if it is locally constant. For a subset U ¢ X and a
map §:U — R, we can define its extension by zero map & € RX by putting |y = €
and &|x.y = 0. Hence, for any map & € C.(U, R) (that is, §:U - R is continuous
with compact support supp(§) := f‘l(R N {()}) c X) we get £ € R¥.

14X >R, x»—>{

Proposition and Definition 6.1. Consider a topological space X. The Steinberg
module of X is the R-submodule Ar (X) of RX described in the following equivalent
ways:

(1) (é | €€ Ce(U,R) for U c X a Hausdorff open subset)R;

(2) {§ | supp(§) compact Hausdorff open and |supp(e) contz’nuous};

(3) (1y |U € X a compact Hausdorff open subset)R.

Proof. We prove that (1) c (2) c (3) ¢ (1).

For the first inclusion, take a Hausdorff open subset U ¢ X and a map £ € C.(U, R).
Since subsets of Hausdorff spaces are Hausdorff, supp(€) = supp(¢) is Hausdorff.
Furthermore, ¢ is continuous and R discrete, hence supp(§) is open in U and as U is
open in X, it is also open in X. Thus, supp(€) is a compact Hausdorff open subset.
As §~ is continuous on U, it is also continuous on the open subset supp(§~ )cU.

For the second inclusion, we take a map & X — R with U := supp(§) ¢ X
compact Hausdorff open, such that &|y is continuous. We get that £(U) c R is
compact and hence (since R is discrete) £(U) = {r1,...,r,} is finite. Now, the
subset U; == £ 1(r;) c supp(&) is closed in a compact space and thus is a compact
space itself. Furthermore, U; is open in X (since &|supp(¢) is continuous and supp(§)
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is open). Additionally, as a subset of the Hausdorff space supp(¢), it is Hausdorff
itself. Furthermore, we have U = ¢71(0)uU; u---u U, and hence get £ = X1, rily,.
The third inclusion is immediate. O

Note that the elements of the Steinberg module are not necessarily continuous.
For example, the characteristic map 1y of a compact Hausdorff open subset U ¢ X
does not need to be continuous, as U is not necessarily closed. If we assume X to
be a Hausdorff space, then U is indeed closed, and hence 1y is actually continuous.
In this case, we get Ar (X) = C.(X, R), that is, the Steinberg module is exactly the
space of all continuous maps with compact support.

Now, we want to establish some general properties of the Steinberg module. First,
taking the Steinberg module commutes with coproducts.

Lemma 6.2. For a disjoint union X =|l;c; X;, the Steinberg module over R

An (LX) = @ n(x)
iel i€l
is given by the direct sum of R-modules.

Proof. We use Definition (2) of the Steinberg module. We start by defining the
extension by zero maps
Lt Ar (Xi) > Ar (X)), L33

which are R-module homomorphisms. They are well-defined since X; ¢ X is open.
Now, for any family of R-module homomorphisms f;: Ag (X;) - B and £ € Ag (X),
take S := supp(€) c¢ X compact Hausdorff open and define S; := S n X;. Then, as
X; c X clopen, we get S; ¢ X; compact Hausdorff open. Hence, S =|; S; and as S
is compact, we can write S = |7, S;. Now, &; :={|x, is continuous on its support .S;
and thus & € Ar (X;). We define the map

[AR(X)>B,  £o ifi(@)-

It is an R-module homomorphism, since f; are R-module homomorphisms. Further-
more, we have (f ° Ll)(g) = f(é) = fz(g Xi) = fz(g) for all ¢ and f € AR (Xz)a that iS,
fou = f; for all i. For another R-module homomorphism g: Ag (X) — B such that
got = [fi we get

g(§) = g(ié) = ig(éi) = 2(90 ti)(&) = ifi(fi) = f(&)

and hence f is unique. O

Secondly, for topological spaces with an ample base (as defined in Definition 2.14),
the Steinberg module is generated by the characteristic functions of the elements of
the base.

Proposition 6.3. Consider a topological space X with an ample base B for its
topology. Then the Steinberg module is given by

AR(X):<]IB |B€B>R

Proof. We use Definition (3) of the Steinberg module. Then the set on the right is
obviously a subset of the one on the left. For the other direction, take a compact
Hausdorff open U c X. Since B is a base and U is compact, we find finitely many
U; e Bwithi=1,...,n such that U = U, U;. Now, as U is Hausdorff and U;
compact, U; c U is closed. Thus, U; c U is clopen. Now, for i = 1,...,n define
W, :=U; \ (U;-zl U;), which are disjoint clopen subsets of U and U = i, W;. As U
is open in X and U; c U is open, the W; are open in X. Furthermore, as W, c U is
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closed and U is compact, the W; are compact as well. Thus, W, c U; is an open and
compact subset and hence W; € B. Finally, we have 1y = Y7, Ty, with W; e B. O

Furthermore, the Steinberg module is almost given by the free module over the
characteristic functions of the elements of an ample base B, except that we of course
have 1yyy = 1y + 1y for all Uu V,U,V € B. The following result is inspired by
[Li22, Lemma 2.2].

Proposition 6.4. Consider a topological space X with an ample base B for its
topology. Then the kernel of the surjective R-module homomorphism

W:@R-]IB —>AR(X)
BeB

is given by the R-submodule
S = (]lqu—]lU—]lv | U,V,UI.IVEB)R
and hence Ag (X) is given by the quotient of ®ps R-1p by S.

Proof. First, we note that the defined R-submodule is obviously in the kernel. Thus,
we get an induced well-defined R-module homomorphism

7:@pesR-1p[g - Ap(X), f mod S~ x(f).

For the other direction, we take f:= Y7, 7;1p, € ®pes R-1p such that 7(f) =0
and now want to prove that f € S. Now, we find Uy,...,U,, € B such that for all
i=1,...,n thereis a j = 1,...,m such that B; c U; (at first just take m = n and
U; = B;). We now prove by induction over m that f =0 mod S and hence f € S.
For m =1 we get that B; c Uy for alli=1,...,n. Now, the B; are compact open
subsets of the Hausdorff space U; and hence are clopen in U;. We can make them
disjoint by defining Bj := B; \ (U’ B;) for i = 1,...,n. The B/ are disjoint clopen
subsets of U;, and hence are compact open subsets. Thus, as Uy € B is an element of
the ample base B we get B; € B. Furthermore, we have B; = B{ U---u B and thus

Ti]lBi Eri(]lBi +-~~+]lB£) mod S

foralli=1,...,n (by induction on i, using that S is additively closed). Hence, we
get
f = @ﬂ"ﬂBg mod S
i=1
for fitting 7; € R. Now, as 7(f) = 0 we get 7(@;L; 7ilp/) = 0 and hence as the B;
are disjoint, we get 7; = 0 for all 4 and thus f =0 mod S.

Now, for the induction step, we start with f:= Y1, r;1p, with r; € R~ {0} and
want to find f such that f = f mod S and such that m — 1-many U; are sufficient
for f. We first take all B; c U,, and make them disjoint (as done for m =1). Now,
f mod S is equal to the disjointed version modulo S, so by renaming we can assume
that all B; c U, are disjoint. Next, we fix one of the i such that B; c U,,. Let
J c{l,...,n} denote all the j = 1,...,n such that B; ¢ Uy,,. Then B; c Ujes Bj,
since otherwise there is an x € B; such that x ¢ B, for all j € J and hence x ¢ B; for
all j € {1,...n}~{i} (as the remaining B; are the subsets of Uy, that are disjoint to
B;) and then r; = w(f)(z) = 0, which is a contradiction to our assumptions. Now, as
B; c Ujes By, for all x € B;, we find j € J such that « € B; and hence x is an element
of the open subset B; n B;j ¢ X. So there is some B, € B such that x € B, c B;n B;.
Now, B; = Uzep, B, and for each B], there is a j € J such that B], c B;. As B; is
compact we find finitely many such B’ covering it, that is, we get B; = U%c:l By, with
By, € B and for all k there is a j € J such that Bj, c B;. Since all the B}, are in B; we
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can make them disjoint (similar to m = 1) and after renaming we get B; = | I}_, B},
with B}, € B and for all k there is a j € J such that B;, ¢ B;. Hence, we have

l
f:ri]lBi+er]lBjEriz]lB;€+erI[Bj mod S
j#i k=1 J#i
and after repeating this process for the other B; c U,,, we have found our f’ that

only needs Uy, ...,U,-1 and for which the induction hypothesis applies. Hence, we
get f=f'=0 mod S. O

Next, we want to define an induced map on the Steinberg modules for sufficiently
well-behaved maps on sufficiently well-behaved topological spaces.

Definition 6.5. Consider two topological spaces X,Y with an ample base B for
the topology on X and a local homeomorphism f: X — Y that is injective on U € B.
Define the map

fiAr (X)) > AR (Y), a»ly» Z oz(x)].
zef~1(y)

Proposition 6.6. The above-defined map f. is a well-defined R-module homomor-
phism that sends 1y to 1y for all U € B. Furthermore, we have (fo f'). = fio fy
for two composable such maps f, f'.

Proof. We first want to check that the map is well-defined. It is easy to check that
the map is R-linear. Since Ar (X) is generated by 1y for U € B (by Proposition 6.3)
it is sufficient to check that it is well-defined on these. Since f is open and continuous,
f(U) c Y is again a compact open subset. Furthermore, as f is injective on U, we
have f(U) 2 U, and hence U is Hausdorff. Now, for y € f(U) we find a unique = ¢ U
such that f(z) =y (as f is injective on U) and hence

A0 = Y Tu(e)=1.

zef~1(U)
For y ¢ f(U) any x € f~(y) is not in U and hence 1y (z) = 0 and
LAn)) = 3 Tu(x)=0.
wef~1(U)

Thus, we get that 1y is mapped to Ly for all U € B and 17y € Ar (Y') (using
Definition (3) of the Steinberg module) and hence f, is well-defined.
It is easy to check that the second part follows from

(fof) ' == U ('

yef~1(2)
for all z€ Z. O

6.2. Steinberg algebras of ample groupoids. Now, we turn our attention
to an ample groupoid G. We want to consider the Steinberg module Ag (G) of
G and define a multiplicative structure on it, turning it into an R-algebra. We
start by investigating the given R-module Ag (G). By Proposition 3.20 (and using
Example 3.18) the compact slices G* form an ample base for the topology on G.
Thus, we can apply Proposition 6.3 to G and the ample base G°.

Corollary 6.7. For an ample groupoid G, we have that
Ar(G)=(1y |UeG*) .

Proof. Is immediate from Proposition 6.3 and the discussion above. (]
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Next, we want to define a multiplicative structure on the Steinberg module Ag (G)
of an ample groupoid G that turns it into an R-algebra. That is, we need to define
a multiplicative structure on G that turns it into a (not necessarily commutative
nor unital) ring and behaves well with the R-module structure.

Definition 6.8 (compare [Ste09, Definition 4.4]). For an ample groupoid G, a
multiplicative structure on Ag (G) is given by the convolution

Exn)g)= > &h)n(h™'g)

heGr(9)
for £,ne Ag(G) and g € G.

It is not obvious that for £,m € Ar (G) the convolution £ * 7 defines a function
G — R, as the (seemingly infinite) sum does not need to be defined in R. Neither is
it obvious that this function is in A (G). But it is well known that the convolution
is R-bilinear and hence it is sufficient to look at the convolution of two characteristic
maps of compact slices since they generate the Steinberg algebra (by Corollary 6.7).

Proposition 6.9. For an ample groupoid G and U,V c G compact slices, the
composition UV is again a compact slice and we get 1y + 1y = Lyy.

Proof. That UV is a compact slice follows from Proposition 2.13. The proof of
1y * 1y = 1yy is done in [Ste09, Proposition 4.5]. In Proposition 6.19 we prove a
more general statement (see Remark 6.20). (]

It is now immediate that the convolution is well-defined, that is, that the sum is
finite for all g € G and that the defined function is again in A (G). Furthermore, it is
well known that Ar (G) with convolution is indeed an R-module with a compatible
ring structure, that is, an R-algebra. Note that the ring structure is not necessarily
commutative.

Definition 6.10 (compare [Ste09, Definition 4.12]). A map £ € Ag (G) such that,
firstly, for g € G with 7(g) # s(g) we have £(g) = 0, and secondly, for g,h € G with
5(g) =r(g) = s(h) we have f(hgh™) = f(g), is called a class function.

Proposition 6.11 (compare [Ste09, Proposition 4.13]). For an ample groupoid G,
the center of the Steinberg algebra Ag (G) is given by the set of class functions.

Proof. See [Ste09, Proposition 4.13]. O

Furthermore, the ring structure is not necessarily unital:

Proposition 6.12 (compare [Ste09, Proposition 4.11]). For an ample groupoid G
the Steinberg algebra Ag (G) is unital if and only if the unit slice G° is compact,
that is, G is cocompact.

Proof. The proof boils down to the fact that 1go is the unique map behaving like a
unit with respect to convolution, and it is an element of Ag (G) if and only if the
unit slice G° is compact (for details see [Ste09, Proposition 4.11]). g

So our ring Ag (G) is not necessarily unital, but at least we always find local
units:

Proposition 6.13. For an ample groupoid G, the set
E:={1y |UcG® compact open}
is a set of local units of Ar (G).
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Proof. The set E is a subset of Ar (G), since any compact open subset of G° is a
compact slice. Furthermore, the elements of F are idempotents, as

]]-U *]lU :]lUU :]1U~

Now, given finitely many &1,...,&, € Ar(G), each given by & = Yy .z, rvly for
finite subsets =; c G* and ry € R. We define

U:= CJ U r(V)us(V)cg®
i=1VeZ;

Since 7, s are open continuous maps and the finite union of compact sets is compact,
we get 1y € E. Now, foralli=1,...,n and V € E; we have VU =V = UV and thus

Grly= ) rvlyp=&= ) rvlyy =1y *&.
Ve=Z; VeE;

Hence, F is indeed a set of local units. O

Thus, the Steinberg algebra Ag (G) of an ample groupoid is indeed an object in
the bicategory Rings of rings with local units and smooth bimodules.

FEzample 6.14. For an ample groupoid G given by a discrete group the compact
slices are given by {g} for all g € G (see Example 2.15). Now, by Proposition 6.4 the
Steinberg algebra of G is given by the free R-module generated by d, := 1, with
multiplication given by

0g O 3= Lygy * Ly = Lygn} = Ogh-
Thus, the Steinberg algebra of a discrete group is the group ring
Ar(9) =D R0, = R[G].
9¢G

6.3. Steinberg bimodules of ample correspondences. Now, we turn our
attention to ample correspondences X'. We want to define a left multiplication by
Ag (H) and a right multiplication by Ag (G) on the Steinberg module Ag (X) of
the ample correspondence X' to turn it into a smooth Ag (H),Ar (G)-bimodule.
First, we investigate the R-module Ag (X'). By Proposition 3.20 the compact slices
X¢ form an ample base for the topology on X'. Thus, we can apply Proposition 6.3
on X and the ample base X“.

Corollary 6.15. For an ample correspondence X, we have that
Ap(X) =(1y |Uex?®)p.
Proof. Is immediate from Proposition 6.3 and the discussion above. (|

Now, we define the Ag (H),Agr (G)-bimodule structure on Ag (X).

Definition 6.16. For an ample groupoid correspondence X:H « G we get two
R-algebras (hence in particular they are rings) Ar (), Ar (G) and an R-module
AR (X) and we define an Ar (H), Ar (G)-bimodule structure on Ag (X) by
(6.17) (ax&)(2):= 3 alzg™) &9)

9€G ()

(6.18) (Cxa)(@):= ) ((h)-a(h™'z)
her ()

for (e AR(H), a € Agr(X), € AR (G) and z € X.

Again, it is not obvious that these convolutions define functions X — R, as
the (seemingly infinite) sum does not need to be defined in R. Furthermore, it is
not obvious that the functions are in Ag (X) and that this definition indeed gives
Agr (X) a bimodule structure. But similar to convolutions on groupoids, it is easy
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to check that this convolution is R-bilinear and thus this follows from the following
Proposition 6.19, using that the Steinberg modules of X',H and G are generated by
characteristic functions of compact slices (by Corollary 6.15 and Corollary 6.7).

Proposition 6.19. Consider an ample groupoid correspondence X:H < G and
compact slices U c H, V. c X and W c G. Then 1y = 1y = 1y, as well as
Ilv * ILW = Ilvw.

Proof. First, note that by Corollary 6.15 and Corollary 6.7 the functions 1,1y
and 1y are actually elements of the respective Steinberg modules. Furthermore,
UV, VW c X are again compact slices by Lemma 3.21 and their characteristic maps
1yv, Tyw are indeed elements of Ag (X). Next we want to prove the equalities
]lU * ]lV = ]lUV and ]lv * ]1W = ]lvw. For z € X we get

Ly +1y)(2) = > Ly(zg ") -1w(g) = > Ly (zg™")
9€G5(x) ge(slw ) (s(2))
Ly (zg™), if 3g € W with s(g) = s(x)
- 0, else

|1, if 3g e W with s(g) = s(z) and g™t €V
- 0, else

=lyw

as (s|lw)™(s(z)) is either empty or the singleton set. An analogous computation
shows ]lU*]lV:]lUv. O

Hence, both left and right multiplication by convolution are well-defined, that is,
the sums are finite, and the defined functions are indeed in Ag (X). Furthermore,
it is now easy to check that the left and right multiplications are compatible, that
is, that (¢ * a) * & = ¢ * (a * £). Hence, this convolution indeed gives Ag (X) an
Agr (H) ,Agr (G)-bimodule structure.

Note that this Proposition 6.19 is a more general formulation of Proposition 6.9
using that one can view G as the trivial groupoid correspondence G:G < G (by
Example 3.18). The proof above is inspired by the proof of [AKM22, Lemma 7.7]
and the proof of Proposition 6.9, which can be found in [Ste09, Proposition 4.5].

Remark 6.20. In Example 3.18 we have discussed that the slices of the trivial
correspondence G:G « G are exactly the slices of the groupoid G. Thus, the
Steinberg algebra of G as a groupoid and as a correspondence are the same sets. If
we take a closer look at the definition of the convolution on Ag (G) and of the left
and right action of Ag (G) on Ag (G), one can see that they are all equal to

E*mig) = 3 &(=) n(y).
ry=g
Hence, the defined Ag (G),Ag (G)-bimodule structure on Ag (G) is by definition
exactly the trivial one given by multiplication.

Now, we get to our next result, which says that this bimodule Ag (X) is indeed a
smooth bimodule and hence a 1-arrow in the bicategory QRings of smooth bimodules.

Proposition 6.21. The above-defined bimodule structure on Ag (X) is smooth.

Proof. Since both Ag (H) and Ag (G) have local units (by Proposition 6.13), using
Proposition 5.5 we only need to prove that for all « € Ar (X') there are ( € Ag (H)
and £ € Ag (G) such that ( * a = a = a * . First, consider a = 1y for U € X®. Since
U is compact and 7 is continuous, 7(U) c H° is a compact subset. As H" c H
open and H? is a base for the topology on H (by Lemma 2.9 and Proposition 2.10),



32 FABIAN RODATZ

for all h € 7(U) there is a compact slice V}, € H* with h € V}, c H°. Thus, we get
r(U) ¢ Uner(vy Vi © H° and because of compactness we find V; ..., V,, such that
r(U) c U, Vi c HO. Now, V := U, Vi c H® is a compact slice (as a finite union
of compact sets, it is again compact) and since r(U) c¢ V we get VU = U. For
a=Yy" 1y, we find for each U; a compact slice V; c H° such that V;U; = U;. Then
Ve=U2V;c HO is again a compact slice and we get VU; = U; for all i =1,...,m.
Thus, for =1y e H*, we get (ra =1y * X rily, =X rilyy, = Sie rily, = a.
Analogously, one can construct £ € A (G) such that « * £ = a. Actually, since s is
an open map (by Definition 3.16 it is a local homeomorphism) this case is easier
since we can just take V := ", s(U;) and ¢ := 1y, as s(U;) c G° is open. Hence,
AR (X) is indeed a smooth bimodule. O

Remark 6.22. Furthermore, from the proof of Proposition 6.21, we can see that the
characteristic functions 1y € Ag (X)) not only span Ag (X) as a R-module, but also
as a right A (G)-module (and as a left Ag (H)-module).

6.4. Right modules of proper correspondences. We now want to get a better
understanding of the Steinberg bimodule of a proper ample correspondence X:H < G
with H,G cocompact. We assume that H and G are cocompact, so that the Steinberg
algebras Ag (H) and Ag (G) are unital (by Proposition 6.12). We show that for
cocompact H and G and a proper ample correspondence X:H < G the Steinberg
bimodule Ag (X) is a finitely generated and projective (fgp) right Ag (G)-module.
This is not surprising as by Theorem 3.29 the correspondence X is rather trivial as
a right G-module, so its Steinberg bimodule Ag (X) should also be rather trivial as
a right Ar (G)-module.

Recall that for a proper ample correspondence X:H « G with H,G cocompact
there are compact open subsets Ki,..., K, € G° such that the correspondence X is
given by

Xz Hrél(Ki)

as a right G-space by Theorem 3.29 (and the discussion right above it). Next, we
want to use the following Lemma 6.23 for YV :=G and V := K.

Lemma 6.23. Let Y:H < G be an ample correspondence and V ¢ H® a compact
open subset. Then the right Agr (G)-submodule Ag (rg,l(V)) of Ar () is given by
1y » Ag (Y).

Proof. We want to show that the two submodules Ag (r3'(V)), 1y * Ag (V)
of Ar(Y) coincide. We use Definition (3) of the Steinberg module. Consider
Lw € Ag (r3(V)) with W < r3/(V) a compact Hausdorff open subset. Then
ry(W) c ry(rj_,l(V)) c V and hence VW = W and

]lw :]lvw :]lv *]IW E]lv *AR(y)

For the other direction, take 1y * 1y € Ty * Ag (¥) with W c Y a compact Hausdorff
open subset. Then ry (VW) c r4(V) =V and hence VW c r3' (V). Thus, we get
Ly * Ly = Lyw € Ag (r3H(V)). O

Hence, we get Ar (rél(Ki)) =1k, » Ar (G) and since the compact open subset
K; c G° is a slice of G, we get 1, € Ag (G). Furthermore, since K; c G° we have
KK, = K; and thus 1k, * 1x, = 1k, x, = 1k, and hence 1k, is an idempotent of
AR (G). So by Lemma 5.13 the right Ag (G)-submodule

AR( él(Kl)) = ]lK,i * AR (g) C AR (g)

is fgp.
Finally, we have all the tools we need to prove the following Theorem 6.24.
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Theorem 6.24. Consider two cocompact ample groupoids H,G and a proper corre-
spondence X:H < G. Then the right Ar (G)-module Ag (X) is given by

Ar (X) = @]lm * AR (9)

for compact open K; c G and hence is fgp.

Proof. By Theorem 3.29 we find compact open K; ¢ G° such that X = ||, rg' (K;).
Now, by Lemma 6.2 and Lemma 6.23 we have

An(X) = Ap (Qrgl(m)) - éAR (rg (K1) = »{él]lm « Ap (G)

as right Ar (G)-modules. By the discussion below Lemma 6.23 the right Ag (G)-
modules Ag (rg'(K;)) are fgp and hence their direct sum @}, Ag (rg' (sx(U;)))
is fgp as well (by Lemma 5.11). Thus, Ag (X) is an fgp right Ag (G)-module. O
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7. THE HOMOMORPHISM TO RINGS

In this section, we show that the definition of the Steinberg algebra of an am-
ple groupoid and the Steinberg bimodule of an ample groupoid correspondence
can be extended to a strictly unital homomorphism A: &t, - Rings from the bi-
category of ample correspondences to the bicategory of smooth bimodules. We
define the Steinberg algebra of an ample groupoid and the Steinberg bimodule
of an ample correspondence in Section 6, so what is left to do is to construct an
Ag (H) ,Agr (G)-bimodule homomorphism A(f): Ag (X) - Agr ()) for every contin-
uous H,G-equivariant map f: X = ) and show that it is functorial. Furthermore,
we need to define a multiplication map px y: Ar (X) ®a,(g) Ar (V) = Ar (X og V)
and, in the end, prove that all the data indeed has the properties of a strictly unital
homomorphism of bicategories. Finally, previous results show that the homomor-
phism restricts to a strictly unital homomorphism A: &teo proper = Ringsg,,. We
use the latter in Section 11.

Again, we fix a (commutative, unital) ring R with the discrete topology. First,
we have to define the homomorphism on 2-arrows. For ample correspondences
X,V e ®r,(G,H) and a 2-arrow f: X = Y, that is, a continuous H,G-equivariant
map f:X - Y, we want to construct an Ag (H),Agr (G)-bimodule homomorphism
A(f):Ar (X) - Ar (Y). We use the construction from Proposition 6.6 and show
that it has all the desired properties.

Lemma 7.1. Consider a continuous H,G-equivariant map f:X — Y. Then the
R-linear map

A(f) = o Ap (X) > Ap (), aw ly hY a<x>],
zef 1 (y)
is an Ag (H),Ag (G)-bimodule homomorphism that sends 1y to 1y for all com-
pact slices U € X?.

Proof. By Proposition 3.20 the compact slices X* form an ample base for the
topology on X. By Lemma 4.1 f is a local homeomorphism and injective on U € X®.
Thus, we can apply Proposition 6.6 to get a well-defined R-linear map A(f) := f
that sends 1y to 1y for U € X*. So we only need to check that this map is indeed
an Agr (M) ,Ar (G)-bimodule homomorphism. We have

AP+ = 3 (ax@)= 3 3 alzg™) &9

zef~1(y) zef~1(y) 9€9s(a)
= > > alwg )= > AN()(yg ) -&(9)
9€Gs(y) zef~1(y) 9€Gs(y)

= (A() (@) * &) ()
for a € Ag (X), £ € Ar(G) and y € Y. Similarly, we get A(f)(¢*a)=(* A(f)(a)
for (e Ap(H), a € Ag (X).
Proposition 7.2. For ample groupoids G, H the construction above defines a functor
Ag a6, (G, H) - Rings(Agr (G), Ar (H)),
X~ AR (X) s
Proof. The functor is well-defined, since by Proposition 6.21 Ag (X)) is indeed a

smooth bimodule and by Lemma 7.1 A(f) is indeed a bimodule homomorphism.
Now, the identity map is sent to the identity map. Thus, we have

Agn(lx) =1a,x)-
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Additionally, for f:) - Z and f: X - ) we also get

Agau(fof')=Agnu(f)oAgau(f’)
since (f o f")+ = f« o fi (by Proposition 6.6). Thus, Ag 3 is indeed a functor. O

Secondly, we want to define the natural bimodule isomorphisms px y.

Definition 7.3. For ample correspondences X:H < G, V:G « K define the map
iy Ar (X) x Ap (V) > AR (X 0g V),

(. 8) =[xyl > alzg™)-Blay) |-
gEgS(JJ)
Proposition 7.4. The above-defined map fix,y is well-defined and Ar (G)-balanced.
Thus, it induces a unique group homomorphism

pxy AR (X) ®a,) Ar (V) = Ar (X 0g V).

This group homomorphism pux y is an Ar (H),Ar (K)-bimodule homomorphism
and is natural in X and Y.

Proof. Note first that [z,y] — Y9G a(zg™') - B(gy) does not depend on the
representation of [z,y], since a different representative (z§~',gy) € [z,y] only
changes the order of the summands. To prove that this actually defines a function
X og Y — R that lies in Ag (X og V), we first see that the definition is R-linear in
a and S, so it is sufficient to consider « =1y and =1y for U € X*,V € Y* (using
Corollary 6.15). Using Proposition 4.4 it is easy to check that 1y ® 1y is sent to 1y
and 1yy € Ag (X og V). Thus, for any o € Ag (X) and 8 € Ag ()) the function
Zxy(a® B) is indeed well-defined (that is, independent of the representative and
the sum is finite and hence defined in R) and an element of Ag (X og Y).
Furthermore, it is easy to check that iy y is additive in both arguments and
hence by the following computation it is Ag (G)-balanced. We have
fxy(ax&B)= Y (ax&)(zg™)-Blgy)

9€Gs(x)

= > Y alzg'hh)-£(h)-Blgy)

9€Gs(w) h€G (g1

= > > afx(hg)t)-£(h)-Blgy)

heGr(g) 98G5 ()

= 2 ) alek™)-&(h)- B(h ky)

hggr(k) k?Egs(z>
= > azk™) - (ExB)(ky)
keGs ()
=pxy(a,§* )
for a e AR (X),£€ Ar(G),B8€ Ar(Y) and [z,y] € X og V. Now, by the universal
property of the tensor product, we get a unique induced group homomorphism f1x 5.
With the canonical Ar (H),Agr (K)-bimodule structure on Ag (X') ®4,(g) Ar (Y),
the group homomorphism gy is also an Ag (H) ,Ag (KC)-bimodule homomorphism,
since we have

ey (¢ * (@ B))([2,y]) = pay((¢ * ) ® B) ([, y])
= > (Cxa)(zg™")-Blgy)

9€Gs(x)

= > Y (h)-athtzg™)-Blgy)

9€Gs(2) heHr(zg™1)
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= Y (X ahag™)-Bley))

heHT(®) gégs(hqw)
= > ) -pxy(a®p)(h [z,y])
heHr{z.y])

= (¢x pay(ae ) ([x.])
for (e AR (H),ae Ag(X),B€ Ar(Y) and [z,y] € X og V. Analogously, we have
pxy((@®B) = n)([z,y]) = pxy(ae (8+n)([z,y])
= 3 alzg - (Bxn)gy)

9€Gs(x)
= Y alag)-( Y Blayk™) (k)
9€Gs(x) kels(gy)

= Y (X atwg™)-Bloyk™)) k)

keKs(y)y  9€9s(a)

= > pay(aep)([z,ylk™") (k)

kels(y)
= (pxy(a®B) «n)([z,y])

for ae Ag(X),8€ Ar(Y),ne Ag(K), and [z,y] € X og V.
For the naturality we need to prove that for ample correspondences X, X": H < G
and V,)':G < K with 2-arrows f: X = X’ and f:) = )’ the diagram

Hx,y

AR (X) ®arg) Ar(Y) — 4z (X og )
lA(f)®AR<g>A(f') lA(fOQf’)
AR (X") ®a,(9) AR (V') —2— AR (X' og V')

commutes. We have
(A(fog f')opxy)(aeB)([+',y'])
= >, pxy(aeB)([z,y])
[z,yle(fof )1 ([z",y'])
= > > alzg™h)-Blgy)
[z,yle(fof )1 ([2",y']) 9€Ts(a)

= > a(zg™) - Blgy)

9¢Gs(a’)
[z,yle(fo ) ([=",9'])

= > azg ) Blgy)
9€G5(at)
zef ! (2')
yef' ()

- (2 @) ( T W)

9€G (xry wef~L(x'g™t) yef " (gy")

= Y AN (a)@'g ) AUS)B) (gy)

9€G 5 (ar)
= paryr (A(f) (@) @ A(F)(8))([2",y'])
= (a3 o (A © A() (8 B)([+',4'])
for a e Agp (X),Be Ag (YY) and [2/,y'] € X' og V. O

The following result is inspired by [Mil23, Proposition 2.9].
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Lemma 7.5. The group homomorphism

1x,y AR (X) ®a,(g) Ar (V) > Ar (X 0g V)
s an isomorphism.

Proof. We want to define a map
Ar(XogY) = Ap(X) ®a,c) Ar (V)

that is an inverse to px y. By Proposition 4.4 the set Bx.,y is an ample base
for the topology of & og Y and thus we can apply Proposition 6.4 to get that the
Steinberg module Ag (X og )) is given by the quotient of the direct sum

@ R-lyy
UVeBXogy

by
(luv - 1u,v, = Lu,v, | U V1, UaVa, UV = Ul Vi wUsVa € Baogy)

as an R-module. Now, at first we define the R-module homomorphism

Uvée R']lUV%AR(X)®AR(g)AR(y)7 lyy —» 1y o1y
EBxogy

and check that it is well-defined. Take Uy,Us € X* and Vi, Va € Y with s(U;) o r(V;)
for i = 1,2 such that U1V} = UsV,. Then we get the compact slice W := (U |Us) ¢ G
(by Lemma 3.21) and it is easy to check that we have Vi = WV,, Uy W = Uss(W)
and s(W)Va = V. Thus, we get
]lU1 ® ]l\/1 = ]lU1 ® II‘WVQ = ]lU1 ® ]lwllvz = ]lUI]lW ® ]1V2

= ]lU1W ® ]lv2 = ]leS(W) ® ]lv2 = ]lUg]ls(W) ® ]lV2

= ]le ® ]ls(W)1V2 = ]lU2 ® ]ls(W)VQ = ]lU2 ® ]lv2
and hence the map is well-defined. Next, we check that

(Luv - 1u,v, — Lu,w, | UlViL, U Vo, UV = Ul Vi uUs Vs € Brogy)

is in the kernel of this R-module map. Take U1 V1,UsVo, UV = Ui Vi uUsVs € Byogy,
then, without loss of generality (see the end of the proof of Lemma 4.3), we have
U=U;=U; and V =V, uV; for Vi, V5 € Y* such that UV =UV; uUV;5. So we get

Iy » 1y @1y :1U®Ilv1 +1U®1V2.
Thus, the map descends to a well-defined R-module homomorphism
AR (X ogY) — Ar(X) ®a,g) Ar(Y)

that sends 1yy = 1y ® 1y and is hence inverse to px y. O

Finally, we can combine all the discussed data above to a strictly unital homo-
morphism &r, — Rings.

Theorem 7.6. We can combine the constructions above to a strictly unital homo-
morphism

A: Br, > Rings
given by the data:

e a map on objects given by G — Ag (G) sending an ample groupoid G to its
Steinberg algebra Ag (G);
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o for G, H € Br, the functor
Agp: v, (G, H) > Rings(Ag (G), Ar (H) ),
X~ Ar(X),
[iX =Y A(f):Ar(X) > Ar (),
that sends an ample correspondence X to its Steinberg bimodule Agr (X) and
a continuous equivariant map f to the bimodule homomorphism A(f); and

o for ample correspondences X:H « G, ¥:G « K natural (in X and )
bimodule isomorphisms

px,y AR (X) ®a,) AR (V) = Ar (X 0g V).

Proof. The homomorphism is well-defined on objects, because of Proposition 6.13
and Proposition 5.4. The functor on 1- and 2-arrows is defined and handled
in Proposition 7.2. The definition of px ) can be found in Definition 7.3 and
Proposition 7.4. In Proposition 7.4 and Lemma 7.5, we show that it has all the
necessary properties. In Remark 6.20, we discuss that our homomorphism is indeed
strictly unital.

Thus, all that is left to prove is that the three required diagrams commute. For
ample correspondences X:H < G, V:G « K and Z: K < £ the diagram

px,y®id
E—

(AR (X) ®4,(0) AR (Y)) ®ap(x) AR (Z) AR (X og V) ®anx) Ar(2)

;lassoc El/wmgy,z

AR(X) ®a,(0) (AR (D) ®a,c) AR(Z)) AR (X ogY)ox 2)
;lid@uyyz ;J/A(assoc)

AR (X) ®a,(9) Ar (Vo Z2) —222 s Ap(X og (Y ox Z))

commutes, because for a € Ap (X),8€ Ag(Y),y€ Ar(Z) andzx e X,yeY,z€ Z
going counterclockwise, we get

(M&yo}czoid@ﬂ;;zoassoc)((a@ﬁ)®’Y)([CE,[?J,Z]])
= px,yorz (o, iy, z (B ‘XW))([””’ [yvz]])
= Z a(xg_l)-uy,zw@’)’)(g[yaz])

9€G s (x)
= > alzg) ¥ Bleyk™h)-y(kz)
9€G s (x) keks(y)

= > > azg™h) Blayk™h) -y (k2).

gegs(m) ke’Cs(y)

And going clockwise, we get

(A(assoc) O llxogy,Z O flx,y ® id)((a ®0)® 7)([3@, [y, z]])

= pxogy,z (nay(a, B), 7)([[3:, Y], z])
= Z /L-ny(avﬁ)([xay]kil)"Y(kz)

kels((e,uD)

= > Y alzg ) Blgyk™) - y(k2)

kels((e,y1) 9€9s(2)

= > Y alzg)-Blayk™) v(kz).

9€G () kel s(2)
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Hence, we have the same result and thus the maps are the same and the diagram
commutes. For an ample correspondence X:H « G the diagram

AR (X) ®arg) Ar(9)

Hx,g
multl: \

Agr (X) T AR (X og Q)

2y

commutes, since for « € Ag (X),£ € Ag(G) and z € X, we have
(AGrx) o pag) (@ ® ) (x) = px (e, &)([w.5(x)])
= > alzg™) €&(gs(x))

9€G s ()
= ) alzg™)-&(9)
9€G s (x)
= (a*&)(x)
=mult(a ® &) (x).
Analogously, the diagram

Ar (H) ®apn) Ar (X)

HH,x
multl’é \

Ap(X) ¢——— Ap(Hon X

R (X) o An(Hon X)
commutes. Hence, all the required diagrams indeed commute, turning A into a
strictly unital homomorphism. O

Remark 7.7. Restricting the domain bicategory &t, to the subbicategory &tco proper
of cocompact ample groupoids and proper correspondences leads to a strictly unital
homomorphism

A: BTeo proper > Ringsigy,,,
since for a cocompact ample groupoid G, the Steinberg algebra Ag (G) is unital
(by Proposition 6.12) and for a proper ample correspondence X:H < G between
cocompact groupoids H, G the Steinberg bimodule is fgp (by Theorem 6.24).
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8. FILTERED COLIMITS

In this section, we take a little excursion and establish the necessary knowledge
on filtered colimits in the categories Top, Ring, AbGroup, Set and R-Mod for the
fixed (commutative and unital) ring R, that we need in the next sections. The
knowledgeable reader may only skim over or even skip this section.

Filtered colimits form a particularly manageable class of colimits since they
behave well with the forgetful functors Ring — Set, Ring — AbGroup, as well as
AbGroup — Set. In general, forgetful functors like these are only right adjoints
and hence behave well with limits, but not with arbitrary colimits (for example
they do not preserve coproducts). That is why we want to restrict ourselves to
filtered colimits, which these functors actually preserve and create. This means that
we can explicitly construct filtered colimits in Set and we can define a canonical
abelian group and unital ring structure on them to turn them into filtered colimits
in AbGroup and Ring. Furthermore, we can define a canonical topology on the
filtered colimit in Set to get the filtered colimit in Top. This is less surprising, since
this actually works with all colimits in Top, as the forgetful functor U:Top — Set is
also a left adjoint and hence preserves all colimits. The same goes for the forgetful
functor U: R-Mod — AbGroup, and hence a filtered colimit in R-Mod is given by the
filtered colimit in AbGroup with a canonical R-module structure. We deal with the
two more believable cases last and in less detail

So now, first, what is a filtered colimit? A filtered colimit is a colimit of a diagram
over a filtered category. A filtered category can be viewed as the generalization of
a filtered preorder. A preorder? (X, <) is called filtered, if for any two elements
z,y € X there is an upper bound, that is, an element v € X such that z < u and
y < u. For example, the preorder (N, <) is filtered. This notion of being filtered can
be generalized to categories.

Definition 8.1 ([AM15, Definition 3.6]). A category J is called filtered, if it is
non-empty and
(F1) for two objects z,y in J, there is an object z in J and arrows f € J(z,z),
g€ J(y,2); and
(F2) for two arrows f,g € J(x,y), there is an object z in J and an arrow
ke J(y,z) with kf = kg.
Definition 8.2. For a diagram F:C — D over a filtered category C that admits a
colimit, we denote its colimit by h_r)nF and call it a filtered colimit.

As mentioned above, the category induced by a filtered preorder (for example,
(N, <)) is an important example of a filtered category. Now, the colimit of a diagram
over (N, <) is called an inductive limit and is very well understood. This is also
where we borrow our notation for a filtered colimit from, as h_n)lF is the standard
notation for an inductive limit. The colimit of a diagram over a filtered category
can be viewed as a generalization of an inductive limit and behaves similarly. If we
have a diagram over a countable filtered category, the colimit actually is given by
an inductive limit (see Lemma 8.11 and Lemma 8.12).

From now on we fix a small filtered category C. Let D be one of the categories
Ring, AbGroup or Set. We define D as a placeholder for all three of these categories
to cover all three cases in one go. Let F:C — D be a diagram over C in D. Now, we
want to construct a colimit of F' in D.

Definition 8.3. Define the set

Ou:= || F(e)

ceCO

A preorder is a reflexive and transitive binary relation.
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and the equivalence relation generated by (x,c¢) ~ (Ff(x),d) for all ¢,d € C°,
x e F(c) and f:c - deC. Let O. be the set of equivalence classes with elements
denoted as [z, c] € O.. We get canonical maps t.: F(¢) - O., z ~ [z,c].

In case D = AbGroup, that is, (F(c), +) is an abelian group for every c € C°, we
define an abelian group structure on O. by

[z,c]+[y,d] = [Ff(z) + Fg(y), 2]

forc,deC’ ze F(c),ye F(d) and 2€C°, fic— z, g:d - z (given by (F1)). In case
D =Ring, that is, (F(c), +, ) is a unital ring for every ¢ € C°, we define a unital ring
structure on the set O., where addition is defined as above and multiplication is
given by

[z,c] [y,d] = [Ff(x) 'Fg(y),z]
for ¢,d e C% x e F(c),ye F(d) and z€C, fic - z,g:d —» z (given by (F1)).

Remark 8.4. Note that the equivalence relation ~ generated by (x,c) ~ (Ff(x), d)
is given by the relation defined as

(z,¢) ~ (y,d) <= Af:c > e,g9:d - e such that Ff(z) = Fg(y)

for all x € F(c),y € F(d). Because of transitivity, any equivalence relation generated
by (z,¢) ~ (F f(z),d) must contain these relations, and hence it is sufficient to check
that this relation indeed is an equivalence relation. Now, reflexivity and symmetry
follow by definition, and (F1) and (F2) (from Definition 8.1) together imply that
the defined relation is transitive.

Lemma 8.5. For D = AbGroup (D = Ring, resp.) the above-defined addition (and
multiplication, resp.) is well-defined and satisfies all the abelian group azioms (unital
ring axioms, resp.) turning O. into an abelian group (unital ring, resp.). The
canonical maps t.: F(c) - O.,x = [x,c] are group homomorphism (unital ring
homomorphism, resp.) and define a cone 1: F = O..
Proof. First, we prove that the operations on O., are well-defined. We denote the
operation as * to prove the case * := + and * := - simultaneously. This works since
the definition of both operations is

[#,c] * [y,d] = [Ff(2) * Fg(y), z]-
for ¢,d € C°, z € F(c), y € F(d) and z € C°, fic —» 2, g:d — z (given by (F1) in
Definition 8.1). Now, we take different representations [Fa1 (x),c'] = [x,c] and
[Fag(y),d'] = [y, d] given by aj:c - ¢’,;az:d - d’ € C and by (F1) we get 2’ € C° and
flid =2 g':d - 2. Now, again by (F1) we find 2" € C* and f":2 — 2", g": 2" — 2".
Hence, we have two parallel maps

” ’
g'of oar ”
c___ ¢z

f”of

and by (F2) we find n € C® and k1:2”" - n such that ky0g” o f'oay = ky o f” o f.
Now, we have two parallel maps

kiof'og
n
ki10g'’og’oas
and hence by (F2) we find m € C° and ky:n — m such that
kaokiof'og=keokiog”og oas.
Now, with k := kg o k1 we get that

[I’,C] * [y’d] = [Ff(l‘) * Fg(y)vz]
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Fko f")(Ff(x)* Fg(y)),m]

F(ko f"o f)(x)+F(ko ["og)(y),m]
F(kog"of'oa)(x)* F(kog"og oaz)(y),m]
Fkog")(F(f om)(x) % F(g' 0 a)(y)),m]
F(f"0a1)(x) + F(g' 0 az)(y), ']

F(ar)(x),¢'] * [F(a2)(y),d]

using that F'(ko ) and F(kog") preserve the * structure and that F' is functorial.
Hence, * is well-defined.

Secondly, given a finite number of elements in O.. using (F1) repeatedly, we can
choose representations that are all in the same F'(c) for some suitable ¢ € C°. Hence,
O.. inherits all the abelian group (unital ring, resp.) axioms from F(¢). In the unital
ring case, the unit of O. is given by [1,c] for any c € C°.

Finally, by the construction of the abelian group (unital ring, resp.) struc-
ture on O. the canonical maps t.: F'(c) - O. are group homomorphisms (unital

ring homomorphism, resp.). Furthermore, they are natural in f:¢c - d € C as
(tao Ff)(z) = [Ff(z),d] = [z,c] = te(z) for all z € F(c). O

1}
— e, r—— — —

In other words, in any case for D the constructed O. is an object in D and
1:F - O. is a cone. Now, we want to prove that they indeed form a colimit of the
diagram F', that is, that «: F' - O. is universal.

Proposition 8.6. The object O. € D and the cone v: F' = O.. form a colimit of the
diagram F' in the category D, that is, we have H_I)IIF =0..

Proof. Consider an object S € D and a cone under F' with nadir S called a: F' = S.
Now, « is given by morphisms «.:F(c¢) — S (that is, maps/group homomor-
phism/unital ring homomorphism, respectively, depending on D) that are natural
in ¢, that is, a. = ago F f for all f:c - deC. Now, we can define the map

a: 0.~ S, [z,c] » ac(x).

This map is well-defined by the naturality of the a.. Furthermore, if we have an
operation * on objects of D (that is, in case D = AbGroup or D = Ring) then

a([z,c) * [y,d]) = a([Ff () * Fg(y), 2]) = o= (Ff(x) * Fg(y))
a:(Ff(@)) * ax(Fo(y)) = 6([Ff(2),2])  a([Fg(v), =])

=a([x, c]) * a([y, d])
for ¢,d € C°,z € F(c),y € F(d) and z € C°, fic - z,g:d — z (given by (F1) in
Definition 8.1). Additionally, in case D = Ring we have
a([1,c]) =ac(l)=1€S.

Hence (for all cases of D) & is indeed a morphism in D.
Now, by construction & is the unique morphism such that a. = & o ¢, for all
ceCl. O

Finally, since the construction of the colimits in Set, AbGroup, and Ring are the
same, we get the following Corollary 8.7.

Corollary 8.7. The forgetful functors
U:Ring — AbGroup,
U: AbGroup — Set, and
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U:Ring — Set
create and preserve filtered colimits.

Furthermore, the previous results can be extended to the category of topological
spaces and continuous maps Top. If we consider the case D = Top and define the
topology on O.. to be the quotient topology of the disjoint union topology of the F'(¢),
then by definition, the maps ¢.: F'(¢) = O. are continuous and for any topological
space S a map a:O., — S is continuous if and only if o, = &0, is continuous. Hence,
they also form a colimit in the category of topological spaces Top.

Corollary 8.8. The topological space O. with the canonical topology and the cone
v F = O. form a colimit of the diagram F' in the category Top.

The same is true for the category of R-modules and R-module homomorphisms
R-Mod for the fixed (commutative and unital) ring R. In the case that D = R-Mod
the abelian groups F'(¢) have an R-module structure and the morphisms F'f are
R-module homomorphisms. So we can define an R-module structure on O. by
r-[xz,c] == [rz,c], which is well-defined as F f(rx) = rF f(x). Then by definition,
the group homomorphisms ¢.: F'(¢) = O. are R-module homomorphisms and for any
cone given by R-module homomorphisms a.: F(¢) — S the unique map &:O. - S
is an R-module homomorphism. Hence, O., also forms a colimit in the category of
R-modules R-Mod.

Corollary 8.9. The abelian group O. with the canonical R-module structure and
the cone v: F' = O. form a colimit of the diagram F in the category R-Mod.

Finally, we collect some results that give some insight into the relation between
filtered colimits and inductive limits. For this, we introduce the notion of a final
functor, which is a functor we can precompose our diagram with, to change the
domain of the diagram but preserve the colimit.

Definition 8.10. For two categories Z, 7, a functor F:Z — 7 is called final if for
all j € J the comma categories j | F' are non-empty and connected (that is, there is
a finite zigzag of arrows between any two objects).

Lemma 8.11. Given a final functor L:T - J and a functor F:J — C such that
the colimit of F L exists, then the colimit of F' exists and is canonically isomorphic
to the colimit of FL.

Proof. See [Mac71, IX 3) Theorem 1]. O

Lemma 8.12 ([AM15, Lemma 3.12]). If J is a countable, filtered category, then
there is a final functor (N, <) — J.

Proof. See [AM15, Lemma 3.12]. O

Hence, given a diagram over a countable filtered category in a category where
inductive limits exist (for example, Top, R-Mod, Ring, AbGroup or Set), the colimit
of this diagram exists and is given by an inductive limit.
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9. ORE DIAGRAMS OF BIMODULES AND COVARIANCE RINGS

In this section, we want to introduce certain diagrams in Rings and construct a
strong covariance ring which is a bicategorical limit for these diagrams. The theory
of diagrams and their covariance rings we want to build on is developed in [Mey22a]
for the bicategory Rings, of unital rings and bimodules. So, we need to restrict
ourselves to this full subbicategory Rings, c Rings. In [Mey22a] diagrams over
arbitrary categories in fRings,, and lax and strong covariance rings are introduced.
It is shown that assembling the data from such a diagram into one universal ring
gives the lax covariance ring. So, we can explicitly compute lax covariance rings.
For diagrams in the subbicategory Ringsg,, c Rings, of fgp bimodules, the strong
covariance ring is given by the Cohn localization of the lax covariance ring at
specific maps. Now, the Cohn localization of a ring is a rather abstract object
and not very explicit. To work with the strong covariance ring in Section 11, we
need a more explicit version of the strong covariance ring. In Section 11, we are
only interested in diagrams over Ore monoids, that is, small categories with only
one object and a certain cancellation condition on the morphisms. We call these
diagrams Ore diagrams. Then, for an Ore diagram F in Ringsg, ,, we construct
the strong covariance ring explicitly. We do this by first constructing a related lax
diagram O in fRings, and showing that the strong covariance ring of F is given by
the lax covariance ring of O, which we can compute explicitly.

9.1. Diagrams over monoids and covariance rings. We start by recalling the
notion of a monoid and a (lax) diagram over a monoid in the bicategory Rings,,.

Definition 9.1. A monoid is a small category with exactly one object. In other
words, it is a set P equipped with an associative binary operation and an identity
element 1.

From now on, we fix a monoid P for this subsection. Sometimes we might also
view this category P as a strict bicategory with only identity 2-arrows and still call
it P. Now, we define a (lax) diagram over a monoid P in Rings,. Since we are only
interested in (lax) diagrams over monoids in Rings, in this section, we sometimes
just write “(lax) diagrams” and mean “(lax) diagrams over monoids in Rings,,“

Definition 9.2. A lax diagram in Rings, over the monoid P is a strictly unital
morphism F: P — Rings,,, that is, it is described by the data F = (P, F, i, ) with
e a unital ring F € Eﬁingﬁﬂ;
e for every p € P an Fy,Fi-bimodule F, (for p = 1 this is the trivial Fy,F;-
bimodule F});
e for every p,q € P an Fi,Fi-bimodule homomorphism i, 41 Fp, ® py Fy = Fpgs
such that 1 4 is the left uniter lr,, pp,1 is the right uniter rz, and the diagram

1d®pq,¢
Fp ®r Fq S F, — Fp ®dr th

lﬂp,q@d lﬂp,qt

Hpg,t

Fpg®r, Fy > Fpgt

commutes for all p,q,t € P.

If, additionally, the p, , are isomorphisms (that is, if F is a homomorphism) we
call F a diagram in Rings,,.”
Definition 9.3. A lax diagram F is called fgp, if for all p € P the Fy,Fi-bimodules
F), are fgp, that is, if the right Fj-modules F}, are finitely generated and projective.

5Sometimes we call a diagram a strong diagram to distinguish it from a laz diagram. Note that
not every lax diagram is a diagram, but every diagram is a lax diagram.
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Note that a (lax) diagram in the bicategory Rings, is analogously defined to
a diagram in a category. Now, in category theory, we are interested in the limit
of a diagram F, which is a representing object of the cone functor, where a cone
over F with summit D is a natural transformation D = F. Similarly, a (lax) limit
in a bicategory is defined by considering (lax) cones D = F and some universal
object representing the (lax) cone morphism. Note that (lax) limits in bicategories
are only defined up to equivalence, which in the bicategory of bimodules Rings,, is
Morita equivalence.® To get a more rigid definition of a bicategorical (lax) limit in
Rings,,, we introduce (lax) covariance rings. We define a (laz) covariance ring of a
lax diagram F to be the universal unital ring representing particularly manageable
cones, called (lax) covariant representations. The (lax) covariant ring is actually
defined up to unital ring isomorphisms, and by Proposition 9.12, it is also a (lax)
limit for the diagram F.

We start by defining a (lax) covariant representation of F on a unital ring D.
Definition 9.4. For a lax diagram in Rings,, given by F = (P, F, i, o) and a unital
ring D € %ingﬁg, a lax covariant representation of F on D is described by the data
v =(in,v,) with

e a left Fj-action on D turning it into an Fj,D-bimodule (with the trivial
right D-action on D), that is, a ring homomorphism ;: Fy — End_ p(D);
e for every p € P an Fy,D-bimodule homomorphism v,: F), ® p, D — D;
such that v is the left uniter I, and the diagram

idev,
Fp O Fq O D —— Fp S, D
Lu«p,q®id l’/p
F, D—""_ D
pqg ®F

commutes.
If the v, are isomorphisms, we call v a strong covariant representation of F on
D; or just covariant representation of F on D.

Now, we want to translate this definition into a different form, using the tensor-
hom adjunction given by Theorem 9.6. We denote the left Fj-action on D multi-
plicatively.

Remark 9.5. Tt is easy to check, that for two unital rings Fy, D and an F},D-bimodule
V the abelian group End_ p(V') has an Fi,F;-bimodule structure, given by

(a-f)(v)=af(v)
(f-a)(v) = f(av)
for all f eEnd_ p(V) and a € F;.

Theorem 9.6 (Tensor-hom adjunction). For two unital rings Fy,D an Fy,F;-
bimodule F,, and an Fy,D-bimodule V the map

Homp, p(F, ®F, V,V) > Homp, 5, (Fp,End_p(V)),  fe f
given by f(z)(v) = f(z ®v), is an isomorphism of groups.
Proof. See [Mac63, Corollary 3.2 on p.145]. O

Now, in our definition of a (lax) covariant representation, we impose vy = lp,
or, in other words, v; and ; are adjoint to one another. Thus, we do not need to
include 7 in the data of a (lax) covariant representation v, and from now on, we
just write v = ().

6For more details on bicategorical (lax) limits in the bicategory Rings, see [Mey22a).
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In general, using the tensor-hom adjunction, the Fj,D-bimodule homomorphisms
vp: F,®p, D — D correspond exactly to their adjoint F7,F;-bimodule homomorphisms
Up: F, > End_ p(D), where the Fy,Fi-bimodule structure on End_ p(D) is given
by Remark 9.5.

Furthermore, we have an isomorphism End_ g, (D) 2 D of unital rings and Fy,F;-
bimodules, where the F},F}-bimodule structure on D is given by taking 7; and
multiplying from the left or right, respectively. Thus, the Fi,D-bimodule homomor-
phisms vp: Fj, ® ;, D — D correspond exactly to Fi,Fi-bimodule homomorphisms
UpF, —» D for all p e P, where v1: F), - D is a ring homomorphism that induces the
F1,Fi-bimodule structure on D.

Proposition 9.7. A lax covariant representation v = (vp) of a lax diagram F on a
unital ring D 1is given exactly by maps vy F,, = D for all p € P such that

e Uy is a ring homomorphism;

e for all p € P the maps vV, are group homomorphisms;

o for allz e F,, ye F, we have Upg(pipq(z ® y)) =U,(z)7p(y).
Proof. The discussion above explains how we get the maps 7, and their respective
homomorphism properties. What is left to translate is the commutativity of the

diagram and that the maps v, are F},Fi-bimodule homomorphism. It is easy to
check that the commutativity of the diagram means exactly that

%(/Jp,q (r® y)) = ﬁp(x)fp(y)

for all x € F},, y € Fi,. By construction this already implies that the maps v, are
Fy,Fi-bimodule homomorphisms (where the Fy,F;-bimodule structure on D is the
obvious structure induced by 77). O

Remark 9.8. Now, using this notation, a lax covariant representation v = (7,) is
strong if and only if the induced maps

vpi By ®p D — D, r®der Uy(x)d,
are bijective.

Thus, the three maps
o vy F,®p D — D;
o Uy F, — End_ p(D);
o Uy Fp - D;
all contain the same data and hence describe the same object. We try to distinguish
between the three different versions by using the notation v, 74, and v,.
Now, we want to define the covariance ring as the representing object of a fitting
functor from the category of unital rings Ring to the category of sets Set.

Definition 9.9. For a lax diagram F and a unital ring D, we define the set of all
covariant representations CovRep(D,F) of F on D and turn them into a functor

CovRep(-, F):Ring — Set,
D ~ CovRep(D, F),
f:D - D' f,:CovRep(D,F) - CovRep(D', F),
where f. maps v, to fov, for all pe P.
Definition 9.10. For a lax diagram JF, we call a unital ring (2 € Ring that represents

the functor CovRep(-,F) a strong covariance ring of F; or just covariance ring of

F.
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Note that covariance rings are representing objects in the category of unital rings
and hence unique up to unital isomorphisms (by the Yoneda Lemma, see [Mac71,

p. 61]).

Remark 9.11. Similarly, one can define the laz covariance ring of F as the repre-
senting object of the functor sending a ring D to all lax covariant representations of
F on D. The lax covariance ring is given by the following construction:

Given a lax diagram F = (P, F,, u, ) we can take the direct sum of all the
F,Fi-bimodules

F = @ E,
peP

to get an abelian group. For p,q € P and a € F},, b € F, we define the multiplication

a-b:=ppq.(a®b)eFpy

and extend it linearly to F', that is, for f, € F},, e, € Fy; (and almost all of the f,
and e, are equal to zero, respectively)

Yo fe D eqi= ) foreqeF.

peP qeP p,qeP
Now, because of the first conditions in Definition 9.2 this multiplication has a unit
1€ Fy c F and because of the commutative diagram it is associative. Since the p,, 4
are Fp,Fj-bimodule maps, the defined multiplication is distributive with respect
to the abelian group structure on F'. Hence, F' is a (not necessarily commutative)
unital P-graded ring.

This defines the lax covariance ring since using Proposition 9.7 a lax covariant
representation is given by abelian group homomorphisms v,: F,, - D, which we can
assemble into the group homomorphism

v @ I, - D.
peP
The extra conditions on the (7p)pep translate exactly into 7 being a unital ring
homomorphism. Thus, one can check that we indeed get a natural isomorphism

CovRepj, (-, F) = Ring( P F,. —)
peP

and hence the covariance ring is given by @,p F,. For a detailed proof, see [Mey22a,
Proposition 4.6.7].

Now, both constructions actually give us a (lax) bicategorical limit.

Proposition 9.12 (compare [Mey22a, Proposition 4.7.15]). Let F: P — Rings,, be
a diagram. A lax covariance ring of F is also a lax limit of this diagram, and a
covariance ring of F is also a limit.

Proof. See [Mey22a, Proposition 4.7.15]. O

Hence, to find a (lax) limit for a (lax) diagram F = (P, F, iy 4), it is sufficient
to find a (lax) covariance ring. The construction of the lax covariance ring is
immediate. Constructing the strong covariance ring of a (lax) diagram can be more
difficult. First, we need to get a better understanding of what it means for a lax
covariant representation (Vp: Fj, - D),ep of F on some unital ring D to be strong.
Denote by S = @,cp I}, the lax covariance ring of F. We define the right S-module
homomorphisms

Uy Fp ®p, S =5, Tp ® (Tp, )ity (Np,pi (zp ® xm))i;l

for each p € P. Now, according to the following Lemma 9.13 the lax covariant
representation (v,),ep is strong if and only if the maps ¥, ® s idp are invertible for
all pe P.
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Lemma 9.13. For each p € P, the map v, is invertible if and only if ¥, ®g idp is
invertible.

Proof. The diagram

Fy®m D —" 5 D

(Fp®FIS)®5‘Dm S@SD

commutes, since the multiplication of S on D is given by the unital ring homomor-
phism v: S - D.

Thus, for each p € P the map v, is invertible if and only if the map ¥, ®5idp is
invertible. (]

In [Mey22a] it is shown that for fgp diagrams’ the strong covariance ring exists
and is given by the Cohn localization of the lax covariance ring at the maps ¥,
(see [Mey22a, Proposition 4.6.13]). Now, the Cohn localization of a ring is a rather
abstract object and not very explicit. In Section 11 we need an explicit version of a
covariance ring for fgp diagrams over well-behaved monoids, namely Ore monoids.
So in the next subsection, we explicitly construct a covariance ring for fgp Ore
diagrams.

9.2. Covariance ring of fgp Ore diagrams. In this subsection, we want to
explicitly construct a covariance ring Of for an fgp Ore diagram F, that is, a
diagram over an Ore monoid in the subbicategory JRingsy,,, c Rings,, of unital rings
and fgp bimodules. Note that this covariance ring is a Cohn localization of the lax
covariance ring, so our construction might be useful as an explicit construction of a
Cohn localization for certain rings. We start by introducing what it means for a
monoid P to be Ore.

Definition 9.14 (compare [AM15, Definition 3.7]). For a monoid P, the two
properties

(O1) For all z1, x5 € P, there are y;,ys € P such that z1y; = z2ys.
(0O2) For all x,y1,ys € P such that xy; = xys, there is a z € P such that y;2 = ya2.

are called the Ore conditions. We call P an Ore monoid, if it has these two properties.

Note that the Ore conditions are some sort of cancellation conditions on the
monoid.

Example 9.15. Any group is an Ore monoid and any commutative monoid is an Ore
monoid. For more examples of Ore monoids see [AM15, Examples 3.8-3.11].

We impose these conditions because, first, there is a convenient construction of a
group completion for an Ore monoid (see Definition 9.16), which we are going to
use. Secondly, these conditions are equivalent to the coslice category Cp := % | P°P
(see Definition 9.17) being filtered, which we need to get well-behaved colimits of
diagrams over these categories (in Definition 9.23 and Definition 9.29).

So from now on, we fix an Ore monoid P and an fgp Ore diagram F = (P, F},, f4p.q),
that is, a diagram F: P — Rings, over an Ore monoid P such that the bimodules
F, are fgp.

"In [Mey22a] the notion of a diagram is kept more general. A diagram is defined to be a
morphism over a category with finitely many objects.
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9.2.1. The strategy. Our construction can be separated into the following steps:

Step 1: We construct a fitting group G (namely the group completion of P, see
Definition 9.16) and an induced lax diagram O over G in Rings,, given by O, for
all g € G (see Corollary 9.37).

Step 2: We prove that the covariant representations functor CovRep(-,F) of F
and the lax covariant representations functor CovRep,, (-, O) of O are naturally
isomorphic (Theorem 9.48).

Step 3: We conclude by the Yoneda Lemma ([Mac71, p. 61]) that since the
functors are naturally isomorphic their representing objects are isomorphic as well,
and thus the covariance ring Ox of F is given by the lax covariance ring of O, which
by Remark 9.11 is explicitly given by

OF = @ Og.
geG

Step 1: Constructing a related lax diagram over the group completion. First, we
need to define the group completion G of the Ore monoid P.

Definition 9.16. For an Ore monoid P define the group completion G of P as the
set of equivalence classes
G.=PxP /N7

where we define (p1,p2) ~ (¢1,q2) if there are t1,to € P with pit; = qite and
paty1 = gata. We denote an element of G represented by (p1,p2) as pip;' € G. The
group operation in G is given by

izt gy = (pita) (qat2) ™

where t1,t5 € P are such that paty = git2 (given by (O1)) and the neutral element of
the group is e:= 117! € G the equivalence class of (1,1).

For more details on this group construction and proof that this is indeed a
group, see [AM15, after Definition 3.6]. The canonical monoid homomorphism
P - G, p~ pl~! is not necessarily injective, but we still sometimes write “p € G”
and mean the element pl~! € G for p € P.

Next, we want to construct a lax diagram O = (G, Og,wy 1), that is, a strictly
unital morphism O:G — Rings,,.

We start by constructing a unital ring O, as the filtered colimit of a functor we
need to define. Afterward, we analogously define the abelian groups O, for any
g € G. To justify our notation, we prove that for g:=e, we have O, = O, as abelian
groups. Finally, we show that they can be assembled into a strictly unital morphism
O:G - fRings,,, that is, a lax diagram over G in Rings,,.

First, we construct a functor to Ring whose colimit we define as O.. We introduce
the domain category.

Definition 9.17. For a monoid P define the associated coslice category Cp := * | PP
with

e P as the set of objects;

e P x P as the set of arrows, where (p, q):p — pg for p,q € P; and

e composition is defined as

(pg.t) - (p,q) = (p, qt)
for p,q,t € P.

Note that the unit arrows are given by (p,1) for all p € P.

The category Cp is closely related to the monoid P. If we unpack the definition
of the category Cp being filtered, it is easy to check that the conditions (F1) and
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(F2) directly translate into the Ore conditions (O1) and (O2). Since we assumed P
to be Ore, we get that Cp is filtered.
Now, for morphisms (p,q) € Cp, we want to define unital ring homomorphisms

¥p,q-
Definition 9.18. For p,q € P define the maps

Ppg End- g, (Fp) —» End- g, (Fpy), T ppqo (T @R iqu) °e “1_7,161'
Remark 9.19. It is easy to check, that for a unital ring F; and a right Fj-module

M the abelian group End_ g, (M) is a unital ring, where multiplication is given by
composition.

Applying the Remark 9.19 to M = F}, and M = F,, we see that both the domain
and the codomain of ¢, , are unital rings, and hence we can formulate the following
Lemma 9.20.

Lemma 9.20. The maps yp, 4 defined above are unital ring homomorphisms.

Proof. For ¢, , the additivity is immediate from the additivity of u, 4, M;}q and
- ®id. For the multiplicativity we have

Pp,q(SoT) = pipg0(SoT ®F, idp,) o '“z;lq
= bp,q © (S ®F1 1qu) ¢} (T ®F1 iqu) o M;}q
= fip.q° (S ®F, idF,) o /L;,lq o tip,qo (T ®p idr,) 0 '“1_7,1!1

= ¢p,q(5) 0 p,g(T)
for all S,T € Endp, , (F,). Finally, we have ¢, ,(id) =id and hence ¢, , is indeed
a unital ring homomorphism. O

Next, we need that the ¢, , respect the concatenation structure on Cp.

Lemma 9.21. For all p,q,t € P we have
(1) ®p.qt = Ppa,t © Pp,q; and
(2) ¢pa1 =idEnd_ p, (F,)-
Proof. The first statement is equivalent to that the diagram

bp,q®Rid T®id®id Hp,q®Rid
Fpq®r Fy "= F,@p Fy®p Fy +——— F,®r F, ®p F; " F,, ®r F,

;l/»"pq,t Elid@]’{llq,t Elid@R/—Lq,t ;ll‘pq,t

Hp,qt Teid Hp,qt
qut % Fp R th — Fp ®Rr th % qut

commutes for all T e End_ g, (F},). Now, this diagram commutes, since the left and
right square commute by Definition 9.2 and the middle square commutes because
tensor is a bifunctor.

The second statement is equivalent to the naturality of pp 1 = 75, the right uniter,
inT. O

Now, by Remark 9.19 the sets End_ g, (F},) are unital rings and by Lemma 9.20
the maps ¢, 4 are unital ring homomorphisms. Furthermore, by Lemma 9.21 the
maps ¢, 4 behave in a functorial way. Hence, we can define the following functor.

Definition 9.22. We define a functor from the filtered category Cp to the category
Ring of unital rings and unital ring homomorphisms via

Ex:Cp — Ring,
pHEnd—,Fl(Fp)a
(»,9) = $p,q-
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Next, we want to define O, := colim Ex to be the colimit of this functor. Since P
is Ore, the domain category Cp is filtered and hence the colimit of Er is a filtered
colimit O, := h_H)lE]: in Ring. Thus, we can use our results from Section 8. In the
case that P is countable (or equivalently Cp is countable) Lemma 8.12 gives us the
existence of a final functor and Lemma 8.11 gives us that the colimit of E'r is given
as the inductive limit of the composition with the final functor. In the general case,
we need to refer to Definition 8.3 and Proposition 8.6.

Let us recall the explicit construction of the unital colimit ring O, and universal
cone v: Ex = O, for this filtered diagram Er.

Definition 9.23. Define the set

Oue:= || End_ g, (Fp)
peP

and the equivalence relation generated by

(‘T7p) ~ (Sﬁp,q(z)vPQ)

for all p,q e P and « € End_ p, (F,). Let O, be the set of equivalence classes with
elements denoted as [z,p] € O.. Define a ring structure on O, via

[2,p] + [y, 4] = [@p.e (@) + 94,5 (y), pt],
(2.0 [y,4] = [0pa(2) © 045 (y), pt]
for p,q € P, x € End_ p, (F}), y € End_ g, (F,) and t,s € P with pt = gs (given by
(01)). Furthermore, we have canonical unital ring homomorphisms
tpEnd_ g, (F)) - Ok, x ~ [z,p],

that assemble into a cone v: Ex = O,.

Now, applying Proposition 8.6 to the functor Ex gives us the following Corol-
lary 9.24.

Corollary 9.24. The unital ring O, and the cone v: Ex = O, form a colimit for
the functor Er.

In other words, for any unital ring S € Ring and cone a: Ex = S, there is a
unique unital ring homomorphism &: O, - S such that a), = & o, for all pe P.

Next, we want to generalize the construction of the ring O, to abelian groups O,
for all g € G. To justify our notation, we want that O, = O, as an abelian group if
g := e € (G is the neutral element, which is not obvious by construction but proven in
Lemma 9.32.

First, we want to define a generalization C¥, of the category Cp. We do not quite
get C% = Cp as one might wish, but we get Lemma 9.31, which is sufficient so that
0O, =20,.

Definition 9.25 ([AM15, Definition 3.14]). Fix an element g € G and define the
set of representatives

Ry ={(p1,p2) e Px P |pipy' =g € G}.
Define the associated category C% with

e R, as the set of objects;
e Ry x P as the set of arrows, where (p1,p2,q): (p1,p2) = (P14, p2q); and
e composition is defined as

(P14, p24,t) - (P1,P2,q) = (P1, P2, qt).
fOI' p17p27q7t epP.
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It is easy to check that C¥, are indeed categories for all g € G. Furthermore, if P
is an Ore monoid, then the categories C%, are filtered by [AM15, Lemma 3.15].
For morphisms (p1,p2,q) € C%, we want to define abelian group homomorphisms

Pp1,p2,9°
Definition 9.26. For (p1,p2) € R, and ¢ € P define the maps

: -1
QoplxpzyquomﬂFl (sz’ Fpl ) - Hom—7F1 (szq’ Fp1q)7 T~ MP17QO(T®F1 lqu)Olupz,q'
Lemma 9.27. For (p1,p2) € Ry the maps ¢p, p,.q are group homomorphisms.
Furthermore, we have ©p,q.psq,t © Pp1.pa,g = Pp1,pa,qt 0N Ppi po1 = idHom,,Fl(sz,Fpl)-

Proof. The proof is analogous to the proofs of Lemma 9.20 and Lemma 9.21. [

Hence, the constructions combine into a functor Hr 4, analogously to Er.

Definition 9.28. For g € G we define a functor from the filtered category C%, to
the category AbGroup of abelian groups and group homomorphisms via

Hgz 4:C}, - AbGroup,
(plap2) g Hom—,F1 (F;D27FP1 )7
(p1,p2,9) = ¥p1,p2,9

As before, we can explicitly construct a colimit for the functor Hr 4 by applying
our results from Section 8 to this explicit case. Let us recall how the colimit group
O, and universal cone ¢y Hr g = O, are defined.

Definition 9.29. Define the set
Ouvg = |_| Hom_ p (FP27FP1)

(p1,p2)eRy

and the equivalence relation generated by

(2, (P1,92)) ~ (Pp1.pana (%), (P10, 129))
for all (p1,p2) € Ry, ¢ € P and xz € Hom_ p, (F},, Fp,). Let Oy be the set of
equivalence classes with elements denoted as [z, (p1,p2)] € Oy4. Define an abelian
group structure on O, via
[J), (plapQ)] + [y7 (QI7 q2)] = [@pl,pg,t(l‘) + qul,qz,S(y)v (p1t7p2t)]

for (p1,p2). (q1,q2) € Ry, v € Hom_ p, (Fp,, Fp, ), y € Hom_ p, (Fy,, Fy,) and t,s € P
such that pt = ¢1s and pat = gos (given by p1p3' =g =qiq5').
Furthermore, we have canonical group homomorphisms

Up1,po* Hom_ p, (F;DQ ) Fpl ) - 09
for all (p1,p2) € R, that assemble into a cone ty: Hr 4 = O.

Now, applying Proposition 8.6 to the functor Hr , gives us the following Corol-
lary 9.30.

Corollary 9.30. The abelian group O4 and the cone vg: Hy g = Oy form a colimit
for the functor Hr ,.

Finally, we want to argue why, if g := e € G is the neutral element, we get O4 = O,
as abelian groups.

Lemma 9.31. The functor
d:Cp - C%,
p+ (p:p),

(p,q) = (p,p, ),
1s final.
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Proof. 1t is easy to check that this is indeed a functor. For finality, we note first
that for (p1,p2) € R. the comma category (p1,p2) | d has as objects t € P such that
pit = pat and arrows t ~ s are given by ¢ € P such that tq = s. Now, (p1,p2) € Re
is equivalent to the existence of a t € P such that pit = pot. Hence, t is an object
in the comma category, that is, it is non-empty. To show it is connected we take
t,s € (p1,p2) { d and by (O1) we find 21,29 € P such that tx; = sxo. Hence, we get
the zigzag of arrows

t~txry =8T9 v S
in (p1,p2) | d connecting ¢ and s. O

Lemma 9.32. Let g:=e € G be the neutral element in G. Then the abelian group
Oy is isomorphic to O, (as abelian groups).

Proof. Consider the forgetful functor U:Ring — AbGroup and g := e € G, the neutral
element. By Corollary 9.24 and Corollary 8.7 the colimit of

Uo Er:Cp - Ring — AbGroup

is given by U(O,), that is, by O, viewed as an abelian group. Furthermore, the
diagram

Ring

=k

Cp —— C}D —— AbGroup
d Hr,

commutes and thus U(O,) is the colimit of Hz 40 d. By Lemma 9.31, the functor
d is final, and hence by Lemma 8.11 the colimit of Hr , is canonically isomorphic
to U(O,). Finally, by Corollary 9.30 the colimit of Hr 4 is Oy, hence we have a
canonical isomorphism O, =2 U(O,) of abelian groups. O

Next, we construct an O.,O,-bimodule structure on the O, and O,,0,-bimodule
homomorphisms wg ;: Oy ®0, On = Oy, for all g,h e G.

Definition 9.33. Consider g, h € G represented by g = p1p3t, h = q1g3* and ty,t5 € P
such that pot; = qit2, and hence gh = (pit1)(got2)™!. We define the map

wg,h:Og x Oh - Ogh,
([ 122 ] [ (01,02)]) = (2010t (2) © Gar.0.0 ), (P11, 212) .
Lemma 9.34. The map wg,p, is well-defined.

Proof. For the definition we need to choose representatives (p1,p2) € Ry, (¢1,92) € Ri
for g,h € G and t1,t5 € P such that pst; = q1t2. First, we check the independence
of the choice of tq,ts. So take tq,ts as above and let s1,s9 € P with pys; = ¢g189.
Now, by (O1) we find z1, 22 € P with 121 = s;25. Hence, we get q1taxy = pat121 =
P281Z2 = 18222 and by (02) we find n € P such that toxin = ssxon. Hence, with
b1 :=x1n and by := xon, we get 101 = s1b2 and taby = s9bs. What is left to prove is
that

Ppiti,qata,br (Lppl,pmtl (SL’) © Pq1,q2,t2 (y)) = ©p151,9252,b2 (90171,172751 (:K) © ¥q1,92,52 (y))a

which is equivalent to that the diagram
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FQ2t2b1

N

Haata,by Hapsg,ba

1
11

FQ2t2 ®F Fbl Hag,taby FQ282 ®R Fb2

~ ~
Py, to®id | = 2| fgq,so ®Id
id®pey b id®us, by

Fl]2 ®F, th R Fbl Fth R Ft2b1

qu ®Fl FSQ ®F1 Fb2

y®id®id y®id y®id®id

~ ~

id®py b
: Flh ®F FSz ®R sz

th ®F Ft2 ®F Fb1 N FQ1 ®r thbl -

id®psy by

Py, to®id | = Hay taby 2| Hgy,so®id

~ ~ ~

Haitg,by Haysz,ba
thtz ®F Fbl FQ1t2b1 € - Fq152 R sz

Hpo,t, ®id | = 2| fpo,tqby 2| ppgy,s, ®id
F,, @p Fy, ®p Fy, S B g By et oo Foep B
p2 ®F L'ty OF 1'y, N p2 ®F; L't1b; - p2 ®F, I's; ®F Iy,

r®id®id z®id z®id®id

~ v ~

id®“t17b A id®ﬂ‘51,b2
FP1 ®F Ftl OF Fbl N Fpl ®F Ftlbl < - Fpl ®r Fsl ®F Fb2

Hpq,t, ®id | = 2| ppy,s, ®id

~ ~

Fpltl QR Fb1 Hpy,t1by FP181 ®F, sz

113

11
11

Hpity,by v Hpysy,b
FP1t1b1

commutes. The commutativity of the small squares is either obvious or by Defini-
tion 9.2. Thus, the map is indeed independent of the choices of t1,ts.

Next, we want to check that the map is independent of the choices of the
representatives of [x, (pl,pg)] and [y, (ql,qQ)]. Take [x, (pl,pg)] = [x', (p'l,p’Q)] and
[y, (q1, qz)] = [y’, (g1, qé)] then there are n,n' € P such that (pin, pan) = (pin’, phn’)
and @y, po.n(T) = @pr py r(2). Similarly, by definition we find m,m’ € P such that
(q1m, g2m) = (g¢im’,gsm”) and ¢g, g,,m(y) = SDqu;,m’(yl) Next, we take t1,¢2 € P
such that pant; = gymits. Hence, we also have pijn't; = ¢ym'ta. So we get

Pp1,p2.nty (z) O Vg1 ,q2,mtso (y) = @Ppin,pan,ty (‘Pm ,pz,n(x)) O Pgim,gam,to (‘thqz,m(y))
_ ’ ’
= Ppin’ phn’ ity (‘pp’l,p’27n’($ )) © Pghm! qhm! ta (qui,q’g,m’(y ))

= Pplphn't (z') o Pqy.qh,m'ts (")

using Lemma 9.27 and hence the map is well-defined. O

Now, in particular, we get maps we 4: O x Oy = Oy and wy : Oy x O, — Oy for
all g € G and it is easy to check that this defines an O,O.-bimodule structure on
O, for every g € G (it basically boils down to checking that concatenation of maps
is well-behaved).

Lemma 9.35. The map wg,, is Oc-balanced for all g,h € G, and hence induces a
unique Oc,0.-bimodule homomorphism wg Oy ®0, O = Oyp,. Furthermore, we g
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and wy . are given by left and right multiplication and the diagram

wg, n®id
Og ®0, Oh ®0, Ok L) Ogh ®0, Ok

lid@wh’k lwgh'k

Wy, hk

Og R0, Oy —Mm Oghk
commutes for all g,h,k € G.

Proof. For the additivity in both arguments, we note that since the map is indepen-
dent of the choice of representative, we can, without loss of generality, assume that
the two summands are in the same Hom_ g, (F},, F), ). Then as ¢,, p, . is additive
by Lemma 9.27 and composition distributes over addition, the additivity of wg s
follows for each argument.

For g,h,k e G and Z € Oy, § € Oy, and Z € Oy, we can choose representatives such
that these elements are given by Z = [x, (pl,pg)], 7= [y, (pg,pg)] and Z = [z, (p3,p4)].
Then the equality

(9.36) Won k(W n (F,9), 2) = wg e (T, wp k(. 2))

is immediate from the associativity of composition. Now, (9.36) with h := e already
implies that wy,;, is O.-balanced and compatible with the left and right multiplication
by O.. Hence, we get the unique induced O.,O.-bimodule homomorphism wy ;. We
have defined the left and right multiplication to be exactly we 4 and wg .. Finally,
the commutativity of the diagram follows from (9.36). O

Finally, we can assemble all the above results. Since the group G is also a monoid
we can view it as a category with one object and G as its set of morphisms. In the
following, we view this category G as a strict bicategory with only identity 2-arrows.

Corollary 9.37. The data
O:G - Rings,,,
g0y
with the O¢,0c-bimodule homomorphisms wg n: Oy @0, On = Ogp, for all g,h € G

assembles into a strictly unital morphism of bicategories, that is, a lax diagram in
Rings,, over the group G.

Proof. By Definition 9.23 the object O, is indeed a unital ring and by the discussion
above Lemma 9.35 the O, are indeed O,,0.-bimodules. Furthermore, because of
Lemma 9.35 the wg 5, are indeed O.,0.-bimodule homomorphisms and the necessary
diagrams commute. O

As discussed in Remark 9.11, we can define a G-graded ring Or = @geq Oy
induced by the diagram O that is the lax covariance ring of O.

Definition 9.38. Define Ox to be the G-graded ring

OF := EBO!]:GB h_I>n Hom—7F1(FP27Fp1)>
geG geG (pl,pz)ERg

where multiplication is defined as
a-bi=wyp(a®b)eOyy
for g,h e G, a € Oy, be O and extended distributively to O.

Since the maps wg n: Oy ®0, O — Oy, are not necessarily invertible, our lax
diagram O is not a strong diagram. But the following technical lemma implies
Proposition 9.40 saying that some wy; actually are invertible. Note that the
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End_ g (Fp, )-module structure on the homomorphism sets is given by pre- and
postcomposition.

Lemma 9.39. For pe P, (p1,p2) € Ry, the concatenation map
Ipﬁpl,m: Hom*>F1 (Fm ) Fppl) ®End7,F1 (Fpy) HomﬂFl (Fmv Fpl) g Hom*,F& (Fm ) FPPl )v
J1® farm fio fo,
is an isomorphism of abelian groups, with
‘Ppm,m,t(-rp,pupz (fie f2)) = Ipymt,pzt(@pm,m,t(fl) ® ‘pp17p27t(f2))
for all fy e Hom_ p, (Fp,, Fpp, ), fo € Hom_ g (Fp,, Fp,) and t € P.

Proof. Using that p, 4 Fp, ®p, Fy - F,q is an isomorphism (according to Defini-
tion 9.2), Theorem 5.10 and a canonical isomorphism, we get a chain of isomorphisms
of abelian groups

Hom_ g, (£, s Fpp, ) ®End_ p, (F,,) Hom- ry (Fpy, Fpy )y fhp,py (T @ 21) 01 @ Y162
(F;D;Dl ®F F;;l) ®Fp1®FlF;1 (Fpl ®F; F;;;)v (/‘P,pl ((E ® {E1) ® (bl) ® (yl ® ¢2)
(FP R (Fpl ®F, Fgl)) ®Fp1®F1F,’§1 (Fpl R F;;;)a ((E ® (1’1 ® ¢1)) ® (yl ® d)Q)

I I

Fp®p Iy, ®p I, T@®z161(Y1) ® P2
Fppl O Fgga Np7p1(x®x1¢1(y1))®¢2
Hom—,F1 (FP27FPP1)7 Hp,p1 ($®$1¢1(y1))¢2

with z € F), x1 € F,, ¢1 € Fy, y1 € Fy,, and ¢ € F,. For f1 = py,, (2 ® 21)é1,
f2 =y102 the chain of isomorphisms sends f; ® f3 to
fip,p: (2 ® 2101 (y1) )02 = p1p.p, (2 @ 1)1 (y102) = f1 © fo-

Now, arbitrary fi, fo are given by finite sums of these and thus are also mapped to
their concatenation. Hence, the chain of isomorphisms is exactly the map I, p, as
defined above. Furthermore, we have

Sopplypz,t(lp,m,pz (f1®f2)) = Pppypant (10 f2)
= Upps t © ((fl o f2) ®p, idp, ) o /J;;,t
= fipp,.t © (f1 ®p, idp,) 0 5y 0 iy, 0 (f2 ®py idR,) 0 st
= opr.p1.t (f1) © Ppy po,t(f2)
= Ipmlt,pzt(‘:ppphpht(fl) ® @pl,pz,t(h))
for f1 e Hom_ g, (Fp,, Fpp, ), fo € Hom_ g, (F},, Fp,) and t € P. O

Proposition 9.40. For all p € P (with the notation p:=pl~' € G) and g € G the
O¢,0c-bimodule homomorphisms wy 4: O, ®0, Oy = O,y are isomorphisms.

Proof. The proof is basically just that the isomorphism I, 5, p, from Lemma 9.39
descends to the filtered colimits. We first prove surjectivity and then injectivity by
reducing it to the fact that I, ,, p, is surjective and injective.

Take g = g195", then p = (pg1)g7* and pg = (pg1)gs*. Take y € Op,. Then
there is (p1,p2) € Rpg and f € Hom_ p, (F,,, F},,) such that y = [f, (pl,pg)]. Since
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p1p3t = pg = (pg1)gs', there are ty,t; € P such that pit; = pgite and pat; = goto.
Thus, after rechoosing the representative of y, we can, without loss of generality,
assume that y = [f, (ppl,p2)] for g = p1p3' and f € Hom_ g, (F),, Fpp, ). Since
I p1.ps 18 surjective (see Lemma 9.39) we find ¢; € Hom_ g, (Fp,, Fpp, ) and 1); €
Hom_ p, (Fp,, Fp,) such that I, p, (¥i21 ¢ ® ;) = f. Hence,

f= Ip,phpz( Z¢z ® wz) = Z @i 0 ;.
=1 =1
Now, 2 := ¥ty [¢4, (pp1,p1)] ® [¢i, (p1,p2) ] € Op ®0, Oy and

wpg(x) = wpg(i[¢la(pplvpl] [1/)1',(}717292)])

=1

™=

Wp.g Qsl, pphpl) [¢i7(p17p2)])

i=1

M:

>~ [ 0w, (pp1,p2)]

=
I

1
Zn:¢i°¢,(pp1,p2)]

1=

[
[f, Pphpz)]
Y

and thus wy, 4 is surjective.

For injectivity, we start with =,y € O) ®0, O, such that wy, ¢(z) = wp 4(y). Now,
they are given by x = ¥i; x; ® 2} and y = 7%, y; ® yj for x;,y; € Op and z7,y) € O,.
So for these finitely many elements z;,y; € O, we can choose representations that
all lie in the same Hom_ g, (Fp,, F,,), with pip3' = pl17! after lifting these, we
can, without loss of generality, assume that they lie in the same Hom_ g, (Fy, Fjpt).
Similarly, for the finitely many ?, y; € Oy, we find representations that are all in the
same Hom_ p, (Fy,, F,,) with g = g195*. Now, we find ¢1,%2 € P such that tt; = g1ts.
Hence, after lifting them again, we can, without loss of generality, assume that
we ﬁnd (p1,p2) € R, and representations x; = [qbi, (ppl,pl)], yj = [wj,(ppl,pl)],
@} = [¢}, (p1,p2)] and yj = [¢], (p1,p2)]. Then,

n
wp,g(x) = wpg( Z T; ® x;)
B i=1
pr,g([¢i7 (ppl,pl)} ® [cb;, (p17p2)])

=1

>~ [¢10 0%, (pp1,p2)]

3

<.
1l
Ju

[ popr.pe (05 ® 07, (pp1,p2) ]

M:

<.
Il
—

| —

= Ip,plmz(i@ ® qb;), (pplapz)]

and analogously wp, 4(y) = [ p,pl,pz(Zg 1 Y5 ®w ) (PP17P2)] Thus wyp,4(z) = wp 4(y)
implies

[ p,p1,p2(2¢1 ®¢1)7 (pplap2):| [ PJH;PQ( §a¢j ®¢§-)7 (pp1;p2):|
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and by definition of the equivalence relation (see Remark 8.4) and after using (02),
there is a ¢ € P such that

‘Ppm,pz,t(jp,pl,pz( Z; ¢ ® (/5;)) = ‘Pppl,pz,t(lp,m,pz( Z‘i w]’ ® 1/};))
1= J=

Next we can apply the second part of Lemma 9.39 to get
n m
! A
Ip,mt,pzt( Z Ppprpr,t(Pi) ® Wpl,pz,t(¢i)) = Ip,mt,pzt( 2 Ppprprt (V) ® ‘Pm,pz,t(wg‘))
i=1 j=1
and thus

n m
Z Pop1pr,t (91) ® Opypa t(97) = Z Pop1p1,t (V5) ® “Ppl,pz,t(w})
i=1 j=1

as I p, ¢ pye 18 injective (by Lemma 9.39). Hence, their images under the well-defined
map

HOm—,Fl (Fpl y Fppl) ®End_1pl (Fpy) HOII?1_7F1 (FPZ’ Fpl) — Op R0, (’)g’
a®bw [a,(pp1,p)] ® [b, (p1,p2)]

are equal. Now, the images are also given by x and y and thus x = y. Hence, the
map is injective. U

Now, this gives us some information about the map ¥, (from Lemma 9.13) for
peP.

Corollary 9.41. For p e P (with the notation p:=pl~* € G) the map
70, ®0, D Oy > D O,
geG geG
is an isomorphism of abelian groups. Furthermore, for any lax covariant representa-
tion (ag: Oy = D)pep of O on a unital ring D the maps

ap:0p®0, D - D, r®d~ og(x)d,
are isomorphisms.

Proof. By Proposition 9.40 the maps wp, 4:Op ®0, Oy — Oy are invertible for all
g € G, and hence the direct sum of all these maps is also invertible. After using that
direct sums and tensor products commute and that G is a group, the direct sum
of the invertible maps wj, ;4 is exactly the map ¥,: O, ®0, @gec Oy = Bgec Oy as
defined in Lemma 9.13. Thus, ¥, is invertible.

Now, since ¥, is invertible, ¥, ® id is invertible and hence, by Lemma 9.13, the
map a, is invertible. O

Step 2: Natural isomorphism between the (lax) covariant representations. Next, we
prove that there are natural isomorphisms between the covariant representations of
F and the lax covariant representations of O. We do this by explicitly constructing
a map between them and proving that it is bijective and natural.

We start with a technical result, which we need for this construction. Note that the
canonical ring homomorphism F; = End_ g (F1) — O, defines a left Fj-module struc-
ture on O, that is given by a-[f,t] = [a- f(-),t] foralla € F},t € P, f e End_ p, (F1).

Lemma 9.42. For all p € P (with the notation p := p1~' € G) there is a well-defined
F1-balanced map

proe_’opa (xv [f7t:|)'_) I:/J’P,t(x®f(_))7(pt7t)],

that descends to an isomorphism

Ky Fy @, Oc > Op w0 [f1] 0 [mpa(a® (). (p1,1)],
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of abelian groups.

Proof. For z € F},, t e P, f e End_ , (F}), the map ,up,t(:c ® f(—)) is indeed a right
Fi-module homomorphism since f and j, + are. We also need to show that (x, [/, t])

is mapped to the same element in O,, as (z, [gatyq(f),tq]) is for all ¢ € P. Now,

(:v, [got’q(f), tq]) is mapped to [up,tq(x®g0t7q(f)(—)), (ptq, tq)], which is represented
by the map that sends an element z € Fy, that is given by z = pi; (@ ® b) for a € Fy,
be Fy, to

tp1a(2® 014 (F)(2)) = tiptq (7 @ .4 (f () ®D)).
Now, (x, [/, t]) is sent to

[1pa(2® (). (0t,) ] = [s&pt,t,q(up,t(x ® f(-))), (ptq,@}
which is represented by a map that sends z = y; 4(a ® b) to

upt,q(,up,t(x ® f(a)) ® b).

According to the commutative square in Definition 9.2, the two terms are equal
and, since every element in Fji, is given by a finite sum of elements of the form
ft,q(a ®b), the maps coincide. Thus, the map is indeed well-defined.

The map is Fi-balanced since the tensor product and p,; are additive, and since
the tensor product behaves well with multiplication of F; in the middle. Hence, it
descends to the tensor product as a homomorphism &, of abelian groups.

What is left to show is that &, is an isomorphism. Note that the proof is quite
similar to the proof of Proposition 9.40. We again first define an isomorphism similar
to Ip p,.p, in Lemma 9.39. For this, we make repeated use of Theorem 5.10. For all
t € P, the theorem gives us a chain of isomorphisms of abelian groups

F,®p Hom_ g, (Fy, F}) < F,®p, Fy®p, Ff —— Fp ®p, Ff —— Hom_ g, (Fy, Fyr),

TQYP(=) ¢ z2QY®Y —— 1, (2O Y) ® Y — pp (2@ Y)Y(-),

which we call k;. Hence, for any f € Hom_ p, (F}, F}), we find y; € Fy,; € F}' such
that f =Y, yu and the chain of isomorphisms sends

rQ fr 2ﬂp,t($®yi)wi(_) = up,t(x ® Zn;yz%(—)) = ,up,t(x®f(—)).

Note that k(2 ® [f]) = [k:(z ® f), (pt,t)] for all f € End_ g, (F}).

Next, we want to prove that k, is bijective using the fact that k; is. For
injectivity we take Z, 7 € F), ® p, O, with k,(&) = £,(7). Now, & and § are given by
T=YL v 0 [fi]and § =YL, y; @ [hi] with n,m e N, ;,y; € Fp, and [f;], [h;] € O
fori=1,...,nand j=1,...,m. Now, without loss of generality, we have f;, h; €
End_ p, (F}) for some ¢ € P. Denote x = 3i; 2; ® f; and y = Y71 y; ® h; then

[ke(2), (pt,1)] = Kp(@) = Kp(y) = [ke(y), (pt. 1)]

and hence there is a ¢ € P such that gppt,t7q(/<;t(x)) = <ppt7t7q(kt(y)). The calculations
we did for well-definedness give that

Ppttq(ki(x)) = i@pt,t,q(kt(% ® fi)) = Zn: k(i ® 01.q(fi)) = ktq( iiﬂz ® <Pt.,q(fi))

i=1 =1
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Hence .
ktq(zxz@’@tq fz) ktq(z; ®‘pt,q(hj))

and as ki is injective we get
n m
2T ®pig(fi) = Dy ® piq(hy)
i=1 j=1

and hence their images under the well-defined map
F,®p End_ g, (Fiq) = Fp, ®p, O a®b—a®[b,iq]
are equal as well. Now, the images are given by & and . Hence, & = ¢ and the map
is injective.
For surjectivity we take (p1,p2) € R, and [ f, (p1,p2)] € Op. Now, there is a t' € P
such that pit’ = ppat’, and hence with ¢ = pot’ we get p1p;' = ptt~L. So, without loss

of generality, we can start with [f, (pt,t)] € O, for f e Hom_ p, (F;, Fpt). As ky is
surjective there is an

r=Y x;® f; € F, ®p, Hom_ g, (F}, F})

with k¢(z) = f. Hence, =Y, 2; ® [fi,t] € F, ®p, O, and
’%p(‘%) = [kt(x)v (ptvt)] = [f7 (pt,t)]

SO Kp is indeed surjective. O

We want to define a map Sp: CovRep(D, F) - CovRep,,, (D, O). We fix a unital
ring D and a covariant representation v = (v,) of F on D (using Proposition 9.7).
We now construct a lax covariant representation (0g)gec of O on D.

Definition 9.43. For p € P define the maps
Yp:End_ g (Fp) - End_ p(D), T v,o(T®p idp)o 1/];1,
and for (p1,p2) € Ry define the maps
Opy po: Hom_ g, (Fp,, Fp, ) = End_ p(D), T vy o(T®p idp)o 1/;21.

Lemma 9.44. The maps ¥, are unital ring homomorphisms and the maps ¥y, p,
are group homomorphisms. Furthermore, for all p,q € P and (p1,p2) € Ry we have
(1) Upq © pp,q =Vp; and
(2) Upra,paq © Ppipasa = Upips-
Hence, the 9, can be combined into a cone ¥.: Ex = End_ p(D) and the 9,, ,, can
be combined into a cone ¥y: Hy o = End_ p(D).

Proof. The proof that the maps are homomorphisms is completely analogous to the
proof of Lemma 9.20. The second equality is exactly that the diagram

Hps,q®id TRid®id o ®id
Fp2q®F1D %FPQ ®dr Fq®DD F L ®R Fq®DD&> Fp1q®F1D

“‘lum q Nlidqu ;J/id‘qu :lypl q

D TF”@HDTF’“@HDTD
commutes. Now, this diagram commutes, since the left and right squares commute
by Definition 9.4 and the middle square commutes by simple calculation.

The first equality follows from the second one, since we have ¢, 4 = ©p ¢ and
¥p = Uy p as maps.

Finally, since all the maps are homomorphisms in their respective categories and
the equalities say exactly that they are natural, they indeed define cones. U
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To justify our ambiguous notation, we need to argue why for g := e the cones 9,
and ¥, are “equal”. Using the notation from Lemma 9.32 it is easy to check that

Ud. =194d,
that is, they are equal up to whiskering with the canonical functors.

Now, by Corollary 9.24 the unital ring O, is a colimit of F» and hence it factors
through any cone. This of course also holds for the cones 9.

Corollary 9.45. There is a unique unital ring homomorphism ©.: O, - End_ p(D)
such that the diagram

End*,Fl (Fp)

[ T
P o.
O ——— End_p(D)

commutes for all p e P.

Similarly, by Corollary 9.30 for all g € G' the abelian group O, is a colimit of
Hr 4 and hence it factors through any cone. Again, this also holds for the cones 9,.

Corollary 9.46. There is a unique group homomorphism O, 04 — End_ p(D)
such that the diagram

Hom_ p, (Fp,, Fp,

Ip1.po
Lp1,p2

O, —> End_ p(D)
commutes for all (p1,p2) € Ry.

Note that if g := e € G is the neutral element, we actually have an equality of
maps O4 = O, after composing with the canonical isomorphisms.

Now, we use the characterization of covariant representations of O on D from
Proposition 9.7. By abuse of notation, we write ©, for the map O, - D, as well as
the map Oy = End_ p(D), using that End_ p(D) = D as unital rings.

Proposition 9.47. The data
0.0, > D;
©4:04 - D;
defines a laz covariant representation (©4)g4ec of O on D.

Proof. By construction, O, is a unital ring homomorphism and the maps O, are
group homomorphisms for all g € G. We need to prove that

@gh(wg,h(x ® y)) = @g(x)Gh(y)
for all g,h e G and x € Oy, y € Op. For z = [a, (pl,pg)] €0y, y= [b, (ql,q2)] € Oy,
we find #1,t2 € P such that paty = ¢ita (by (O1)). Hence, we have new repre-

sentatives @ = [@p, py.10 (a), (Prt1,pat1)] and y = [0, 40,00 (b), (@12, q2t2)]. Thus,
without loss of generality, take (p1,p2) € Ry, (p2,p3) € Rp and representing
objects a e Hom_ g, (Fp,,Fp,), b € Hom_ p, (Fp,, Fp,) with = = [a7 (pl,pg)] and

Y= [b, (pg,pg)]. Then after 1dent1fy1ng the unital rings End_ p(D) = D, we get

®gh(wg,h(x ® y)) = Ggh([a o b7 (p17p3)]) = (egh ° [’PI»P?,)(O’ ° b)
=Upyps(aob) =vp, 0 ((a °b)® idD) © szgl
=vp, 0o(a®idp)o V;21 ovp, o (b®idp)o V;;
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= Up1,p2 (@) ©Vpy s (0) = (Og 0 1y p; ) (a) © (On © Ly, ) (D)
=0y(2)On(y).

Hence, this indeed is a lax covariant representation. O

Thus, we can now assign a lax covariant representation of O to every covariant
representation of F. So we only need to establish that this assignment is bijective
and natural.

Theorem 9.48. Consider an fgp Ore diagram F = (P, Fp, pp, 4), that is, o strictly
unital homomorphism F: P — Rings,,, over an Ore monoid P. Let O = (G, Oy, wy 1)
be the associated lax diagram in Rings, we constructed above (see Corollary 9.37).
Then the map

Bp:CovRep(D, F) - CovRep,, (D, O), (vp) = (Oy),

where (0,) is the induced lax covariant representation (see Proposition 9.47), defines
a natural isomorphism B: CovRep(—,F) = CovRep,, (-, O).

Proof. By Proposition 9.47 the map is indeed well-defined, so we only need to prove
that it is bijective and natural in D. We start with the injectivity.

Let (¢,) and (1) be two covariant representations of F, such that the induced
lax covariant representations (0,) and (6j) of O are equal. Then

_ Y/ _ 9/
191017:02 - eg Olpy,ps = @g Olpy,ps = 791)1 ,D2

are equal for all g € G and (p1,p2) € Ry. By precomposing with the canonical
group isomorphism (for p = 1 even ring isomorphism) Fj,, = Hom_ g, (F1, F),) we get
Up1 = Up. Finally, 7, =9, 1 =9, , =7, and hence v, = v,,.

For surjectivity, we start with a lax covariant representation a of O on D. By
Proposition 9.7 a lax covariant representation is given by group homomorphisms
ag:04 — D for all g € G such that &.: O, - D is a ring homomorphism and for all

z €0y, y Oy, we have agp,(wy,n(z®y)) = oy (z)ar (y). We now define

U,:F, —— Hom_ g (Fy, F,) -2 0, —>5 D

for all p e P (with the notation p:=pl~! € G). First, V)p are group homomorphisms
as concatenations of group homomorphisms. Furthermore, for p = 1, the map 7y is
actually given by a concatenation of unital ring homomorphisms and thus is also a
unital ring homomorphism. Next, we want to prove that

%(Up,q (z® Z/)) =Up(2)Vp(y)
for all = € F},, y € F,. Note that for = € I}, we get the associated right Fj-module
homomorphism mult,: F; — F),, a = za, and analogously for y € F, p, o(x®y) € Fpy.
Now, ¢p 1,q(multy) = g, o(x ® =) and hence

[mlﬂtm, (p, 1)] = [@p,l,q(multx)v (p(J7 Q)] = [:up,q(m ® _)7 (pQ7 (])]
Thus, we get

[mult,,, (zoy): (P4, 1)] = [1p,q(x ® =) o multy, (pg, 1)]
= wp,q([up,q(fv ®-), (pg,q)] ® [mult,, (g, 1)])
= wp g ([mults, (p,1)] @ [multy, (g, 1)]).
Thus, the equality
Vg (Hp,a (2 ®Y)) = (g © Lpg,1) (mutlty,,  (rey))

= @( [multup,q(m@y)v (pCL 1)])
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= am(wp’q([multm (p, 1)] ® [multy, (q, 1)]))

= Tp([multw, (p, 1)])07(1([multy, (q, 1)])
=Up(2)Vp(y)

holds. Hence, the defined v = (7,,) is indeed a lax covariant representation of F on
D. Next, we want to prove that it is a strong covariant representation, that is, that
vpi F, ® p, D — D is an isomorphism for all p € P. The diagram

F,ep, D —2> D

(Fp Sr Oe) ®0, D H%@d) Op ®0o, D
P

commutes, as ﬂp71($ ®idp, (—)) = mult,. The left map is a canonical isomorphism,
the bottom map is an isomorphism by Lemma 9.42 and the right map o, is an
isomorphism by Corollary 9.41. Thus, also v, is an isomorphism. Hence, v = (v,) is
a covariant representation of F on D.

Finally, we need to prove that Sp maps v to «, that is, that ©, = o for all
g € G. If we identify D = End_ p(D) we need to show that for (pi,p2) € Ry and
T e Hom_ p, (Fp,, Fp,) we have

Vp, © (T @, idp) 0 v, = mutlte (7.5, o))
This is exactly that the diagram
F,,®pn D —25 D

T®idl lmultq([T,(pl p2)])

Vpy
F,, g, D —— D

112

11

commutes. The diagram indeed commutes, since we have

(Vpy o (T ®p, idp))(z ®d) = aT,l([multTm, (p1, 1)])d
= O‘m(wplpzl,pQ([T7 (p17p2)] ® [mlﬂtma (p27 1)]))d

= @([T7 (p17p2)])a7172([m1‘11ta:7 (p27 1)])d
= (Mlta (7, (p1 po)]) © Vo) (2 ® d)

for all z € F,,,de D. Hence, 8p is also surjective and thus a bijection.

Finally, we want to prove that 8p is natural in D. Take a unital ring homomor-
phism f:D — S. If we unpack the definitions, what we need to prove boils down
to

F((vp, o (T @id) 01,1 ) (1)) = (fu () o (T ®id) © £ (1)) (1)
for g € G, (p1,p2) € Ry, and T € Hom_ g, (Fp,, Fp, ). So if we take x:= Y1z, ® d;

in Fy,, ®p D such that v, (2) = 1, then f.(vp,)( X1, 2; ® f(d;)) =1 and hence
f((upl o(Tw®id)o Vljzl)(l)) = f((up1 o (T®id))( izi ®di))

=2 f(VTn(T(ﬂ%))di)

n
i=1
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=3 (7 (@) ()

=1

<.

. um)(zT(xsz(d ))
= (1.

Vpl) T®1d)°f*(ypz))(1)'

So, [ is indeed a natural isomorphism. O

Step 3: The conclusion. In the end, we can draw our desired conclusion. From
Theorem 9.48 it is immediate that the lax covariance ring OF (as defined in
Definition 9.38) is a covariance ring of F.

Corollary 9.49. For an fgp Ore diagram F = (P, Fy, 11p.4), the covariance ring of
F is given by the lax covariance ring Ox of the lax diagram O in Rings,,, that is, by

Or=0,=6p lim  Hom_ g (Fp,, Fp,),
geG geG (p1,p2)€R

where multiplication is given by concatenation.

Proof. By Theorem 9.48 we have a natural isomorphism of functors
CovRep(-, F) = CovRep), (-, O).

By Remark 9.11 the unital ring Ox as constructed in Definition 9.38 is the repre-
senting object of the functor CovRep,,. (-, O). The multiplication is given by the
maps Wy, p, which are defined to be the concatenation of the equivalence classes of
right Fj-module homomorphisms. By the Yoneda Lemma (see [Mac71, p. 61]) the
unital ring Oz is then also the representing object of CovRep(—,F) and hence the
strong covariance ring of F. (]
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10. ORE DIAGRAMS OF AMPLE CORRESPONDENCES AND GROUPOID MODELS

In this section, we introduce diagrams in &t, over monoids P and their groupoid
models. We recall the explicit construction of a groupoid model for tight Ore
diagrams in ®r,, as done in [Alb15] and [Mey22b]. We follow closely the definitions
and results from [Alb15] and [Mey22b]. A tight Ore diagram in ®t, is analogous to
an fgp Ore diagram in Rings,,, and a groupoid model is analogous to a covariance
ring. The construction of the groupoid model of a tight Ore diagram in &r, is
also quite similar to the construction of a covariance ring of an fgp Ore diagram in
Rings,, in Subsection 9.2. The similarity of the constructions leads to Section 11,
where we prove that the Steinberg algebra of the groupoid model is isomorphic
to the covariance ring of the induced fgp Ore diagram of bimodules. For a more
detailed and general review of diagrams and groupoid models in &R, we refer to
[Mey22b]. For a review of Ore diagrams and a detailed construction of the groupoid
model of a tight Ore diagram in ®t;,;, we refer to [Albl5].

10.1. Diagrams of ample correspondences and groupoid models. We fix a
monoid P. We start by defining a (proper/tight) diagram in &t,.

Definition 10.1 (compare [Mey22b, Proposition 3.1]). A diagram in &t, is a
strictly unital homomorphism P — ®t, over P, that is, it is described by the data
X=(P,G, X, ip,q) With
e an ample groupoid G;
e ample correspondences &,:G < G for all p € P;
e isomorphisms of correspondences fi, 4: X, og X, — Xy for all p,q € P;
such that
(1) Xy for the unit 1 € P is the identity correspondence G on G;
(2) pp1:&XpogG = X, and 1 ,:G og X, — X, for p € P are the canonical left
and right uniters lyx,,rx, described in Lemma 4.5;
(3) for all p,q,t € P, the diagram of isomorphisms

Hp,qogidx, X

pq °G Xt
(Xp og Xy) og Xy Pt
(102) associator qut
Xy og (Xgog Xy) %t
.\ Xp og th
ldX,,OQN'q,t

commutes.
If all the ample correspondences X, are tight (proper, resp.), we call the
diagram X tight (proper, resp.).

Next, we assemble all the relevant definitions to define a groupoid model. From
now on, we fix a diagram X = (P, G, X}, f4p ) in Gt,.

Definition 10.3 (compare [Mey22b, Definition 4.5]). Let Y be a topological space.
An X-action on Y consists of a = (ap,7) with
e a continuous map Y — G°;
e open, continuous, surjective maps ap: X x5 go Y =Y for p € P, denoted
multiplicatively as o, (v,y) =7v-y;

such that
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(10.3.1) r(y2-y) =7(72) and y1 - (v2-y) = (y1-72) -y for p,g € P, 71 € Ap, 72 € Ay,
and y € Y with s(y1) = r(72), s(72) =r(y);
(10.3.2) if v-y =~"-y for v,7" € &}, y,y' €Y, there is n € G with v’ = y-n and
y=n-y.
Note that since G = X; the multiplication map «a; is a left G-action on Y
(see [Mey22b, Lemma 4.6]).

Definition 10.4 (compare [Mey22b, Definition 4.8]). A continuous map ¢:Y - Y’
between two topological spaces with X-actions is X-equivariant if r(cp(y)) =r(y)
and o(v-y) =7-p(y) forall pe P, y e Y and v € X, with s(v) =7(y).

Definition 10.5 (compare [Mey22b, Definition 4.13]). A groupoid model for
X-actions is an ample groupoid U with natural bijections between the sets of
U-actions and X-actions on Y for all spaces Y.

We call these bijections natural if a continuous map Y — Y is U-equivariant if
and only if it is X-equivariant. These bijections for all spaces Y can be combined
into an isomorphism between the categories of U-actions and X-actions.

Furthermore, groupoid models are unique up to isomorphism.

Proposition 10.6 (compare [Mey22b, Proposition 4.16]). Let U and U’ be two
groupoid models for X-actions. There is a unique groupoid isomorphism U = U’ that
is compatible with the equivalence between actions of U, U’ and X.

Proof. See [Mey22b, Proposition 4.16]. O

Finally, a groupoid model of a diagram X is indeed a bicategory theoretical limit
of the diagram.

Theorem 10.7 (compare [Mey22b, Theorem 10.6]). A groupoid model U for a
diagram X: P - ®t, is also a limit for X in Br,.

Proof. See [Mey22b, Theorem 10.6]. O

10.2. The groupoid model of a tight Ore diagram. We want to recall the
construction of a groupoid model for a tight Ore diagram. We follow closely the
construction in [Alb15] and [Mey22b], where this is done for tight Ore diagrams in
&y, and for tight diagrams of Ore shape® in BN, respectively. One might note the
similarity of the following construction with our construction of the covariance ring
OF in Section 9.

We start by fixing an Ore monoid P and a tight Ore diagram X = (P, G, X, tip.q)
in ®t,. Recall from Section 9, that we can define the group completion G of P (see
Definition 9.16), and for each g € G the set

Rg = {(plapQ) eG ‘ plpil =g¢€ G}7

and the filtered category C%, with R, as the set of objects and R, x P as the set of
arrows (see Definition 9.25). Next, we fix some g € G and want to build a functor
from the filtered category C% to the category of topological spaces Top.

Definition 10.8. For (p1,p2) € R, define the topological space
Xpl °g XI:Q = Xpl 5,905 XP? /N

to be the quotient space of X}, x5 go s X}, by the equivalence relation (x,y) ~ (zg,y9)
for all g € G with s(z) = s(y) = r(g). We denote its elements by [z,y] € X}, og X,

8A diagram of Ore shape is a diagram over a small category that satisfies certain right Ore
conditions. This is a generalization of an Ore diagram.
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Remark 10.9. For a groupoid G and right G-space X', we can define the left G-space
X* by taking r := s as an anchor map, and

mlﬂt:gxs,go,r X _’X*v (gax)'_)xg_lv

as the multiplication map. Now, if the right G-space X is basic, X /G is Hausdorff
or s is a local homeomorphism then the left G-space X'* has the same properties,
respectively. This justifies the notation in Definition 10.8 and explains the similarity
to the definition of a composition of correspondences from Section 4. Furthermore,
this shows that &), og X, is given as the orbit space of a basic right G-action, and
hence the orbit space projection X, x go  Xp, = &, og &y, is a surjective local
homeomorphism (by Lemma 3.14).

We can now find an ample base for the topology of &, og X7 .
Corollary 10.10. For allU € X,V € X7 with s(U) > s(V') the set of all
UV = {[a,y] | (2,y) € U x5 60,5V} € &y, o6 X,
is an ample base for the topology of X, og X,;,. We denote this base by BXplogXp*Q'
Proof. This is immediate from Lemma 4.3. (|
Next, we want to define a continuous map for every (p1,p2q) € Ry x P.
Definition 10.11. For (pi,p2) € R, and g € P define the map

q .
aPlypz'

X;D1 °g X]:z - X;DU] °g X;2q, [:L'>y:| — [xz,yz],
where z € X, is an element such that s(z) = s(y) = r(z) and with the notation
Tz = Mm,q([xvz]) €Xpg-

Since X, is tight, the map 7 X/G - G° is a homeomorphism and hence the
element z € X, is unique up to right multiplication by some g € G.

Lemma 10.12 (compare [Alb15, Lemma 3.6]). The above-defined map o, ., is well-

defined, a local homeomorphism and injective on all UV € BXmOQXSz‘ Furthermore,

t q _ .qt
®Xp1q,p2q © Yp1,p2 = Yp1,p2
1 )
and o, . = ld/‘-’m%/'VSQ for all (p1,p2) € Ry and t,q € P.

Proof. See [Alb15, Lemma 3.6]. Note that in the proof it is shown that af  is
injective on all UV € BXploggggz. O

Hence, the data above defines a functor.

Definition 10.13. For g € G, we define a functor from the filtered category C% to
the category of topological spaces (denoted as Top) via

Hy 4:C%, — Top
(p17p2) = Xpl °G ng
(p17p27Q) g agl,pg'

Now, we can take the colimit of this functor. Since CY, is filtered, we can apply
our results from Section 8. Applying Corollary 8.8 gives us an explicit construction
of the colimit.

Definition 10.14. Define the topological space H, to be the colimit of the functor
Hzx 4, that is, it is given by the set
Hy = h_r)n Xp, og X;Q = U1 .p2)er, X1 06 Xpo [~
(p1,p2)eRy
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where the equivalence relation is generated by [z1,22] ~ f . ([#1,22]) for all
[21,22] € X, og Ay, and (p1,p2) € Ry,t € P, with the canonical topology.

Lemma 10.15 (compare [Alb15, Lemma 3.9]). The canonical maps
Apipe py 0g Xy, > Hg, and
AL Apieg &y, >
(p1,p2)eRy

are local homeomorphisms. The first map is injective on all UV € BXplogX;Q'

Proof. For the first map see [Alb15, Lemma 3.9]. From this, it is immediate that
the second map is a local homeomorphism, due to the topology of the disjoint union.
Now, the maps A, p, are injective on all UV € By, ogx; because the maps of, .,

are (by Lemma 10.12). O
Next, we want to find an ample base for this topological space.
Proposition 10.16. The set
By, = {)‘pupz(U) |U e Bx, ogx;,: (P1,p2) € Rg}
is an ample base for the topology on H,.

Proof. Consider U € Bx, o, Xy - By Corollary 10.10, U is a compact Hausdorff
open subset. As Ap, p, is a local homeomorphism and injective on U, we get that
Apyps (U) € Hg is & compact Hausdorff open subset. The set defines a base, since
for h € Hy and an open h € W c H,, we find (p1,p2) € Ry and x € &}, og A,
such that A, ,,(z) = h. Then z € A\;' (W) c X, og &, open and hence we

P1,P2
find U € Bx, ogx;, such that x e U c Mt (W) € X, og Xy, Thus, we get
h=Xp, py(2) € Ap, p, (U) ¢ W and By, indeed defines a compact Hausdorff base of

Hy.

gFinally, we want to check that the base is stable under taking compact open
subsets. Consider U € By, osx;, and a compact open subset W c Ay, ., (U).
Since Ap, p,|u:U = Ap, p, (U) defines a homeomorphism, the compact subset W is
homeomorphic via Ay, p,|v to a compact open subset V c U. As Bz, o4 x;, 18 stable
under taking compact open subsets (by Corollary 10.10), we get V € Bx, og x;, and
hence W = Ay, , (V) € By, . O

The following Lemma 10.17 gives that for A, ,,(U) € By, the U € BXp1°gX,’§2 is

t
P1,p2°

unique up to lifting along «
Lemma 10.17. Consider (p1,p2),(q1,q2) € Ry and Uy € X, og X, Us € B)(qlog)(;z
such that Ap, p, (U1) = Agy 4, (U2), then we find t1,ta € P such that (p1t1,pat1) =
(q1t2, qat2) and alel,pz(Ul) = afﬁ,qz(Ug).

Proof. First, we find t1,t5 € P such that (pi1t1,p2t1) = (qite,gate). Then Uj :=
alt - (Up) and Uj = af2  (Us) are two compact Hausdorff open subsets (since the

P1,p2 P1,p2
maps « are local homeomorphisms that are injective on Uy, Us by Lemma 10.12) of
the same space X, ¢, og X, = Xy1, 0g Xp,- Now,

)‘p,q(Ull) = (Apqg© a;ﬁ,pz)(Ul) = Ap1,p (U1)
= Ag1,02(U2) = ()‘P,q © a;ﬁ,pz)(UE)
= )‘p7q(U£)
for (p,q) := (pit1,p2t1) = (qita,qatz). Furthermore, since the maps o! are

P1,p2
injective on U; and the maps afhm are injective on Us for all t € P (by Lemma 10.12),

the maps «f, , are also injective on U7, Uy for all t € P.
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Thus, we can, without loss of generality, assume that Uy,Us c &), og X, are
compact Hausdorff open subsets such that Ay, ,(U1) = Ap, p,(U2) and the of,
are injective on Uy, Us for all ¢ € P.

Consider uy € Uy, then there is ug € Uy such that A, p, (u1) = Ap, p, (u2). Thus,

there are ¢, ¢’ € P such that (p1q,p2q) = (p1q',p2q") and o} (u1) = a;’,’hm (u2). By
(02) (in Definition 9.14), we find z € P such that ¢z = ¢’z. Hence, Lemma 10.12
implies

’
a;hm (ul) = (alznfbmq © aghl)Z)(ul) = (a;1Q'7P2(I' © aglvp2)(u2) = a;hm (UQ)

for t := gz = ¢’2. Now take B, Bs € BXmOQXEQ so that u; € B; c U; for ¢ =1,2. Then,
a;hPZ (ul) € 04;1 »D2 (Bl) n a;hPZ (BQ) c Xplt °g lezt

is an open neighborhood and as ozf,hpz is continuous, we find V' € By, o, Xy, with

uy € V c Uy such that o, (V) caj, ., (Bi)nal,  (Bs). Now, aj, . is injective

on B; for i = 1,2. Next, we define W := (o, ,.15,)""(c, ,,(V)). That is, a compact
open subset of By € BXPIOQX;2 and hence W € BXplogX;fg' Furthermore, we have

ugs € W. So, we have found two neighborhoods V,W ¢ B/—ymog;% of u; and wuo,

respectively, such that of, (V) =al  (W).

Now, since we find such a V for every u; € Uy, we cover U; with these V and use
that U; is compact to find finitely many compact Hausdorff open subsets V1,...,V,
such that Uy = U}, V;. If we take the corresponding compact Hausdorff open subsets

Wi,...,W, such that o' _(V;)=ali (W;) fori=1,...,n and fitting t; € P, we

P1,p2 P1,p2
get Uy = UL W;. After using (O1) (in Definition 9.14) n —1 times on the t1,...,t,
(and Lemma 10.12) we can, without loss of generality, assume that ¢ :=¢; =--- = ¢,.
So we found ¢ € P such that of, (Vi) = o}, ,(W;) and hence we get

a;laPQ(Ul) = a;hPQ( g%) = ga;1,pz(‘4)

= L_-J a;laP? (W‘) = 0;;1,1)2( L—Jl Wl)
= Us),
which is the desired result. O

1
t
apl,PQ(

Finally, we define an ample groupoid that will turn out to be the groupoid model
for the tight Ore diagram X = (P, G, &}, itp ¢) in &r,.

Definition 10.18. Define the topological groupoid
Hom [ Ho= 1] lm &, og X

P2
9¢G 9¢G (p1,p2)eR,
with

e object set H° = G;
e range map and source maps 7‘([331,332]) ==r(z1) and s([xl,x2]) =r(x2);
e composition [x1, 23] [z2, 23] := [21,23];
e inversion [z, 5] 7! = [22,21]; and
e units [z, z].

Theorem 10.19. The above-defined data H is indeed an ample topological groupoid
and a groupoid model for X.

Proof. By [Albl5, Proposition 3.10] the above-defined data H is indeed a locally
compact, étale, topological groupoid. Since G is ample, the object set H° = G° of H
is totally disconnected, and hence # is an ample groupoid. By [Mey22b, Theorem
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8.18] H is a groupoid model of X in the bicategory &HR and hence as H € Qitg itisa
groupoid model of X in &t, as well. O

Remark 10.20 (compare [Alb15, Remark 3.14]). For the neutral element e € G, the
topological space H, is a clopen subgroupoid of H# (and hence ample as well).

Finally, we want to find an ample base of compact slices on H to be able to
compute the Steinberg algebra of this space in Section 11.

Proposition 10.21. The set
Bay = U Bau,

geG
1s an ample base of compact slices on H.

Proof. By the topology of the disjoint union and Proposition 10.16 the set indeed is
an ample base for the topology on H. So we only need to check that its elements
are indeed slices, that is, that the range and source maps are injective on them.
Consider UV € By, ogx;, and [z,y],[2",y] € Ap, , (UV) with z,2" e U, y,y' e V.
First, assume that s([z,y]) = s([z',y']), that is, r(y) = r(v'). As A, is a tight
correspondence there is a g € G with r(g) = s(y') such that y = y’¢g and hence
p(y) = p(y'g) = p(y'). Since V is a slice and y,y" € V, it follows that y = 3.
Furthermore, we get s(z) = s(y) = s(y’) = s(2’) and as x, 2" are in the same slice U,
we get x =z’ as well. Hence, [z,y] = [2’,y'] and thus s is injective on Ay, p, (UV).
The proof that r is injective on Ay, ,,(UV') is analogous. O
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11. STEINBERG ALGEBRAS OF GROUPOID MODELS

In this section, we combine all the results from earlier sections into our main result.
As before, we fix a (commutative, unital) ring R with the discrete topology. We also
fix a tight Ore diagram X = (P, G, X, f1p.q) in Bt, such that G is cocompact, that is,
a strictly unital homomorphism in &teo tight € Bteo proper OVer an Ore monoid P. In
Section 10, we constructed a groupoid model H of this diagram. We now want to
show that the Steinberg algebra of the groupoid model H is the covariance ring of
an induced Ore diagram in Rings,,,. In Section 7, we constructed a strictly unital
homomorphism A: &teo proper = %ingsfgp (by Remark 7.7) that we can compose this
diagram with, to get an Ore diagram

F=AxX=(P,F =AR(G),Fy:=Ar(X,), 1, = A ) ot g)-

in Ringsy,, (using the usual composition of morphisms between bicategories as
described in [Mey22a, Proposition 4.7.10]). Thus, we will apply our results from
Section 9 to get that the covariance ring of F is given by Oz (by Corollary 9.49).
Note, that we have an additional R-module structure on all the F}, that behaves well
with the relevant maps ,ug) o and thus also with ¢y, p, 4. Hence, we get a canonical
R-module structure on the covariance ring Ox (see Corollary 8.9) that turns it into
an R-algebra.

Now, we want to prove that the Steinberg algebra of the groupoid model Ag (H)
is isomorphic to the covariance ring O of the diagram F = A+ X as a unital ring and
R-module. In other words, we prove that A:®t, — fRings preserves these particular
bicategorical limits.

We start by taking a closer look at the groupoid model H of X. It is given by

He= | He= ] lim X, o0q X,
9eG 9¢G (p1,p2)eR,
We might note a similarity with the covariance ring of F given by
O]: = @ Og = @ h_H)l Hom—,AR(g) (AR (sz) 7AR (XZH) )
geG geG (p1,p2)€Ry

By Lemma 6.2, the Steinberg module of the disjoint union is given by the direct
sum of the Steinberg modules, that is, we get an isomorphism

Ar (M) = Ar ( |_C|;7'lg) = G%AR (Hy)

of R-modules. So, if we first prove that

AR (Xpl °g X;;;) = HOHl,7AR(g) (AR (XIJ?,) ’AR (Xm ) )

are isomorphic as R-modules (see Proposition 11.1), and then that
Ar (Hg) = Ap (lim &, og Xy, ) = lim A (&, og X;,)

are isomorphic as R-modules, that is, that taking the Steinberg module commutes
with filtered colimits (see Proposition 11.5), we get that the objects are isomorphic
as R-modules. We also need to carefully handle the unital ring structure on both
objects and prove that the isomorphism preserves it (see Proposition 11.3) to finally
get our main result, namely, that

Ag (H) > Of

are isomorphic as R-modules and unital rings (by Theorem 11.6).
We start by rewriting the R-modules Hom_ 4 (g) (AR (X,,), AR (X)) ) forge G
and (p1,p2) € Ry.
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Proposition 11.1. Consider two proper ample correspondences X:G « G, V:G « G

for a cocompact groupoid G. Then there are compact open subsets K1, ..., K, cG°
such that .
Y| rg(K)
i=1

as a right G-space and the maps
Xog V' = | sz (Ki), [w,y]=ay™, [z,s(x)] <,
i=1

define a homeomorphism. Furthermore, the map
Txy:Ag (X og ¥*) - Hom_ a,q) (Ar (V),Ar (X)),

fro|Be[om ) HEEOIE
S()os(@)

s an isomorphism of R-modules.

Proof. By Theorem 3.29 we find compact open subsets K1, ..., K, c G° such that
the correspondence ) is given by

n
Y| |rg'(Ki)
i=1
as a right G-space. Hence, we get a chain of homeomorphisms

XOQy*zXog(lrllral(Ki)) = ¥ og (g (1)
n 1 n 1
= ong sg (Ki) = HSX (K:),

where the second equality is given by the canonical isomorphism, the third equality
can be seen using Remark 10.9 and the fourth is given by the homeomorphism

Xogsg (Ki) > sx (Ki), [2,9]mxg, [z,s(2)] <.

One can check that if we chase through the homeomorphisms, we get the defined
maps. Next this gives a chain of isomorphisms of abelian groups

Ap(Xog V) = @AR (53 () 2 éAR(X) el

N _EEAR (X) ®4,(0) (AR (G) 1)

112

@AR (X) ®AR(Q) Hom_,AR(g) (]lKi * AR (g) ,AR (g))

112

AR (X) ®4,4g) Hom_ 4,0 (D1, * AR (9), AR (9) )
i=1

~ AR (X) ®AR(Q) HOHl_)AR(g) (AR (y) aAR (g) )
2 Ar(X) @A) AR (V)"
i~ HOHl,’AR(g) (AR (y) aAR (X) )a

where the first equality is given by Lemma 6.2 and the homeomorphism above, the
second works analogously to Lemma 6.23, the third is given by Lemma 5.14, the
fourth is given by Lemma 5.15, the fifth is given by Lemma 5.16 together with
Lemma 5.17, the sixth is Theorem 6.24, the seventh is by the definition of the dual
module and the eighth is given by Theorem 5.10. Now, if we prove that this chain of
isomorphisms is actually given by the above-defined R-module homomorphism, we
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are done. We start with f e Ar (X og V)" such that we can find some o € A (X)
and & € Ap (sél(Ki)) fori=1,...,n such that
F([z,9]) = (@x &) (zy™)

for all # € X,y € sg' (K;) such that s(x) = s(y). Now, if we map f through the chain
of isomorphisms and evaluate it at 5 € Ag (rél(Kl)) c Ag (¥) and z € X, we get
(o * (multe, )7, (B))(x). Now, we also have

(o (multe, )4 (8)) () = (o (€ + 8)) ()

= 2 alzg )& *B)(9)

9€Gs(a)
= > alzg) Y &gy HBW)
9€Gs(a) Y€Gs(g)

= > Y azg Hé&leyHBWY)

Y€Gs(z) 995 ()

= > Y aley g HE&E(9)BW)

YeGs(x) 9€9r(y)

= > (ax&)(zy ")BWY)

yEgs(z)

= > fl=v])BW)

yey
s(y)=s(z)

=Zx y(£)(B)(2)

and hence the chain of isomorphisms is indeed given by the above-defined map, as
an arbitrary map f € Ap (X og V)" is given by a finite sum of these. Finally, it is
easy to check that the above-defined map is an R-module homomorphism. O

Thus, we have Hom_ 4, (g) (AR (Xpy), Ar (X)) ) > Ap (X, og X;2). To prop-
erly extend this isomorphism to Oy = limHom_ 4, (g) (AR (Xpy), Ar (X)) ), we
need to understand how it behaves with the maps

Ppr.pang Hom_ 4 (g (AR (X,) s AR (X)) ) = Hom_ 4,9y (AR (Xpaq) , AR (Xp1q) )
that define this filtered colimit in Definition 9.26.

Proposition 11.2. The local homeomorphisms o : Xy, og Xy, — X q 06 X,

from Definition 10.11 induce R-module homomorphisms (via Definition 6.5 and
Proposition 6.6)

(af) )*:AR ('Xpl °g X;Q) - Agr ('Xplq og X, ) )

P1,P2 p29q
fre ly > > f (w)] ;
ze(ag py) 7t (Y)

so that the diagram

AR (Xpl og ng) (am,m)* N AR (Xplq og X )

p29q
Lxp, vszl; I"mq‘xpqu;

Pr1,pr2.4a
Hom_ 4,(g) (AR (Xp,) s AR (X)) ) —— Hom_ 4,(g) (AR (Xpoq) s AR (Xp,q) )

commutes. Furthermore, the Ix,

I3 0y » lim A (X, og X))

Xp, descend to R-module isomorphisms
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for all g € G that assemble into an isomorphism
Z:0F » @ lim Ag (X, og &)
geG
of R-modules.

Proof. The induced map is given by Definition 6.5 since X}, og A, has an ample
base Bx, og X, such that o is injective on it (by Lemma 10.12) and hence it
is indeed a well-defined R-module homomorphism (by Proposition 6.6). Consider
f e AR( ~ oQ p*Q), ¢ € Ap(X,,), v € Ap(X,) and [z,,,2,4] € &), og X7 We
denote ¢ty =y (¢ @) and x4 = Ni,q([%nxq]) Then we have

(I Ap1q,Xpag (O‘pl,pz) )(f)((bz/))(xplq)
= Z pl,pa) (f)([xmq’xpzq])'(W’(xpzq)

Tpyq€Xpag
S(xpgq):s(xmq)

Z Z f(.]?) '¢w($P2Q)

*
Tpoq€Xpaq zeXp, 0g X,

S(IpQQ):S(wplq) angZ (x):[wplq,xPZQ]

Z f([xpl7xp2])'¢'¢)(M§27q([$p2’xQ]))

Tpo€Xpy

5(xp2) S(Ip1)

Z f([xpwmm]) Z ¢(xp2971) "l/J(g{Eq)
Lpy€Xpy 9€Gs(apy)
s(zp2)=s(mp1)

Z Z f([zplg_l,xmg_l])'¢(mng_1)~¢(gxq)
gEQS(zpl) Tpy€Xpy
s(xpy)=s(g)

= Z Z f([‘rplg_17xp2:|) (xpz) 1p(gxq)

9€9s(xp,) T2y
s(zpy)=r(g)

= Z IXpl KXoy (f)(¢)(xp1 g_l) : w(gxq)

9€Gs(apy)
= 11y (T 20, (1) (9) © ) ([, 74])
=i o(Zx,, 2, (1) @10) (6 @) ) ([ 74])
= (100 (Tay, 0 () @10) 0 (17, )7 (60)) (@ps0)
= (Pprpna 0 Ty 2, ) (N (60) (1)

where the third equality is true because the sets
{xm € Xy, | s(p,) = 3(@)1)}

{(xp2q,x) Xprg x (X, og ngz) | $(Tp,q) = 5(371)1(1)70‘?)1,;;2 (z) = [xplqvxpzq]}

are bijective via the map

Lpy > (uif%q([xm,qu]% [xm’xpl])

and hence the diagram commutes. Thus, the R-module isomorphisms Zx, x,,
descend to R-module isomorphisms

Ig:(’)gzli_r>nHom,’AR(g) (AR (Xp,), AR (Xm)) hmAR( b1 ©G X;Z)

of the colimits of the respective diagrams, and we can assemble them into an
R-module isomorphism Z: O — @gec lim AR( > OG X;z). O
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Now, the multiplication on Of is defined via wy j, which is induced by the
concatenation of maps given by the map

Hom_ 4,0y (AR (X,) s AR (X,) ) x Hom_ 4 gy (AR (Xpg) s AR (X,) ) — Hom_ a,g) (Ar (Xps), AR (Xp,) ),
(f1, f2) fiofo.

After applying the fitting isomorphisms Zx, x,, this induces a well-defined map
* AR (Xpl °g X;;g) x AR (XP2 °g XZ;;) - AR (Xpl °g les)’

(fr.f2) = frx fo=T ) (T, po (1) © Ty py (£2)),

that has the same properties as w, 5 and hence induces a unital ring structure on
@pec lim A (%, o 1)
Proposition 11.3. The above-defined map * induces a multiplication on the R-
module @gegli_l)nAR (Xpl og X;z) that turns it into a unital ring such that the
R-module isomorphism IT:OF — @yec H_I)HAR (Xpl og ng) s also an isomorphism
of unital rings. Furthermore, it is explicitly given by

(fix ) ([z1,23]) = > fi(l21, 22]) fo([w2, 25])

T2€Xp,

s(z2)=s(x1)
fO?” f1 € AR (X;m og X;Q), fg € AR (Xp2 og .)(;3) and [xl,xg] € Xpl og ijg'

Proof. Using the isomorphism of abelian groups 7: O — @y h_r)nAR (Xpl og X;z)
the ring structure on O induces a ring structure on @ g li_r)nAR (Xpl og X;z) such
that Z is by definition a unital ring homomorphism. Since the isomorphism Z is
given by the isomorphisms Zx, x, and the multiplication on the unital ring O is
defined via the map wg : Oy ®0, On = Oy, which is induced by concatenation, this
definition breaks down exactly to the definition of * above.

The explicit formula for » follows immediately from

Tig(fix f2)(B)(x) = Y, (fi* fo)([z1,23])B(x3)

T3€Xpq

s(z3)=s(z1)
Z Z f1([$1,fﬂz])f2([ff2,$3])5($3)

;CSGXPB T2€X)p,
s(z3)=s(z1) s(z2)=s(z1)

oo A(lznz2]) Y, fa(lr2,2s])B(xs)

T2€Xp, T3€Xp,
s(x2)=s(x1) s(x3)=s(x2)
= Y Alz22])Tas(8) (22)
1}26Xp2
s(z2)=s(z1)
= (Z120T53)(B)(x2)
for f1 € Ar (X, 0g X)), fo € A (Xp, 0g X)), B € A (X,,) and z1 € X, O

Remark 11.4. Note that since X1 = G we get X og AT 2 G and, it is easy to check
that the above-defined multiplicative structure * on Ag (X} og Xy) is exactly the
known ring structure on Ag (G).

Next, we want to relate the R-module lim Ar (Xpl og X;2) to the Steinberg
module of H,. Note that since H, = h_r)n Xp, 0g X, we prove that taking the Steinberg
module commutes with sufficiently well-behaved filtered colimits of topological
spaces.
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Proposition 11.5. The Steinberg module of Hg is isomorphic to the direct limit
Ar (M) = lim A (X, og &7,
as an R-module.

Proof. We start with the diagram in R-Mod, given by the R-module homomorphisms
(af, p,), AR (Xpl °g XZ;;) - AR (‘Xplq og X, )

P2q
for all (p1,p2) € Ry and q € P. The cone maps A, p,: &y, og &, = H, are local
homeomorphisms that are injective on B, og x;, (by Lemma 10.15) and hence by
Proposition 6.6 they induce R-module homomorphisms

(Mp1p2)i AR (Xm °g ng) - Ar(Hy) -

Now, since Ay, p, = Apig,paq © %, 5, We get (Apy o), = (Apigpaq), © (0, 1,), (by
Proposition 6.6) and hence the ()\,, 5,), indeed define a cone under the diagram
with nadir Ar (Hy). Thus, we get a unique R-module homomorphism

jg:h_r>nAR (Xpl °g ng) - Ar (Hg) ) [fv (pl,pz)] ind ()\P17P2)*(f)’
that sends

[ﬂUa (plap2)] = (/\P17P2)*(1U) = Il)‘p1,p2(U)

for all U € BXmOQX;IQ'

Next, we want to define an inverse to this map. By Proposition 10.16 we find an
ample base By, on H, and thus by Proposition 6.4 the Steinberg module Ar (H,)
is given by the quotient of the direct sum

b R 1v
VEB’Hg
by
(Iywy 1y -1y |U,V,U UV € By,)

as an R-module. Now, we can define the R-module homomorphism

@D R-1y »limAg(X, 06 d,,), Ly~ [lu,(p1,p)],
VsBH_q
where V' € By, is given by V = Ay, p,(U) for U € Bx, ogx; - This is well-
defined, since for (p1,p2),(¢1,92) € Ry and Uj € BXplogX,fz’U2 € qulogX;2 such
that Ap, p,(U1) = A, 4o (U2) we find ¢1,t2 € P such that (p1t1,pat1) = (qita, gat2)
and oft _ (U;)=a!2  (Us) (by Lemma 10.17). Hence, we get

P1,p2 DP1,p2

(Lo, (p1,p2)] = [(ef )« (Lu,), (prty, pat2)] = []10‘2114)2((]1)7 (pit1,pat1)]

= (1,0 L(U2) (q1t2, qat2)] = [(aZﬁ,qz)*(ﬂUz)’ (q1t2, got2) ]

Aq7,q
= []]-U27 (qla q2)]a

that is, the map is well-defined.

Next, we want to show that this R-module homomorphism descends to the
quotient Ap (H,). Consider V' = Vi uVs, Vi, Vs € By,. Thus, V = X, ,,(U) for
some U € By, ogxys - As Apy.po|U 18 @ homeomorphism onto its image we can define
the compact open subsets U; := A, ,, |7 (Vi) € U and hence we have U; € B, 05z,
(as Bx,, ogx;, is stable under taking compact open subsets) and V; = Ap, p, (Us) by
definition for ¢ = 1,2. Hence, our R-module homomorphism maps 1y to

[1v, (p1,p2)] = [Losuvss (p1,p2) ] = [T, (P1.p2) ] + [Lu,, (p1,p2)],
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which is exactly the image of 1y, + 1y,. Thus, the R-module homomorphism indeed
descends to the quotient and gives us a well-defined R-module homomorphism

Ar (Hy) —lim Ap (Xp, 0g X)), I, @) = [Lu, (p1,p2)]

for all U € Bx, ogx;, . Now, this homomorphism is inverse to J, and hence Jj is
indeed an R-module isomorphism. O

Finally, we get our main result that the covariance ring of a diagram of bimodules
F obtained from an Ore diagram of correspondences X in &t tight is given by the
Steinberg algebra of the groupoid model H of X.

Theorem 11.6. Consider an Ore diagram X = (P,G, Xy, lp.q) i ®teg tight With
a groupoid model H. Then the Steinberg algebra of the groupoid model H gives
the covariance ring of the diagram F = A » X in Rings,,,, that is, we have an
isomorphism

Ar(H)=OF

of R-modules and unital rings.

Proof. Using Lemma 6.2 and Proposition 11.5 we get an isomorphism
Ap(H) 2 @ Ar (Hy) 2 @ lim A (X, og X}, )
geG geG
of R-modules given by
J: @ ll)nAR (X;m °g Xp*g) - AR (H) ) [f7 (p17p2)] = ()‘Phpz)*(f)
geG

for [f) (plapQ)] € h_n)lAR (Xp1 °g ng) with g = p1p517 f € AR (Xpl °g ng) and
(Apr,pa)«(f) € Ar (Hy) c Ar (H).

Now, we want to show that this is also an isomorphism of unital rings. We
take ¢, € @gegh_n’)lAR (Xpl og X;z). Since J is additive and independent of the
representative, it is sufficient to consider ¢ = [fl7 (phpg)], P = [fg, (qhqg)] for

fieAgr (Xpl og X;z), foe AR (Xm og X;S) and p1,p2,p3 € P. Now, for all z € H we
get

T(@9)(2) = T([fr * f2r (01,72)]) (2)
= (Aprps )+ (f1 * f2)(2)
= Z (f1 *f2)([3317333])

[z1,73]eX), OQXZ:S
Apy,ps ([z1,23])=2

= 2 > fi([an,22]) fo([w2, 23])

[z1,23]eXp, 0g X, T26Xp,
Apy ps ([21,23])=2 S(22)=s(21)

= Z fi(z) - fa(y)

T€Xp, 0g X1:2 ,YeXp, 00 X;3

/\P1 P2 (1)Ap2,p3 (y):Z

= Z ()‘Pl,m)*(fl)(m) : (/\pz,pg)*(f2)(y)

Ty=2

= (prp2 ) (F1) * Apa )« (£2))(2)
= (7(0) * T())(2),
and hence J (¢ ) = J(¢) * T (¢). Now, the multiplicative unit of

@;h—H}AR (X1 og XI;;)
ge
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is [Lgo,(1,1)] with 1go € AR (G) = Ar (X1 0g X}) (using G 2 X og X7 and Re-
mark 11.4). It is mapped under J to

I([1go, (1, 1)]) = Aa(fgo) = 1, , (g0 = aeo,

where the last equality follows from the definition of H" as it is defined in [Alb15].
Hence, the R-module isomorphism J is also a unital ring isomorphism giving
@ h_I)nAR (Xpl og X;jz) = AR (H) .
geG
Additionally, by Proposition 11.2 and Proposition 11.3 we have an isomorphism
Or = @ lim Ar (%, o5 X;,)
geG

of R-modules and unital rings. So finally, we can compose these two isomorphisms
of R-modules and unital rings to get the desired isomorphism. O
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