Exercise sheet 1.

Name

$\begin{array}{clllll}\text { Exercise } & 1 & 2 & 3 & 4 & \Sigma\end{array}$
 Points

Deadline: Wednesday, 27.4.2022, 16:00.

Please use this page as a cover sheet and enter your name in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Let $\mathbf{A b}$ be the category of abelian groups and group homomorphisms. Let A and B be abelian groups. The tensor product $A \otimes B$ is an Abelian group defined follows. It is the quotient of the free abelian group on the set of symbols $\{a \otimes b \mid a \in A, b \in B\}$ modulo the relations

$$
\begin{aligned}
& \left(a_{1}+a_{2}\right) \otimes b=a_{1} \otimes b+a_{2} \otimes b \text { for all } a_{1}, a_{2} \in A, b \in B, \\
& a \otimes\left(b_{1}+b_{2}\right)=a \otimes b_{1}+a \otimes b_{2} \text { for all } a \in A, b_{1}, b_{2} \in B .
\end{aligned}
$$

(i) Let $f: A \rightarrow A^{\prime}$ and $g: B \rightarrow B^{\prime}$ be two homomorphisms of abelian groups. Show that there is a unique homomorphism $f \otimes g: A \otimes B \rightarrow A^{\prime} \otimes B^{\prime}$ that satisfies

$$
\begin{equation*}
f \otimes g(a \otimes b)=f(a) \otimes f(b) \quad \text { for all } a \in A, b \in B \tag{1}
\end{equation*}
$$

Prove that this makes the construction of $A \otimes B$ to a bifunctor $\mathbf{A b} \times \mathbf{A b} \rightarrow \mathbf{A b}$.
(ii) Show that for any abelian group A, the tensor product $A \otimes \mathbb{Z}^{n}$ is isomophic to A^{n}.
(iii) Calculate $\mathbb{Z} / n \mathbb{Z} \otimes \mathbb{Z} / m \mathbb{Z}$ for natural numbers $n, m \in \mathbb{N}$.

Exercise 2. Let

$$
0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
$$

be an exact sequence of abelian groups. This means that f is injective and that g descends to an isomorphism $B / f(A) \cong C$. Suppose that D is another abelian group.
(i) Prove that the sequence

$$
A \otimes D \xrightarrow{f \otimes \mathrm{id}} B \otimes D \xrightarrow{g \otimes \mathrm{id}} C \rightarrow 0
$$

is exact. That is, $g \otimes$ id induces an isomorphism from $B \otimes D /(f \otimes \mathrm{id})(A \otimes D)$ onto $C \otimes D$.
(ii) Give an example where $f \otimes$ id is not injective (Hint: you may take $D=\mathbb{Z} / n \mathbb{Z}$.)

Exercise 3. Let R be an associative ring. We denote by R - mod (resp. mod- R) the category of left and right R-modules, respectively. For $M \in \bmod -R$ and $N \in R$-mod define the abelian group $M \otimes_{R} N$ as a quotient of $M \otimes N$ by the subgroup generated by the elements of the form $(m \cdot r) \otimes n-m \otimes(r \cdot n)$ for $r \in R, m \in M, n \in N$.
(i) For R-module maps $f: M \rightarrow M^{\prime}, g: N \rightarrow N^{\prime}$ check that the map $f \otimes g$ induces a map $M \otimes_{R} N \rightarrow M^{\prime} \otimes_{R} N^{\prime}$.
(ii) Let $Z(R)$ be the center of R. Show that the formula $z \cdot(m \otimes n)=(m \cdot z) \otimes n$ for $z \in Z(R)$, $m \in M, n \in N$ defines a $Z(R)$-module structure on $M \otimes_{R} N$. In particular, if R is a k-algebra for some field k, then $M \otimes_{R} N$ is naturally a k-vector space.
(iii) Let $R=\mathbb{C}[x]$ and $M=\mathbb{C}[x] /\left(x^{n}\right), N=\mathbb{C}[x] /\left(x^{m}\right)$ for $n, m \geq 1$. Describe $M \otimes_{R} N$ as an R-module (since R is commutative, we have $R=Z(R)$).

Exercise 4. Prove that the multiplication map $r \otimes m \mapsto r \cdot m$ defines an isomorphism $R \otimes_{R} M \cong M$ for any left R-module M. Similarly, $n \otimes r \mapsto n \cdot r$ defines an isomorphism $N \otimes_{R} R \cong N$ for any right R-module N.

