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Exercise 1. Let Ab be the category of abelian groups and group homomorphisms. Let A and B be
abelian groups. The tensor product A⊗B is an Abelian group defined follows. It is the quotient of the
free abelian group on the set of symbols {a⊗ b | a ∈ A, b ∈ B} modulo the relations

(a1 + a2)⊗ b = a1 ⊗ b + a2 ⊗ b for all a1, a2 ∈ A, b ∈ B,

a⊗ (b1 + b2) = a⊗ b1 + a⊗ b2 for all a ∈ A, b1, b2 ∈ B.

(i) Let f : A→ A′ and g : B → B′ be two homomorphisms of abelian groups. Show that there is a
unique homomorphism f ⊗ g : A⊗B → A′ ⊗B′ that satisfies

f ⊗ g(a⊗ b) = f(a)⊗ f(b) for all a ∈ A, b ∈ B. (1)

Prove that this makes the construction of A⊗B to a bifunctor Ab×Ab→ Ab.

(ii) Show that for any abelian group A, the tensor product A⊗ Zn is isomophic to An.

(iii) Calculate Z/nZ⊗ Z/mZ for natural numbers n, m ∈ N.

Exercise 2. Let
0→ A

f−→ B
g−→ C → 0

be an exact sequence of abelian groups. This means that f is injective and that g descends to an
isomorphism B/f(A) ∼= C. Suppose that D is another abelian group.

(i) Prove that the sequence
A⊗D

f⊗id−−−→ B ⊗D
g⊗id−−−→ C → 0

is exact. That is, g ⊗ id induces an isomorphism from B ⊗D/(f ⊗ id)(A⊗D) onto C ⊗D.

(ii) Give an example where f ⊗ id is not injective (Hint: you may take D = Z/nZ.)

Exercise 3. Let R be an associative ring. We denote by R-mod (resp. mod-R) the category of left
and right R-modules, respectively. For M ∈mod-R and N ∈ R-mod define the abelian group M⊗R N
as a quotient of M ⊗N by the subgroup generated by the elements of the form (m · r)⊗n−m⊗ (r ·n)
for r ∈ R, m ∈M , n ∈ N .

(i) For R-module maps f : M → M ′, g : N → N ′ check that the map f ⊗ g induces a map
M ⊗R N →M ′ ⊗R N ′.

(ii) Let Z(R) be the center of R. Show that the formula z · (m ⊗ n) = (m · z) ⊗ n for z ∈ Z(R),
m ∈M , n ∈ N defines a Z(R)-module structure on M ⊗R N . In particular, if R is a k-algebra
for some field k, then M ⊗R N is naturally a k-vector space.

(iii) Let R = C[x] and M = C[x]/(xn), N = C[x]/(xm) for n, m ≥ 1. Describe M ⊗R N as an
R-module (since R is commutative, we have R = Z(R)).

Exercise 4. Prove that the multiplication map r ⊗m 7→ r ·m defines an isomorphism R⊗R M ∼= M
for any left R-module M . Similarly, n⊗ r 7→ n · r defines an isomorphism N ⊗R R ∼= N for any right
R-module N .


