Exercise sheet 3.

Name

Exercise	1	2	3	Σ
Points				

Deadline: Wednesday, 12.11.2022, 16:00.
Please use this page as a cover sheet and enter your name in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1 (Fundamental bigroupoid). Let X be a topological space. We define the fundamental bigroupoid $\Pi_{2}(X)$ as follows. Objects of $\Pi_{2}(X)$ are points of X and 1-arrows between $x, y \in X$ are continuous paths $f:[0,1] \rightarrow X$ such that $f(0)=x$ and $f(1)=y$. Composition of arrows is given by concatenation: if $f: x \rightarrow y$ and $g: y \rightarrow z$, then $g \circ f$ is given by

$$
g \circ f(t)=\left\{\begin{array}{l}
f(2 t), \text { if } t \leq \frac{1}{2} \\
g(2 t-1), \text { if } t>\frac{1}{2}
\end{array}\right.
$$

The 2 -arrows are homotopy classes of basepoint-preserving homotopies. That is, for $f, g: x \rightarrow y$ the 2-arrow $\gamma: f \rightarrow g$ is an equivalence class of continuous map $\gamma:[0,1] \times[0,1] \rightarrow X$ such that $\gamma(t, 0)=f(t), \gamma(t, 1)=g(t), \gamma(0, s)=x$, and $\gamma(1, s)=y$ for all $t, s \in[0,1]$. Two maps γ, γ^{\prime} are equivalent if and only if there is a basepoint preserving homotopy between them (i.e the map $[0,1]^{3} \rightarrow X$ with analogous properties).
For an object x, the unit 1_{x} is just a trivial path $f(t)=x$. For 1 -arrow γ, the unit 1_{γ} is a trivial homotopy.

Construct uniters and associators and verify the axioms of a bicategory. You may assume that the data given above satisifes the first 4 axioms. This exercsise counts double.

Exercise 2 (Decategorification). Let \mathcal{C} be a bicategory. Let \mathcal{C}^{\prime} be the set of isomorphism classes of 1 -arrows. Show that there is a category with object set \mathcal{C}^{0} and set of arrows \mathcal{C}^{\prime}, with the product defined by $[f] \circ[g]:=[f \circ g]$ for composable arrows f, g in \mathcal{C}. Show that an arrow f in \mathcal{C} is an equivalence if and only if its image in \mathcal{C}^{\prime} is invertible.

Exercise 3 (Adjoint equivalence). Let \mathcal{C} be a bicategory. Let $\alpha: x \rightarrow y$ be an equivalence in \mathcal{C}. Choose $\beta: y \rightarrow x$ with $\beta \circ \alpha \cong 1_{x}$ and $\alpha \circ \beta \cong 1_{y}$. Then the invertible 2-arrows $1_{x} \Rightarrow \beta \circ \alpha$ and $\alpha \circ \beta \Rightarrow 1_{y}$ may be chosen so that the resulting composite 2 -arrows

$$
\begin{aligned}
& \alpha \cong \alpha \circ 1_{x} \Rightarrow \alpha \circ(\beta \circ \alpha) \cong(\alpha \circ \beta) \circ \alpha \Rightarrow 1_{y} \circ \alpha \cong \alpha, \\
& \beta \cong 1_{x} \circ \beta \Rightarrow(\beta \circ \alpha) \circ \beta \cong \beta \circ(\alpha \circ \beta) \Rightarrow \beta \circ 1_{y} \cong \beta
\end{aligned}
$$

are both unit 2 -arrows. The arrows α and β together with 2 -arrows with these properties are called an adjoint equivalence.

