Exercise sheet 3.

	-	Exercise	1	2	3	Σ
Name		Points				

Deadline: Wednesday, 12.11.2022, 16:00.

Please use this page as a cover sheet and enter your name in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1 (Fundamental bigroupoid). Let X be a topological space. We define the *fundamental bigroupoid* $\Pi_2(X)$ as follows. Objects of $\Pi_2(X)$ are points of X and 1-arrows between $x, y \in X$ are continuous paths $f: [0,1] \to X$ such that f(0) = x and f(1) = y. Composition of arrows is given by concatenation: if $f: x \to y$ and $g: y \to z$, then $g \circ f$ is given by

$$g \circ f(t) = \begin{cases} f(2t), \text{ if } t \leq \frac{1}{2} \\ g(2t-1), \text{ if } t > \frac{1}{2}. \end{cases}$$

The 2-arrows are homotopy classes of basepoint-preserving homotopies. That is, for $f, g: x \to y$ the 2-arrow $\gamma: f \to g$ is an equivalence class of continuous map $\gamma: [0,1] \times [0,1] \to X$ such that $\gamma(t,0) = f(t), \gamma(t,1) = g(t), \gamma(0,s) = x$, and $\gamma(1,s) = y$ for all $t, s \in [0,1]$. Two maps γ, γ' are equivalent if and only if there is a basepoint preserving homotopy between them (i.e the map $[0,1]^3 \to X$ with analogous properties).

For an object x, the unit 1_x is just a trivial path f(t) = x. For 1-arrow γ , the unit 1_{γ} is a trivial homotopy.

Construct uniters and associators and verify the axioms of a bicategory. You may assume that the data given above satisifes the first 4 axioms. This exercise counts double.

Exercise 2 (Decategorification). Let \mathcal{C} be a bicategory. Let \mathcal{C}' be the set of isomorphism classes of 1-arrows. Show that there is a category with object set \mathcal{C}^0 and set of arrows \mathcal{C}' , with the product defined by $[f] \circ [g] := [f \circ g]$ for composable arrows f, g in \mathcal{C} . Show that an arrow f in \mathcal{C} is an equivalence if and only if its image in \mathcal{C}' is invertible.

Exercise 3 (Adjoint equivalence). Let \mathcal{C} be a bicategory. Let $\alpha \colon x \to y$ be an equivalence in \mathcal{C} . Choose $\beta \colon y \to x$ with $\beta \circ \alpha \cong 1_x$ and $\alpha \circ \beta \cong 1_y$. Then the invertible 2-arrows $1_x \Rightarrow \beta \circ \alpha$ and $\alpha \circ \beta \Rightarrow 1_y$ may be chosen so that the resulting composite 2-arrows

$$\begin{split} &\alpha\cong\alpha\circ 1_x\Rightarrow\alpha\circ(\beta\circ\alpha)\cong(\alpha\circ\beta)\circ\alpha\Rightarrow 1_y\circ\alpha\cong\alpha,\\ &\beta\cong 1_x\circ\beta\Rightarrow(\beta\circ\alpha)\circ\beta\cong\beta\circ(\alpha\circ\beta)\Rightarrow\beta\circ 1_y\cong\beta \end{split}$$

are both unit 2-arrows. The arrows α and β together with 2-arrows with these properties are called an *adjoint equivalence*.