Exercise sheet 4.

Name

Exercise	1	2	3	4	Σ
Points					

Deadline: Wednesday, 18.05.2022, 16:00.
Please use this page as a cover sheet and enter your name in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Let \mathcal{C} and \mathcal{D} be bicategories and let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a morphism. Show that F maps invertible 2-arrows to invertible 2-arrows. Thus F preserves the isomorphism relation on arrows.

Exercise 2. Let \mathcal{C} and \mathcal{D} be bicategories and let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a homomorphism. Show that F descends to a functor between the 1-categories associated to \mathcal{C} and \mathcal{D} (see Exercise 2, Sheet 3). Deduce that F maps an equivalence $f: x \rightarrow y$ in \mathcal{C} to an equivalence in \mathcal{D}. Thus $F^{0}(x)$ and $F^{0}(y)$ are equivalent in \mathcal{D} if x and y are equivalent in \mathcal{C}.

Exercise 3. Let X and Y be topological spaces. Consider the fundamental bigroupoids $\Pi_{2}(X)$ and $\Pi_{2}(Y)$. We are going to define a homomorphism $\Pi_{2}(f): \Pi_{2}(X) \rightarrow \Pi_{2}(Y)$ for a continuous map $f: X \rightarrow Y$. On objects, it acts by $\Pi_{2}(f)(x):=f(x) \in \Pi_{2}(Y)^{0}$ for any $x \in \Pi_{2}(X)^{0}=X$. For an arrow $\varphi:[0,1] \rightarrow X$ and a 2-arrow $\gamma:[0,1]^{2} \rightarrow X$ we define $\Pi_{2}(f)(\varphi)=f \circ \varphi$ and $\Pi_{2}(f)(\gamma)=f \circ \gamma$. Extend this data to a morphism of bicategories and check the axioms. Show that it is even a homomorphism.

Exercise 4. Let R be a ring. We will construct a graded ring from the action of a discrete group on R.
Let $f: R \rightarrow Q$ be a ring homomorphism from R to some other ring Q. Define a Q, R-bimodule Q_{f} such that it is the same as Q as an abelian group, the action of Q is given by the left multiplication, and the action of $r \in R$ is given by the right multiplication by $f(r)$.
(i) Suppose that $g: Q \rightarrow S$ is another ring homomorphism. Prove that the map $\mu_{g, f}: S_{g} \otimes_{Q} Q_{f} \rightarrow S_{g \circ f}$ defined by $\mu_{g, f}(s \otimes q)=s \cdot g(q)$ for $s \in S_{g}, q \in Q_{f}$ is an isomorphism of S, R-bimodules.
(ii) Let G be a discrete group acting by automorphisms on R. That is, we have a map $g \mapsto \gamma_{g} \in \operatorname{Aut}(R)$ such that $\gamma_{g} \circ \gamma_{h}=\gamma_{g h}$. Let $e \in G$ be the unit element. Define $G \ltimes R=\bigoplus_{g \in G} R_{\gamma_{g}}$ as a graded R-bimodule with multiplication of homogeneous elements given by

$$
r \cdot s=\mu_{\gamma_{g}, \gamma_{h}}(r \otimes s) \in R_{\gamma_{g h}} \subset G \ltimes R
$$

for $r \in R_{g}$ and $s \in R_{h}$. Check that this defines a G-graded ring with $(G \ltimes R)_{e}$ isomorphic to R.

