Exercise sheet 5.

	Exercise	1	2	3	4	\sum
Name	Points					

Deadline: Wednesday, 25.05.2022, 16:00.

Please use this page as a cover sheet and enter your name in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1 (Intertwiners as 2-arrows). Let $f_1, f_2: S \rightrightarrows R$ be ring homomorphisms. Find a bijection between bimodule homomorphisms $R_{f_1} \rightarrow R_{f_2}$ and elements $r \in R$ that satisfy $r \cdot f_1(s) = f_2(s) \cdot r$ for all $s \in S$ ("intertwiners"). The vertical product gives the multiplication in R for these intertwiners. Describe the horizontal product of intertwiners.

Exercise 2 (Uniters for the unit arrow). Let C be a bicategory and $x, y \in C^0$ be objects.

- (i) Let $f: x \to y$ be a 1-arrow. Use the naturality of uniters to show that $l_{1_y \circ f} = 1_y \bullet l_f$ and $r_{f \circ 1_x} = r_f \bullet 1_x$.
- (ii) Apply the triangle axiom twice to show that $1_x \bullet (l_{1_x} \bullet 1_x) = 1_x \bullet (1_x \bullet l_{1_x}) \circ 1_x \bullet ass.$
- (iii) Combine (i) and (ii) to prove that $l_{1_x} = r_{1_x}$.
- **Exercise 3** (Endomorphisms of the unit). (i) Let $c_1, c_2: 1_x \Rightarrow 1_x$ be 2-arrows. Use the naturality of uniters and the previous exercise to prove that $c_1 \circ c_2 = l_{1_x} \circ c_1 \bullet c_2 \circ l_{1_x}^{-1}$.
 - (ii) Show that $c_1 \circ c_2 = c_2 \circ c_1$. Hence, the endomorphism monoid of the unit object is commutative.
- (iii) Apply this to the fundamental bigroupoid of a topological space X to prove that the second homotopy group $\pi_2(X)$ is abelian.

Exercise 4 (Homotopy as a transformation). Let X, Y be topological spaces, let $f, g: X \rightrightarrows Y$ be continuous maps and let $\rho: X \times [0,1] \to Y$ be a homotopy from f to g. Consider the homomorphisms $\Pi_2(f), \Pi_2(g): \Pi_2(X) \to \Pi_2(Y)$ defined in the previous sheet. For any object $x \in \Pi_2(X)^0 = X$, let $\Pi_2(\rho)_x: f(x) \to g(x)$ be the path $t \mapsto \rho(x, t)$. Show that these arrows are part of a transformation $\Pi_2(\rho): \Pi_2(f) \Rightarrow \Pi_2(g)$, that is, define the natural 2-arrows in the definition of a transformation that are still missing and check the axioms.