Exercise sheet 6.

	Exercise	1	2	3	4	\sum
Name	Points					

Deadline: Thursday, 2.6.2022, 16:00.

Please use this page as a cover sheet and enter your name in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Describe two morphisms $\mathcal{C} \rightrightarrows \mathfrak{Rings}$ through $S = \bigoplus_{\gamma \in \mathcal{C}} S_{\gamma}$ with $R \to S|_{\mathcal{C}^0}$ and $T = \bigoplus_{\gamma \in \mathcal{C}} T_{\gamma}$ with $U \to T|_{\mathcal{C}^0}$. Describe two transformations between these morphisms through \mathcal{C}^0 -graded R, U-bimodules M and N with suitable \mathcal{C} -graded S, T-bimodule structures on $M \otimes_U T$ and $N \otimes_U T$. Show that a modification between these transformations is equivalent to an R, U-bimodule map $\varphi : M \to N$ such that the induced grading-preserving right T-module map $\varphi \otimes_U \operatorname{id}_T : M \otimes_U T \to N \otimes_U T$ is also a left S-module map. If $U \to T|_{\mathcal{C}^0}$ is an isomorphism, then show that modifications are equivalent to grading-preserving S, T-bimodule maps $M \otimes_U T \to N \otimes_U T$.

Exercise 2. Let $E = (E^0, E^1, s, r)$ be a directed graph. Here, E^0 is a finite set of vertices, E^1 is a set of edges, and $s, r: E^1 \Rightarrow E^0$ are the source and range maps on edges. Consider the ring $R_0 = \bigoplus_{v \in E^0} \mathbb{C}$ and denote by $p_v \in R_0$ the idempotent corresponding to p_v . Consider the vector space R_1 with basis $\{s_e: e \in E^1\}$. Define a R_0 -bimodule structure on R_1 as

$$s_e \cdot p_v = \delta_{s(e)v} s_e, \ p_v \cdot s_e = \delta_{r(e)v} s_e.$$

This data defines a homomorphism $F: (\mathbb{N}, +) \to \mathfrak{Rings}$. Denote the corresponding graded ring by R. Show that the *n*-th graded component of R has a natural basis indexed by paths of length n in E such that the product is given by the concatenation of paths.

Exercise 3. We use the notation of the previous exercise. Let B be some other \mathbb{C} -algebra. Consider the category $\mathcal{E}(B)$ whose objects are pairs $(\{M_v\}_{v\in E^0}, \{\varphi_e\}_{e\in E^1})$, where M_v are B-modules and $\varphi_e \colon M_{s(e)} \to M_{r(e)}$ are module homomorphisms. A morphisms f between $(\{M_v\}_{v\in E^0}, \{\varphi_e\}_{e\in E^1})$ and $(\{N_v\}_{v\in E^0}, \{\psi_e\}_{e\in E^1})$ in $\mathcal{E}(B)$ is a collection of module homomorphism $f_v \colon M_v \to N_v$ for $v \in E^0$ such that $f_{r(e)} \circ \varphi_e = \psi_e \circ f_{s(e)}$ for all $e \in E^1$. These morphisms are composed simply by composing the homomorphisms in the collection. Show that \mathcal{E} is equivalent to the category $\mathfrak{Rings}(R, B)$.

Exercise 4. A crossed module consists of two groups G and H and group homomorphisms $\partial \colon H \to G$ and $c \colon G \to \operatorname{Aut}(H)$ such that $\partial(c_g(h)) = g\partial(h)g^{-1}$ and $c_{\partial(h)}(k) = hkh^{-1}$ for all $g \in G$, $h, k \in H$.

Let (G, H, ∂, c) be a crossed module. We are going to build a 2-group C (that is, a strict bicategory with one object and all 1- and 2-arrows being invertible). The arrow set of C is G with the given group law. The set of 2-arrows is $H \times G$, and the horizontal product is the product in the semidirect product group $H \rtimes_c G$. A pair (h, g) is a 2-arrow $h: g \Rightarrow \partial(h)g$, that is, s(h, g) = g and $r(h, g) = \partial(h)g$. The unit 2-arrow on $g \in G$ is (1, g). The horizontal product is

$$(h_1, g_1) \bullet (h_2, g_2) \coloneqq (h_1 \cdot c_{g_1}(h_2), g_1 g_2),$$

and the vertical product is

$$(h_1, \partial(h_2)g) \circ (h_2, g) \coloneqq (h_1 \cdot h_2, g)$$

Prove that this data satisfies the axioms of a 2-category.