Exercise sheet 6.

Name

$\begin{array}{llllll}\text { Exercise } & 1 & 2 & 3 & 4 & \Sigma\end{array}$
 Points

Deadline: Thursday, 2.6.2022, 16:00.

Please use this page as a cover sheet and enter your name in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Describe two morphisms $\mathcal{C} \rightrightarrows \mathfrak{R i n g s}$ through $S=\bigoplus_{\gamma \in \mathcal{C}} S_{\gamma}$ with $\left.R \rightarrow S\right|_{\mathcal{C}^{0}}$ and $T=$ $\oplus_{\gamma \in \mathcal{C}} T_{\gamma}$ with $\left.U \rightarrow T\right|_{\mathcal{C}^{0}}$. Describe two transformations between these morphisms through \mathcal{C}^{0}-graded R, U-bimodules M and N with suitable \mathcal{C}-graded S, T-bimodule structures on $M \otimes_{U} T$ and $N \otimes_{U} T$. Show that a modification between these transformations is equivalent to an R, U-bimodule map $\varphi: M \rightarrow N$ such that the induced grading-preserving right T-module map $\varphi \otimes_{U} \operatorname{id}_{T}: M \otimes_{U} T \rightarrow N \otimes_{U} T$ is also a left S-module map. If $\left.U \rightarrow T\right|_{\mathcal{C}^{0}}$ is an isomorphism, then show that modifications are equivalent to grading-preserving S, T-bimodule maps $M \otimes_{U} T \rightarrow N \otimes_{U} T$.

Exercise 2. Let $E=\left(E^{0}, E^{1}, s, r\right)$ be a directed graph. Here, E^{0} is a finite set of vertices, E^{1} is a set of edges, and $s, r: E^{1} \rightrightarrows E^{0}$ are the source and range maps on edges. Consider the ring $R_{0}=\oplus_{v \in E^{0}} \mathbb{C}$ and denote by $p_{v} \in R_{0}$ the idempotent corresponding to p_{v}. Consider the vector space R_{1} with basis $\left\{s_{e}: e \in E^{1}\right\}$. Define a R_{0}-bimodule structure on R_{1} as

$$
s_{e} \cdot p_{v}=\delta_{s(e) v} s_{e}, p_{v} \cdot s_{e}=\delta_{r(e) v} s_{e}
$$

This data defines a homomorphism $F:(\mathbb{N},+) \rightarrow \mathfrak{R i n g s .}$ Denote the corresponding graded ring by R. Show that the n-th graded component of R has a natural basis indexed by paths of length n in E such that the product is given by the concatenation of paths.

Exercise 3. We use the notation of the previous exercise. Let B be some other \mathbb{C}-algebra. Consider the category $\mathcal{E}(B)$ whose objects are pairs $\left(\left\{M_{v}\right\}_{v \in E^{0}},\left\{\varphi_{e}\right\}_{e \in E^{1}}\right)$, where M_{v} are B-modules and $\varphi_{e}: M_{s(e)} \rightarrow M_{r(e)}$ are module homomorphisms. A morphisms f between $\left(\left\{M_{v}\right\}_{v \in E^{0}},\left\{\varphi_{e}\right\}_{e \in E^{1}}\right)$ and $\left(\left\{N_{v}\right\}_{v \in E^{0}},\left\{\psi_{e}\right\}_{e \in E^{1}}\right)$ in $\mathcal{E}(B)$ is a collection of module homomorphism $f_{v}: M_{v} \rightarrow N_{v}$ for $v \in E^{0}$ such that $f_{r(e)} \circ \varphi_{e}=\psi_{e} \circ f_{s(e)}$ for all $e \in E^{1}$. These morphisms are composed simply by composing the homomorphisms in the collection. Show that \mathcal{E} is equivalent to the category $\mathfrak{R i n g s}(R, B)$.

Exercise 4. A crossed module consists of two groups G and H and group homomorphisms $\partial: H \rightarrow G$ and $c: G \rightarrow \operatorname{Aut}(H)$ such that $\partial\left(c_{g}(h)\right)=g \partial(h) g^{-1}$ and $c_{\partial(h)}(k)=h k h^{-1}$ for all $g \in G, h, k \in H$.

Let (G, H, ∂, c) be a crossed module. We are going to build a 2 -group \mathcal{C} (that is, a strict bicategory with one object and all 1- and 2 -arrows being invertible). The arrow set of \mathcal{C} is G with the given group law. The set of 2 -arrows is $H \times G$, and the horizontal product is the product in the semidirect product group $H \rtimes_{c} G$. A pair (h, g) is a 2-arrow $h: g \Rightarrow \partial(h) g$, that is, $s(h, g)=g$ and $r(h, g)=\partial(h) g$. The unit 2-arrow on $g \in G$ is $(1, g)$. The horizontal product is

$$
\left(h_{1}, g_{1}\right) \bullet\left(h_{2}, g_{2}\right):=\left(h_{1} \cdot c_{g_{1}}\left(h_{2}\right), g_{1} g_{2}\right),
$$

and the vertical product is

$$
\left(h_{1}, \partial\left(h_{2}\right) g\right) \circ\left(h_{2}, g\right):=\left(h_{1} \cdot h_{2}, g\right) .
$$

Prove that this data satisfies the axioms of a 2 -category.

