Exercise sheet 7.

	Exercise	1	2	3	4	\sum
Name	Points					

Deadline: Wednesday, 8.6.2022, 16:00.

Please use this page as a cover sheet and enter your name in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1 (Example from number theory). Consider the ring $R = \mathbb{Z}[\sqrt{-5}] = \mathbb{Z}[x]/(x^2 + 5)$ and the ideal $I = (2, 1 + \sqrt{-5}) \subset R$. One can show that $I \oplus I = R \oplus R$, so I is a projective generator. Give I the symmetric R-bimodule structure where $x \cdot y = y \cdot x$ for all $x \in I \subseteq R, y \in R$.

- (i) Prove that I is not principal, that is, it is not generated by a single element. In particular, I is not isomorphic to R as an R-module.
- (ii) Show that the map $\mu_I \colon I \otimes_R I \to R$, $a \otimes b \mapsto \frac{ab}{2}$ for $a, b \in I$ is a well defined bimodule isomorphism.
- (iii) We can think about I as an arrow $R \to R$ in the bicategory \mathfrak{Rings} . By (ii), the composition of I with itself is isomorphic to R. Show that this gives a homomorphism $\mathbb{Z}/2\mathbb{Z} \to \mathfrak{Rings}$.
- (iv) The covariance ring R[I] of this diagram is $R \oplus I$ as an R-bimodule and the multiplication is defined as $(a,b) \cdot (c,d) = (ac + \mu_I(b,d), ad + bc)$. Find an isomorphism between R[I] and $R[s,t]/(s^2-2,t^2-\sqrt{-5}-2,st-1-\sqrt{-5})$.

Exercise 2 (Diagrams over \mathbb{N}^2). We already know that a homomorphism $\mathbb{N}^2 \to \mathfrak{Rings}$ is "equivalent" to a strongly \mathbb{N}^2 -graded ring. Show that such homomorphisms are "equivalent" to the following data:

- a ring R;
- R, R-bimodules X and Y for the two generators of \mathbb{N}^2 ;
- an R, R-bimodule isomorphism $X \otimes_R Y \cong Y \otimes_R X$ that allows to define a bimodule for (1, 1, 0) and (1, 0, 1).

Exercise 3 (Invertible arrow diagram). Consider the category \mathcal{C} with two objects x, y and the only nontrivial arrows $f: x \to y$ and $g: y \to x$ such that $fg = 1_y, gf = 1_x$. Let \mathcal{D} be a bicategory and let $F: \mathcal{C} \to \mathcal{D}$ be a homomorphism. Let $D \in \mathcal{D}^0$. Prove that the categories Cone(D, F) and $\mathcal{D}(D, F^0(x))$ are equivalent.

Exercise 4 (Twisted action). Let G be a group viewed as a category with one object $G^0 = \{*\}$. Let R be a commutative ring. We are going to classify strictly unital homomorphisms $F: G \to \mathfrak{Rings}$ with $F^0(*) = R$ and $F(g) = 1_R$ for any $g \in G$. To completely define a strictly unital homomorphism, we also need invertible 2-arrows $\mu_{f,g}: F(f) \circ F(g) = R \otimes_R R \Rightarrow F(f \circ g) = R$ for $f, g \in G$. Then $\mu_{f,g} \circ l_R^{-1}$ is an invertible 2-arrow from R to R. As such, it is equal to multiplication by a unique invertible element $u(f,g) \in R^{\times}$. Since R is commutative, any element is allowed.

(i) Show that the arrows $\{\mu_{f,g}\}$ define a strictly unital homomorphism if and only if the following holds:

•
$$u(f,g) \cdot u(fg,h) = u(g,h) \cdot u(f,gh);$$

• u(1,g) = u(g,1) = 1.

Check that u is a normalised 2-cocycle $G \times G \to R^{\times}$ (nothing to write here). If you do not know group cohomology, look up its definition.

(ii) Extend the above results to the situation when F(g) = R as a right module, with left action given by $a \cdot b \coloneqq \alpha_g(a)b$ for some automorphisms $\alpha_g \colon R \to R$ for $g \in G$.