Exercise sheet 7.

Name

$\begin{array}{clllll}\text { Exercise } & 1 & 2 & 3 & 4 & \Sigma\end{array}$
 Points

Deadline: Wednesday, 8.6.2022, 16:00.

Please use this page as a cover sheet and enter your name in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1 (Example from number theory). Consider the ring $R=\mathbb{Z}[\sqrt{-5}]=\mathbb{Z}[x] /\left(x^{2}+5\right)$ and the ideal $I=(2,1+\sqrt{-5}) \subset R$. One can show that $I \oplus I=R \oplus R$, so I is a projective generator. Give I the symmetric R-bimodule structure where $x \cdot y=y \cdot x$ for all $x \in I \subseteq R, y \in R$.
(i) Prove that I is not principal, that is, it is not generated by a single element. In particular, I is not isomorphic to R as an R-module.
(ii) Show that the map $\mu_{I}: I \otimes_{R} I \rightarrow R, a \otimes b \mapsto \frac{a b}{2}$ for $a, b \in I$ is a well defined bimodule isomorphism.
(iii) We can think about I as an arrow $R \rightarrow R$ in the bicategory $\mathfrak{R i n g s}$. By (ii), the composition of I with itself is isomorphic to R. Show that this gives a homomorphism $\mathbb{Z} / 2 \mathbb{Z} \rightarrow \mathfrak{R i n g s}$.
(iv) The covariance ring $R[I]$ of this diagram is $R \oplus I$ as an R-bimodule and the multiplication is defined as $(a, b) \cdot(c, d)=\left(a c+\mu_{I}(b, d), a d+b c\right)$. Find an isomorphism between $R[I]$ and $R[s, t] /\left(s^{2}-2, t^{2}-\sqrt{-5}-2, s t-1-\sqrt{-5}\right)$.

Exercise 2 (Diagrams over \mathbb{N}^{2}). We already know that a homomorphism $\mathbb{N}^{2} \rightarrow \mathfrak{R i n g s}$ is "equivalent" to a strongly \mathbb{N}^{2}-graded ring. Show that such homomorphisms are "equivalent" to the following data:

- a ring R;
- R, R-bimodules X and Y for the two generators of \mathbb{N}^{2};
- an R, R-bimodule isomorphism $X \otimes_{R} Y \cong Y \otimes_{R} X$ that allows to define a bimodule for $(1,1,0)$ and ($1,0,1$).

Exercise 3 (Invertible arrow diagram). Consider the category \mathcal{C} with two objects x, y and the only nontrivial arrows $f: x \rightarrow y$ and $g: y \rightarrow x$ such that $f g=1_{y}, g f=1_{x}$. Let \mathcal{D} be a bicategory and let $F: \mathcal{C} \rightarrow \mathcal{D}$ be a homomorphism. Let $D \in \mathcal{D}^{0}$. Prove that the categories Cone (D, F) and $\mathcal{D}\left(D, F^{0}(x)\right)$ are equivalent.

Exercise 4 (Twisted action). Let G be a group viewed as a category with one object $G^{0}=\{*\}$. Let R be a commutative ring. We are going to classify strictly unital homomorphisms $F: G \rightarrow \mathfrak{R i n g s}$ with $F^{0}(*)=R$ and $F(g)=1_{R}$ for any $g \in G$. To completely define a strictly unital homomorphism, we also need invertible 2-arrows $\mu_{f, g}: F(f) \circ F(g)=R \otimes_{R} R \Rightarrow F(f \circ g)=R$ for $f, g \in G$. Then $\mu_{f, g} \circ l_{R}^{-1}$ is an invertible 2 -arrow from R to R. As such, it is equal to multiplication by a unique invertible element $u(f, g) \in R^{\times}$. Since R is commutative, any element is allowed.
(i) Show that the arrows $\left\{\mu_{f, g}\right\}$ define a strictly unital homomorphism if and only if the following holds:

- $u(f, g) \cdot u(f g, h)=u(g, h) \cdot u(f, g h)$;
- $u(1, g)=u(g, 1)=1$.

Check that u is a normalised 2-cocycle $G \times G \rightarrow R^{\times}$(nothing to write here). If you do not know group cohomology, look up its definition.
(ii) Extend the above results to the situation when $F(g)=R$ as a right module, with left action given by $a \cdot b:=\alpha_{g}(a) b$ for some automorphisms $\alpha_{g}: R \rightarrow R$ for $g \in G$.

