Exercise sheet 9.

Name

Exercise	1	2	3	4	Σ
Points					

Deadline: Wednesday, 22.6.2022, 16:00.

Please use this page as a cover sheet and enter your name in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Consider the ring $R=\mathbb{Z}[\sqrt{-5}]$ and the ideal $I=(2,1+\sqrt{-5})$ from Exercise 1, Sheet 7. Prove that the Cohn localisation of R at the inclusion $\iota: I \hookrightarrow R$ is isomorphic to the localisation of R by $2 \in R$.

Exercise 2. Let R be a commutative ring and let $s \in \mathbb{M}_{n \times n}(R)$. Show that the Cohn localisation of R at the matrix s is isomorphic to the localisation of R at $\operatorname{det}(s) \in R$.

Exercise 3. Let R be an algebra over a field of characteristic $\neq 2$ and let M be an R-bimodule. A linear map $\partial: R \rightarrow M$ is called a derivation if for any $r_{1}, r_{2} \in R$ we have $\partial\left(r_{1} r_{2}\right)=r_{1} \partial\left(r_{2}\right)+\partial\left(r_{1}\right) r_{2}$. Derivations from R to M form an abelian group which will be denoted by $\operatorname{Der}(R, M)$.
(i) Let $s \in R$ and let M be an $R\left[s^{-1}\right]$-module. Prove that any derivation $\partial \in \operatorname{Der}(R, M)$ extends uniquely to a derivation $\partial_{s} \in \operatorname{Der}\left(R\left[s^{-1}\right], M\right)$ by the rule $\partial_{s}\left(s^{-1}\right)=-s^{-1} \partial(s) s^{-1}$.
(ii) Let $\partial \in \operatorname{Der}(R, M)$ be a derivation. Consider the matrix ring $\mathbb{M}_{n}(R)$ and turn M into an $\mathbb{M}_{n}(R)$ bimodule $\mathbb{M}_{n}(M)$. Define a derivation $\mathbb{M}_{n}(\partial) \in \operatorname{Der}\left(\mathbb{M}_{n}(R), \mathbb{M}_{n}(M)\right)$ which acts by application of ∂ to matrix entries: $\left(r_{i, j}\right)_{1 \leq i, j \leq n} \mapsto\left(\partial\left(r_{i, j}\right)\right)_{1 \leq i, j \leq n}$. Check that $\mathbb{M}_{n}(\partial)$ is indeed a derivation and that the assignment $\partial \mapsto \mathbb{M}_{n}(\partial)$ defines a bijection from $\operatorname{Der}(R, M)$ to $\operatorname{Der}\left(\mathbb{M}_{n}(R), \mathbb{M}_{n}(M)\right)$.
(iii) Solve (i) with a matrix $s \in \mathbb{M}_{n}(R)$ instead of $s \in R$.

Exercise 4. Let $s \in R$ be a regular element, satisfying the right Ore condition (see Exercise 2, Sheet 8).
(i) Let M be a right R-module. Prove that any element of $M \otimes_{R} R\left[s^{-1}\right]$ has the form $m \otimes s^{-n}$ for $m \in M$ and $n \in \mathbb{N}$.
(ii) Right multiplication induces a right R-module structure on $M \otimes_{R} R\left[s^{-1}\right]$. Show that M is isomorphic to $M \otimes_{R} R\left[s^{-1}\right]$ if and only if s acts by an invertible transformation on M.
(iii) Prove that $R\left[s^{-1}\right]$ is a flat left R-module, that is, the functor $-\otimes_{R} R\left[s^{-1}\right]$ is exact.

