Exercise sheet 13.

Name

Exercise	1	2	3	4	Σ
Points					

Deadline: Wednesday, 11.2.2022, 16:00.
Please use this page as a cover sheet and enter your name in the appropriate fields. Please staple your solutions to this cover sheet.

Exercise 1. Let \mathcal{C} and \mathcal{D} be bicategories. An adjunction between them is a pair of homomorphisms $L: \mathcal{D} \rightarrow \mathcal{C}$ and $R: \mathcal{C} \rightarrow \mathcal{D}$ together with an equivalence of categories $\varphi_{d, c}: \mathcal{C}(L(d), c) \rightarrow \mathcal{D}(d, R(c))$, which is a part of a transformation between the homomorphisms $(d, c) \mapsto \mathcal{C}(L(d), c), \mathcal{D}(d, R(c))$ on the product $\mathcal{D}^{o p} \times \mathcal{C} \rightarrow \mathfrak{C a t}$ bicategory.

Let $d \in \mathcal{D}^{0}$. A pair (c, g) with $c \in \mathcal{C}^{0}$ and $g: d \rightarrow R(c)$ is called a universal arrow from d to R if, for every $x \in \mathcal{C}^{0}$, the following functor is an equivalence of categories:

$$
g^{*}: \mathcal{C}(c, x) \rightarrow \mathcal{D}(d, R(x)), f \mapsto R(f) \cdot g, \quad w \mapsto R(w) \bullet 1_{g} .
$$

Show that for any $d \in \mathcal{D}^{0}$, the pair $\left(L(d), \varphi_{d, L(d)}\left(1_{L(d)}\right)\right)$ is a universal arrow from d to R.
Exercise 2. Let $\mathcal{R}_{c}(2) \subset \mathcal{R}(2)$ be the subbicategory of commutative rings and denote the inclusion homomorphism by R. Find a homomorphism $L: \mathcal{R}(2) \rightarrow \mathcal{R}_{c}(2)$ and a collection of equivalences of categories $\varphi_{d, c}$ as in the previous exercise such that the data (L, R, φ) defines an adjunction. Is there an analogous adjunction for the inclusion $\mathfrak{R i n g s}_{c} \rightarrow \mathfrak{R i n g s}$?

Exercise 3. A skeletal bicategory is a bicategory where equivalent objects are equal and isomorphic 1 -arrows are equal. Let \mathcal{A} be a bicategory with only one object (a monoidal category). Show that it is equivalent to a skeletal bicategory (Hint: every category is equivalent to a skeletal category. Use the existence of an adjoint equivalence, which we have established earlier.)

Exercise 4. Let $G: \mathcal{C} \rightarrow \mathcal{D}$ be a homomorphism. Construct a dual morphism $G^{*}: \operatorname{Hom}\left(\mathcal{D}^{o p}, \mathfrak{C a t}\right) \rightarrow$ $\operatorname{Hom}\left(\mathcal{C}^{o p}, \mathfrak{C a t}\right)$ that acts on objects by $\left(G^{*}\right)^{0}(F)=F \circ G$ for every homomorphism $F: \mathcal{D}^{o p} \rightarrow \mathfrak{C a t}$.

Suppose that G is an equivalence. Show that in this case for any $c \in \mathcal{C}^{0}$, the two objects $\mathbb{Y}_{\mathcal{C}}(c)$ and $G^{*}\left(\mathbb{Y}_{\mathcal{D}}(G(c))\right)$ of $\operatorname{Hom}\left(\mathcal{C}^{o p}, \mathfrak{C a t}\right)$ are equivalent.

